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We propose a generalization of Yang-Mills theory for which the symmetry algebra does not have to be
factorized as mutually commuting algebras of a finite-dimensional Lie algebra and the algebra of functions
on base space. The algebra of diffeomorphism can be constructed as an example, and a class of gravity
theories can be interpreted as generalized Yang-Mills theories. These theories, in general, include a graviton,
a dilaton and a rank-two antisymmetric field, although Einstein gravity is also included as a special case. We
present calculations suggesting that the connection in scattering amplitudes between Yang-Mills theory and
gravity via Bern-Carrasco-Johansson duality can be made more manifest in this formulation.
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I. INTRODUCTION

The textbook definition of Yang-Mills (YM) theory is
usually based on the choice of a finite-dimensional Lie
group, and gauge transformations are specified by Lie-
group valued functions. However, it is well known that
when the base space is noncommutative, the algebra of
gauge transformations is a mixture of the finite-
dimensional Lie algebra and the algebra of functions on
the noncommutative space. As a result, SUðNÞ gauge
symmetry cannot be straightforwardly defined on non-
commutative space.
In this paper, we consider a minor generalization of the

notion of gauge symmetry. We will not only allow the
generators of gauge transformations to behave like pseu-
dodifferential operators (as functions on noncommutative
space do), but we will also allow them to be not factorized
into the part of a finite-dimensional Lie algebra and that of
functions on the base space. That is, the gauge symmetry
algebra does not have to be defined as the composition of a
finite-dimensional Lie algebra and an associative algebra of
functions on the base space. With this generalization, it may
no longer be possible to view a gauge symmetry as what
you get from “gauging” a global symmetry through
introducing spacetime dependence.
A possibility of this generalization was already sug-

gested [1] for even-dimensional spherical brane configu-
rations in the matrix theory. For example, for the fuzzy-S4

configuration of n D4-branes, the algebra of functions on
the four-dimensional base space is nonassociative, but there
is an associative algebra for gauge transformations. For
large n, the gauge symmetry algebra is approximately that
of a UðnÞ-bundle (or equivalently a fuzzy-S2 bundle) over
S4 [1].

Another example is the low-energy effective theory of a
D3-brane in a large R-R 2-form field background [2]. This
theory is S-dual to the noncommutative gauge theory for a
D3-brane in a large NS-NS B-field background. The gauge
symmetry to all orders in the dual theory is not given by the
noncommutative gauge symmetry, but is characterized by a
bracket f·; ·g�� which defines a nonassociative algebra on
the base space [2]. (The gauge symmetry algebra is, of
course, associative.)
In this paper, we will show that the gauge symmetry of

spacetime diffeomorphism is also an example of the gen-
eralized gauge symmetry. Accordingly, a class of gravity
theories can be interpreted as YM theories. Generically,
these theories include a graviton, a dilaton and an antisym-
metric tensor. Wewill point out that the connection between
Yang-Mills theory and gravity (through the color-kinematics
duality) is manifest at tree level in 3-point amplitudes.
Attempts to interpret gravity as a gauge theory have a long

history since the works of Utiyama [3], Kibble [4] and
Sciama [5]. It is well known that general relativity (GR) can
be rewritten as the Chern-Simons theory in three dimensions
[6], and aYM-like theory in four dimensions [7,8], aswell as
higher dimensions [9]. The vielbein and the connection are
defined as components of a gauge potential, and the gauge
symmetry is SOðd; 2Þ, instead of the spacetime diffeo-
morphism. These formulations are based on gauge sym-
metries in the traditional sense.Our formulation of gravity as
a YM theory is different from these formulations.
WhileGR can be formulated as aYM theory,YM theories

can also be realized as the low-energy effective theories of
gravity theories in higher dimensions via suitable compac-
tification. Similar to this scenario ofKaluza-Klein reduction,
internal symmetries and external symmetries are treated on
equal footing in the generalized YM theories, as we will not
distinguish the base space dependence from the internal
space dependence in the gauge symmetry algebra.*pmho@phys.ntu.edu.tw
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Our formulation of gravity is also reminiscent of tele-
parallel gravity [10], which can be interpreted as a gauge
theory of the (Abelian) translation group, with the vielbeins
playing the role of the gauge potential. In another formu-
lation of gravity [11] in which the vielbeins are identified
with the gauge potential, a deformation of the gauge
symmetry is considered to achieve the nonlinearity in
gravity. In our formulation, on the other hand, the gauge
potential is not the vielbein, but the inverse of the vielbein.
The plan of this paper is as follows. In Sec. II, we will see

how the algebra of diffeomorphism appears as an example
of the generalized gauge symmetry. In Sec. III, the gauge
potential for the gauge symmetry of diffeomorphism is
essentially the inverse of the vielbein, and the field strength
is the torsion of the Weitzenböck connection. We show that
the corresponding YM theories with quadratic Lagrangians
define a class of gravity theories in Sec. IV. It will be
pointed out in Sec. V that this new formulation of gravity
may have significant advantages in its use to compute
scattering amplitudes, with relations reminiscent of the
double-copy procedure [12] to derive scattering amplitudes
in gravity from YM theories. In Sec. VI, we comment on
extensions of the generalized notion of gauge symmetry to
higher-form gauge theories.

II. GAUGE SYMMETRY ALGEBRA

In a naive textbook introduction to non-Abelian gauge
symmetry, the gauge transformation parameter ΛðxÞ ¼P

aΛ
aðxÞTa is a sum of products of spacetime functions

and Lie algebra generators. The Lie algebra of local gauge
transformations is spanned by a set of basis elements, say,

TaðpÞ≡ eip·xTa ð1Þ
in the Fourier basis. In this basis, a gauge transformation
parameter can be expressed as

ΛðxÞ ¼
X
a;p

~ΛaðpÞTaðpÞ; ð2Þ

where the sum over p is understood to be the integral
R
dDp

forD-dimensional spacetime. Similarly, the gauge potential
can be written as

AμðxÞ ¼
X
a;p

~Aa
μðpÞTaðpÞ: ð3Þ

Normally, for a given finite-dimensional Lie algebra with
structure constants fabc, the algebra of gauge transforma-
tions has the commutator

½TaðpÞ; Tbðp0Þ� ¼
X
c

fabcTcðpþ p0Þ; ð4Þ

where the structure constants fabc only involve color
indices a, b, c. For these cases, the inclusion of functional

dependence on the spacetime in the generators TaðpÞ is
trivial, and thus often omitted in discussions.
However, for noncommutative gauge symmetries, the

structure constants depend not only on the color indices a,
b, c, but also on the kinematic parameters p, p0. For a
noncommutative space defined by

½xμ; xν� ¼ iθμν; ð5Þ

the Lie algebra UðNÞ gauge symmetry is

½TaðpÞ; Tbðp0Þ� ¼
X
p00

fabcðp; p0; p00ÞTcðp00Þ; ð6Þ

where the structure constants are1

fabcðp; p0; p00Þ
¼ ½fabcðeipθp0 − eip

0θpÞ þ dabcðeipθp0 þ eip
0θpÞ�

× δðDÞðpþ p0 − p00Þ; ð7Þ

and they involve kinematic parameters p, p0 and p00.
Here fabc is the structure constant of UðNÞ and dabc is
defined by

fTa; Tbg ¼ dabcTc ð8Þ

for Ta’s in the fundamental representation. In this gauge
symmetry algebra, the UðNÞ Lie algebra and the algebra of
functions on the base space are mixed. (This is the obstacle
to define noncommutative SUðNÞ gauge symmetry.) The
gauge algebra is non-Abelian even for the Abelian
group Uð1Þ.
To describe the noncommutative UðNÞ gauge algebra

properly, it is a necessity to use the generators (1) including
functional dependence on the base space. Nevertheless, the
noncommutative UðNÞ gauge symmetry still assumes that
the generators can be factorized (1), and that eip·x always
commutes with Ta. These are unnecessary assumptions for
most algebraic calculations in the gauge theory. After all, in
field theories, only the coefficients ~Aa

μðpÞ are operators
(observables), while the spacetime and Lie algebra depend-
ence are to be integrated out (summed over) in the action.
It is thus natural to slightly extend the formulation of

gauge symmetry (and YM theory) to allow the Lie algebra
to be directly defined in terms of the generators TaðpÞ,
without even assuming its factorization into a Lie algebra
factor Ta and a function ep·x. The integration over
spacetime and trace of the internal space in the action
can be replaced by the Killing form of the Lie algebra of
TaðpÞ. The distinction between internal space and external
space is reduced in this description.

1Here pθp0 stands for pμθ
μνp0

ν.
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In short, we propose to study gauge symmetries without
assuming its factorization into two associative algebras (an
algebra for the functions on the base space and a finite
dimensional Lie algebra). Even when it is possible to
factorize the generators formally as (1), we will not assume
that the spacetime functions to commute with the algebraic
elements Ta. (In general, we do not have to use the Fourier
basis, and the argument p of TaðpÞ can represent labels of
any complete basis of functions on the base space.) One of
the goals of this paper is to show that this generalization is
beneficial, for bringing in new insights into gravity theories.
Algebraically, this generalization is very natural. A

corresponding geometric notion is however absent at this
moment. (It is not clear what twisted bundles would mean.)
The notion of bundles on noncommutative space is
replaced by projective modules [13], which should be
further generalized for our purpose. We postpone the
problem of finding a suitable geometric notion for the
generalized gauge symmetry to the future.

A. A generalized gauge symmetry algebra

For the generalized gauge symmetry, we consider a Lie
algebra defined as

½TaðαÞ; TbðβÞ� ¼
X
γ

fabcðα; β; γÞTcðγÞ; ð9Þ

which may not be decomposed as a product of the algebra
of functions on the spacetime and a finite-dimensional Lie
algebra. Here α, β, γ are labels for a complete basis of
functions on the base space. For a theory with translational
symmetry, it would be natural to use the Fourier basis, and
we have

½TaðpÞ; Tbðp0Þ� ¼ fabcðp; p0ÞTcðpþ p0Þ; ð10Þ

where the structure constant is actually fabcðp; p0Þ ×
δðDÞðpþ p0 − p00Þ with the Dirac delta function cancelled
by the integration over p00.
The Jacobi identity of this Lie algebra is

fabeðp; p0Þfecdðpþ p0; p00Þ
þ fbceðp0; p00Þfeadðp0 þ p00; pÞ
þ fcaeðp00; pÞfebdðp00 þ p; p0Þ ¼ 0: ð11Þ

Every solution to this equation for f defines a gauge
symmetry. It will be interesting to find solutions with
nontrivial dependence on momenta, as the case of the
noncommutative gauge symmetry.
As an example, let us now construct a Lie algebra for

generators of the form

fTð~ϵ; pÞ≡ ~ϵðμÞTðμÞðpÞg; ð12Þ

where the basis elements TðμÞðpÞ has a spacetime index μ
as its internal space index. To construct a concrete
example, we will assume that the structure constants
are linear in momenta p, p0 and compatible with Poincaré
symmetry.
We put the index μ in parentheses to remind

ourselves that it plays the role of the index of an
internal space. The reason why we choose this ansatz
for a Lie algebra is that the Lie algebra of spacetime
diffeomorphisms is of this form. We wish to explore
the possibility of rewriting a gravity theory as a
generalized YM theory.
The translation symmetry implies that the commutators

are of the form

½Tð~ϵ1; p1Þ; Tð~ϵ2; p2Þ�
¼

X
~ϵ3

fð~ϵ1; p1; ~ϵ2; p2; ~ϵ3ÞTð~ϵ3; p1 þ p2Þ; ð13Þ

and the Lorentz symmetry implies that the structure
constants are Lorentz-invariant functions of the vectors
~ϵ1; ~ϵ2; ~ϵ3; p1; p2. (The summation over ~ϵ3 is a summation
over an orthonormal basis of vectors.) The most general
ansatz consistent with all assumptions is thus

fð~ϵ1; p1; ~ϵ2; p2; ~ϵ3Þ ¼ ð~ϵ1 · ~ϵ3Þ½~ϵ2 · ðαp1 þ γp2Þ�
− ð~ϵ2 · ~ϵ3Þ½~ϵ1 · ðαp2 þ γp1Þ�
þ βð~ϵ1 · ~ϵ2Þ½~ϵ3 · ðp1 − p2Þ�; ð14Þ

where α, β, γ are constant parameters.
It follows from the ansatz that

½½Tð1Þ; Tð2Þ�; Tð3Þ� þ ½½Tð2Þ; Tð3Þ�; Tð1Þ� þ ½½Tð3Þ; Tð1Þ�; Tð2Þ�
¼

X
~ϵ4

fð~ϵ1 · ~ϵ4Þ½−αβð~ϵ2 · ~ϵ3Þðp1 · ðp2 − p3ÞÞ þ γ½ð~ϵ2 · p2Þð~ϵ3 · ðαp1 þ γp2Þ − ð~ϵ3 · p3Þð~ϵ2 · ðαp1 þ γp3Þ��

þ βð~ϵ1 · ~ϵ2Þ½ð~ϵ3 · ðp1 − p2ÞÞð~ϵ4 · ½ðα − βÞðp1 þ p2Þ − βðp1 − p2Þ�Þ − γð~ϵ3 · p3Þð~ϵ4 · ðp1 − p2ÞÞ�
þ cyclic permutations ofð1; 2; 3Þg; ð15Þ
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where we have used Tð1Þ to represent Tð~ϵ1; p1Þ, Tð2Þ to
represent Tð~ϵ2; p2Þ, etc. In order to satisfy the Jacobi
identity, we have to set β ¼ γ ¼ 0. The most general
solution is thus equivalent to

½Tð1Þ; Tð2Þ�
¼

X
~ϵ3

i½ð~ϵ2 · ~ϵ3Þð~ϵ1 · p2Þ − ð~ϵ1 · ~ϵ3Þð~ϵ2 · p1Þ�Tð3Þ; ð16Þ

by scaling α to −i. More explicitly, it is

½TðμÞðp1Þ; TðνÞðp2Þ� ¼
X
λ

i½ηνλp2μ − ημλp1ν�TðλÞðp1 þ p2Þ

ð17Þ
Incidentally, it is consistent to allow α to depend on the

momenta. For example, Jacobi identity is satisfied for

αðp1; p2Þ ¼ ceλp1·p2 ð18Þ
for arbitrary constant parameters c and λ. It is equivalent to
the scaling of the generators by Tðϵ; pÞ → T 0ðϵ; pÞ≡
ceλp

2=2Tðϵ; pÞ.

B. Representations

A representation of the algebra constructed above is
given by

Tð~ϵ; pÞ ~ϕðp0Þ ¼ ið~ϵ · p0Þ ~ϕðp0 þ pÞ; ð19Þ
on a linear space with the basis f ~ϕðpÞg. This expression
allows us to interpret ~ϕðpÞ as the Fourier modes of a scalar
field ϕðxÞ and Tð~ϵ; pÞ as the generator of a coordinate
transformation with

δxμ ¼ ~ϵðμÞe−ip·x: ð20Þ
That is,

Tð~ϵ; pÞ ¼ eipνxν ~ϵðμÞ∂μ: ð21Þ

Indices are contracted according to Einstein’s summation
convention regardless of whether they are in parentheses or
not. In this representation, it is clear that this algebra is that
of spacetime diffeomorphism. The gauge symmetry of GR
arises as the most general gauge symmetry with Lie algebra
of the form (13), assuming that the structure constants are
linear in momentum and that they respect Poincaré
symmetry.
A generic element of the Lie algebra is a superposition

Z
dDp~ϵðμÞðpÞTðμÞðpÞ ð22Þ

in D dimensions, which can be written as

Tϵ ≡ ϵðμÞðxÞ∂μ; ð23Þ

where ϵðμÞðxÞ is the inverse Fourier transform of ~ϵðmÞðpÞ.
In view of this representation (23), it is tempting to

interpret the algebra constructed above as merely the result
of taking Ta’s to be derivatives ∂a’s in (1) for a traditional
gauge symmetry. But if we were really dealing with a
traditional gauge symmetry, we would have obtained an
Abelian gauge symmetry because ½Ta; Tb� ¼ ½∂a; ∂b� ¼ 0.
The need to generalize the notion of gauge symmetry here
is due to the fact that Ta ¼ ∂a does not commute with
spacetime functions. Incidentally, the traditional interpre-
tation of the torsion in teleparallel gravity is indeed the
field strength of an Abelian gauge theory [14]. (See
Eq. (55) below.)
Matter fields in the gauge theory are classified as

representations of the gauge symmetry. Since the gauge
symmetry under consideration is the diffeomorphism, we
know all about other representations of different spins.

III. GAUGE FIELD OF DIFFEOMORPHISM

A. Gauge potential vs vielbein

We can define a gauge potential for the gauge symmetry
algebra (16). In the representation (23), the gauge potential

AμðxÞ ¼
X
ν;p

~Aμ
ðνÞðpÞTðνÞðpÞ ¼ Aμ

ðνÞðxÞ∂ν ð24Þ

should transform like

δAμðxÞ ¼ ½Dμ;ΛðxÞ�; ð25Þ

where

Dμ ≡ ∂μ þ AμðxÞ ¼ ðδνμ þ Aμ
ðνÞÞ∂ν ð26Þ

is the covariant derivative and the gauge transformation
parameter is

ΛðxÞ ¼ ΛðμÞðxÞ∂μ: ð27Þ

More explicitly, the gauge transformation (25) can be
expressed as

δAμ
ðνÞðxÞ ¼ ∂μΛðνÞðxÞ − ΛðλÞðxÞ∂λAμ

ðνÞðxÞ
þ Aμ

ðλÞðxÞ∂λΛðνÞðxÞ: ð28Þ

Let us recall that the vielbein eμaðxÞ in gravity is defined
to transform under general coordinate transformations as

δeμaðxÞ ¼ δxν∂νeμa þ eνa∂μδxν: ð29Þ

The index a on eμa labels a local orthonormal Lorentz
frame. Under a rotation of the local Lorentz frame,
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eμaðxÞ → e0μaðxÞ ¼ ωa
bðxÞeμbðxÞ; ð30Þ

where

ωabðxÞ ¼ −ωbaðxÞ ð31Þ

is the parameter for infinitesimal SOðD − 1; 1Þ rotations.
The inverse eaμðxÞ of the vielbein is defined by

eaμðxÞeμbðxÞ ¼ δba; eμaðxÞeaνðxÞ ¼ δνμ: ð32Þ

The transformation of eaμðxÞ is

δeaμðxÞ ¼ δxν∂νeaμðxÞ − eaν∂νδxμ: ð33Þ

Let us now consider a flat background in which

eaμðxÞ ¼ δμa þ Ca
μðxÞ ð34Þ

for a fluctuation denoted by Ca
μ. Here we have chosen a

particular frame in which the flat background is given by
eaμ ¼ δμa. The local Lorentz transformation symmetry
is not manifest (nonlinearly realized) in terms of the
variable Ca

μ.
It follows from (33) that

δCa
μðxÞ ¼ −∂aδxμ þ δxν∂νCa

μðxÞ − Ca
ν∂νδxμ: ð35Þ

Comparing this expression with (28), we see that it is
tempting to identify A with C, and Λ with −δx.
The transformations of A and C are matched by

identifying upper (lower) indices with upper (lower)
indices. That is, the Lorentz index μ on Aμ

ðνÞ is to be
identified with the local Lorentz frame index a on Ca

μ,
while the internal space index ν on Aμ

ðνÞ is to be identified
with the spacetime coordinate index μ on Ca

μ. This may
seem peculiar at first sight but it is actually expected. The
gauge algebra (16) is defined with the assumption of
Poincaré symmetry on the base space, so the Lorentz
index μ on the potential Aμ

ðνÞ cannot be identified with the
coordinate index μ on a curved manifold. On the other
hand, the internal space index ν on the potential Aμ

ðνÞ is
contracted with the index of a derivative ∂ν of spacetime
coordinates; hence, it is really an index of coordinates.
Note that the gauge potential A is still defined as part of

the covariant derivative D ¼ dxμDμ, and in this sense it is
still a 1-form. The one-form index μ of Aμ

ðνÞ is matched
with the frame index, not the 1-form index of the vielbein,
only because the geometric interpretation of gravity is
changed. The gauge symmetry of gravity is now interpreted
as a non-Abelian symmetry on Minkowski space whose
transformations involve kinematic vectors. On the other
hand, the potential Aμ

ðνÞ is not a pure 1-form as it has a
vector-field index ðνÞ.

In the following, we will adopt the conventional notation
for vielbeins. Latin letters a; b; c; � � � are used for indices of
local Lorentz frames, and greek letters μ; ν; λ; � � � for
indices of spacetime coordinates. For instance, we will
relabel the gauge potential as Aa

ðμÞ (without raising or
lowering indices), or simply as Aa

μ without the
parentheses.
Despite the fact that A and C transform in exactly the

same way under general coordinate transformations, it is
not clear yet whether A can be fully identified with C. In
particular, in pure GR, not only the general coordinate
transformation, but also the rotations of local Lorentz
frames are gauge symmetries. We also need to check
whether there are ghosts or tachyons before we claim that
the YM theory of the gauge symmetry of Sec. II can be
interpreted as a gravity theory. This will be the main issue
to focus on below.
Nevertheless, motivated by this potential identification,

we denote the covariant derivative as

Da ¼ êaμ∂μ; ð36Þ

where we used the notation

êaμ ≡ δμa þ Aa
μ: ð37Þ

The kinetic term of a scalar field is

ηabDaϕDbϕ ¼ ĝμν∂μϕ∂νϕ; ð38Þ

where the effective metric ĝμν naturally arises. It is defined
by

ĝμν ¼ êμaηabêνb; ð39Þ

where êμa is by definition the inverse of êaμ.

B. Field strength vs torsion

The field strength of the non-Abelian gauge symmetry
constructed above is

FabðxÞ≡ ½Da;Db� ¼ ∂aAbðxÞ − ∂bAaðxÞ
þ ½AaðxÞ; AbðxÞ�: ð40Þ

In the representation (23), it is

FabðxÞ ¼ Fab
ðλÞðxÞ∂λ; ð41Þ

where

Fab
ðλÞðxÞ ¼ êaμ∂μêbλ − êbμ∂μêaλ: ð42Þ

With the analogy between êμa and the vielbein eμa, we
define
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T̂λ
μν ≡ Γ̂λ

μν − Γ̂λ
νμ: ð43Þ

It is the torsion for the Weitzenböck connection

Γ̂λ
μν ≡ êaλ∂μêνa ð44Þ

used in teleparallel gravity when êμa is identified with the
vielbein eμa. The field strength and the “torsion” are
essentially the same quantity:

Fab
ðλÞðxÞ ¼ −êaμêbνT̂λ

μν; ð45Þ

if we think of êμa and êaμ as the quantities used to switch
between the two bases ∂μ and Da.
The “connection” (44) satisfies the relation

Dμêaν ≡ ∂μêνa − Γ̂λ
μνêλa ¼ 0; ð46Þ

and has zero “curvature”:

R̂≡ dΓ̂ − Γ∧Γ ¼ 0: ð47Þ

C. Field-dependent Killing form

An interesting feature of the algebra (16) for spacetime
diffeomorphism is that the Killing form (invariant inner
product) has to be field dependent.
For two elements of the Lie algebra Tf ≡ fμðxÞ∂μ and

Tf0 ≡ f0νðxÞ∂ν, it is clear that the Killing form should be

hTfjTf0 i ¼
Z

dDx
ffiffiffî
g

p
fμðxÞĝμνðxÞf0νðxÞ ð48Þ

up to an overall normalization constant factor. Here the
measure

ffiffiffî
g

p ¼ det êμa must be present to ensure that the
integration is diffeomorphism-invariant.
The Killing form can be slightly simplified by a change

of basis. Let us use the field-dependent basis fDag.
The Killing form for two generators Tf ¼ faDa and
Tf0 ¼ f0bDb is

hTfjTf0 i ¼
Z

dDx det êfaðxÞηabðxÞf0bðxÞ; ð49Þ

where fa ≡ fμêμa and similarly for f0b. (The factor of ĝμν
in (48) is replaced by ηab.) In this basis, the structure
constants are field-dependent:

½Da;Db� ¼ Fab
cDc; ð50Þ

and the Jacobi identity (the consistency of the Lie algebra)
is equivalent to the Bianchi identity of the field strength.

IV. YM AS GRAVITY

A. YM action

The YM action is given as the norm of the field strength:

SYM ≡ 1

4κ2
hFabjFabi ¼

Z
dDx

det ê
4κ2

FabcFabc: ð51Þ

It is invariant under spacetime diffeomorphism. However, it
is not invariant under rotations of the local Lorentz frame:

êμaðxÞ → ê0μaðxÞ ¼ ωa
bðxÞêμbðxÞ: ð52Þ

In the absence of the gauge symmetry of local Lorentz
frame rotations, the variable êμa contains more degrees of
freedom than the genuine vielbein eμa. (This is why we
have used a hat to distinguish it from the vielbein.) The YM
theory cannot be identified with pure GR.
To achieve a YM-like theory equivalent to Einstein’s

theory, we should utilize the fact that the internal space
index a (for the basis Da) can be contracted with the
coordinate index a. It allows us to introduce quadratic
terms in addition to (51) in the action. The most general
quadratic action is the superposition of three terms:

SYM-like ¼
Z

dDx
det ê
κ2

×

�
λ

4
FabcFabc þ

α

4
FabcFacb −

β

2
Fab

bFac
c

�
:

ð53Þ

The action remains the same if we simultaneously scale
κ2; λ;α; β by the same factor. Up to this ambiguity, there is a
unique choice of the parameters such that this action is
invariant under local Lorentz rotations.

B. Teleparallel gravity

The action (53) is of a form resembling that of the
teleparallel gravity, which is equivalent to Einstein’s
theory [10].
The teleparallel gravity has the interpretation as the

gauge theory of translational symmetry. The gauge poten-
tial is essentially the vielbein:

Aμ
a ≡ eμa − δμ

a; ð54Þ

where δμa can be replaced by an arbitrary constant matrix.
The torsion Tλ

μν of the Weitzenböck connection is essen-
tially the Abelian field strength

Ta
μν ¼ ∂μeνa − ∂νeμa ¼ ∂μAν

a − ∂νAμ
a: ð55Þ

Despite the fact that the field strength (42) of the
generalized gauge symmetry of diffeomorphism is related
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to this field strength (55) by a mere change of basis in the
tangent space, the gauge symmetries are totally different.
The gauge symmetry is Abelian in the traditional inter-
pretation of teleparallel gravity, while the diffeomorphism
is, of course, non-Abelian.
The action of teleparallel gravity is

STP ¼
Z

dDx
e
2κ2

�
1

4
TλμνTλμν þ

1

2
TμνλTλνμ − Tλμ

λTν
μν

�
;

ð56Þ

where indices are raised or lowered using the metric gμν ¼
eμaeνbηab and e ¼ ffiffiffi

g
p

stands for the determinant of eaμ. The
Lagrangian of this action equals the Hilbert-Einstein
Lagrangian up to a total derivative. That is,

LTP ¼
e
2κ2

RðLCÞ þ total derivatives; ð57Þ

where RðLCÞ is the scalar curvature for the (torsion-free)
Levi-Civita connection. Even though the choices of con-
nections are different, the teleparallel gravity action and the
Hilbert-Einstein action give exactly the same field equation
for the metric and so they are physically equivalent.

It is interesting that the inverse of ðI þAÞ [see (54)] for
the potential A of the Abelian group of translations can be
identified with ðI þ AÞ for the gauge potential Aa

μ of the
non-Abelian gauge symmetry of general coordinate
transformations.
The teleparallel gravity action (56) is equivalent to the

action (53) for the choice of parameters λ ¼ 1=2, α ¼ 1,
β ¼ 1. It is

STP ¼
Z

dDx
det ê
2κ2

�
1

4
FabcFabc þ

1

2
FabcFcba −Fab

bFac
c

�
:

ð58Þ

The first term is the YM action (51). The rest of the terms
provide the unique combination so that the action is
invariant under rotations of local Lorentz frames (52).
The field êμa can now be identified with the vielbein eμa in
gravity, and the modified YM theory is equivalent to GR.

C. Metric, B-field and dilaton

While the action (58) is equivalent to pure GR, we
investigate the most general quadratic action (53), which
can be equivalently put in the form

S ¼
Z

dDx
det ê
2κ2

�
1

2
FabcFabc −

α

12
ðFabc þ Fbca þ FcabÞðFabc þ Fbca þ FcabÞ − βFab

bFac
c

�
; ð59Þ

assuming that the coefficient of the YM term is nonzero.
It is invariant under general coordinate transformations
for arbitrary constants α, β. (Compared with (53), λ ¼
1 − α=2.) The case of teleparallel gravity (56) corresponds
to the choice α ¼ β ¼ 1.
For generic values of α, β, local rotations of Lorentz

frames are no longer gauge symmetries. With fewer gauge
symmetries, there are more physical degrees of freedom in
the theory. In D-dimensional spacetime, the fundamental
field êaμ has D2 components. When the rotation of local
Lorentz frames is a gauge symmetry, local Lorentz trans-
formations identify DðD − 1Þ=2 components of êaμ as
gauge artifacts, with the remaining DðDþ 1Þ=2 compo-
nents of êaμ to be matched with the DðDþ 1Þ=2 inde-
pendent components of the metric.
Tuning the values of α, β slightly away from 1, we have

DðD − 1Þ=2 of the components that can no longer be
gauged away. The theory with generic values of α, β is
expected to contain more physical fields in addition to the
metric. For coefficients α, β with values not too different
from 1, the theory is expected to be a gravity theory
including matter fields. After all, the gauge symmetry of
general coordinate transformation is always present.
In Einstein’s theory of gravity, for a fluctuation of the

metric

gμν ¼ ημν þ hμν þ…; ð60Þ

one can choose the vielbein to be symmetric

eμa ¼ ημa þ hμa=2þ… ð61Þ

as a condition for the local Lorentz frame. Note that in the
perturbation theory we are forced to mix the latin and greek
indices as the spacetime is Minkowskian at the lowest
order. We will no longer distinguish the indices in the
perturbative theory, and use both sets of labells a; b; c;…
and μ; ν;… at will.
We decompose the field Aμa into the symmetric part and

the antisymmetric part,

Aab ¼ ðhab þ BabÞ=2; ð62Þ

where hab is symmetric and Bab is antisymmetric. We
identify hab as the fluctuation of the metric, and only the
traceless part of hab propagates in Einstein’s theory. When
the rotation of the local Lorentz frame is not a gauge
symmetry, the trace part of hab and the tensor Bab cannot be
gauged away.
For the theory to be physically sensible, one has to check

that there are no ghosts or tachyons. A necessary condition
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for linearized field equations of a rank-two tensor field to be
free of ghosts and tachyonic modes is that the antisym-
metric part of the tensor field is decoupled from the
symmetric part [15]. The implication of this criterion to
the general quadratic action (59) can be easily derived as
follows. First, the cyclic combination

Fabc þ Fbca þ Fcab ¼ ð∂aBbc þ ∂bBca þ ∂cBabÞ
þOðA2Þ ð63Þ

in the second term of the action (59) involves only the
antisymmetric tensor field Bab at the linearized level. [This
is why we chose the peculiar form of the second term in the
action (59).] Hence, its coefficient α has no effect on the
coupling between hab and Bab.
The first and third terms in the action (59) involve both

hab and Bab, and the relative magnitude of their coefficients
should be fixed to decouple hab from Bab. Since we know
that pure GR is free of ghosts and tachyons, the ratio of
these coefficients should be identical to that of the tele-
parallel gravity action (56). Consequently, the parameter β
should be fixed as [16]

β ¼ 1: ð64Þ

It is still necessary to check that the kinetic terms are
positive-definite. The parameter α is constrained by [16]

α < 1 ð65Þ

for the kinetic term of the antisymmetric field Bab to be
positive definite. These two conditions, (64) and (65),
ensure that the theory is ghost free and tachyon free at the
free-field level.
For this class of theories, the propagating modes of the

traceless part of hab should be interpreted as the graviton,
and the trace part haa as the dilation. There is also a rank-
two antisymmetric field Bab whose gauge transformation at
the lowest order is

δBab ¼ ∂aΛb − ∂bΛa þOðAÞ: ð66Þ

One can define the covariant field strength of Bab as
ðFabc þ Fbca þ FcabÞ (63).
The dilaton can be viewed as a 0-form gauge potential. In

the Lorentz gauge

∂μêaμ ¼ 0; ð67Þ

we have

Fab
b ¼ êac∂cêbb − êbc∂cêab

¼ D
2
∂aϕ̂þOðA2Þ; ð68Þ

where

ϕ̂≡ hbb=D; ð69Þ

so that Fab
b can be interpreted as the field strength of the

dilaton.

D. Comparison with other formulations of gravity

At first sight, the formulation of gravity outlined above
may appear reminiscent to other known formulations of
gravity as a gauge theory. We have already commented
above how the traditional interpretation of teleparallel
gravity (as an Abelian gauge theory) is different from
our formulation. There are also non-Abelian gauge theory
formulations of gravity, e.g. Chern-Simons gravity in three
dimensions [6], MacDowell-Mansouri gravity in four
dimensions [7] and higher-dimensional generalizations
[9]. In these theories, the gauge potential is of the form

Aμ ¼ eμaPa þ ωμ
abJab; ð70Þ

where Pa and Jab are generators of the local Poincaré
algebra isoðD−1;1Þ or the conformal algebra soðD−1;2Þ.
The components of the gauge potential are the vielbein eμa

and the spin connection ωμ
ab. In contract, the gauge

potential in our theory is (in a certain representation)

Aa ¼ ðêaμ − δμaÞ∂μ; ð71Þ

where êaμ might be identified with the inverse of the
vielbein if the action respects the local Lorentz symmetry.
Formally, if we identify the translation generator Pa in

(70) with the derivative ∂μ in (71), the gauge potential (70)
resembles (71). However, more precisely, there are many
important differences.
(1) The generators Pa (and Jab) in (70) commute with

functions on the base space, while the derivative in
(71) does not.

(2) The coefficient of Pa is the vielbein, and that of ∂μ is
the inverse vielbein in the special case of teleparallel
gravity. In general, êμa includes more degrees of
freedom than the inverse vielbein.

(3) Equation (70) is the usual potential associated with
the “gauging” of a finite-dimensional Lie group,
while (71) is not the potential for gauging any global
symmetry.

(4) The field strength for (70) is given by the Riemann
tensor, and that for (71) by the torsion of the
Weitzenböck connection. A priori they are not
related in any simple way as the Weitzenböck
connection is not invariant under local Lorentz
transformations while the Riemann tensor is.

(5) Despite the fact that the Lagrangians for gravity are
quadratic in the field strengths for both potentials
(70) and (71). The former gives the Hilbert-Einstein
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action. Even in the special case of teleparallel
gravity, the latter differs by a total derivative.

Supergravity theories are constructed [17] based on
the YM-like theory for the gauge potential (70). It will
be interesting to consider the supersymmetrization of the
gauge symmetry of diffeomorphism and to derive the
supergravity theory as an alternative formulation of super-
gravity. We leave this project for future publications.

V. SCATTERING AMPLITUDES

In recent years, there has been amazing progress in the
techniques of calculating scattering amplitudes, as well the
understanding of their structures. Among them, a very
interesting and mysterious structure is the connection
between YM theory and gravity through the so-called
double-copy procedure, which utilizes the color-kinematics
duality (also known as the Bern-Carrasco-Johansson (BCJ)
duality) [12]. According to Ref. [12], certain gravity
theories are double copies of YM theories: the scattering
amplitudes of gravity theories can be obtained from those
of YM theories with color factors replaced by kinematic
factors. In many cases, this connection can find its origin in
the open-closed string duality (the KLT duality [18]),
although there are also other cases in which the string-
theory origin is absent at this moment.
A complete off-shell field-theoretic explanation of this

connection between gravity and YM theories, which
applies only to on-shell amplitudes, may not be possible.
But it is desirable to understand how much of the on-shell
miracle can be understood in an off-shell theory. Earlier
efforts in this direction include Refs. [19,20]. We propose
that the formulation of gravity as a YM theory we
constructed above may shed some new light on this
problem.

A. Heuristic explanation

Let us first reexamine the double-copy procedure to
illustrate our idea. As the simplest example, for the pure
YM theory, the color-ordered 3-point amplitude at tree
level is

fabcn
ð3Þ
λμνðp; q;−ðpþ qÞÞ; ð72Þ

where fabc is the structure constant and nð3Þλμνðp; q;−
ðpþ qÞÞ the kinematic factor

nð3Þλμνðp; q; rÞ≡ ðp − qÞνηλμ þ ðq − rÞλημν þ ðr − pÞμηνλ:
ð73Þ

Here ðp; q; rÞ are the momenta of the three external legs,
and λ, μ, ν are Lorentz indices labelling the polarizations of
the vector fields. The origin of this factor (73) is the 3-point
vertex

½Aμ; Aν�cFμνc
ð0Þ ¼ fabcAa

μAb
νð∂μAνc − ∂νAμcÞ ð74Þ

in the YM Lagrangian, with cyclic permutations of the
three factors of A contracted with three external legs,
assuming that the basis of the Lie algebra is chosen such
that fabc ¼ fbca ¼ fcab. Here F

μνc
ð0Þ ≡ ∂μAνc − ∂νAμc is the

field strength at the lowest order.
The double-copy procedure states that the replacement

of fabc by n
ð3Þ
λμνðp; q;−ðpþ qÞÞ gives the 3-point amplitude

of the corresponding gravity theory. In other words, if there
is a Lie algebra with indices a ¼ ðλ; pÞ and structure

constants fabc given by nð3Þλμνðp; q;−ðpþ qÞÞ, the YM
theory would agree with GR at least for 3-point amplitudes.
Yet one can check that this choice of structure constants
does not satisfy the Jacobi identity.
The color-kinematics duality and the double-copy pro-

cedure applies to all higher-point amplitudes. For 4-point
amplitudes at the tree level, the kinematic factor of color-
ordered amplitudes is,2 schematically,

nð4Þi ¼ nð3Þi nð3Þi þmð4Þ
i ði ¼ s; t; uÞ; ð77Þ

where the first term on the right-hand side is the contri-
bution from 3-point vertices, and the second term from the
4-point interaction in the YM theory. (The index values s, t,
u are labels for the s, t and u channels of the Feynman
diagrams for tree-level 4-point scattering amplitudes.) The

kinematic factors nð4Þi satisfy a linear relation

nð4Þs þ nð4Þt þ nð4Þu ¼ 0 ð78Þ
analogous to the Jacobi identity for the color factor (which
is quadratic in the structure constants). The relation above
would be equivalent to the Jacobi identify for nð3Þ inter-
preted as structure constants if the terms mð4Þ

i were absent.

The presence of mð4Þ
i is the evidence that nð3Þ cannot be

used as structure constants.
Often the relation between YM and GR indicated by the

double-copy procedure is symbolically represented as
ðYMÞ2 ¼ ðGRÞ. This expression is actually misleading,

2More explicitly [21],

nð4Þs ¼ ϵλ1ϵ
μ
2ϵ

ν
3ϵ

σ
4n

ð3Þ
σνρð−p4;−p3; p3 þ p4Þ

× nð3Þρλμ ðp1; p2;−p1 − p2Þ þmð4Þ
s ; ð75Þ

where pμ
i , ϵ

μ
i (i ¼ 1, 2, 3, 4) are the momenta and polarization

vectors of the external legs, s ¼ ðp1 þ p2Þ2 and

mð4Þ
s ≡ s½ðϵ1 · ϵ4Þðϵ2 · ϵ3Þ − ðϵ1 · ϵ3Þðϵ2 · ϵ4Þ�: ð76Þ

(The choice of mð4Þ
s is not unique.) The other two kinematic

factors nð4Þt , nð4Þu can be obtained by permutations of external legs.
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because neither the color factors or the propagators are
squared in the gravity theory. Instead, the identification of
color factors with kinematic factors [e.g. fabc with
nλμνðp; q;−ðpþ qÞ� for tree-level 3-point amplitudes)
identifies YM directly with GR. It is more appropriate to
use ðYMÞ0 ¼ GR as the symbolic representation of this
connection. The prime on (YM) indicates the modification
of YM theory by the replacement of color factors by
kinematic factors.
Since the color factors are composed of structure

constants of the gauge group, we are naturally led to
consider the possibility of gauge symmetries with
structure constants involving kinematic factors. This was
precisely what we did in Sec. II, which led to new
formulations of gravity theories as generalized YM theories
in Sec. III.
Apparently, the hope for a direct matching between

structure constants and the kinematic factors is too naive.
First, as the 3-point amplitude is defined on-shell, the
structure constant can be different from nλμνðp; q;−
ðpþ qÞÞ when it is off-shell. Secondly, even if the 3-point
amplitudes agree with structure constant, it is not clear if
higher-point amplitudes will automatically agree with the
corresponding color factors, as there will be different on-
shell conditions at work. (In fact, Eq. (77) says that the
structure constants for 4-point amplitudes are not to be
given by the structure constants for 3-point amplitudes due

to the extra term mð4Þ
i .) In general, as the BCJ duality only

holds on-shell, the correspondence between structure con-
stants and kinematic factors in n-point amplitudes is
different for different n, and it is unclear if there exists
an off-shell generalization. It is also highly nontrivial how
such on-shell correspondences can be implemented effi-
ciently in a field-theoretic approach. Hence, we leave the
search for a field-theoretic proof of the validity of the
double-copy procedure for future works. Nevertheless,
the color-kinematics duality and double-copy procedure
motivate us to explore YM theories with Lie algebras
involving kinematic factors, and it does lead to a con-
nection between YM theories and gravity theories at the
level of Lagrangians as we have shown in Sec. III.
It will be interesting to see whether the calculation of

scattering amplitudes is simplified in this YM-like formu-
lation of gravity, compared with the calculation based on
the Hilbert-Einstein action. It will be even more interesting
to see if we are getting closer to the simplified on-shell
results obtained via the BCJ duality.
To gain some intuition about how far or close our theory

is to the concise results of the BCJ duality, let us comment
on the schematic structure of the 3-point scattering ampli-
tude (72). The kinematic factor n comes from the factor
Fð0Þ, as the only object involving derivatives in the cubic
term fAAFð0Þ (74) of the YM action. This suggests that, to
replace the color factor f by n, we should have f ∼ Fð0Þ to
the lowest order in A. But this is precisely what we have:

the structure constant (50) in the basis of Da is the field
strength F!
In the following, we will compute more carefully the

3-point vertices of the YM-like formulation of gravity, and
see that the calculation is much simpler than the calculation
based on the Hilbert-Einstein action (which involves
around 100 terms). We leave higher-point scattering
amplitudes for the future.
Incidentally, although the Chern-Simons theory in three

dimensions [6] and the MacDowell-Mansouri theory in
four dimensions [7] are also YM-type formulations of
gravity, they are first-order formulations of GR. One has to
first solve the connection in terms of the vielbein before
calculating any scattering amplitudes of gravitons. The
calculation in those theories is not simpler than a direct
computation from the Hilbert-Einstein action.

B. Perturbative expansion in A

In this section, we focus on the 3-point vertices relevant
for the 3-graviton scattering. We consider 3-point vertices
of the action (59) for the traceless part of hμν.
First, using (63), one can easily see that the second term

in the action (59) is

α

12
ðFabc þ Fbca þ FcabÞðFabc þ Fbca þ FcabÞ

¼ α

3
Hð0ÞabcHð0Þ

abc þOðHð0ÞA2Þ þOðA4Þ; ð79Þ

whereHð0Þ
abc is the field strength of the antisymmetric tensor

field Bab defined at the lowest order:

Hð0Þ
abc ≡ ∂aBbc þ ∂bBca þ ∂cBab: ð80Þ

A vertex operator involving only external legs of h appears
at OðA4Þ or higher. The 3-point vertices of hμν is thus
independent of the parameter α.
Secondly, the third term in (59) is the square of

Fab
b ¼ ∂aAb

b − ∂bAa
b þOðA2Þ; ð81Þ

where the first term involves the trace of hμν, and the second
term vanishes if we impose the gauge-fixing condition

∂bhab ¼ 0 ð82Þ

for the graviton field. As a result, in this gauge (82), the
third term of the action (59) is also irrelevant to the 3-point
vertex for the traceless part of hμν.
Furthermore, the overall measure of integration is

det e ¼ 1þ haa þOðA2Þ; ð83Þ

which is also irrelevant for our consideration.
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The 3-point vertices for the graviton can thus only come
from the YM Lagrangian, and there are only two terms

Lð3Þ ≡ Fabc
ð0Þ ð½Aa; Ab�c − Fð0Þd

ab AdcÞ; ð84Þ

where

½Aa; Ab�c ≡ Aa
d∂dAbc − Ab

d∂dAac ð85Þ

and Fð0Þ
abc is the field strength at the zeroth order:

Fð0Þ
abc ≡ ∂aAbc − ∂bAac: ð86Þ

The first term of (84) comes from the Lie algebra structure
of this generalized YM theory. The second term arises due
to the field-dependent inner product of the Lie algebra.
Near the end of Sec. VA, we discussed how the

formulation of gravity as a generalized YM theory can
heuristically explain the double-copy procedure for 3-point
amplitudes at tree level. Equation (84) is the exact expres-
sion of the heuristic expression fAAFð0Þ ∼ Fð0ÞAFð0Þ there.
It may seem that there is a small discrepancy between
Fð0Þð½A; A� þ AFð0ÞÞ (84) and Fð0ÞAFð0Þ. But recall that the
structure constant fabc is assumed to be cyclic in the
double-copy procedure (and in our heuristic discussion in
Sec. VA), while Fabc

ð0Þ is not. The exact expression (84) is in

fact of the form of Fð0ÞAFð0Þ but additional terms that have
some of the indices permuted. In Sec. V C below, we will
see a simpler and more direct match with the discussions in
Sec. VA.
The 3-point vertices for the gravitons are, therefore,

ð∂ahbc − ∂bhacÞ
× ½had∂dhbc − hbd∂dhac − ð∂ahbd − ∂bhadÞhdc�: ð87Þ

This is already a very simple expression, especially if we
compare it with the expression obtained from the Hilbert-
Einstein action. But the expression can be even further
simplified as we will show below.

C. Perturbative expansion in Â

It is more economic, at least at the lowest order, to use
the variable Âμa defined by

êμa ¼ δaμ þ Âμ
a; ð88Þ

where êμa is the inverse of êaμ (37). The new variable Âμ
a is

merely a field redefinition of Aa
μ. They are related via

Aa
μ ¼ êaμ − δμa ¼ −Âa

μ þ Âa
νÂν

μ þOðA3Þ: ð89Þ

Therefore,

hab ≃ −ĥab þ…: ð90Þ

Up to sign, the physical (on-shell) amplitudes of hab and
ĥab should agree. As is suggested by the notation, we have
decomposed Â as

Âab ¼ ĥab=2þ B̂ab; ð91Þ

where ĥab is symmetric and B̂ab is antisymmetric. The trace
part of ĥab is denoted3

ϕ̂≡ 1

D
ĥa

a: ð92Þ

The effective metric (39) is

ĝμν ¼ êμaηabêνb ≃ ημν þ ĥab þ 2ηabϕ̂þOðA2Þ: ð93Þ

We also have

trê≡ êμaδ
μ
a ¼ Dð1þ ϕ̂þOðA2ÞÞ; ð94Þ

and thus

det ê ¼ 1þDϕ̂þOðA2Þ: ð95Þ

One can ignore the integration measure det ê when the
3-point vertex under consideration does not involve ϕ̂ as an
external leg.
Expanding the field strength in powers of Â, we have

Fabc ¼ −êaμêbνð∂μÂνc − ∂νÂμcÞ; ð96Þ

Then,

1

2
FabcFabc ¼ 1

2
F̂ð0Þ
abcF̂

ð0Þabc − 2F̂ð0ÞabcÂa
dF̂ð0Þ

dbc þOðA4Þ;
ð97Þ

where

F̂ð0Þ
μνa ≡ ∂μÂνa − ∂νÂμa: ð98Þ

Similar to the perturbative expansion in terms of A, the
second and third terms in the action (59) do not contribute
to 3-point interactions of the traceless part of hab.
It is remarkable that for this action (59) there is a single

3-point vertex for graviton interaction [the second term
in (97)]

3As we have learned from pure GR, the trace part of the
fluctuation of the metric is not a physical propagating mode.
Hence, we should identify the trace part of Âab (and Aab) as an
independent scalar field.
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L̂ð3Þ ¼ −2F̂ð0ÞabcÂa
dF̂ð0Þ

dbc: ð99Þ

This is precisely of the form Fð0ÞAFð0Þ needed to explain
the double-copy procedure at tree level as we discussed in
Sec. VA. This is, of course, also a significant simplification
compared with the usual expression of GR.

VI. HIGHER-FORM GAUGE SYMMETRIES

In the above we have focused on the gauge symmetries
with 1-form potentials and 0-form gauge parameters. We
can also apply the same notion of generalization to gauge
symmetries with higher-form gauge potentials. The basic
ideas of our generalization are the following:
(1) The symmetry generators do not have to be factor-

izable in the form

Tðff; agÞ ¼
X
n

fnðxÞTan; ð100Þ

where fnðxÞ’s are functions on the base space and
Ta’s are elements of a finite-dimensional Lie
algebra.

(2) Even if the symmetry generators are formally
factorable in the form (100), the objects Ta’s do
not have to commute with base-space functions.

If we take a given principal bundle as a classical manifold
and deform its algebra of functions so that it becomes
noncommutative, in general, this noncommutative space is
not the tensor product of a group and a noncommutative
base space. This is a way to construct examples of comment
1 above.
As an example of comment 2, even though the gauge

symmetry constructed in Sec. II has generators of the form
(100) with Ta ¼ ∂a, these Ta’s should not be interpreted as
generators of a finite-dimensional Lie algebra (otherwise
the Lie algebra is Abelian) and they do not commute with
spacetime functions.
For higher-form gauge symmetries, only the Abelian

case is well understood. There is no consensus on the
definition of non-Abelian higher-form gauge symmetries,4

and concrete examples are scarce. Due to this reason, our
discussion below cannot be very precise. It is commonly
speculated that there is something analogous to the Lie
algebra whose elements replace Ta in the factorized
formula (100) of a gauge transformation generator. The
analogue of our generalization of gauge symmetry for

higher-form gauge symmetries is then referring to a
violation of that factorization.
The Nambu-Poisson gauge theory [22,23] is one of the

few examples of non-Abelian higher-form gauge theories.
It was used to describe an M5-brane in a large C-field
background. It can be viewed as the covariant lift of the
Poisson limit of the noncommutative gauge symmetry for a
D4-brane in large B-field background to a higher dimen-
sion. The Nambu-Poisson gauge symmetry has a 2-form
potential with 1-form transformation parameters. Its gauge
group is the non-Abelian group of volume-preserving
diffeomorphisms. It can be viewed as an example of
generalized gauge symmetry for higher-form potentials.
Incidentally, the fact that the gauge algebra involves

kinematic factors is also the reason why it is possible for
higher-form gauge symmetries to be non-Abelian. Higher-
form global symmetries are always Abelian [24]. Hence, an
ordinary procedure of “gauging” the global symmetry by
introducing spacetime dependence to the generators in a
way analogous to Eq. (100) can never result in a non-
Abelian gauge symmetry (unless the spacetime coordinates
are noncommutative). Conversely, for a non-Abelian
higher-form gauge symmetry, when the transformation
parameters are restricted to be constant, all kinematic
factors become trivial, and the symmetry algebra becomes
Abelian. The Nambu-Poisson gauge symmetry is clearly an
example of this fact. The noncommutative Uð1Þ gauge
symmetry is the lower-form analogue.
Another example of non-Abelian gauge symmetry with a

2-form gauge potential is the low-energy effective theory
for multiple M5-branes proposed in Refs. [25,26]. The M5-
branes are compactified on a circle, and the gauge trans-
formation laws distinguish zero modes from KK modes.
The distinct treatment on zero modes and KKmodes can be
viewed as a dependence on the kinematic factor (whether
the momentum is zero or not), and so it is also an example
of the generalized gauge theory for higher forms.
There are other examples of non-Abelian gauge sym-

metry with higher-form gauge potentials [27], in addition
those mentioned above. It will be interesting to explore
further how the idea promoted above on generalized gauge
symmetry will help the construction of a mathematical
framework for non-Abelian higher-form gauge theories.
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