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We introduce new code for stationary and axisymmetric equilibriums, as well as for triaxial
quasiequilibrium initial data, of single rotating relativistic stars. The new code is developed as a part
of our versatile initial data code for compact objects, Compact Object CALculator (COCAL). In computing
strong gravitational fields, the waveless formulation is incorporated into the COCAL code on top of the
previously developed Isenberg-Wilson-Mathews formulation (conformally flat thin-sandwich formu-
lation). Also introduced is a new differential rotation law that contains two parameters to control an
angular velocity profile and a transition from uniform to differential rotation. We present convergence tests
and solution sequences for both uniformly and differentially rotating equilibriums of stationary
axisymmetric compact stars, as well as for quasiequilibrium initial data of uniformly rotating triaxial
(nonaxisymmetric) compact stars. We also show comparisons of uniformly rotating axisymmetric solutions
computed with three different codes: COCAL, LORENE, and the RNS code.
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I. INTRODUCTION

The development of numerical methods for computing
stationary axisymmetric equilibriums of relativistic rotating
compact stars began over four decades ago, and some of
them have been successfully applied for constructing
rapidly rotating neutron stars and strange stars as models
of pulsars [1–3]. (For reviews and complete references on
rapidly rotating compact stars and their stability, see e.g.
Ref. [4].) In this article, we introduce new code for
computing such a single compact star in equilibrium or
quasiequilibrium whose shape is highly deformed due to
rapid rotation. The code is developed as part of the
Compact Object CALculator (COCAL) code [5–8].
In most studies of numerical modeling of single rapidly

rotating compact stars, it is commonly assumed that the
perfect-fluid spacetime is stationary and axisymmetric, and
the associated fluid flow is circular [4]. This ansatz is
expected to be satisfied accurately for a rotating neutron
star as a realistic model of a millisecond pulsar. In some-
what extreme situations such as newly born neutron stars or
magnetars, however, one could imagine that axisymmetry
or circularity may be violated even after those systems
settle down to nearly stationary states [7,9,10]. Recent
dynamical simulations in numerical relativity have con-
firmed that such compact objects may be produced as an
outcome of stellar core collapses or binary neutron star
mergers [11–14]. This motivates us to improve on the
existing rotating neutron star codes specialized in

computing solutions in circular spacetimes by our new
COCAL code in which more general formulations are
available for accurately modeling a variety of compact
objects in equilibrium or in quasiequilibrium.
The COCAL project was started in Ref. [5] for comput-

ing the initial data of rotating compact stars on a spatially
conformally flat hypersurface using the Isenberg-Wilson-
Mathews (IWM) formulation [15,16]. In Ref. [5], data
for axisymmetric as well as triaxial configurations of
uniformly rotating stars—corresponding to classical
Maclaurin and Jacobi ellipsoids in relativistic compress-
ible self-gravitating fluid—were calculated successfully.
In Ref. [6], multipatch coordinate grids were introduced
for computing binary systems and applied for binary black
hole initial data. In the development of the COCAL code,
we restrict ourselves to using formulations and numerical
methods as simple as possible, so that we are able to
constantly update the code to include increasingly com-
plex effects such as strong magnetic fields [7], realistic
equations of state (EOSs) for high-density matter, or
neutrino transfer and cooling in future works. One of
the ideas for such simplification is to use the 3þ 1
formalism similar to those used in the simulations for
computing equilibriums or quasiequilibriums. This also
allows us to conveniently provide various kinds of initial
data for numerical relativity simulations. Those data are
calculated in order to satisfy the initial value constraints
on a three-dimensional hypersurface Σt; hence, they can
be used as initial data as they are, or after certain density
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or velocity perturbations are added and constraints are
recalculated.1

In this paper, we introduce two new features of the
COCAL code added to the above mentioned rotating
compact star code; one is the waveless formulation for
computing metric potentials, and the other is a novel
differential rotation law. In contrast to IWM formalism,
the waveless formulation derived in Ref. [18] (see also
Ref. [19]) can describe stationary and axisymmetric space-
time exactly, whether or not the spacetime is circular.
Differences between the solutions of uniformly rotating
axisymmetric compact stars calculated from the IWM
formalism and the exact stationary axisymmetric circular
spacetime have been studied in Ref. [20]. They concluded
that the differences between the two cases are not so evident
as long as the compactness is in the range of neutron
stars, M=R≲ 0.2. We present a result of the comparison
for triaxially deformed stars with compactness up to
M=R ≤ 0.3. As an obvious caveat, such triaxially deformed
compact stars are no longer in equilibrium due to the
backreaction of gravitational waves, but they are quasie-
quilibrium initial data; these solutions satisfy the con-
straints and one or all components of the rest of Einstein’s
equations on a spatial hypersurface (depending on whether
IWM or waveless formulation is used, respectively).
For the computations of differentially rotating compact

stars, we introduce a novel rotation law which contains two
parameters. One of the parameters, q, controls the slope of
the angular velocity profile of differential rotation. In the
Newtonian limit, this rotation law has an angular velocity
dependence Ω ∝ ϖ−2=q on the equatorial radius ϖ. The
other parameter, A, controls the transition radius between
uniform rotation near the center of a star and the above
differential rotation. Several authors have calculated differ-
entially rotating compact stars using the rotation law
jðΩÞ ¼ AðΩc −ΩÞ, which corresponds to our q ¼ 1 case
[1,2]. To our knowledge, the only exception is the paper by
Galeazzi, Yoshida, and Eriguchi [21], in which a rotation
law analogous to ours is used. Our new rotation law has the
same property as that of Ref. [21], but it has a simpler form
so that it can always be analytically integrated in the
equation of hydrostatic equilibrium. Recently, Mach and
Malec have proposed more general differential rotation
laws for relativistic rotating fluid bodies that involve four
parameters [22], which are suited for reproducing the
relativistic Keplerian rotation law. So far, they have not
applied them for computing the equilibriums of rotating
compact stars.
This paper is organized as follows: In Sec. II, the

formulation of the problem, including a summary of the
waveless formulation and the new differential rotation law,

is introduced. In Sec. III, numerical methods and setups
used in present computational code on COCAL are sum-
marized. In Sec. IV, convergence tests and examples of
solutions are presented for stationary axisymmetric differ-
entially rotating compact stars and triaxially deformed
rotating compact stars. Then properties of sequences of
those solutions are investigated. We also present compar-
isons of two uniformly rotating axisymmetric solutions
computed with three different codes, COCAL, LORENE, and
the RNS code, one for a mildly compact and the other for a
highly compact model. In Sec. V, we summarize the
stability properties of rotating compact stars and discuss
applications and future prospects of our new COCAL code.
In this paper, spacetime indices are greek, spatial indices
are latin, and the metric signature is −þþþ. For writing
the basic equations, geometric units with G ¼ c ¼ 1 are
used, while for tabulating the numerical solutions, G ¼
c ¼ M⊙ ¼ 1 units are used for convenience.

II. FORMULATIONS

In this section, we introduce the 3þ 1 decomposition of
Einstein’s equations, and the symmetry, the gauge con-
ditions, and the waveless conditions to be imposed on the
set of equations. Then, we summarize the waveless
formulation [18,19], and the system of hydrostationary
equations including the case with differential rotation.

A. Summary of 3þ 1 decomposition of
Einstein’s equations

We assume that a spacetime M is asymptotically flat
and is foliated by a family of spacelike hypersurfaces
ðΣtÞt∈R, parametrized by a time coordinate t ∈ R as
M ¼ R × Σ. The future-pointing unit normal one-form
to Σt, nα ¼ −α∇αt, is related to the generator of time
translations tα as

tα ¼ αnα þ βα; ð1Þ

where tα∇αt ¼ 1. Above α and βα are, respectively,
the lapse and shift, where βα is spatial, βα∇αt ¼ 0.
The projection tensor to Σt γαβ is introduced as
γαβ ≔ gαβ þ nαnβ. The induced spatial metric γab on Σt
is the projection tensor restricted to it. Introducing a
conformal factor ψ, and a conformally rescaled spatial
metric ~γab, the line element on a chart ft; xig of Σt is written

ds2 ¼ −α2dt2 þ ψ4 ~γijðdxi þ βidtÞðdxj þ βjdtÞ: ð2Þ

The conformal rescaling is determined from a condition
~γ ¼ f, where ~γ and f are determinants of the rescaled
spatial metric ~γab and the flat metric fab, respectively. In the
later sections, hab and hab denote the differences between
the conformal metric and the flat one, with

1Such modification is often made for initial data sets for binary
neutron stars or binary black holes to prepare the data of elliptic
or parabolic orbits (see e.g. Ref. [17]).
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~γab ¼ fab þ hab; ~γab ¼ fab þ hab: ð3Þ

The extrinsic curvature of each slice Σt is defined by

Kab ≔ −
1

2
γαaγ

β
b£nγαβ

¼ −
1

2α
∂tγab þ

1

2α
£βγab; ð4Þ

where ∂tγab is the pullback of £tγαβ to Σt, £t is the Lie
derivative along the vector tα defined on M, and £β is the
Lie derivative along the spatial vector βa on Σt. Hereafter,
we denote the trace of Kab by K, and the trace-free part of
Kab by Aab ≔ Kab − 1

3
γabK.

In this paper, we consider perfect-fluid spacetimes: the
stress-energy tensor is written

Tαβ ¼ ðϵþ pÞuαuβ þ pgαβ; ð5Þ

where ϵ is the energy density, p the pressure, and uα the 4-
velocity. We decompose Einstein’s equation Eαβ ≔ Gαβ −
8πTαβ ¼ 0 with respect to the foliation using hypersurface
normal nα, and the projection tensor γab to Σt as follows:

Eαβnαnβ ¼ 0; ð6Þ

Eαβγ
α
anβ ¼ 0; ð7Þ

Eαβ

�
γαβ þ 1

2
nαnβ

�
¼ 0; ð8Þ

Eαβ

�
γαaγ

β
b −

1

3
γabγ

αβ

�
¼ 0; ð9Þ

which correspond, respectively, to the Hamiltonian con-
straint, the momentum constraint, the spatial trace part
(combined with the Hamiltonian constraint), and the spatial
trace-free part. As briefly reported in Ref. [7], the code can
be extended to include the magnetic field.

B. Stationarity, waveless, and coordinate conditions

In the above set of field equations and the definition of
the extrinsic curvature, the time-derivative terms ∂tγab,∂tKab, and ∂tK are included in Eqs. (4), (9), and (8),
respectively.

1. Case A: Stationary and axisymmetric systems

For computing stationary and axisymmetric systems, we
simply impose time symmetry by setting

∂tγab ¼ ∂tKab ¼ ∂tK ¼ 0 ð10Þ

under the maximal slicing and the generalized Dirac gauge
for coordinate conditions,

K ¼ 0; ð11Þ

D
∘
b ~γ

ab ¼ D
∘
bhab ¼ 0; ð12Þ

where D
∘
b is a covariant derivative associated with the flat

spatial metric fab, D
∘
cfab ¼ 0. Note that we do not

explicitly impose the axisymmetry on our formulation.

2. Case B: Nonaxisymmetric systems in
quasiequilibrium

For computing quasiequilibrium initial data of triaxially
deformed rotating stars, we impose a waveless condition on
the rescaled metric ~γab and a stationarity in the rotating
frame (helical symmetry) on the extrinsic curvature Kab,

∂t ~γab ¼ 0 and ∂tKab ¼ −£ΩϕKab; ð13Þ
under the same coordinate conditions. As shown in
Ref. [18], a stronger waveless condition ∂t ~γ

ab ¼ Oðr−3Þ
is sufficient for the metric potentials to fall off as Coulomb
fields under the same coordinate conditions. For non-
axisymmetric stars, we do not consider differential rota-
tions in this work. Hence, the star is stationary in a frame
rotating with the constant angular velocity Ω of stellar
rotation. This is a condition imposed on Kab in Eq. (13)
analogous to a symmetry with respect to a helical vec-
tor kα ¼ tα þ Ωϕα.
For either case A or case B above, the asymptotic

behavior of the metric potentials becomes a Coulomb-type
falloff,

ψ − 1 ¼ Oðr−1Þ; α − 1 ¼ Oðr−1Þ; ð14Þ

βa ¼ Oðr−2Þ; hab ¼ Oðr−1Þ: ð15Þ

Our choice of βa is the shift in an (asymptotically)
inertial frame.
Also, the trace-free part Aab of the extrinsic curvature (4)

becomes

Aab ¼
ψ4

2α

�
£β ~γab −

1

3
~γab ~γ

cd£β ~γcd

�
: ð16Þ

The trace part of (4) determines the evolution of the
conformal factor under the slicing condition K ¼ 0, which
is not necessary for computing the stationary system or the
initial data.

C. Equations for the metric potentials

As shown in Ref. [18], the above set of field equa-
tions (6)–(9) are reduced to elliptic (Poisson) equations for
fψ ; ~βa; αψ ; habg, respectively, as follows:

Δ
∘
ψ ¼ SH; ð17Þ
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Δ
∘
~βa ¼ Sa; ð18Þ

Δ
∘ ðαψÞ ¼ Str; ð19Þ

Δ
∘
hab ¼ Sab; ð20Þ

where Δ
∘
is defined by Δ

∘ ¼ fabD
∘
aD
∘
b, and the conformally

rescaled shift ~βa by ~βa ¼ ~γab ~β
b, ~βa ¼ βa. The sources SH,

Sa, Str, and Sab are written

SH ≔ −habD
∘
aD
∘
bψ þ ~γabCc

abD
∘
cψ þ ψ

8
3 ~R

−
ψ5

8

�
~Aab

~Aab −
2

3
K2

�
− 2πψ5ρH; ð21Þ

Sa ≔ −hbcD
∘
bD
∘
c
~βa þ ~γbcD

∘
bðCd

ca
~βdÞ þ ~γbcCd

bc
~Dd

~βa

þ ~γbcCd
ba

~Dc
~βd −

1

3
D
∘
aðhbcD

∘
b
~βc − ~γbcCd

bc
~βdÞ

−
1

3
D
∘
aD
∘ b

~βb − 3 ~Rab
~βb − 2α ~Aa

b α

ψ6
~Db

�
ψ6

α

�

þ 4

3
α ~DaK þ 16παja; ð22Þ

Str ≔ −habD
∘
aD
∘
bðαψÞ þ ~γabCc

abD
∘
cðαψÞ þ

αψ

8
3 ~R

þ ψ5£ωK þ αψ5

�
7

8
~Aab

~Aab þ 5

12
K2

�

þ 2παψ5ðρH þ 2SÞ; ð23Þ

Sab ≔ 2S̄TF
ab −

1

3
~γabD

∘ e
hcdD

∘
ehcd; ð24Þ

where S̄TF
ab in Eq. (24) is a trace-free part of S̄ab, which is

S̄ab ≔ ~RD
ab þ ~RNL

ab þ 3R̄ψ
ab −

1

α
D̄aD̄bα

þ 1

3
ψ4K ~Aab − 2ψ4 ~Aac

~Ab
c

þ 1

α
£ωðψ4 ~AabÞ − 8πS̄ab: ð25Þ

Here, ωa is a rotating shift defined by ωa ¼ βa þ Ωϕa. The
conformal weighted quantity ~Aab is defined by ~Aa

b ≔ Aa
b,

and its indices are raised (lowered) by the rescaled metric
~γab (~γab). ~Da is a covariant derivative of the conformally
rescaled spatial metric ~γab, and Cc

ab is a connection
associated with ~Da.

3 ~Rab and 3 ~R are, respectively, the
conformal Ricci tensor and scalar of the conformal spatial
hypersurface whose intrinsic metric is the rescaled ~γab.
Definitions of ~RD

ab, ~RNL
ab , and

3R̄ψ
ab −

1
α D̄aD̄bα follow:

~RD
ab ¼ −

1

2
ðfacD

∘
bFc þ fbcD

∘
aFcÞ; ð26Þ

~RNL
ab ¼ −

1

2
ðD∘ bhcdD

∘
chad þD

∘
ahcdD

∘
chbd þ hcdD

∘
cD
∘
dhabÞ

−D
∘
aCc

cb þ Cc
abC

d
dc − Cd

acCc
bd

−
1

2
½D∘ bðhacFcÞ þD

∘
aðhbcFcÞ� þ FcCc;ab; ð27Þ

3R̄ψ
ab −

1

α
D̄aD̄bα ¼ −

1

αψ2
D
∘
aD
∘
bðαψ2Þ þ 1

αψ2
Cc
abD

∘
cðαψ2Þ

þ 4

αψ2
½D∘ aðαψÞD

∘
bψ þD

∘
bðαψÞD

∘
aψ �;

ð28Þ

where Fa ≔ D
∘
b ~γ

ab ¼ D
∘
bhab and Cc;ab ≔ ~γcdCd

ab. The
condition ~γ ¼ f and the generalized Dirac gauge condition
(12) imply, respectively, Cb

ba ¼ 0 and Fa ¼ 0.
We comment on two subtle differences in the formu-

lation between our previous and present codes. In the

previous code (e.g. Refs. [5,19]), a term − 1
3
D
∘
aD
∘ b

~βb
appearing in the third line of Eq. (22) was calculated
separately using a decomposition of βa (see Appendix A of
Ref. [19]). We no longer use such a decomposition but
include the term in the source (22) and simply solve
Eq. (18). We had also used an analogous decomposition
in solving a gauge vector ξa in Ref. [19], but we no longer
use it either. As explained in Ref. [19], the Dirac gauge
condition (12) is imposed on hab by a simultaneous gauge
transformation at each level of a self-consistent iteration to
solve field equations (17)–(20). Namely, gauge vector
potentials ξa introduced in the transformation

δγab → δγab −D
∘ a
ξb −D

∘ b
ξa ð29Þ

are used to adjust hab as

hab0 ¼ hab −D
∘ a
ξb −D

∘ b
ξa þ 2

3
fabD

∘
cξ

c; ð30Þ

in order to have hab0 satisfy the condition D
∘
bhab0 ¼ 0.

Then, the gauge vector potentials ξa are solved from elliptic
equations,

Δ
∘
ξa ¼ Sa

D; ð31Þ

Sa
D ¼ D

∘
bhab −

1

3
D
∘ a
D
∘
bξ

b; ð32Þ

and hab is replaced by Eq. (30).
Terms ρH, ja, S, and Sab in the source (21)–(24)

correspond to the projection of the stress energy tensor (5)
with respect to the slices Σt and to its normal. The 4-velocity
of the flow
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uα ¼ utðtα þ vαÞ; ð33Þ

where vα is the spatial vector vαnα ¼ 0, is decomposed into

uαnα ¼ −αut; ð34Þ

uαγαa ¼ utðβa þ vaÞ: ð35Þ

Using these relations, the matter source terms of the field
equations are written

ρH ≔ Tαβnαnβ ¼ hρðαutÞ2 − p; ð36Þ

ja ≔ −Tαβγ
α
anβ ¼ hραðutÞ2ðβa þ vaÞ; ð37Þ

S ≔ Tαβγ
αβ ¼ hρ½ðαutÞ2 − 1� þ 3p; ð38Þ

Sab ≔ Tαβγ
α
aγ

β
b

¼ hρðutÞ2ðβa þ vaÞðβb þ vbÞ þ pγab; ð39Þ

where ρ is the rest mass density and h the relativistic enthalpy
defined by

h ≔
ϵþ p
ρ

: ð40Þ

In this paper, we concentrate on the case with the circular
flow vα ¼ Ωϕα, although we have already included the
components of meridional flow in the source of the field
equation in the COCAL code as above.
The above formulation is reduced to the IWM formu-

lation by setting the spatial metric to be conformally flat,
γab ¼ ψ4fab—that is, by replacing

~γab → fab; ~Da → D
∘
a; ð41Þ

hab; Cc
ab;

3 ~Rab;
3 ~R; ~RD

ab; ~RNL
ab → 0; ð42Þ

then discarding the field equations (20) for hab. Further
details for deriving the equations in this subsection can be
found in Refs. [18,19].

D. Equations for hydrostationary (quasi)equilibriums

For the properties of high-density matter, we consider
the case in which the local thermodynamic equilibrium is
always satisfied, and is described by two independent
thermodynamic quantities which we choose to be the rest
mass density ρ and entropy per rest mass density s, such as
ϵ ¼ ϵðρ; sÞ and p ¼ pðρ; sÞ. The first law of thermody-
namics is written dϵ ¼ ρTdsþ hdρ, where the relativistic
enthalpy h is defined as in Eq. (40).
The Bianchi identity implies ∇βTα

β ¼ 0; that is, for the
case of a perfect fluid (5),

∇βTα
β ¼ ρuβωβα þ huα∇βðρuβÞ − ρT∇αs ¼ 0; ð43Þ

where ωβα ≔ ∇βðhuαÞ −∇αðhuβÞ is the relativistic vortic-
ity two-form. In this derivation, the normalization condition
of the 4-velocity uαuα ¼ −1 and the local first law in the
form dh ¼ Tdsþ dp=ρ are used.
The assumption for the local baryon mass conservation,

∇αðρuαÞ ¼ 0; ð44Þ
implies the isentropic flow and the relativistic Euler
equation

uα∇αs ¼ 0; ð45Þ

uβωβα − T∇αs ¼ 0; ð46Þ

from projections of Eq. (43) along, and transverse to, the
fluid flow uα, respectively.
The above set of equations (44)–(46), together with the

equations of state (EOSs) of high-density matter,

p ¼ pðρ; sÞ; ð47Þ
[or h ¼ hðρ; sÞ], and a normalization condition of the
4-velocity,

uαuα ¼ −1; ð48Þ
are the closed system of equations for relativistic perfect
fluid. For computing equilibriums or quasiequilibriums of
self-gravitating fluid, it is crucial to find a set of integra-
bility conditions and to derive a system of first integrals of
the above system.

1. Stationary and axisymmetric systems with circular flow

Stationarity and axisymmetry are imposed on the canoni-
cal momentum of fluid element huα and thermodynamic
variables as their Lie derivatives along the Killing fields tα

and ϕα vanish:

£tðhuαÞ ¼ 0; £tρ ¼ 0; £ts ¼ 0; ð49Þ

£ϕðhuαÞ ¼ 0; £ϕρ ¼ 0; £ϕs ¼ 0. ð50Þ

We assume the flow is circular,

uα ¼ utkα ¼ utðtα þ ΩϕαÞ; ð51Þ
where the angular velocity Ω may not necessarily be
constant. Conditions (49) and (50) imply £tΩ ¼ 0 and
£ϕΩ ¼ 0. Also, using the same conditions, Eqs. (44) and
(45) are trivially satisfied. The Euler equation (46) becomes

∇α ln
h
ut

þ utuϕ∇αΩ −
T
h
∇αs ¼ 0; ð52Þ
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since Cartan identity implies

kβωβα ¼ £kðhuαÞ −∇αðhuβkβÞ
¼ huβϕβ∇αΩ −∇αðhuβkβÞ: ð53Þ

Equation (52) suggests that the first integral can be
derived if the combination utuϕ is a function of Ω, and T=h
a function of s. For the latter, we assume barotropic fluid,
s ¼ sðρÞ, and hence, we have p ¼ pðρ; sðρÞÞ, ϵ ¼
ϵðρ; sðρÞÞ as well as other thermodynamic quantities.
Writing

jðΩÞ ≔ utuϕ; ð54Þ

the first integral is written

ln
h
ut

þ
Z

jðΩÞdΩ −
Z

T
h
ds ¼ const: ð55Þ

In this paper, we further simplify that the flow is home-
ntropic, and therefore solve

h
ut
exp

�Z
jðΩÞdΩ

�
¼ E; ð56Þ

where E is a constant.
A choice of the form of integrability function jðΩÞ

amounts to a choice of a differential rotation law. Several
authors have calculated differentially rotating compact
stars using the rotation law jðΩÞ ¼ AðΩc −ΩÞ, except
for Ref. [21]. We propose a generalized differential rotation
law, which can cover various rotation laws by two
parameters, and is simple enough to implement in the
code. The integrability function jðΩÞ is given as

jðΩÞ ≔ A2Ω
��

Ωc

Ω

�
q
− 1

�
; ð57Þ

where A and q are parameters, and Ωc is a constant.
The function jðΩÞ (57) can be immediately integrated
analytically as

Z
jðΩÞdΩ¼

8>><
>>:
A2Ω2

�
1

2−q

�
Ωc
Ω

�
q
− 1

2

�
; for q≠ 2;

A2Ω2

��
Ωc
Ω

�
2
lnΩ− 1

2

�
; for q¼ 2:

ð58Þ

In actual computation, we subtract from Eq. (58) the
integral constants A2Ω2

cq=ð4 − 2qÞ and A2Ω2
cðlnΩc − 1=2Þ

for q ≠ 2 and q ¼ 2, respectively, to have the integrals (58)
vanish when Ω ¼ Ωc. The value of Ω is solved from a
relation jðΩÞ ¼ utuϕ, where utuϕ is concretely

utuϕ ¼ ðutÞ2γαβωαϕβ ¼ ðutÞ2ψ4 ~γabω
aϕb; ð59Þ

where the spatial vector ωα is defined by ωα ¼ βα þ Ωϕα,
and ωa is its projection to Σt. Properties of this new
differential rotation law (57) are detailed later in
Sec. IVA 1.2

Finally, ut is determined from the normalization con-
dition (48), which is written

ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβkαkβ

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ψ4 ~γabω

aωb
p : ð60Þ

In summary, the number of independent fluid variables
fρ; s; uαg is reduced to fh; utg and two constants fΩc; Eg,
and accordingly the system of equations (44)–(48) is
reduced to the first integral and the integrability condition
(the rotation law) (55) or (56) to (60), and an associated
EOS whose example is discussed below in Sec. II D 3.

2. Nonaxisymmetric systems in quasiequilibrium

For quasiequilibrium initial data of rotating nonaxisym-
metric compact objects, we only consider the case with
uniform rotation. Hence, the fluid 4-velocity uα is propor-
tional to a helical vector kα ¼ tα þ Ωϕα, uα ¼ utkα, where
Ω is a constant angular velocity of the rotation. Then, we
assume that the canonical momentum of a fluid particle huα
and thermodynamic variables respect the helical symmetry,

£kðhuαÞ ¼ 0; £kρ ¼ 0; £ks ¼ 0: ð61Þ

In this case, the Cartan identity for the helical Killing
vector kα becomes

kβωβα ¼ −∇αðhuαkαÞ; ð62Þ

and hence, analogously to the differentially rotating axi-
symmetric case above, we have the first integral for
barotropic fluid

ln
h
ut

−
Z

T
h
ds ¼ const: ð63Þ

in place of Eq. (55), and for the homentropic case

h
ut

¼ E ð64Þ

in place of Eq. (56). One of Eqs. (63) or (64), and Eq. (60)
are solved for fh; utg, and two constants fΩ; Eg are to be
determined.
We remind the readers again that the terms “helical

symmetry” and “helical Killing vector” do not mean

2The properties of our new rotation law are essentially the
same as those of Ref. [21]. Note that the definition of a function
jðΩÞ in Ref. [21] differs from our definition of jðΩÞ.
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spacetime symmetry, but a condition imposed only on the
fluid variables.

3. Piecewise polytropic EOS

As a concrete form of barotropic EOS, we adopt a
piecewise polytropic EOS with N segments [23],

p ¼ Kiρ
Γi ; ð65Þ

in the ith interval ρ ∈ ½ρi−1; ρi�, i ¼ 1;…; N. The adiabatic
constant and the adiabatic index ðKi;ΓiÞ are assigned
parameters to each density interval ½ρi−1; ρi�, and the values
of the density at the interface ρi satisfy ρi < ρiþ1. We have
N parameters each of Ki and Γi, and N − 1 parameters of
ρi, hence in total 3N − 1 degrees of freedom for the
N-segment piecewise polytropic EOS. A requirement that
the pressure pðρÞ be continuous at each interface ρi gives
N − 1 conditions to the above parameters:

Kiρ
Γi
i ¼ Kiþ1ρ

Γiþ1

i ði ¼ 1;…; N − 1Þ; ð66Þ

which determine N − 1 values of Ki. The remaining 2N
parameters—N values of Γi, N − 1 values of ρi, and one of
Ki—are prescribed. Instead of the one of Ki, we may also
prescribe the value of p at a certain value of ρ.
In COCAL code, we store the value of the thermodynamic

quantity q ≔ p=ρ and reconstruct other thermodynamic
variables in the ith interval as follows3:

h ¼ hi þ
Γi

Γi − 1
ðq − qiÞ; ð67Þ

p ¼ K
−1

Γi−1
i q

Γi
Γi−1; and ρ ¼ K

−1
Γi−1
i q

1
Γi−1; ð68Þ

where qi and hi are the values at the interface of the ith and
(iþ 1)th intervals, and an interval q ∈ ½qi−1; qi� corre-
sponds to ½ρi−1; ρi� with i ¼ 1;…; N. We assume Γ1 > 1
so that we may set p0 ¼ ρ0 ¼ q0 ¼ 0 and h0 ¼ 1 con-
sistently at the boundary of the first interval.
Parametrization of various high-density nuclear EOSs

using the above piecewise polytropic EOS with a minimal
number of intervals has been studied by Read et al. in
Ref. [24]. They systematically fit the EOS of neutron-star
matter with three intervals plus one fixed interval for
the crust.

III. SUMMARY OF NUMERICAL METHOD

In the COCAL project, we aim at developing a versatile
code for computing compact objects as simply as possible,
so that extensions for solving increasingly complex prob-
lems can be done with minimal extra effort. The code for

solving the waveless formulation, in fact, has been devel-
oped on top of that for the IWM formulation [5] by adding
extra terms related to conformally rescaled spatial metric
~γab. As in our previous code [5,6,19], we solve Cartesian
components of the field equations on spherical coordinate
grids in our numerical computations. Therefore, a basis of
numerical setups in the present code is mostly common
with that of Ref. [5]. We briefly review it in this section.

A. Coordinate grids, finite differencing, and other
numerical schemes of the COCAL code

As in Ref. [5], for computing a single rotating star, the
spherical coordinates cover the region ðr; θ;ϕÞ ∈
½ra; rb� × ½0; π� × ½0; 2π�. For a rotating star computation,
ra is set to zero and rb typically to rb ∼Oð106MÞ, whereM
is the total mass of the system. Definitions of the param-
eters for the grid setups are listed in Table I.
Using a Green’s function, an integral form of each of the

elliptic equations (17)–(20) for the metric potentials is
written. We apply the same finite difference scheme used
in Ref. [6] to discretize these integral equations on the
spherical coordinates: (1) For the quadrature formula of the
Poisson solver, a second-order midpoint rule is used for r
and ϕ integrations, and a fourth-order midpoint rule is
used for θ integration. (2) A second-order finite difference
formula is used for the r, θ, and ϕ derivatives evalu-
ated at the midpoints ðriþ1

2
;θjþ1

2
;ϕkþ1

2
Þ¼ ððriþ riþ1Þ=2;

ðθiþθiþ1Þ=2;ðϕiþϕiþ1Þ=2Þ, except that (3) a third-order
finite difference formula is used for the first derivative in r
evaluated at the midpoints. (4) A fourth-order finite differ-
ence formula is used for the derivatives evaluated at the grid
points, ðri; θj;ϕkÞ. Note that we use the midpoint rule for
the numerical quadrature formula, and hence compute the
source terms at the midpoints of the grids.
Coordinate grids ðri; θj;ϕkÞ with i ¼ 0;…; Nr,

j ¼ 0;…; Nθ, and k ¼ 0;…; Nϕ are freely specifiable
except for the first and the last grid points of the computa-
tional domain. The grid setup is the same as that in Ref. [5]:
the radial grid intervals Δri ≔ ri − ri−1 are constant
between ri ∈ ½ra; rc� (i ¼ 1;…; Nm

r ) and increase propor-
tionally, Δri ¼ kΔri−1, where k is a constant, between

TABLE I. Summary of grid parameters.

ra: Radial coordinate where the radial grids start.
rb: Radial coordinate where the radial grids end.
rc: Radial coordinate between ra and rb where the radial grid
spacing changes.

Nr: Number of intervals Δri in r ∈ ½ra; rb�.
Nf

r: Number of intervals Δri in r ∈ ½ra; 1�.
Nm

r : Number of intervals Δri in r ∈ ½ra; rc�.
Nθ: Number of intervals Δθj in θ ∈ ½0; π�.
Nϕ: Number of intervals Δϕk in ϕ ∈ ½0; 2π�.
L: Order of included multipoles.

3We use q for q ≔ p=ρ only in this subsection. Here, qmay be
considered as a relativistic Emden function.
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ri ∈ ½rc; rb� (i ¼ Nm
r þ 1;…; Nr). For angular coordinate

grids ðθj;ϕkÞ, we choose equally spaced grids.
Values of the parameters for the coordinate grids of

COCAL used in computing the results presented in this paper
are listed in Table II.

B. Iteration scheme and a number of parameters
to specify a solution

In the COCAL code, all components of field equations
become elliptic PDEs (17)–(20), and they are recast into
integral forms using Green’s function [5,6]. These integral
equations, a hydrostatic equation (56) or (64), and a
normalization of 4-velocity (60), associated with a certain
barotropic EOS such as (65), are simultaneously solved
iteratively by a self-consistent field method [25]. As
discussed in Ref. [26], to achieve a successful convergence
of such iterations to compute stellar equilibriums, param-
eters to specify a solution should be chosen appropriately.
In the hydrostatic equations, free constants fE;Ωg (or
fE;Ωcg for the case of differential rotation) are to be
computed during iterations. We also introduce a parameter
R0 to normalize lengths, so that the stellar equatorial radius
Re (along the x axis) becomes unity.4

To determine fE;Ω; R0g (or fE;Ωc; R0g), we fix three
conditions: the equatorial coordinate radius Re=R0 ¼ 1, the
axis ratio Rp=R0, and the maximum value of ðp=ρÞc. Here,
Rp is the polar radius measured in coordinate length.5

These conditions are substituted into the hydrostatic
equation (56) [or (64)] at the pole, the equatorial surface
(on the x axis), and at the center or at the point of the
maximum of p=ρ. A solution is specified by the values of
the above three parameters, and the values of other
parameters included in the EOS fΓi; Kig and the differ-
ential rotation law fq; Ag.

IV. NUMERICAL RESULTS

In this section, we show the structures of two represen-
tative solutions, the results of convergence tests, and the

results of systematic computations for solution sequences.
Although a piecewise polytropic EOS is already available
in COCAL, we use the polytropic EOS p ¼ KρΓ (the EOS
composed of only one segment) in the following compu-
tations. We choose the adiabatic index Γ to be either 2, 3, or
4, and for each case choose the adiabatic constant K so that
the compactness of a TOV solution with the rest mass
M0 ¼ 1.5M⊙ becomesM=R ¼ 0.2. Throughout this paper,
the definition of the compactness M=R of a rotating
compact star is the ratio of the gravitational mass M to
the circumferential (Schwarzschild) radius R of the corre-
sponding spherical TOV solution having the same rest mass
M0 as the rotating star, as long as the mass of the rotating
star does not exceed the maximum mass of the TOV
solution. As a reference, the quantities of TOV solutions at
the maximum mass for the above Γ are tabulated in
Table III.

A. Examples of highly deformed rotating compact stars

First, we present two examples of solutions for highly
deformed rotating compact stars. One is a differentially
rotating axisymmetric star in equilibrium, and the other a
uniformly rotating triaxial star in quasiequilibrium. Both
solutions are computed using the waveless formulation.
Before presenting these solutions, we comment on proper-
ties of our differential rotation law (57).

1. Differential rotation for a compact star

In Fig. 1, we plot analytic solutions of the rotation law in
the Newtonian limit jðΩÞ ¼ ϖ2Ω,

Ω ¼ Ωc

�
ϖ2

A2
þ 1

�−1=q
; ð69Þ

TABLE II. Grid parameters used for computing rotating com-
pact stars.

Type ra rb rc Nf
r Nm

r Nr Nθ Nϕ L

H1 0.0 106 1.25 32 40 96 24 24 12
H2 0.0 106 1.25 64 80 192 48 48 12
H3 0.0 106 1.25 128 160 384 96 96 12
H4 0.0 106 1.25 256 320 768 192 192 12

TABLE III. Quantities of a TOV solution in G ¼ c ¼ M⊙ ¼ 1
units for the polytropic EOS p ¼ KρΓ with Γ ¼ 2, 3, and 4.
ðp=ρÞc and ρc are the maximum values of each quantity.M0 is the
rest mass, M is the gravitational mass, and M=R is the compact-
ness (a ratio of the gravitational mass to the circumferential
radius). The first three lines are the maximum mass models of
the corresponding EOS parameters. The adiabatic constant K
is chosen so that the value of M0 becomes M0 ¼ 1.5 at the
compactnessM=R ¼ 0.2. Values are approximated using second-
order interpolation of three nearby solutions. To convert a unit
of ρc to cgs, multiply the values by M⊙ðGM⊙=c2Þ−3≈
6.176393 × 1017 g cm−3.

Γ ðp=ρÞc ρc M0 M M=R

2 0.318244 0.00448412 1.51524 1.37931 0.214440
3 0.827497 0.00415972 2.24295 1.84989 0.316115
4 1.330409 0.00322082 2.88207 2.24967 0.355062
4 0.062524 0.00116231 0.58996 0.55484 0.1
4 0.178842 0.00164991 1.50000 1.31353 0.2
4 0.499659 0.00232378 2.51730 2.03208 0.3

4In the actual numerical code, the equations in our formulation
are normalized by R0 accordingly, which we do not repeat here,
as we have fully discussed it in our previous papers [5,27].

5In later sections, we also use Rx, Ry, and Rz as radii along the
x, y, and z axes (length of semiprincipal axes), where Rx ¼ Re ¼
R0 and Rz ¼ Rp. For axisymmetric stars, Ry is equal to R0 also.
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along a radial coordinate ϖð¼ r sin θÞ of cylindrical
coordinates, for several parameters fq; Ag. As seen in
these figures, the above rotation law is chosen to avoid a
singular behavior of Ω near the rotation axis of the star:
the parameter A controls a point of transition from a
constant Ω ∼Ωc to a differential rotation. This transition
from rigid to differential rotation occurs around
ϖ ∼ A=R0. The parameter q controls a slope of Ω as Ω ∼
ϖ−2=q in the Newtonian limit. In the Newtonian limit with
a value A substantially smaller than the stellar radius R0,
the rotation law (57) with the parameter q ¼ 1 tends to the
specific angular momentum constant (j-constant) law,
with q ¼ 2 corresponding to the rotational velocity con-
stant (v-constant) law, and with q ¼ 4=3 corresponding to
Kepler’s law. Note that in the case of strong gravity,
rotation laws may not tend to v-constant or Kepler laws
for q ¼ 2, or 4=3.
Most of the differential rotation laws used in compu-

tations of compact stars in the literature (e.g. Ref. [1]) are
the case with q ¼ 1 of our new rotation law (57), except
for the recent work by Galeazzi, Yoshida, Eriguchi in
Ref. [21]. Differentially rotating solutions of compact
objects have attracted attention because of the discovery
of differentially rotating hypermassive neutron stars as
remnants of binary neutron star mergers [13]. Baumgarte,
Shapiro, and Shibata [28] (hereafter, BSS), and later
Morrison [29] have found that the differential rotation
can sustain even twice as much as the maximum mass of

the TOV star.6 In these studies, the rotation parameter is
fixed at q ¼ 1, and A is varied in a range ∼0.5 − 1.
Galeazzi et al. [21] extended these works to improve the
modeling of merger remnants with more realistic rotation
profiles.
The behavior of our new differential rotation law is

similar to that of Galeazzi et al. [21]. In fact, the number of
free parameters in both rotation laws is the same, and
therefore our rotation law is as flexible as that of Ref. [21].
Because the form of our rotation law is simpler, it is
straightforward to implement in the code, and it may be
easier to modify it to introduce rotation laws with multiple
slopes if necessary. Recent numerical simulations suggest
that more complex differential rotation profiles may be
realized in binary merger remnants [31]. Our code will be
useful for modeling such objects in the future.

2. Contours of a highly deformed rotating compact star

In Fig. 2, contours of metric potentials and matter
distribution in meridional (xz) and equatorial (xy) planes
are presented. Also presented is the 3D density map of the
stellar surface. The solution in Fig. 2 corresponds to a
stationary axisymmetric differentially rotating compact
star, whose parameter is DR1 in Table IV. The solution
is highly deformed as the ratio of polar to equatorial radius
in coordinate length to be Rz=Rx ¼ 48=128 ¼ 0.375.
Contours of p=ρ in the xz plane (left panel) show that
the density distribution is toroidal in the central region of
the star, as is commonly found in the differentially
rotating stars.
In Fig. 3, the same quantities are presented as in Fig. 2, but

for the triaxially deformed uniformly rotatingmodel. Wewill
see in a later section that the nonaxisymmetric deformation
in coordinate becomes smaller as the compactness M=R is
increased. We display a model with M=R ¼ 0.2, so that
nonaxisymmetric deformation in the xy plane is evident. For
this model, Ry=Rx ¼ 100=128 ¼ 0.78125, and this is close
to the maximally rotating configuration (the mass shedding
limit), where the cusp is formed at the surface on the x axis.
Physical quantities for these selected models are tabu-

lated in Table V. Definitions of listed integral quantities are
summarized in the Appendix. It is noticeable that the virial
integral to measure the accuracy of the solution Ivir=jWj is
relatively large, ∼0.07 for the DR1 model. This is one of
the least accurate models in our whole set of computations.
For most of the solutions, we find Ivir=jWj≲ 10−4, and
Ivir=jWj ∼ 10−3 for relatively inaccurate cases. Ivir=jWj
becomes ∼10−2 for extremely compact models M=R ∼ 0.3
under a stiff EOS Γ≳ 3 and a large deformation due to the
differential rotation.

10-2

10-1

100

101

10-3 10-2 10-1 100

Ω

ϖ

Rotation law
q=1     A=1         (BSS)
q=16   A=10-3/2

q=8     A=10-3/2

q=4     A=10-3/2

q=2     A=10-3/2  (v const.)
q=4/3  A=10-3/2  (Kepler)
q=1     A=10-3/2  (j const.)

FIG. 1. Plot for the angular velocity Ω along the radial
coordinate ϖð¼ r sin θÞ of the cylindrical coordinates in the
Newtonian limit. Curves are solutions of jðΩÞ ¼ ϖ2Ω, where
jðΩÞ is defined by the rotation law (57). The parameter q controls
the slope Ω ∼ϖ−2=q, and the parameter A=R0 controls the
transition radius from uniform to differential rotation. In this
figure, we set A2 ¼ 10−3 so that the transition occurs around
ϖ ∼ A ∼ 0.03, except for one case with A2 ¼ 1. The cases q ¼ 1,
1.5, and 2, with a small A correspond, respectively, to j-constant,
Kepler, and v-constant laws. The parameter set A2 ¼ 1 and q ¼ 1
is used by Baumgarte, Shapiro, and Shibata (BSS) [28] for
computing hypermassive solutions. In these examples, we set
Ωc ¼ 10.

6Such an excess of the maximum mass occurs even when the
rotating star maintains a spherical topology. When the star has
enough angular momentum to become a toroidal shape, the
maximum mass becomes much higher [30].
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3. Convergence tests

In Fig. 4, results of convergence tests are presented for
the same differentially rotating and triaxially deformed
models (DR1 and UR1 models in Table IV, respectively) as
in the previous Sec. IVA 2. Grid setups for the convergence
tests are listed in Table II. The resolution of grid spacing is
increasingly higher from H1 to H4; at each level the
resolution becomes double that of the previous level.
Because of a limit of computational resources, we calculate
the differentially rotating (DR1) model with the IWM
formulation for H1–H4 resolutions, while we calculate
the triaxially deformed (UR1) model with the same wave-
less formulation, but only for H1–H3 resolutions.
In the top panel of Fig. 4, the convergence of the virial

integral Ivir=jWj and the equality of MADM and MK are
presented. Here the ADM and Komar mass are computed
both the volume integral formula in (A5) and (A7), and the

surface integral formula in (A4) and (A8) for each mass.
The resolution Δ here is represented by 1=Nf

r. As has been
mentioned in the previous section as well as in the series of
papers, second-order finite difference formulas (and partly
third- or fourth-order formulas) are used in the COCAL code.
In contrast to computations of black hole initial data [6], the
surface of compact stars comes in between grid points
when the field equations are integrated. This is likely to be a
reason for the order of convergence becoming less than the
second order (Δ2 in the figures), especially when the
adiabatic index of the EOS Γ > 2. We do not display other
quantities, but overall, the numerical errors converge
between the first and the second order in grid spacing Δ
as shown in the top panel of Fig. 4. The error of the same
quantities converges with higher order for model UR1 in
the bottom panel. This may be because the solution is close
to the mass shedding limit, and hence the increase of the
resolution suddenly improves the accuracy of this particular
solution.

4. Comparisons of axisymmetric solutions

As a final check of the code, we briefly compare
stationary and axisymmetric solutions of uniformly rotating
compact stars computed by the present COCAL code with
those computed by the other two well-known public
domain codes, the LORENE library [32] and the RNS code
[33]. In the COCAL code, we use the waveless formulation
and compute a solution with H3 resolution. In the
Nrotstar code of the LORENE library, three computa-
tional domains, among which one covers a star, are used,
where the collocation points of each domain are set to
(33,17) in ðr; θÞ coordinates. In the RNS code, we set the
number of grid points as (401,201) in ðr; θÞ coordinates,
and include multipoles up to L ¼ 12.
In Table VI, comparisons of two models for the case with

polytropic EOS Γ ¼ 3 are shown. Gauge-invariant quan-
tities except for the virial error are listed in the table. In

TABLE IV. Model parameters of rotating compact stars. UR1–
3 are for uniformly rotating models, and DR1–7 are for differ-
entially rotating models. In this article, M=R of a rotating
compact star is the compactness of a corresponding spherical
solution having the same rest massM0. In the figure citations, “t”,
“m”, and “b” after the numbers correspond to top, middle, and
bottom panels, respectively.

Model Figure Γ M=R q A=R0 Ri=Rx (i ¼ z or y)

DR1 2, 4t 3 0.3 4 10−3=2 48=128
DR2 5t 2 0.02 < 1 1 16=128–112=128
DR3 5b 3 0.14 < 1 1 16=128
DR4 5b 3 0.14 < 2 10−3=2 16=128
DR5 5m, 5b 3 0.14 < 4 10−3=2 40=128–112=128
DR6 5b 3 0.14 < 8 10−3=2 56=128
DR7 5b 3 0.14 < 16 10−3=2 64=128
UR1 3, 4b 4 0.2 � � � � � � 100=128
UR2 5b 3 0.14 < � � � � � � 76=128
UR3 6 4 0.1–0.3 � � � � � � 120=128–54=128
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FIG. 2. An axisymmetric equilibrium of a differentially rotating compact star. Parameters of the presented model are Γ ¼ 3,
M=R ¼ 0.3, q ¼ 4, A=R0 ¼ 10−3=2, and Rz=Rx ¼ 48=128 (see DR1 in Table IV). Left panel: Quantities in the meridional (xz) plane.
Contours are for p=ρ in every 0.02 (black), ψ in every 0.05 (green), and hxz in every 0.005. Color density map indicates the y component
of conformally weighted shift ~βy. Center panel: Quantities in the equatorial (xy) plane. Contours are the same as the left panel, but the
red and blue contours are for hxy in every 0.005. Arrows denote the conformally weighted shift ~βi. In the left and center panels, the value
at the innermost contour of ψ corresponds to ψ ¼ 1.3. Right panel: Surface of the compact star in coordinate radius. Color density map
indicates Rðθ;ϕÞ=R0, the coordinate radius Rðθ;ϕÞ normalized by the equatorial radius (along the x axis) R0.
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these solutions from three different codes, we set the central
rest mass density ρc and the angular velocity Ω to be the
same. The lower- and higher-ρc models shown in the left
and right blocks of the table correspond to the M=R ¼ 0.2
and 0.3 models, respectively. The rotation of presented
models, T=jWj ∼ 0.1, is not as rapid as the Kepler rotation
near the equator, but it is rapid enough to largely deform the
compact stars as much as the axis ratio Rz=Rx ∼ 0.7.
In the LORENE and RNS codes, the metric for stationary

axisymmetric and circular spacetime is solved. Because the
waveless formulation should reproduce the stationary and
axisymmetric spacetime, the gauge-independent quantities
of solutions from these codes should agree. As shown in
Table VI, the results of these two models agree fairly well.
The largest difference is found to be about 1% in T=jWj for
the highly compact case with M=R ¼ 0.3.

B. Differentially rotating stars with
various rotation laws

We have computed sequences of differentially rotating
axisymmetric solutions for selected parameters of the
adiabatic index and differential rotation parameters
ðΓ; q; A=R0Þ. Each curve plotted in Fig. 5 is a sequence
of about 40 to 80 solutions. To reduce the computing time,
we use IWM formulation in these calculations. Model

parameters are listed in Table IV, and a resolution of
computations are chosen to be H3.
In the top panel of Fig. 5, the rest mass M0 is plotted

against the maximum density ρc for the case with Γ ¼ 2,
q ¼ 1, A=R0 ¼ 1. This parameter set is one of those used in
BSS [28], which yielded the largest mass in their calcu-
lations. The solid curves in the panel from top to bottom
correspond to solutions with the fixed axis ratio Rz=R0 ¼
0.125 to 0.875 with steps of 0.125, and the dashed curve
corresponds to the sequence of spherical solutions of
Tolman-Oppenheimer-Volkov (TOV) equations for the
case with Γ ¼ 2. As seen in the panel, the amount of
supported rest mass M0 at a certain ρc increases as the axis
ratio decreases (and accordingly the rotational kinetic
energy or the total angular momentum increases). The
maximum mass of the highly deformed differentially
rotating object can be more than twice of that of the
spherical TOV solution of the same EOS (see Table III),
which agrees with the result reported in BSS [28].
The middle panel of Fig. 5 is the same as the top panel,

but for the case with Γ ¼ 3, q ¼ 4, and A=R0 ¼ 10−3=2. For
the case with q≳ 4, solution sequences of spheroidal stars
with a given maximum density ρc and with decreasing
Rz=R0 are likely to terminate at a certain Rz=R0, where the
mass shedding from the equator occurs. We also notice that

TABLE V. Selected solutions of the stationary axisymmetric differentially rotating compact star, and the triaxially deformed uniformly
rotating compact star. Definitions of listed quantities are as follows: R̄x, R̄y, and R̄z are semimajor axes (radii along x, y, and z axes,
respectively) measured in proper length, and R̄0 ¼ R̄x. ρc and pc are the maximum values of the rest mass density and the pressure,
respectively. The angular velocity Ω is the value at the rotation axis for the case with differential rotation, and is constant with the
uniform rotation. It is normalized by the gravitational mass M of the spherical TOV solution of the same rest mass M0. For the model
DR1, M ¼ 1.829387, and for UR1, M ¼ 1.313533. The ADM mass MADM, the rest mass M0, the proper mass MP, the total angular
momentum J, the ratio of the kinetic to gravitational energy T=jWj, and the normalized virial integral Ivir=jWj are defined in the
Appendix. All dimensional quantities are in G ¼ c ¼ M⊙ ¼ 1 units. To convert the length unit to km, multiply
GM⊙=c2 ¼ 1.47690 km. In the computation, the parameter set H3 listed in Table II is used.

Model R̄0 R̄y=R̄x R̄z=R̄0 ρc ðp=ρÞc ΩM MADM M0 MP J=M2 T=jWj Ivir=jWj
DR1 (Fig. 2) 10.276 0.99930 0.49673 0.0017764 0.15091 0.50677 1.97872 2.21005 2.28802 0.94867 0.1974 7.27 × 10−2

UR1 (Fig. 3) 10.969 0.79585 0.48802 0.0013849 0.10576 0.053378 1.35569 1.50000 1.52105 0.93972 0.1661 6.96 × 10−6
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FIG. 3. The same as Fig. 2, but for triaxially deformed quasiequilibrium initial data of a rotating compact star. Parameters of the
presented model are Γ ¼ 4, and M=R ¼ 0.2, Ry=Rx ¼ 100=128 (UR1 in Table IV). Contours are drawn in the same manner as Fig. 2,
except hxz and hxy are in every 0.0005 (red and blue) in the left and center panels, respectively. In the left and center panels, the value at
the innermost contour of ψ corresponds to ψ ¼ 1.2.
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the sequences with a fixed smaller Rz=R0 do not extend
to higher maximum density, also because of the mass
shedding.
For the compressible matter with Γ in the range of

our interest in this article Γ ∼ 2 − 4, uniformly rotating
sequences parametrized by the axis ratio Rz=R0 terminate
at the mass shedding limit at a certain value around
Rz=R0 ∼ 0.5 − 0.65.7 The maximum mass of a rotating
solution with such a breakup velocity is known to exceed
≲20% of the maximum mass of the spherical TOV solution
[3]. Differential rotation can support larger masses than the
uniform rotation because of two properties. One is that the

differential rotation tends to redistribute the density near the
central region in the toroidal shape (see the left panel of
Fig. 2), hence it reduces the density of the core. The other is
that the drop in angular velocity decreases the centrifugal
force near the equatorial surface, which prevent the mass
shedding.
In the bottom panel of Fig. 5, curves ofM0ðρcÞ are plotted

for a set of various differential rotation parameters ðq; A=R0Þ
for the case with Γ ¼ 3 EOS. Each curve corresponds to the
smallest Rz=R0 of the present computation for each param-
eter set. We calculate models for q ¼ 2, 4, 8, and 16 with a
small transition parameter ðA=R0Þ2 ¼ 0.001 to see the effect
of the slope of a rotation profile (see Sec. IVA 1). The curves
for q ¼ 4, 8, and 16 are close to the maximally rotating
models (mass shedding limit), whose axis ratios
Rz=R0 are 0.3125ð¼ 40=128Þ, 0.4375ð¼ 56=128Þ, and
0.5ð¼ 64=128Þ, respectively. As mentioned above, in this
range of q, spheroidal sequences terminate at the mass
shedding limit with increasing deformation. Excesses of
the rest mass M0 compared to that of the spherical TOV
solution (that of the uniformly rotating solution with
Rz=R0 ¼ 0.59375) are 46.8% (23.0%), 31.6% (10.3%),
and 25.1% (4.81%) for q ¼ 4, 8, and 16, respectively.
In contrast, for the model with q ¼ 2, the equilibrium

solution sequence continues from a spheroidal to a toroidal
one without being subject to the mass shedding. As seen in
the bottom panel of Fig. 5, the curve with q ¼ 2, however,
has a smaller axis ratio Rz=R0 ¼ 0.125ð¼ 16=128Þ; the
excess of the maximum rest mass is smaller than that of the
other cases, q ¼ 4, 8, and 16, as well as that of uniform
rotation. Apparently, for q≲ 2 a much higher excess of the
maximum mass would appear when the configuration
becomes toroidal. Hence, we expect that the equilibriums
of differentially rotating compact stars dramatically change
as the slope parameter varies from q ¼ 2 and 4.
In the bottom panel of Fig. 5, we also plot a model with a

larger transition parameter A=R0 ¼ 1 for a comparison.
This model has the same set of rotation parameters
ðq; A=R0; Rz=R0Þ ¼ ð1; 1; 0.125Þ as the top curve of the
top panel, but it is computed for the stiffer EOS Γ ¼ 3. This
rotation parameter provides a large excess of the maximum
rest mass also, consistent with the result in BSS [28]. We
mention that this rotation law with q ¼ 1 corresponds to the
so-called j-constant law, but with such a large A=R0 ¼ 1,
the specific angular momentum is not distributed constantly
in the region r≲ R0, even in the Newtonian limit.

C. Triaxially deformed solutions in waveless
formulation

In Fig. 6, we present results of uniformly rotating
solutions. Sequences of stationary axisymmetric equilib-
riums as well as triaxially deformed quasiequilibrium
initial data are computed from the code for the waveless
formulation and compared with those from the IWM
formulation [5]. Since a sequence of triaxial solutions is
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FIG. 4. Result of convergence tests for the virial integral and the
equality of MADM and MK. Top panel: Differentially rotating
model calculated with resolutions H1–H4. Model parameters are
the same as the model in Fig. 2, but the IWM formulation is used
in these computations. Bottom panel: Uniformly rotating triaxial
model calculated with resolutions H1–H3. Model parameters are
the same as the model in Fig. 3, and the waveless formulation is
used in these computations.

7This value may be larger for softer EOS with Γ < 2 (smaller
for stiffer EOS with Γ > 4).
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known to extend longer (as the deformation becomes
larger) for a larger adiabatic index Γ, it is chosen to be
Γ ¼ 4 in this calculation.
In Fig. 6, plotted are the ratio of kinetic energy to the

gravitational energy, T=jWj, against the eccentricity e ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR̄z=R̄xÞ2

p
in proper length for constant rest-mass

sequences with three different compactness parameters
M=R ¼ 0.1, 0.2, and 0.3. Curves extending from e ∼ 0.3
in top panels correspond to axisymmetric sequences
(labeled with ML), and short horizontal branches corre-
spond to triaxially deformed sequences (labeled with JB).
The short branches in the inset of the top panel are shown in
a zoomed-in view in the bottom panel of Fig. 6, and are
plotted together with the result from IWM formulation.
The T=jWj of each triaxially deformed sequence is
nearly constant; its difference between the waveless and
IWM formalism is negligible for the mildly compact case
M=R ¼ 0.1 and increases as M=R.
Bonazzola, Frieben, and Gourgoulhon [34] have devel-

oped a method to locate a point along a solution sequence
where a secular instability sets in. The method has been
applied to locate Jacobi-like bar mode instability points on
solution sequences of relativistic homogeneous fluids [35],
strange stars [36], and relativistic polytropes [37]. For the
relativistic homogeneous fluid, a dependence of ðT=jWjÞcrit,
the value of T=jWj at the secular instability point, on the
compactness M=R is found to be approximated by the
function

ðT=jWjÞcrit ≃ ðT=jWjÞcrit;Newt
þ 0.126ðM=RÞð1þM=RÞ; ð70Þ

where ðT=jWjÞcrit;Newt ≃ 0.1375 is the value of Newtonian
limit [35]. Notwithstanding a difference in the EOS, values
of T=jWj at the bifurcation points in the bottom panel of
Fig. 6 agree fairly well with the values from the function
(70), except for the case with M=R ¼ 0.3. Another result
from Ref. [37] that could be compared with our results is the
value of ðT=jWjÞcrit ¼ 0.1507 for the case with Γ ¼ 2.9
and M=R ¼ 0.1.

V. DISCUSSION

The value of T=jWj has been used as a criterion for a
certain instability to set in. It has often been observed that

the fastest growing secular instability of polar parity
oscillation (l ¼ m ¼ 2 f-mode) due to the gravitational
radiation [Chandrasekhar-Friedman-Schutz (CFS) instabil-
ity [38]] or viscosity [39,40] sets in around T=jWj ∼ 0.14,
and that the rotating star becomes dynamically unstable
around T=jWj ∼ 0.27. These numbers were treated as
magic numbers, as they weakly depend on the stiffness
of EOSs (such as the polytropic index) for uniformly
rotating stars in Newtonian gravity.
However, recent simulations and eigenmode analysis of

rotating compact stars for a wide range of compactness
M=R, EOSs, and differential rotation parameters, clarified
that the critical value ðT=jWjÞcrit depends on these param-
eters. For uniformly rotating compact stars, zero-frequency
l ¼ m f-mode perturbation appears at lower (higher)
values ðT=jWjÞcrit for retrograde (prograde) modes as the
compactness M=R increases [41–44]. This includes the
increase of ðT=jWjÞcrit at the l ¼ m ¼ 2 bifurcating point
of triaxially deformed solutions (Jacobi sequences) with the
increase of M=R as seen in Fig. 6 (see also Refs. [34,45]).
Such solutions, however, are interesting only if the vis-
cosity of high-density matter is fairly strong, so that its time
scale is much shorter than that of damping time due to
gravitational wave emission.
Differential rotation also affects the critical value

ðT=jWjÞcrit. That of the above mentioned CFS instability
of bar mode may be as small as 0.1 for differentially
rotating stars in Newtonian gravity [46]. Also in Newtonian
gravity, critical T=jWj of the dynamical bar mode insta-
bility is reported to be as low as 0.23 for a relatively
moderate differential rotation (q ¼ 1, A=R0 ¼ 0.7), com-
pared to 0.27 for a uniformly rotating star [47] (see also
Ref. [48]). When the rotation profile is strongly differential
as A=R0 ∼ 0.1 − 0.3, potentially new nonaxisymmetric
dynamical instability sets in at values as small as
ðT=jWjÞcrit ∼ 0.01 [49]. It is of great importance to inves-
tigate the effect of relativistic gravity on these critical
configurations with differential rotation. Solutions com-
puted from our new COCAL code can be applied to mode
analysis of the differentially rotating compact stars such as
that in Ref. [44].
On the other hand, the axisymmetric dynamical insta-

bility of rotating compact stars has not yet been fully
investigated. The issue is related to the onset of collapse of

TABLE VI. Comparisons of the uniformly rotating compact stars computed by three different numerical codes. The polytropic EOS
with Γ ¼ 3 listed in Table III is used. The left and right blocks of data are for M=R ¼ 0.2 and 0.3, respectively. The angular velocity is
large enough to deform the compact star as much as the axis ratio Rz=Rx ∼ 0.7. Values of Ivir=jWj of LORENE are those of GRV3 (see e.g.
Ref. [4]). G ¼ c ¼ M⊙ ¼ 1 units are used except for the rotational frequency Ω=2π.

Model ρc ¼ 0.00167505 Ω=2π ¼ 1186.12 Hz ρc ¼ 0.00250814 Ω=2π ¼ 1512.18 Hz

Code M0 MADM J T=jWj Ivir=jWj M0 MADM J T=jWj Ivir=jWj
LORENE 1.50006 1.34846 1.18851 0.101117 3.11803 × 10−6 2.20607 1.88755 2.17978 0.102008 −1.91164 × 10−6

RNS 1.49978 1.34820 1.18793 0.101106 � � � 2.20597 1.88739 2.17909 0.101991 � � �
COCAL 1.50000 1.34855 1.18804 0.101381 3.39518 × 10−6 2.21005 1.89167 2.18532 0.103053 7.95317 × 10−4
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accreting neutron stars in evolved low-mass x-ray binaries
or prompt collapse of a newly born neutron star in a core-
collapse-type supernova. Takami et al. [50] showed by
fully relativistic simulations that the onset of the axisym-
metric dynamical instability of a uniformly rotating com-
pact star is slightly before the secular instability point
determined by the turning point method [51]. It is certainly
interesting to investigate how the differential rotation
changes the critical point of axisymmetric instability.
Our new COCAL code again will be useful for preparing
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FIG. 5. Sequences of axisymmetric differentially rotating com-
pact stars in equilibrium. The rest mass–maximum densityM0ðρcÞ
curves are plotted for a certain axis ratio Rz=R0. Top panel: The
case with Γ ¼ 2, q ¼ 1, A=R0 ¼ 1. The solid curves in the panel
from top to bottom correspond to solutions with the axis ratios
Rz=R0 ¼ 0.125 to 0.875 with steps of 0.125. Middle panel: The
case with Γ ¼ 3, q ¼ 4, A=R0 ¼ 10−3=2. The solid curves in the
panel from top to bottom correspond to solutions with the axis ratio
Rz=R0 ¼ 0.3125, and 0.375 to 0.875 with steps of 0.125. Bottom
panel: Sequences for various rotation parameters ðq; A=R0;
Rz=R0Þ. Each curve corresponds to the largest deformation (the
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equilibrium stellar models for perturbative studies as well
as for initial data of such simulations.
For realistic high-density neutron star matter, it is more

likely that the viscosity is negligibly weak so that instability
due to the gravitational wave grows much faster than that of
viscosity. If this is the case, the astrophysically relevant
nonaxisymmetric solution is a Dedekind-type solution
whose triaxial (l ¼ m ¼ 2) deformation is static, and is
supported by its stationary internal flows (see results from
simulations such as Ref. [52]). Also, with deformations
corresponding to higher modes l ¼ m ¼ 3 or 4, branches
of stationary solutions may bifurcate from axisymmetric
sequences.
In the last 15 years, numerical relativity has been

developed rapidly, and more sophisticated dynamical
simulations have become possible, including those coupled
with neutrino radiation or magnetic field evolutions.
However, stationary or quasiequilibrium solutions of the
outcome of such dynamical processes are still poorly
modeled. A significance of the COCAL code is to provide
high extensibility by adding more processes including
magnetic fields, gravitational waves, and neutrino radiation
in computations of stationary state. It is also available for
computing nonaxisymmetric configurations, so that more
interesting Dedekind-type or other systems as an outcome
of CFS instability can be calculated in the future. Our
development of the single-star code presented in this paper
is to prepare a basis of such code for increasingly complex
modeling of realistic compact stars in the future.
Also in the COCAL code, a solution is calculated on a

spatial hypersurface Σt under gauge conditions similar to
those used in standard numerical relativity simulations
of compact objects. Hence, it is more straightforward to
prepare initial data for the simulations as well as to model
the outcome of the simulations. Recent implementation
[53] of a COCAL driver in simulation code like the ones
based on the CACTUS [54] infrastructure will streamline
such modeling of differentially rotating hypermassive
neutron stars.
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APPENDIX: DEFINITIONS FOR INTEGRAL
QUANTITIES

In this appendix, we summarize definitions of physical
quantities for rotating compact stars (see e.g. Refs. [4,55]),
which are tabulated for selected solutions in Table V. An

archive of numerical data used in the top and middle panels
of Fig. 5, and in Fig. 6, is provided as associated
Supplemental Material of this article [56].
In Table V, R̄0ð¼ R̄xÞ, R̄y, and R̄z are the radii of a

compact star along the x, y, and z axes, in the proper length,

R̄i ≔
Z

Ri

0

ψ2
ffiffiffiffiffi
~γii

p
dxi: ðA1Þ

Here summation is not taken over the index ið¼ x; y; zÞ,
and the unbarred Ri represents the coordinate radii along
each axis.
The rest mass M0 and the proper mass MP are defined,

respectively, as follows:

M0 ≔
Z
Σ
ρuαdSα ¼

Z
Σ
ρutαψ6

ffiffiffi
~γ

p
d3x; ðA2Þ

MP ≔
Z
Σ
ϵuαdSα ¼

Z
Σ
ϵutαψ6

ffiffiffi
~γ

p
d3x; ðA3Þ

where dSα ¼ ∇αt
ffiffiffiffiffiffi−gp

d3x, and d3x ¼ r2 sin θdrdθdϕ on
the spherical coordinates. Apparently a volume integral
over the hypersurface Σ is nonzero only on the fluid
support.
The ADM mass MADM is defined and calculated by

MADM ≔
1

16π

Z
∞
ðfacfbd − fabfcdÞD∘ bγcddSa

¼ −
1

2π

Z
∞

~Daψd ~Sa ðA4Þ

¼ 1

2π

Z
Σ

�
−
ψ

8
3 ~Rþ 1

8
ψ5

�
~Aab

~Aab −
2

3
K2

�

þ 2πψ5ρH

� ffiffiffi
~γ

p
d3x; ðA5Þ

where both the surface integral (A4) and the volume
integral (A5) are evaluated for the ADM mass to cross-
check the accuracy of numerics. We calculate approximate
values of this surface integral on a sphere with a large
radius, about r ∼ 104R0. Note that at spatial infinity
~γab → fab, ~Da → D

∘
a, and d ~Sa¼∇ar

ffiffiffi
~γ

p
d2x¼∇ar

ffiffiffi
f

p
d2x¼

dSa; we may replace the surface integral with that of flat
coordinates within a negligible numerical error.
The Komar mass associated with a globally defined

timelike Killing field tα,

MK ≔ −
1

4π

Z
∞
∇αtβdSαβ ðA6Þ

¼
Z
Σ
ð2Tα

β − TgαβÞtβdSα

¼
Z
Σ
½αðρH þ SÞ − 2jaβa�ψ6

ffiffiffi
~γ

p
d3x; ðA7Þ
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and the asymptotic Komar mass whose tα is a symmetry of
an asymptotically flat spacetime,

MK ≔ −
1

4π

Z
∞
∇αtβdSαβ ¼

1

4π

Z
∞
DaαdSa ðA8Þ

¼ 1

4π

Z
Σ

�
~Aab

~Aab þ 1

3
K2 − £nK

þ 4πðρH þ SÞ
�
αψ6

ffiffiffi
~γ

p
d3x; ðA9Þ

should give the same value irrespective of the system being
stationary and axisymmetric or not, when the waveless
condition (13), the maximal slicing gauge K ¼ 0, and the
asymptotic falloff of metric potentials [Eqs. (14) and (15)]
are imposed (see also Ref. [18]). We compute Eqs. (A7),
(A8), and (A9) to check the consistency of the solutions.
In the above, ðGαβ − 8πTαβÞðγαβ þ nαnβÞ ¼ 0 is used to
derive (A9).
Also for the angular momentum, the surface and the

volume integrals are evaluated:

J ≔
1

8π

Z
∞
Ka

bϕ
bdSa ðA10Þ

¼ 1

8π

Z
Σ
DaðKa

bϕ
bÞdV

¼ 1

8π

Z
Σ

�
8πjaϕa þ Aa

b
~Daϕ

b þ 2

ψ
KϕaD

∘
aψ

�

× ψ6
ffiffiffi
~γ

p
d3x: ðA11Þ

The values of MADM and J listed in Table V are those of
volume integrals, (A5) and (A11). In Fig. 4, plotted masses
are calculated from Eqs. (A5) and (A7) for volume
integrals, and Eqs. (A4) and (A8) for surface integrals of
MADM and MK, respectively.
For computing the ratio of the kinetic energy and the

gravitational energy, T=jWj, we define, as in previous
works [4],

W ≔ MADM −MP − T; ðA12Þ

T ≔
1

2

Z
Σ
ΩdJ: ðA13Þ

For the computation of kinetic energy, when the vector ϕa

is a Killing field, the volume integral over Σ is again only
over the fluid supports, and hence dJ ≔ jaϕaψ6

ffiffiffi
~γ

p
d3x.

When we compute Jacobi-type solutions, whose space-
times are not axisymmetric, we still use this definition but
set T ¼ 1

2
ΩJ for Ω ¼ constant.

The relativistic virial theorem for perfect fluid space-
times [57] is used to measure the accuracy of solutions.
It is a vanishing integral of a spatial trace of Einstein’s
equations,

Z
Σ

�
Ta

a −
1

8π
Ga

a

�
dV

¼ 2T þ 3ΠþW þMADM −MK ¼ 0; ðA14Þ

over a hypersurface Σ. An equality of the ADM mass and
the Komar mass MADM ¼ MK has been established in
Ref. [58] for stationary spacetimes, and in Ref. [18] for
waveless formulation. In the Newtonian limit, the integrals
T , Π, andW become the kinetic, internal, and gravitational
energies, defined by

T ¼ 1

2

Z
Σ
ðϵþ pÞuauadV; ðA15Þ

Π ¼
Z
Σ
pdV; ðA16Þ

W ¼ 1

4π

Z
Σ
½ψ−4ð2 ~Da lnψ ~Da lnψ − ~Da ln α ~Da ln αÞ

þ 3

4

�
AabAab −

2

3
K2

�
þ 1

α
Kβa ~Da ln α

þ 1

4
3 ~Rψ−4�dV: ðA17Þ

We define virial integral Ivir as

Ivir ¼ j2T þ 3ΠþWj: ðA18Þ

Note that the above defined T and W differ from T and W
in the strong gravity regime.
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