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A general formula for the electromagnetic energy radiated by a rapidly rotating magnetic dipole in
arbitrary motion is obtained. For a pulsar orbiting in a binary system, it is shown that the electromagnetic
radiation produced by the orbital motion is usually weaker than the gravitational radiation, but not entirely
negligible for general relativistic corrections.
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I. INTRODUCTION

The discovery of the Hulse-Taylor [1] and other binary
pulsars [2,3] has been of fundamental importance in testing
various predictions of general relativity, the most important
one being the loss of energy through gravitational radiation.
High precision measurements also permit us to deduce the
main parameters of orbiting pulsars at the level of post-
Newtonian approximation [4]. More recently, binary white
dwarfs in very close orbits have also been proposed for tests
of gravitational radiation [5].
A pulsar, due to its rapid rotation and intense magnetic

field, emits a large amount of electromagnetic radiation at
the expense of its rotational energy [6]. If the pulsar is
orbiting in a binary system, there is also electromagnetic
radiation produced by its noninertial motion that affects the
orbital elements. In most cases of interest, the energy loss
due to this latter effect is smaller than that due to
gravitational radiation, but it may not be entirely negligible
in high precision calculations involving objects with large
magnetic fields.
In a previous work related to this subject, Sobacchi

and Vietri [7] studied the motion of a pair of dipoles in
inspiralling orbit. The aim of the present article is to
calculate the electromagnetic energy radiated by a mag-
netized star in Keplerian orbit, fully taking into account the
rapid rotation of its magnetic field, which is the most
important source of electromagnetic radiation.
The magnetosphere of a pulsar has a complicated

structure due to the presence of relativistic plasma, but
the field has a predominantly dipolar structure [8]. The
dipole model is sufficient for our purposes. The electro-
magnetic field produced by a moving (electric or magnetic)
dipole has been the subject of many articles (see, e.g.,
Refs. [9–12]). In the present paper, we follow Ellis’s
original treatment of the problem [9]. Accordingly, in
Sec. II, a general formula for the electromagnetic energy
radiated by a (nonprecessing) rotating dipole in arbitrary
motion is obtained; the resulting formula is valid for mildly
relativistic motion and high rotational frequencies, which is

the case for binary pulsars. The formula is applied in
Sec. III to the motion of a rotating dipole in Keplerian orbit,
and the losses of energy through electromagnetic and
gravitational radiation are compared. The results are dis-
cussed in Sec. IV, where it is shown that electromagnetic
radiation can be a dominant source of orbital energy loss for
pulsars with very intense magnetic fields. The particular
case of the Hulse-Taylor binary pulsar is considered.

II. CALCULATIONS

Let us define the power dI radiated by a dipole in a solid
angle dΩ as

dI ¼ m2

4πc3
SdΩ; ð1Þ

where m is the dipolar moment. For a dipole moving with
velocity V, Ellis [9] has shown that in the far field region
(setting c ¼ 1 hereafter)

S≡ 1

λ5
jr̂ × ½ðr̂ − VÞ ×XÞ�j2; ð2Þ

where λ≡ 1 − r̂ · V,

r̂≡ ðsin θ cosϕ; sin θ sinϕ; cos θÞ ð3Þ

(in standard spherical coordinates), and

X ¼ N00 þ 1

λ
ðr̂ · V0ÞN0 þ 2

λ
ðr̂ · N0ÞV0

þ 3

λ2
ðr̂ ·NÞðr̂ · V0ÞV0 þ 1

λ
ðr̂ ·NÞV00: ð4Þ

In this last equation, a prime denotes a derivative with
respect to time measured in a fixed system; N ¼ jNjn̂,
where n̂ is the unit vector along the direction of the dipole,
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jNj ¼
�

1 − jVj2
1 − jn̂ × Vj2

�
1=2

¼ 1 −
1

2
ðn̂ · VÞ2 þOðV4Þ: ð5Þ

The above formulas can be applied to the problem of an
arbitrarily moving dipole spinning around a fixed direction
(that is, assuming that there is no axial precession, which is
a good approximation for gravitating bodies). The calcu-
lation is rather involved, but it simplifies somewhat if only
second-order terms in V are kept, and one assumes that the
spin frequency is much larger than the orbital frequency,
that is, ω ≫ V 0=V. Thus the last two terms in Eq. (4) can be
neglected. Additionally, an average over spin cycles is to be
performed.
Accordingly, letω be the constant axis of rotation, which

we take provisionally as the z axis, and define

n̂ ¼ ðn⊥ cosðωtÞ; n⊥ sinðωtÞ; n∥Þ; ð6Þ

with n̂0 ¼ ω × n̂, and n2⊥ þ n2∥ ¼ 1. Then we can average
over spin cycles using formulas (A2) and (A3) in the
Appendix. Keeping only the leading terms proportional to
ω4 and ω3, and neglecting terms of order V3 and higher, we
find after some lengthy but straightforward algebra (see the
Appendix),

dI
dΩ

¼ ðn⊥mÞ2
8π

ω4λ−5
�
1þ cos2θ − 2r̂ · V − 2V∥ cos θ

þ
��

1þ 1

4
n2⊥

�
sin2θ − n2⊥

�
jVj2

þ
�
3n2⊥ −

�
1þ 5

4
n2⊥

�
sin2θ

�
V2
∥

þ ðr̂ · V⊥Þ
�
1

2
n2⊥ðr̂ · V⊥Þ þ ð4 − 2n2⊥ÞV∥ cos θ

��

þ ðn⊥mÞ2
2π

ω2λ−5r · fλðV0 × ωÞ − ðr · V0ÞðV × ωÞg:
ð7Þ

For any vector V, we have defined V∥ ¼ ω−1ω · V and
V⊥ ¼ V − ω−2ðω · VÞω as the components along and
perpendicular to ω, respectively.
As the next step, we perform an integration over all solid

angles, using formulas (A8) and (A9) in the Appendix. The
result is (restoring c)

I ¼ 2ðn⊥mÞ2
3c3

ω2

�
ω2 þ 1

2
ð5 − n2⊥Þω2jVj2=c2

−
3

2
n2∥ðω · VÞ2=c2 − 3ω · ðV0 × VÞ=c2

�
; ð8Þ

for the total power radiated.
Notice that for V ¼ 0 we recover the textbook

formulas [13]

dI0
dΩ

¼ ðn⊥mÞ2
8πc3

ω4ð1þ cos2 θÞ;

I0 ¼
2ðn⊥mÞ2

3c3
ω4:

The last three terms in Eq. (8) are the contributions due
to the orbital motion: the first two are of order I0ðV=cÞ2,
and the last one, which can be neglected, is of order
I0ðΩ=ωÞðV=cÞ2, where Ω is the orbital frequency.

III. KEPLERIAN ORBITS

The general formula (8) can now be applied to the
motion of a rapidly rotating magnetized star in a binary
system. Let m1 be its mass and m2 that of its companion,
and M ¼ m1 þm2. Taking the average over an orbital
period, it follows from basic Newtonian mechanics that

jVj2 ¼ Gm2
2

Ma
ð1þ e2Þ
ð1 − e2Þ ; ð9Þ

ðω · VÞ2 ¼ ω2
Gm2

2

Ma
ð1þ 2e2 sin2 βÞ

2ð1 − e2Þ sin2 α; ð10Þ

where a ¼ ðM=m2Þa1 with a1 the semimajor axis of the
star orbit, e its eccentricity, α the angle between ω and the
orbital angular momentum vector, and β the angle between
the major axis and the projection of ω on the plane of
the orbit.
Accordingly

I ¼ I0

�
1þ Gm2

2

c2Ma
gðe; α; β; n∥Þ

�
; ð11Þ

where

gðe; α; β; n∥Þ≡ ð1 − e2Þ−1
��

2þ 1

2
n2∥

�
ð1þ e2Þ

−
3

4
n2∥ð1þ 2e2sin2βÞsin2α

�
: ð12Þ

From this last formula it is shown that the radiated
electromagnetic energy due to the combined rotational and
orbital motion of a neutron star is of the order of magnitude

Gm2
2

c2Ma
I0

(for similar masses, the factor multiplying I0 is roughly
the ratio of the gravitational radius to the orbit of the star).
In comparison, the orbital energy of the system is Eorb ¼
−Gm1m2=2a, and the power Igrav radiated in the form of
gravitational waves is Igrav ¼ hmðeÞa−5, where
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hmðeÞ≡ 32G4m2
1m

2
2M

5c5
fðeÞ;

and fðeÞ ¼ ð1 − e2Þ−7=2ð1þ 73
24
e2 þ 37

96
e4Þ (see Ref. [14] or

Sec. 4.1.2 of Ref. [3]). The important point to notice is that
the electromagnetic power is proportional to a−1, while the
gravitational power is proportional to a−5. Therefore, the
former dominates for large orbits and the latter for close
orbits.
Following exactly the same analysis as in Sec. 4.1.2 of

Ref. [3], we find that the orbital period T decays as

_T
T
¼ −

3m2

c2Mm1

I0 −
3M
m1m2

ðGMÞ−7=3hmðeÞ
�
T
2π

�
−8=3

;

ð13Þ

the first and second terms correspond to electromagnetic
and gravitational radiation, respectively. If the former
dominates, the decay of the period T is exponential. As
discussed in the next section, the first term, which is
constant, is a small correction in most cases of interest.

IV. DISCUSSION OF RESULTS

For a typical binary pulsar, the loss of energy through
electromagnetic radiation can be estimated with the results
obtained above. For instance, for the Hulse-Taylor pulsar
with a rotational frequency ω≃ 120 s−1, the magnetic field
at its surface is estimated to be ∼2 × 1010 G [15], and thus
the total electromagnetic power radiated I0 is of the order of
1032–1033 ergs=s. This power is radiated at the expense of
the rotational energy of the star, but about 1025–1026 ergs=s
come from the orbital energy. If we compare this last value
with the power emitted as gravitational radiation, which is
about 5 × 1031 ergs=s, we see that there is a correction of
the order of 10−6 to the orbital energy lost by the system.
Since the parameters of this binary pulsar have been
measured with a precision of 10−3 and the observed decay
of the period corresponds nicely with the theoretical
prediction of gravitational radiation, our present result
can be taken as indirect evidence that the magnetic field
of this pulsar is weaker than 1011 G, since otherwise the
effect analyzed in this paper would be noticeable. A
magnetic field lower than the average for neutron stars
is consistent with the decay of the fields of binary pulsars
proposed by some authors (Taam and van den Heuvel [16],
Srinivasan et al. [8,17]).
For binary pulsars with periods of 10−3 s or shorter,

or with strong magnetic fields, one can expect I0 ∼
1040 ergs=s or higher. Therefore the electromagnetic radi-
ation due to a combination of spin and orbital motion can
be comparable with an important fraction of the gravita-
tional radiation. Moreover, the magnetic dipole model
accounts for only a part of the electromagnetic energy

emission, since the presence of relativistic plasma in the
magnetosphere also produces an additional loss of
energy [18].

APPENDIX: USEFUL FORMULAS

An averaging over one cycle, defined as

hFi ¼ ω

2π

Z
2π=ω

0

FðωtÞdt; ðA1Þ

gives

hðn̂ ·AÞðn̂ ·BÞi ¼ 1

2
n2⊥A⊥ ·B⊥ þ n2∥A∥B∥

hðn̂ ·AÞðn̂0 ·BÞi ¼ 1

2
n2⊥ω · ðA ×BÞ; ðA2Þ

etc., and

hðn̂ ·A⊥Þ2ðn̂ · B⊥Þ2i ¼
1

8
n4⊥½jA⊥j2jB⊥j2 þ 2ðA⊥ ·B⊥Þ2�;

ðA3Þ

where n̂ in all these formulas is given by Eq. (6).
In order to deduce Eq. (7), it is convenient to express the

scalar S defined in Eq. (2) in the form

S¼ −ð1−V2Þλ−5ðr̂ ·XÞ2 þ λ−3jXj2 þ 2λ−4ðV ·XÞðr̂ ·XÞ;
ðA4Þ

and then calculate

hðr̂ ·XÞ2i ¼ 1

2
n2⊥ω4

��
1 −

1

4
n2⊥jV⊥j2 − n2∥V

2
∥

�
sin2θ

−
1

2
n2⊥ðr̂ · V⊥Þ2 − 2n2∥V∥ðr̂ · V⊥Þ cos θ

�
;

ðA5Þ

hjXj2i ¼ n2⊥ω4

�
1 −

1

2
n2⊥jV⊥j2 − n2∥V

2
∥

�

þ 2n2⊥ω2λ−1r̂ · ðV0⊥ × ωÞ; ðA6Þ

hðV ·XÞðr̂ ·XÞi ¼ 1

2
n2⊥ω4ðr̂ · V⊥Þ

þ n2⊥ω2ðr̂ · V0⊥Þr̂ · ðV⊥ × ωÞ; ðA7Þ

keeping only terms proportional to ω4 and ω3 and of no
higher order than V2. Then Eq. (7) follows.
Integration over all angles can be performed with the

formulas

ELECTROMAGNETIC RADIATION FROM A RAPIDLY … PHYSICAL REVIEW D 93, 044066 (2016)

044066-3



Z
ðA · r̂ÞðB · r̂ÞdΩ ¼ 4π

3
A ·B; ðA8Þ

Z
ðA · r̂ÞðB · r̂ÞðC · r̂ÞðD · r̂ÞdΩ

¼ 4π

15
½ðA · BÞðC ·DÞ þ ðA ·CÞðB ·DÞ þ ðA ·DÞðB ·CÞ�;

ðA9Þ

for any vectors A, B, C, and D. Using also the approxi-
mation

λ−n ≃ 1þ nr̂ · V þ 1

2
nðnþ 1Þðr̂ · VÞ2;

Eq. (8) follows.

[1] R. A. Hulse, Rev. Mod. Phys. 66, 699 (1994).
[2] M. Burgay, M. Kramer, and M. A. McLaughlin, Bulletin of

the Astronomical Society of India 42, 101 (2014).
[3] M. Maggiore, Gravitational Waves: Theory and Experi-

ments (Oxford University Press, New York, 2008), Vol. 1,
Sec. 6.3.

[4] J. H. Taylor and J. M. Weisberg, Astrophys. J. 253, 908
(1982).

[5] J. J. Hermes, M. Kilic, W. R. Brown, D. E. Winget, C. A.
Prieto, A. Gianninas, A. S. Mukadam, A. Cabrera-Lavers,
and S. J. Kenyon, Astrophys. J. Lett. 757, L21 (2012).

[6] F. Pacini, Nature (London) 216, 567 (1967).
[7] E. Sobacchi and M. Vietri, Mon. Not. R. Astron. Soc. 450,

2116 (2015).
[8] D. Bhattacharya and G. Srinivasan, in X-ray Binaries, edited

by W. H. G. Lewin, J. A. van Paradijs, and E. P. J. van den
Heuvel (Cambridge University Press, Cambridge, England,
1995), p. 495.

[9] J. R. Ellis, Math. Proc. Cambridge Philos. Soc. 59, 759
(1963).

[10] J. J. Monaghan, J. Phys. A: Gen. Phys. 1, 112 (1968).
[11] J. A. Heras, Am. J. Phys. 62, 1109 (1994); Phys. Lett. A

237, 343 (1998).
[12] V. Hnizdo, Am. J. Phys. 80, 645 (2012).
[13] L. D. Landau and E. M. Lifschitz, The Classical Theory of

Fields, 4th ed. (Butterworth-Heinemann, Washington, DC,
1980), Sec. 67.

[14] P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
[15] E. P. J. van den Heuvel, AIP Conf. Proc. 924, 598

(2007).
[16] R. E. Taam and E. P. J. van den Heuvel, Astrophys. J. 305,

235 (1986).
[17] G. Srinivasan, D. Bhattacharya, A. G. Muslimov, and A. J.

Tsygan, Curr. Sci. 59, 31 (1990).
[18] P. Goldreich and W. H. Julian, Astrophys. J. 157, 869

(1969).

SHAHEN HACYAN PHYSICAL REVIEW D 93, 044066 (2016)

044066-4

http://dx.doi.org/10.1103/RevModPhys.66.699
http://dx.doi.org/10.1086/159690
http://dx.doi.org/10.1086/159690
http://dx.doi.org/10.1088/2041-8205/757/2/L21
http://dx.doi.org/10.1038/216567a0
http://dx.doi.org/10.1093/mnras/stv718
http://dx.doi.org/10.1093/mnras/stv718
http://dx.doi.org/10.1017/S0305004100003777
http://dx.doi.org/10.1017/S0305004100003777
http://dx.doi.org/10.1088/0305-4470/1/1/315
http://dx.doi.org/10.1119/1.17759
http://dx.doi.org/10.1016/S0375-9601(98)00734-8
http://dx.doi.org/10.1016/S0375-9601(98)00734-8
http://dx.doi.org/10.1119/1.4712308
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1063/1.2774916
http://dx.doi.org/10.1063/1.2774916
http://dx.doi.org/10.1086/164243
http://dx.doi.org/10.1086/164243
http://dx.doi.org/10.1086/150119
http://dx.doi.org/10.1086/150119

