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We investigate the interior dynamics of accreting black holes in Eddington-inspired Born-Infeld gravity
using the homogeneous approximation and taking charge as a surrogate for angular momentum, showing
that accretion can have an enormous impact on their inner structure. We find that, unlike in general
relativity, there is a minimum accretion rate below which the mass inflation instability, which drives the
center-of-mass streaming density to exponentially high values in an extremely short interval of time, does
not occur. We further show that, above this threshold, mass inflation takes place inside black holes much in
the same way as in general relativity, but is brought to a halt at an energy density which is, in general, much
smaller than the fundamental energy density of the theory. We conjecture that some of these results may be
a common feature of modified gravity theories in which significant deviations from general relativity
manifest themselves at high densities.
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I. INTRODUCTION

Eddington-inspired Born-Infeld (EiBI) gravity has been
proposed as a solution to some of the astrophysical and
cosmological singularities which occur in general relativity
[1] (see also [2–4]). Although in vacuum EiBI gravity is
completely equivalent to Einstein’s general relativity, it
generates interesting new features in the presence of matter,
specially for large densities or small lengthscales. These have
been tightly constrained using astrophysical and cosmologi-
cal observations [5–11] (see also [12–16] for potential
shortcomings of EiBI gravity and [17,18] for possible
solutions to some of them). Nevertheless, this theory may
play a crucial dynamical role at the high energies attained in
the early universe [18–24] or inside black holes [25–31].
The inner structure of charged black holes in EiBI

gravity has been investigated in [25,26] in the absence
of accretion (see also [27–31]). However, realistic black
holes are not isolated and are expected to rotate rapidly
[32–37]. Therefore, the computation of their internal
structure needs to take into account accretion and angular
momentum. In particular, an exponential growth of the
Misner-Sharp mass, known as mass inflation, has been
shown arise as a consequence of the relativistic counter-
streaming between ingoing and outgoing streams inside
charged Reissner-Nordström black holes and rotating Kerr
black holes both in the context of general relativity [38–42]
and a number of modified gravity theories [43–47].

In this paper we shall investigate the inner structure of
accreting spherically symmetric charged black holes, using
charge as a surrogate for angularmomentum. This is expected
to be an excellent approximation given that the interior
structure of a charged black hole resembles that of a rotating
black hole,with the negative pressure associated to the electric
field generating a gravitational repulsion analogous to that
produced by the centrifugal force in a rotating black hole.
This paper is organized as follows. We start by intro-

ducing EiBI gravity in Sec. II. Then, in Sec. III, we consider
spherically symmetric EiBI black hole solutions in the
absence of accretion. The more general case of accreting
EiBI black holes is introduced in Sec. IV in the context of
the homogeneous approximation. In Sec. V we present our
results and discuss the role of mass inflation in EiBI black
holes. We then conclude in Sec. VI.
Throughout this paper we shall use fundamental units

with c ¼ G ¼ 1 and a metric signature (−, þ, þ, þ). The
Einstein summation convention will be used when a greek
index, taking the values 0, …, 3, appears twice in a single
term (the exception will be the greek indices θ and ϕ which
will denote the polar and azimuthal angles, respectively).

II. EIBI THEORY

The action for the EiBI theory of gravity is given by

S ¼ 2

κ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνðΓÞj

q
− λ

ffiffiffiffiffi
jgj

p i
þ SM; ð1Þ

where gμν are the components of the metric, g is the
determinant of gμν, RμνðΓÞ is the symmetric Ricci tensor*pedro.avelino@astro.up.pt
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built from the connection Γ, and SM is the action associated
with the matter fields. In the Palatini formulation the
connection and the metric are treated as independent fields.
Varying the action with respect to the connection yields

the following equation of motion

qμν ¼ gμν þ κRμν; ð2Þ
where qμν are the components of an auxiliary metric which
is related to the connection by

Γγ
μν ¼ 1

2
qγζðqζμ;ν þ qζν;μ − qμν;ζÞ; ð3Þ

and a comma represents a partial derivative. Varying the
action with respect to the metric one obtains the other
equation of motionffiffiffiffiffiffi

jqj
p

qμν ¼ λ
ffiffiffiffiffi
jgj

p
gμν − κ̄

ffiffiffiffiffi
jgj

p
Tμν; ð4Þ

where qμν is the inverse of qμν and κ̄ ¼ 8πκ. Without loss of
generality we set λ ¼ 1, since this term can be incorporated
in the definition of the energy-momentum tensor.
Combining Eqs. (2) and (4) one obtains

Rμ
ν ≡ qμζRζν ¼ 8πΘμ

ν; ð5Þ
where

Θμ
ν ¼

1

κ̄

0
@1 −

ffiffiffiffiffiffiffi���� gq
����

s 1
Aδμν þ

ffiffiffiffiffiffiffi���� gq
����

s
Tμ

ν: ð6Þ

Using the above equations it is also possible to show that

Gμ
ν ≡Rμ

ν −
1

2
Rδμν ¼ 8πT μ

ν; ð7Þ

where

T μ
ν ≡ Θμ

ν −
1

2
Θδμν; ð8Þ

Θ≡ Θμ
μ: ð9Þ

III. EIBI BLACK HOLES: NO ACCRETION

Let us start by describing the inner structure of charged
EiBI black holes in the absence of accretion. The spheri-
cally symmetric physical (g) and auxiliary (q) line elements
may be written as

ds2g ¼ gttðrÞdt2 þ grrðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð10Þ

ds2q ¼ AðrÞdt2 þ BðrÞdr2 þH2ðrÞðdθ2 þ sin2θdϕ2Þ; ð11Þ

where gtt, grr, A≡ qtt, B≡ qrr, and H2 ≡ qθθ are all
functions of r alone.

The nonzero components of the energy-momentum
tensor of the electric field corresponding to a constant
charge Q are given by

eTr
r ¼ −ρe; eTt

t ¼ we∥ρe; ð12Þ
eTθ

θ ¼ eTϕ
ϕ ¼ we⊥ρe; ð13Þ

with

we∥ ¼ −1; we⊥ ¼ 1; ð14Þ
and

ρe ¼
Q2

8πr4
: ð15Þ

If the density is high enough, then the internal structure
of EiBI black holes may be significantly different from
their general relativity counterpart. In this case the follow-
ing analytical solutions have been found [1,25,26]

A ¼ −
r4

r4 þ κQ2
f; ð16Þ

B ¼ 1

f
ð17Þ

with

f ¼ −
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κQ2

p
r4 − κQ2

Z ð−r2 þQ2Þðr4 − κQ2Þ
r4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κQ2

p dr: ð18Þ

Evaluating the integral in Eq. (18) and imposing that
the solution approaches the standard Reissner-Nordström
solution in the r → ∞ limit one obtains that

f ¼ −
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ κQ2

p
r4 − κQ2

�
ð3βr3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κQ2 þ r4

p
Þ−1

×

�
βðQ2 − 3r2ÞðκQ2 þ r4Þ − 4iQ2r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4

κQ2
þ 1

s

×

�
F½iarcsinhðβrÞ;−1� − Γ2ð1=4Þ

4
ffiffiffiffiffi
iπ

p
��

þ 2M

�
; ð19Þ

where

β≡
ffiffiffiffiffiffiffiffiffiffi
iffiffiffi
κ

p
Q

s
; ð20Þ

F represents the incomplete elliptic integral of the first
kind, and, in this solution, Γ denotes the gamma function.
Figure 1 shows a comparison between the function fðrÞ

obtained either analytically from Eq. (19) (black dashed
line) or using our numerical code (solid red line)—the
numerical results will be discussed in detail in Sec. V. The
results shown in Fig. 1 were obtained for jκj ¼ 0.5, 1 and 2
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(from left to right, respectively), assuming that M ¼ 1 and
Q ¼ 0.3. The top and bottom panels display the results for
κ > 0 and κ < 0, respectively. Notice the good agreement
between the analytical and the numerical results.
Figure 1 also shows that, for r ≫ r−, the solution

approaches the standard Reissner-Nordström solution char-
acterized by the line element given in Eq. (11) with

A ¼ gtt ¼ −
�
1 −

2M
r

þQ2

r2

�
; ð21Þ

B ¼ grr ¼ −
1

A
; ð22Þ

H ¼ r: ð23Þ

This solution describes the space-time geometry in and
around spherically symmetric black holes of mass M and
charge Q, and has inner (r−) and outer (r−) horizons
located at

r� ¼ ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
Þ: ð24Þ

This result will be useful in Sec. V when discussing the
initial conditions for the more general problem of the
computation of the internal structure of charged spherically
symmetric accreting black holes.

IV. ACCRETING EIBI BLACK HOLES

The interior structure of black holes can be dramatically
affected by accretion. Here, we shall use the homogeneous
approximation in the computation of the black hole’s
interior structure in the presence of accreting fluids, thus
assuming that all relevant quantities can be written as a
function of a radial (timelike) coordinate alone, as in
Eqs. (10) and (11). This approximation, which is equivalent
to the assumption of equal ingoing and outgoing streams,
not only simplifies the mathematics but has also been
shown to provide an accurate description of some of the
most important aspects of mass inflation.
We shall now consider the most general fluid energy-

momentum tensor consistent with spherical symmetry for
which the homogeneous approximation remains valid. Its
nonzero components are given by

fTr
r ¼ −ρf; fTt

t ¼ wf∥ρf; ð25Þ
fTθ

θ ¼ fTϕ
ϕ ¼ wf⊥ρf; ð26Þ

wherewf∥¼pf∥=ρf andwf⊥¼pf⊥=ρf. Energy-momentum
conservation of the fluid component implies that

ρ0f
ρf

¼ −
1þ wf∥

2

g0tt
gtt

−
2ð1þ wf⊥Þ

r
; ð27Þ

where a prime represents a derivativewith respect to the time-
like coordinate r. Integrating Eq. (27) with respect to r one
obtains

ρf ¼ −fTr
r ¼ ρfi

�
gtti
gtt

�ð1þwf∥Þ=2�ri
r

�
2ð1þwf⊥Þ

: ð28Þ

The total energy-momentum tensor

Tμ
ν ¼ fTμ

ν þ eTμ
ν; ð29Þ

is the sum of the fluid and electromagnetic parts, which are
both assumed to be separately conserved. Consistently with
the above notation, one may also write

Tr
r ¼ −ρ; Tt

t ¼ w∥ρ; ð30Þ

FIG. 1. Comparison between the function fðrÞ obtained either
analytically from Eq. (19) (black dashed line) or using our
numerical code (solid red line) for jκj ¼ 0.5, 1 and 2 (from left
to right, respectively), assuming thatM ¼ 1 andQ ¼ 0.3. The top
and bottom panels display the results for κ > 0 and κ < 0,
respectively. Notice the good agreement between the analytical
and the numerical results.
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Tθ
θ ¼ Tϕ

ϕ ¼ w⊥ρ; ð31Þ

with w∥¼p∥=ρ, w⊥¼p⊥=ρ, ρ¼ρeþρf and p ¼ pe þ pf.
The following relations between the components of the

physical and auxiliary metrics can be computed using
Eqs. (2) and (4)

A ¼ gtt
ð1þ κ̄ρÞ1=2ð1 − κ̄w⊥ρÞ

ð1 − κ̄w∥ρÞ1=2
; ð32Þ

B ¼ grr
ð1 − κ̄w∥ρÞ1=2ð1 − κ̄w⊥ρÞ

ð1þ κ̄ρÞ1=2 ; ð33Þ

H ¼ rð1þ κ̄ρÞ1=4ð1 − κ̄w∥ρÞ1=4; ð34Þ
and they imply thatffiffiffiffiffiffiffi���� gq

����
s

¼ ð1þ κ̄ρÞ−1=2ð1 − κ̄w∥ρÞ−1=2ð1 − κ̄w⊥ρÞ−1: ð35Þ

Note that, in the absence of accretion, ρ ¼ ρe, p ¼ pe,
w∥ ¼ we∥ and w⊥ ¼ we⊥.
For κ̄ρ ≪ 1, and if the space-time gradients of the density

field are small, the components of the physical (g) and
auxiliary (q) metrics are approximately equal, and the
nonzero components of T μ

ν are given approximately by

T t
t ¼ w∥ρ ¼ Tt

t; ð36Þ
T r

r ¼ −ρ ¼ Tr
r; ð37Þ

T θ
θ ¼ w⊥ρ ¼ Tθ

θ; ð38Þ

T ϕ
ϕ ¼ w⊥ρ ¼ Tϕ

ϕ: ð39Þ

This is to be expected since in vacuum the EiBI theory is
indistinguishable from general relativity.

V. EIBI BLACK HOLES: THE ROLE
OF MASS INFLATION

In the context of general relativity mass inflation has
been shown to be generic due to the relativistic counter-
streaming between ingoing and outgoing streams driving
wf∥ toward unity during mass inflation. For accretion of a
massless scalar field wf⊥ ¼ wf∥ ¼ 1 while for relativistic
particles wf⊥ ¼ ð1 − wf∥Þ=2 which becomes tiny in the
mass inflation region. Hence, in the remainder of this paper
we shall take wf∥ ¼ 1 and consider the fiducial cases with
wf⊥ ¼ 1 or wf⊥ ¼ 0.
Without loss of generality, we shall choose units such

thatM ¼ 1. Furthermore, given that observational evidence
suggests that real astrophysical black holes may have
nearly extremal spins [32–37], we shall take Q ¼ 0.95,
close to the extremal value of unity, in the remainder of the
paper (note that, for this particular choice of M and Q,
r− ∼ 0.69 and rþ ∼ 1.31).

The tt components of Eqs. (5) and (7) may be written,
respectively, as

A00 ¼ A02

2A
þ A0B0

2B
−
2A0H0

H
− 16πΘt

tAB; ð40Þ

B0 ¼ −
B2

HH0 þ
BH0

H
þ 2BH00

H0 − 8πT r
r
B2H
H0 : ð41Þ

We solve numerically the coupled system of differential
equations given by Eqs. (27), (40) and (41), with gtt given
by Eq. (32), using a fourth order Runge-Kutta scheme with
adaptive step size. The value of H was calculated, as a
function of r and ρ, directly from Eq. (34). The equations

FIG. 2. The evolution of jgrrj and jgttj with r (solid and dashed
lines, respectively) assuming that ρfi ¼ 10−3 and κ ¼ 10−8, 10−6

and 10−4 (blue, red and black lines, from left to right, respec-
tively). The top (bottom) panel assumes that wf⊥ ¼ 1 (wf⊥ ¼ 0).
For κ ¼ 10−8 and κ ¼ 10−6 the behavior of jgrrj for r ≲ r−
indicates that mass inflation takes place inside the black hole
before it is brought to a halt at some value of r < r−. For κ ¼
1 × 10−4 no significant mass inflation takes place.
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for H0 and H00 are not explicitly provided given their large
size. Nevertheless, the value of H0 may be obtained, as a
function of r, ρ, A and A0, by differentiating Eq. (34) with
respect to r and using Eq. (27). The value of H00 may also
be found, as a function of r, ρ, A, B and A0, by differ-
entiating the equation for H0 with respect to r and using
Eqs. (27), (40) and (41).
We consider initial conditions with ri ¼ 0.95r− and

assume that κ̄ ≪ 1. In this limit, if the accretion rate is
not unreasonably large, the inner structure of the black hole
around r ¼ ri is close to that of an ordinary charged
Reissner-Nordström black hole in general relativity.
Consequently, our initial conditions satisfy

AðriÞ ¼ −
�
1 −

2M
ri

þQ2

r2i

�
; ð42Þ

BðriÞ ¼ −
1

AðriÞ
; ð43Þ

HðriÞ ¼ ri; ð44Þ

ρfðriÞ ¼ ρfi; ð45Þ

where ρfi parametrizes the accretion rate.
Figure 2 shows the evolution of jgrrj and jgttj with r

(solid and dashed lines, respectively) computed using our
numerical algorithm assuming ρfi ¼ 10−3 and κ ¼ 10−8,
10−6 and 10−4 (blue, red and black lines, from left to right,
respectively). The results presented in the top (bottom)
panel assume that wf⊥ ¼ 1 (wf⊥ ¼ 0). For κ ¼ 10−8 and
κ ¼ 10−6 the behavior of jgrrj for r≲ r− shows that there is
an exponential growth of the Misner-Sharp mass

MM−S ¼ r
2

�
1þQ2

r2
− g−1rr

�
: ð46Þ

Consequently, in these cases mass inflation takes place
inside the black hole before it is brought to a halt at some
value of r < r−. On the other hand, for κ ¼ 1 × 10−4, no
significant mass inflation takes place.
Fig. 3 shows the evolution of jgrrj and jgttj with r (solid

and dashed lines, respectively) computed using our

FIG. 3. The evolution of jgrrj and jgttj with r (solid and dashed
lines, respectively) assuming that κ ¼ 10−7 and ρfi ¼ 10−3, 5 ×
10−4 and 10−7 (blue, red and black lines, from left to right,
respectively). The top (bottom) panel assumes that wf⊥ ¼ 1

(wf⊥ ¼ 0). For ρfi ¼ 5 × 10−4 and ρfi ¼ 10−3 the behavior of
jgrrj for r≲ r− indicates that mass inflation takes place inside the
black hole before it is brought to a halt at some value of r < r−.
For ρfi ¼ 10−7 mass inflation does not occur.

FIG. 4. The evolution of the total energy density ρ (black
dashed line) and of the fluid density ρf (red line) with r assuming
ρfi ¼ 10−3, κ ¼ 10−6 and wf⊥ ¼ 1. For large r the fluid energy
density ρf is subdominant with respect to the electromagnetic
energy density ρe, while for r≲ r− it becomes the dominant
component. Notice that mass inflation, and the corresponding
exponential growth of the energy density, is brought to a halt at a
value of ρ significantly smaller than the fundamental energy
density of the theory κ̄−1.
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numerical code assuming κ ¼ 10−7 and ρfi ¼ 10−3, 5 ×
10−4 and 10−7 (blue, red and black lines, from left to right,
respectively). As in Fig. 2, the top (bottom) panel assumes
that wf⊥ ¼ 1 (wf⊥ ¼ 0). For ρfi ¼ 5 × 10−4 and ρfi ¼
10−3 the behavior of jgrrj for r≲ r− indicates that mass
inflation takes place inside the black hole before it is
brought to a halt at some value of r < r−, while for ρfi ¼
10−7 mass inflation does not occur.
Figure 4 illustrates the evolution of the total energy

density ρ (black dashed line) and of the fluid density ρf
(red line) with r assuming ρfi ¼ 10−3, κ ¼ 10−6 and
wf⊥ ¼ 1. It shows that while for large values of r the fluid
energy density ρf is subdominant with respect to the
electromagnetic density ρe, for r≲ r− it becomes the
dominant component (ρ ∼ ρf during mass inflation).

Mass inflation, and the corresponding exponential growth
of the energy density, is brought to a halt at a value of the
energy density significantly smaller than the fundamental
energy density of the theory κ̄−1. We verified that this is
always the case, unless the accretion rate, parametrized by
ρfi, is extremely large.
Figure 5 displays the maximum value of the Misner-

Sharp mass Mmax
M−S as a function of logðρfiÞ and logðκÞ,

assuming wf⊥ ¼ 1 (top panel) and wf⊥ ¼ 0 (bottom
panel). For small values of ρfi the constant Mmax

M−S contours
have a slope close to 3=2, indicating that Mmax

M−S is a

function of ρ3=2fi =κ. In both the top and bottom panels,
significant mass inflation occurs only for sufficiently high
values of ρ3=2fi =κ (or, equivalently, to the right of the white
dashed lines whose slope is exactly 3=2).
The value of κMmax

M−S=ρ
3=2
fi is plotted in Fig. 6 as a

function of ρ3=2fi =κ assuming ρfi ¼ 10−4 (red solid line) or
κ ¼ 10−11 (black dashed line). Figure 6 shows that Mmax

M−S

approaches unity at small values of ρ3=2fi =κ, becoming

proportional to ρ3=2fi =κ when ρ3=2fi =κ is sufficiently large.
All the results presented in Sec. V of the paper assumed

that κ > 0. However, we verified that the results for
accreting black holes presented in this section are only
weakly sensitive to the sign of κ, with the modifications to
the figures associated to the sign change being barely
noticeable.

VI. CONCLUSIONS

In this paper we investigated the structure of accreting
EiBI black holes using the homogeneous approximation

FIG. 5. The maximum value of the Misner-Sharp massMmax
M−S as

a function of logðρfiÞ and logðκÞ, assuming that wf⊥ ¼ 1 (top
panel) or wf⊥ ¼ 0 (lower panel). For small values of ρfi the
constant Mmax

M−S contours have a slope close to 3=2, indicating that

Mmax
M−S is a function of ρ

3=2
fi =κ. No significant mass inflation occurs

to the left of the white dashed lines (whose slope is exactly 3=2).

FIG. 6. The value of κMmax
M−S=ρ

3=2
fi as a function of ρ3=2fi =κ

assuming ρfi ¼ 10−4 (red solid line) or κ ¼ 10−11 (black dashed
line), and wf⊥ ¼ 0. Figure 6 shows that Mmax

M−S approaches unity

at small values of ρ3=2fi =κ, becoming proportional to ρ3=2fi =κ when

ρ3=2fi =κ is sufficiently large.
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and taking charge as a surrogate for angular momentum.
We have shown that mass inflation inside EiBI black holes,
if it occurs, is brought to an end at an energy density
threshold significantly smaller than the fundamental energy
density of the theory κ̄−1. We have further shown that the
maximum value of the Misner-Sharp mass is roughly
proportional to ρ3=2fi =κ for small values of the accretion
rate (parametrized by ρfi). This implies that mass inflation
does not happen for low accretion rates, independently of
how close the EiBI gravity is to general relativity (the κ ¼ 0
limit of EiBI gravity).
Arbitrary deviations from general relativity in spherically

symmetric homogeneous spacetimes may be described in
terms of modifications to the radial and transverse equation
of state of an effective fluid component. Mass inflation
requires the effective equation of state parameter in the
parallel direction w∥ to be close to unity. Consequently,
mass inflation cannot proceed in the presence of

modifications to general relativity which force w∥ to deviate
significantly from unity. Therefore, the abrupt end to the
mass inflation regime observed in EiBI gravity is expected
to be a common feature of modified gravity theories in
which significant deviations from general relativity mani-
fest themselves at high densities.
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