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Recent population synthesis simulations of Pop III stars suggest that the event rate of coalescence
of ∼30M⊙ − 30M⊙ binary black holes can be high enough for the detection by the second generation
gravitational wave detectors. The frequencies of chirp signal as well as quasinormal modes are near the best
sensitivity of these detectors so that it would be possible to confirm Einstein’s general relativity. Using the
WKB method, we suggest that for the typical value of spin parameter a=M ∼ 0.7 from numerical relativity
results of the coalescence of binary black holes, the strong gravity of the black hole space-time at around
the radius 2M, which is just ∼1.17 times the event horizon radius, would be confirmed as predicted by
general relativity. The expected event rate with the signal-to-noise ratio > 35 needed for the determination
of the quasinormal mode frequency with a meaningful accuracy is 0.17 − 7.2 events yr−1
[ðSFRp=ð10−2.5M⊙ yr−1 Mpc−3ÞÞ · ð½fb=ð1þ fbÞ�=0.33Þ], where SFRp and fb are the peak value of the
Pop III star formation rate and the fraction of binaries, respectively. As for the possible optical counterpart,
if the merged black hole of massM ∼ 60M⊙ is in the interstellar matter with n ∼ 100 cm−3 and the proper
motion of the black hole is ∼1 km s−1, the luminosity is ∼1040 erg s−1 which can be detected up to
∼300 Mpc, for example, by Subaru-HSC and LSST with the limiting magnitude 26.
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I. INTRODUCTION

The second generation gravitational wave detectors such
as Advanced LIGO (aLIGO) [1], Advanced Virgo (AdV)
[2], and KAGRA [3,4] are now about to reach the
observable mean distance of ∼200 Mpc for the chirp
signal of neutron star–neutron star (NS-NS) binaries.
Among them, aLIGO is now operating with the range of
60–80 Mpc from September 18, 2015 to mid-January in
2016 [5]. One of the most important targets is NS-NS
mergers, which might be associated with short gamma-ray
bursts (SGRBs). There are three methods to determine the
expected event rate of NS-NS mergers. The first one is to
use the observed NS-NS binaries. Kim et al. [6] performed
Monte Carlo simulations using the already existing pulsar
surveys. Assuming the pulsar distribution function in our
Galaxy, the luminosity function of pulsars, and pulsar
beaming factors, they concluded that the event rate is
17.9þ21−10.6 events yr−1 for aLIGO, AdV, and KAGRA adopt-
ing their model 1 although there is a factor of 38 difference
in the rate among their 27 models. Kalogera et al. [7]
corrected the rate since the new double pulsar
PSR J0737-3039 was found. The new rate becomes
186.8þ470.5−148.7 events yr−1 using their model 6 which predicts
about a three times larger rate than that of model 1.
Kalogera et al. [7] corrected the error in their simulations
which reduced the rate to 83.0þ209.1−66.1 events yr−1. The latest
expected event rate by Kim et al. [8] is 8.0þ10−5 events yr−1
at 95% confidence level, adopting their model 6. This
further reduction mainly comes from the new beaming

factor correction obtained from the observations of PSR
J0737-3039.
The second method is to use the observed event rate

of SGRBs assuming that the SGRB is NS-NS and/or
NS–black hole (BH) mergers. Here, we should note that
no NS-BH binary has been observed as a pulsar binary.
According to Fong et al. [9], the number of SGRBs with the
confirmed redshift z by Swift and HETE-2 is at most 20 or
so. However, BATSE on CGRO [10] found ∼900 SGRBs
between 1990 and 2000 without the information of redshift
z. To determine the redshifts of these ∼900 SGRBs, the
Ep − Lp relation for SGRBs found by Tsutsui et al. [11]
can be used. Here, Ep and Lp mean the peak energy of the
photon and the peak luminosity of the SGRB, respectively.
The empirical relation is given by

Lp ¼ 1052.29�0.066 erg s−1
�

Ep

774.5 keV

�
1.59�0.11

: ð1Þ

Using the observed flux fp ¼ Lp=ð4πdLðzÞ2) with the
luminosity distance dLðzÞ, and the peak energy of the
photon Eobs

p ¼ Ep=ð1þ zÞ, we can determine the redshift z.
Yonetoku et al. [12] used the 72 bright BATSE SGRBs for
the analysis since we need many photons to determine Ep.
They obtained the minimum event rate of SGRBs as
1.15þ0.57−0.71 × 10−7 eventsMpc−3 yr−1, with the observatio-
nal input that the mean jet opening angle of SGRBs
is 6°. This corresponds to the minimum event rate of
3.9þ1.9−2.4 events yr−1 if SGRBs are NS-NSmergers, while the
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minimum event rate is 152þ75−94 events yr−1 if SGRBs are the
NS-BH (of mass 10M⊙) mergers. In this analysis, because
they do not use NS-NS binary data, even if only 10% of
SGRBs are NS-BH binaries, the minimum event rate
becomes ∼20 events yr−1 (see also Refs. [13–16] for the
related works).
The third method is the theoretical population synthesis

method. A recent paper by Dominik et al. [17] includes the
chemical evolution effect of galaxies with metallicity from
1% to 0.01%, that is, from Pop I to Pop II stars (see Ref. [18]
for a formation of massive stellar BH-BH binaries). The
resulting event rates depend on various parameters, assump-
tions on the binary interaction, detectors, and the number of
detectors, to yield 0.3 − 7 events yr−1 for NS-NS mergers
and 0.007 − 9.2 events yr−1 for NS-BH mergers (see also
Ref. [19] for predictions for the event rates of compact binary
coalescences).
In the case of BH-BH binaries, there is no definite

candidate so that the theoretical population synthesis is the
only method to predict the rate. In this regard, Pop III stars
are important. Pop III stars are the first stars in our Universe
without heavy metals; that is, their envelope consists of H
and He only. While Pop I stars are similar to our Sun with
∼2% heavy elements in mass with atomic number greater
than carbon. Pop II stars are low metal stars with ∼0.01%
heavy elements in mass. Observationally Pop I and Pop II
stars suffer mass loss due to the absorption of photons at the
metal lines. This means that because Pop III stars do not
lose their mass, massive BHs are more likely to be formed.
Recently Kinugawa et al. [20,21] showed by using the

population synthesis code that the typical chirp mass of
the Pop III binary BHs is ∼30M⊙ with the total mass of
∼60M⊙. This means that comparable mass ratio binary
BHs are typical. Here, we note three important facts. The
first one is that Pop III stars were formed at z ∼ 10, while a
sizable fraction of BH-BH binaries merge today since the
merger time is proportional to the fourth power of the initial
orbital separation. The second one is that the typical mass
of Pop III stars had been considered to be ∼1000M⊙, while
Hosokawa et al. [22] showed that the UV photons from the
central star evaporate the accretion disk so that the mass is
around 40M⊙. The third one is that a Pop III star of mass
∼30M⊙ ends its life not as a red giant but as a blue giant,
according to the evolution calculations of Pop III stars by
Marigo et al. [23]. This means that since the mass loss due
to the binary interaction is small, the formation of 30M⊙ −
30M⊙ binary BHs is expected. Kinugawa et al. [20,21]
performed the population synthesis of 106 binary Pop III
stars for 14 models and obtained 14.6 − 599.3 events yr−1
[ðSFRp=ð10−2.5M⊙ yr−1 Mpc−3ÞÞ · ð½fb=ð1 þ fbÞ�=0.33Þ]
for aLIGO [1], AdV [2], and KAGRA [3,4], where SFRp

and fb are the peak value of the Pop III star formation
rate and the fraction of binaries, respectively. We should
emphasize here that the factor ∼40 difference among
various models exists like in Refs. [6–8] for NS-NS merger

rates. In the cases of Pop I and Pop II, Dominik et al. [17]
showed that the typical chirp mass of a BH-BH binary is
smaller than that in the Pop III case and the event rate
ranges from 0.6 to 1338 events yr−1.
As shown by Kanda et al. [24], the chirp signal and the

quasinormal mode (QNM) frequency of ∼30M⊙ − 30M⊙
binary BHs are in the best sensitivity band of aLIGO, AdV,
and KAGRA. Therefore, there is a good chance to observe
the QNM which will exhibit the strong gravity space-time
near the event horizon to confirm Einstein’s general
relativity. To confirm the expected signal of the QNM,
the threshold signal-to-noise ratio ðSNRÞ ¼ 8, which is
usually used for the detection, is not enough. For this
confirmation, Nakano et al. [25] have shown that SNR ∼
35 events of 30M⊙ − 30M⊙ Pop III BH-BH merger are
the appropriate target. Then, for the Pop III case, the event
rate for SNR≳ 35 becomes 0.17− 7.2 events yr−1
[ðSFRp=ð10−2.5M⊙ yr−1 Mpc−3ÞÞ · ð½fb=ð1 þ fbÞ�=0.33Þ]
(see Ref. [26] for a comparison of evolutionary predictions
with initial and forthcoming LIGO/Virgo upper limits, and
related works [27,28]). It is noted that there are various
proposals for the formation of heavy BH binaries [29–31].
What we can definitely say when the QNM is confirmed

to exist at the expected frequency is the main theme of this
paper. Since QNMs are obtained under the ingoing and
outgoing wave conditions at the event horizon and spatial
infinity, respectively, the most optimistic statement is that
the entire space-time of a Kerr BH is tested. However, even
if the event horizon might be absent, fuzzy, or blocked by
the firewall (see, e.g., Refs. [32–35]), we will observe
something similar to the QNMs predicted by general
relativity (see Refs. [36,37]). In this paper, we would like
to ask what we can say more robustly.
This paper is organized as follows. In Sec. II, we

compare the Regge-Wheeler and Zerilli potentials
[38,39] and the WKB analysis of the QNM for the
Schwarzschild BH. In Sec. III, we use the Sasaki-
Nakamura equation [40–42] for the Kerr BH, while in
Sec. IV, we use the (Chandrasekhar and) Detweiler equa-
tion [43]. Section V is devoted to discussions. In the
analysis of QNMs in this paper, we focus only on the
(l ¼ 2, m ¼ 2) mode since BH binary merger simulations
indicate that the (l ¼ 2, m ¼ 2) QNM is dominant (see,
e.g., Ref. [44]). We use the geometric unit system, where
G ¼ c ¼ 1 in this paper.

II. REGGE-WHEELER AND ZERILLI EQUATION

For the Schwarzschild BH case with mass M, the metric
is given by

ds2 ¼ −
�
1 − 2M

r

�
dt2 þ

�
1 − 2M

r

�−1
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð2Þ
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We may use the Regge-Wheeler and Zerilli equa-
tions [38,39] to obtain the gauge invariant perturbation.
The Regge-Wheeler/Zerilli (odd parity/even parity) func-
tion ψRW=Z satisfies the Regge-Wheeler or Zerilli equation,

d2ψRW=Z

dr�2
þ ðω2 − VRW=ZÞψRW=Z ¼ 0; ð3Þ

where r� ¼ rþ 2M logðr=2M − 1Þ and the potentials are
given as

VRW ¼
�
1 − 2M

r

��
lðlþ 1Þ

r2
− 6M

r3

�
;

VZ ¼ r − 2M
r4ðrl2 þ rl − 2rþ 6MÞ2
× ½lðlþ 1Þðlþ 2Þ2ðl − 1Þ2r3 þ 6Mðlþ 2Þ2
× ðl − 1Þ2r2 þ 36M2ðlþ 2Þðl − 1Þrþ 72M3�;

ð4Þ

where l is the index of the spherical harmonics Ylmðθ;ϕÞ.
The potential for the even parity is slightly complicated, but
according to Ref. [45], both VZ and VRW are written in a
unified manner as

VZ=RWðrÞ ¼ �β
dy
dr�

þ β2y2 þ κy;

β ¼ 6M;

κ ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ;

y ¼ r − 2M
r2ðrl2 þ rl − 2rþ 6MÞ ; ð5Þ

where the upper and lower signs are for the even and odd
parities, respectively. Then, the Regge-Wheeler and Zerilli
equations become

d2ψZ=RW

dr�2
¼
�
−ω2�β

dy
dr�

þβ2y2þκy

�
ψZ=RW: ð6Þ

For the even parity, we can have the same differential
equation as the odd parity, i.e., the modified function
ψ even;RW satisfies

d2ψ even;RW

dr�2
¼
�
−ω2−β

dy
dr�

þβ2y2þκy

�
ψ even;RW: ð7Þ

To do so, we consider the transformation of the wave
function,

ψZ ¼ 1

C

��
κ

4
þ β2

2
y

�
ψ even;RW þ β

2

dψ even;RW

dr�

�
;

ψ even;RW ¼
�
κ

4
þ β2

2
y

�
ψZ − β

2

dψZ

dr�
; ð8Þ

where

C ¼ β2ω2

4
þ κ2

16
: ð9Þ

This is called the Chandrasekhar transformation. Therefore,
the same QNMs are obtained in the Regge-Wheeler and
Zerilli equations.
To study BH QNMs, the WKB approximation has been

used frequently [46]. While the full analysis of the QNMs
gives the same frequencies for the odd and even parity
perturbations, we have different results in the leading order
WKB analysis [47] (see Sec. III for a brief summary). In the
WKB approximation, the QNM frequency is determined by
the information around the peak of the potential. The peak
of VRW is obtained explicitly as

rRW0 ¼1

2

Mð3l2þ3lþ9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9l4þ18l3−33l2−42lþ81

p
Þ

lðlþ1Þ :

ð10Þ

On the other hand, we calculate the peak location of VZ in
the large l expansion because of the complicated potential,
and derive

rZ0 ¼ 3M

�
1þ 1

3

1

l2
− 1

3

1

l3
− 1

9

1

l4
þOðl−5Þ

�
: ð11Þ

This should be compared with rRW0 in the large l
expansion,

rRW0 ¼ 3M

�
1þ 1

3

1

l2
− 1

3

1

l3
þ 11

9

1

l4
þOðl−5Þ

�
; ð12Þ

which shows that the difference between rRW0 and rZ0 is
Oðl−4Þ. For example, this difference for the l ¼ 2 mode is
numerically shown in

rRW0 ≈ 3.28077M; rZ0 ≈ 3.09879M: ð13Þ

Therefore, although the peak location slightly depends on
which potential we adopt, this can be a good estimator to
discuss where the QNMs are emitted.
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III. SASAKI-NAKAMURA EQUATION

For the Kerr BH case, the metric is given by

ds2 ¼ −
�
1 − 2Mr

Σ

�
dt2 − 4Mar sin2 θ

Σ
dtdϕþ Σ

Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Ma2r

Σ
sin2 θ

�
sin2 θdϕ2;

ð14Þ

where M and a are the mass and the spin parameter,
respectively, Σ ¼ r2 þ a2 cos2 θ and Δ ¼ r2 − 2Mrþ a2.
Teukolsky [48] showed that the gravitational perturbation is
separable and the radial equation is given by

Δ2
d
dr

1

Δ
dR
dr

− VR ¼ −T; ð15Þ

where T is the source and

V ¼ −K2

Δ
− 2iKΔ0

Δ
þ 4iK0 þ λ; ð16Þ

with

K ¼ ðr2 þ a2Þω − am; ð17Þ

and m and λ come from eimϕ and the spin-weighted
spheroidal function Zaω

lm ðθÞ, respectively. Here, a prime
means the derivative with respect to r. The source term T
diverges as ∝ r7=2 for a particle falling into the Kerr BH,
and the potential V takes the long range nature. Therefore,
Sasaki and Nakamura [40–42] proposed a new equation
with the convergent source term and the short range
potential as the following.
Specifying two functions αðrÞ and βðrÞ, we can define

various variables as

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

Δ

�
αRþ β

Δ
R0
�
; ð18Þ

γ ¼ α

�
αþ β0

Δ

�
− β

Δ

�
α0 þ β

Δ2
V

�
; ð19Þ

F ¼ Δ
r2 þ a2

γ0

γ
;

U0 ¼ V þ Δ2

β

��
2αþ β0

Δ

�0 − γ0

γ

�
αþ β0

Δ

��
; ð20Þ

G ¼ −
Δ0

r2 þ a2
þ rΔ
ðr2 þ a2Þ2 ; ð21Þ

U ¼ ΔU0

ðr2 þ a2Þ2 þG2 þ dG
dr�

− ΔG
r2 þ a2

γ0

γ
: ð22Þ

Then, we have the wave equation as

d2X
dr�2

− F
dX
dr�

−UX ¼ 0; ð23Þ

where

dr�

dr
¼ r2 þ a2

Δ
: ð24Þ

We adopt α and β defined by

α ¼ A − iK
Δ

B;

β ¼ ΔB; ð25Þ

where

A ¼ 3iK0 þ λþ 6
Δ
r2
;

B ¼ −2iK þ Δ0 − 4
Δ
r
: ð26Þ

Then, defining a new variable Y by X ¼ ffiffiffi
γ

p
Y, we have

d2Y
dr�2

þ ðω2 − VSNÞY ¼ 0; ð27Þ

where

VSN ¼ ω2 þ U −
�
1

2

d
dr�

�
1

γ

dγ
dr�

�
− 1

4γ2

�
dγ
dr�

�
2
�
: ð28Þ

A remarkable feature of VSN is that the potential becomes
the Regge-Wheeler potential for a ¼ 0.
Schutz and Will [47] derived the QNM for the

Regge-Wheeler potential VRW by using the WKB method.
The essence of their method is to approximate VRW by the
expansion near its peak at r0 ≈ 3.28M as

VRWðr�Þ ¼ VRWðr�0Þ þ
1

2

d2VRW

dr�2

����
r�¼r�

0

ðr� − r�0Þ2; ð29Þ

where r�0 ¼ r0 þ 2M logðr0=2M − 1Þ. Then the fundamen-
tal (n ¼ 0) QNM frequency is expressed as

ðωr þ iωiÞ2 ¼ VRWðr�0Þ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2

d2VRW

dr�2

����
r�¼r�

0

s
: ð30Þ

They have found that for the n ¼ 0 QNM frequency of
the l ¼ 2 mode, the errors of the real [ωr ¼ ReðωÞ] and
the imaginary [ωi ¼ ImðωÞ] parts are 7% and 0.7%,
respectively, compared with the numerical results of
Chandrasekhar and Detweiler [49].
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Since one needs to impose the ingoing and outgoing
boundary conditions at the event horizon and spatial
infinity, respectively, to derive QNM frequencies, one
might say that the existence of the event horizon is
confirmed if the QNM of a Schwarzschild BH is detected.
However, the WKB method by Schutz and Will [47]
suggests that what we can conservatively claim is that
the space-time of a Schwarzschild BH around r ≈ 3.28M is
tested since both real and imaginary parts of the QNM
frequency are determined by the value of VRW and its
curvature at r ≈ 3.28M.
What we want to do is to establish a similar statement

for the Kerr BH case. Since numerical relativity simu-
lations for binary BHs [50–52] suggest that the final Kerr
parameter a=M after the merger of equal-mass, non-
spinning BHs is about 0.7 (see Ref. [53] for the latest
remnant spin formula), instead of the Regge-Wheeler
potential VRW we need to discuss the Kerr case with the
potential VSN.
An important difference of the Kerr case is that the

potential becomes complex even if one uses the real
potential for the real frequency ω such as Detweiler
[43]. Since the separation constant λ of the radial and
angular Teukolsky equations depends on ω, which is
complex in the QNM calculation, the above potential
becomes complex. Therefore, there is no advantage to
using the real potential in our approach, and the complex
nature of VSN for a ≠ 0 is not an essential drawback. Our
purpose is not to determine the QNM frequencies correctly
by the WKB method since there is a good numerical
method to determine them by Leaver [54]. Our interest is in
what we can claim conservatively when the QNM of a Kerr
BH is detected by the second generation gravitational wave
detectors, aLIGO, AdV, and KAGRA. That is, our goal is to
find a similar physical picture as Schutz and Will [47] did
for the Schwarzschild case; i.e., the BH space-time near

r ¼ 3.28M can be confirmed by the QNMs of a BH
with a=M ¼ 0.
We therefore substitute the numerical value of the QNM

frequency for the Kerr BH case by Ref. [55] (see Berti’s
useful “Ringdown” website [56]) as well as the aω
dependence of λ up to the sixth order by Ref. [57] into
the potential VSN. It is noted that the error between the
fitting function of lambda and the exact numerical value is
less than 0.015% for the QNM frequency. The left panel of
Fig. 1 shows the values of the potential, ReðVSNÞ, ImðVSNÞ,
and jVSNj with (l ¼ 2,m ¼ 2) as a function of r�=M in the
case of a=M ¼ 0.7. We see that jVSNj is close to ReðVSNÞ
and the contribution of ImðVSNÞ is small so that we can
identify the critical radius r� ∼ −2M, i.e., r ∼ 2M with the
peak of jVSNj. For the a=M ¼ 0.8 case with (l ¼ 2,
m ¼ 2), it is still reasonable to use the peak as shown in
the right panel of Fig. 1. Since we cannot apply the standard
WKB approximation for double peaks shown in the right
panel of Fig. 1, the estimation for a=M ¼ 0.8 in the current
analysis is not mathematically appropriate. For smaller
values of a=M, the contribution of ImðVSNÞ is much
smaller than the a=M ¼ 0.7 case.
Therefore, it would not be a bad approximation to

expand VSN near the peak of jVSNj [or ReðVSNÞ] as
Schutz and Will [47] did for the Schwarzschild case as

VSNðr�Þ ¼ VSNðr�0Þ þ
1

2

d2VSN

dr�2

����
r�¼r�

0

ðr� − r�0Þ2: ð31Þ

For definiteness, we choose to evaluate the above expres-
sion at the peak of jVSNj, and we denote that real-valued
radius as r�0. Then, we can estimate the n ¼ 0 QNM
frequency by
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FIG. 1. ReðVSNÞ, ImðVSNÞ, and jVSNj with (l ¼ 2, m ¼ 2) for a=M ¼ 0.7 (left) and 0.8 (right) as a function of r�=M, where we
set M ¼ 1.
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ðωr þ iωiÞ2 ¼ VSNðr�0Þ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2

d2VSN

dr�2

����
r�¼r�

0

s
: ð32Þ

This approximation will be worse when ImðVSNÞ becomes
large. The location of the maximum of the absolute value of
the potential jVSNj and the real and imaginary parts of the
n ¼ 0 QNM frequencies with (l ¼ 2, m ¼ 2) are shown in
Figs. 2 and 3, respectively. In Fig. 4, we present the errors
in the frequencies. We can say that our approximate method
reproduces the QNM frequencies within 10% accuracy,
which supports our approximation. It is noted that fine
structures in the imaginary parts of Figs. 2 and 3 are due to
the complicated behavior of the potential with respect to

a=M. A local maximum arises in ImðVSNÞ for a=M ≳ 0.6,
and ReðVSNÞ has two peaks for a=M ≳ 0.8.
In the above analysis, assuming the smallness of

ImðVSNÞ, we have derived r�0 by finding the peak of
jVSNj. But to use Eq. (31) exactly, it is necessary to find
r�0 for dVSN=dr� ¼ 0 in the complex plane. Then, we may
mention the effective peak radius by the real part of r�0
because the imaginary part of r�0 is small. This also supports
the argument for using the real r�0 derived from the peak of
jVSNj. Some brief analysis is summarized in the Appendix,
and we find a good agreement between the peak location of
jVSNj and the real part of r�0 of dVSN=dr� ¼ 0.
As a result, we may say that if the QNM with a=M ∼ 0.7

is detected with an accuracy of 10%, the BH space-time
around r ∼ 2M, which is 1.17 times the event horizon, is
confirmed. Here, we know that we cannot localize gravi-
tational waves within a small region less than its wave-
length. Since the wavelength of the QNM that we are
concerned with is Oð10MÞ, the origin of the QNM is also
necessarily extended to a similar amount. The extension
should be measured in the r� coordinate. The nonlocal
nature of gravitational waves is reflected by the appearance
of the second derivative of the potential in the expression of
Eq. (32). The local value of the second derivative at the
peak can be varied by arranging the transformation.
However, we would have to pay the expense that the
potential will tend to take a more wavy shape and possibly
possess multiple extrema.
From the Pop III star population synthesis, the

expected event rate is 0.17 − 7.2 events yr−1 [ðSFRp=
ð10−2.5M⊙ yr−1 Mpc−3ÞÞ · ð½fb=ð1þ fbÞ�=0.33Þ], where
SFRp and fb are the peak value of the Pop III star formation
rate and the fraction of binaries, respectively [21]. Since the
range of the above rate is not derived from the statistical
treatment and the minimum rate of 0.17 is obtained from
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the most unlikely model, there will be a good chance to
observe the QNM with SNR ∼ 35.

IV. CHANDRASEKHAR AND
DETWEILER EQUATION

Chandrasekhar and Detweiler developed various trans-
formations in the radial Teukolsky equation (see, e.g,
Ref. [59] and related references therein). Here, we use
the notation in Appendix B of Ref. [43].
The two functions αðrÞ and βðrÞ in Eq. (18) are now

α ¼ 2
ffiffiffi
2

p
ρ4

jκjΔ
�
Rþ T�

�
3rΔ
ρ4

− iσ

��
;

β ¼ −
2

ffiffiffi
2

p
Δρ2T�

jκj ; ð33Þ

whereΔ is the same as the one in the previous section while
σ ¼ −ω, and

ρ2 ¼ r2 þ a2 þ am
σ

;

R ¼ Δ2

ρ8
ðF þ b2Þ;

T� ¼ −2iσ þ 1

F − b2

�
Δ
ρ2

dF
dr

− κ2

�
; ð34Þ

κ ¼ ½λ2ðλþ 2Þ2 þ 144a2σ2ðaσ þmÞ2 − a2σ2ð40λ2 − 48λÞ
− aσmð40λ2 þ 48λÞ�1=2 − 12iσM: ð35Þ

There is a typo1 in Eq. (B19) of Ref. [43], i.e., −iσ in T�
should be −2iσ as in the above equation. We have
confirmed that αðrÞ and βðrÞ in Eqs. (33) give a constant
γ in Eq. (19), i.e., a constant K in Eq. (11) of Ref. [43]. In
the above equations, we have

F ¼ 1

Δ
½λρ4 þ 3ρ2ðr2 − a2Þ − 3r2Δ�;

b2 ¼ �3

�
a2 þ am

σ

�
; ð37Þ

κ2 ¼ �f36M2 − 2λ½ða2 þ am=σÞð5λþ 6Þ − 12a2�
þ 2b2λðλþ 2Þg1=2: ð38Þ

The differential equation for X becomes

d2X
dr�2

þ ðω2 − VDÞX ¼ 0; ð39Þ

where VD ¼ ω2 þ V and V is calculated from Eq. (15) with
Eq. (13) of Ref. [43] [or from Eq. (22) with Eqs. (20) and
(21) in this paper, where U is identical to V and γ0 ¼ 0;
see also Eq. (27) of Ref. [60] to correct a typo in Eq. (B23)
of Ref. [43]]. When we adopt b2 ¼ −3ða2 þ am=σÞ, the
potential takes a slightly simpler expression, given in
Eq. (B24) of Ref. [43] as

V¼−K2þΔλ
ðr2þa2Þ2þ

2Δðr3Mþa4Þ
r2ðr2þa2Þ3 þ 3a2Δ2

ðr2þa2Þ4

−
4λρ2Δ½−2λρ2ðr2−a2Þþ2rðrM−a2Þð4λrþ6Mþκ2Þ�
r2ðr2þa2Þ2½2λr2þð6Mþκ2Þr−2λða2þam=σÞ�2 :

ð40Þ

As noted in Sec. III, the above potential VD is the real
potential for the real frequency ω ¼ −σ. However, since the
QNM frequencies are complex, VD becomes complex in
our analysis.
When we take the positive (negative) signature for κ2 in

Eq. (38), the potential VD becomes the Zerilli VZ (Regge-
Wheeler VRW) potential in the Schwarzschild limit. As
shown in Fig. 5 for the a=M ¼ 0.7 case, the best potential
VD with (l ¼ 2, m ¼ 2) in order to apply the WKB
approximation is obtained by choosing the negative sig-
nature for b2 in Eq. (37) and the positive signature for κ2
in Eq. (38). In this case, the extremum is clearly unique.
We call this situation the (−þ) case. As a reference, we
also present the a=M ¼ 0.9 case in the right panel
of Fig. 5.
Seidel and Iyer [60] found that the positive signature

of b2 is the best choice for the m > 0 mode in the case
with the negative signature of κ2, i.e., the (þ−) case,
for example, in Fig. 5. In their analysis of Ref. [60], a
higher order WKB approximation was employed (see
also a Kokkotas’s work [61]). They expand their real
potential VSI, i.e., the (þ−) case for real frequency ω
and r0, which is the value of r such that VSI is
maximized as

VSI¼VsþV1ðaωÞþV2ðaωÞ2þV3ðaωÞ3þV4ðaωÞ4þ���;
r0¼ rsþr1ðaωÞþr2ðaωÞ2þr3ðaωÞ3þr4ðaωÞ4þ���;

ð41Þ

1Although we do not use Eq. (B8) of Ref. [43], there should be
a typo, and it reads as

a2 ¼
1

Δ2

�
24σrK2

Δ
− 4λðr −MÞK

Δ
− 4σrλ − 12σM

�
: ð36Þ

Here, the definition of K in the above equation has the inverse
signature of Eq. (17) due to σ ¼ −ω.
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where Vs (¼ VRW) and rs (¼ rRW0 ) are the potential for
the Schwarzschild case and the value of r such that Vs
is maximized, respectively. Then, they solve

dVSI

dr�
¼ 0; ð42Þ

to determine r1; r2; r3; r4;…. To calculate the (n ¼ 0)
QNM frequency, they solve

ω2 − ϕgða;ω;l; mÞ ¼ 0; ð43Þ

where the function ϕgða;ω;l; mÞ can be derived by
their Eq. (2). After obtaining a complex QNM

frequency, r0 becomes complex. This is the reason
why we do not adopt their method since our purpose is
not to obtain the accurate QNM frequency (see, e.g.,
Ref. [62] for inaccuracy of the WKB method), but to
establish the physical picture that the QNM brings us
information around the peak radius r�0.
In our analysis for the (−þ) case, the n ¼ 0 QNM

frequency is calculated by

ðωr þ iωiÞ2 ¼ VDðr�0Þ − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2

d2VD

dr�2

����
r�¼r�

0

s
:

ð44Þ
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Again, this is an approximation because we adopt the peak
of jVDj as r�0, and the approximation will be worse when
ImðVDÞ becomes large. The location of the maximum of
the absolute value of the potential jVDjwith (l ¼ 2,m ¼ 2)
(see Fig. 6 for the smallness of the imaginary part of the
potential) and the real and imaginary parts of the n ¼ 0
QNM frequencies are shown in Figs. 7 and 8, respectively.
Since the contribution of the imaginary part is small, we use
the peak location of jVDj as r�0 in the WKB approximation.
In Fig. 9, we show the errors in the frequencies. From
Fig. 7, we see that for a=M ¼ 0.7 the peak of jVDj with
(l ¼ 2, m ¼ 2) is r� ∼ −2M, i.e., r ∼ 2M, which is similar
to the VSN case in Sec. III. Figure 9 shows that the error of
the QNM frequencies is < 7%, which is also similar to the
VSN case presented in Sec. III.

V. DISCUSSIONS

In the case of the Chandrasekhar and Detweiler equation,
we have used VD, i.e, the (−þ) case. It might be interesting
to see the peak locations and the QNM frequencies in the
WKB analysis for the other cases. Figure 10 shows
the location of the maximum of the absolute value of
the potential with (l ¼ 2, m ¼ 2) for the ð−−Þ, ðþ−Þ, and
ðþþÞ cases. As seen in Fig. 5, the peak location depends on
the choice of the signatures in b2 and κ2. We find that the
ð−−Þ, ðþ−Þ, and ðþþÞ cases do not give a better result for
the QNM frequency (see Fig. 11) than the ð−þÞ case in
applying the WKB approximation of Eq. (44). The relative
errors in the evaluation of the QNM frequencies compared
with the exact value are presented in Fig. 12. In particular,
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the imaginary part of the QNM frequency deviates from
the exact one substantially for a=M ≳ 0.7. This is not
mainly due to the crude approximation for r�0 adopted in
this paper. Even if we use r�0 corresponding to the
complex root of dV=dr� ¼ 0, the errors necessarily grow
for a larger value of a=M. (Although the estimate of the
QNM frequency changes, the tendency that the error
increases in that regime is not altered.) The main cause
of the error would be due to the appearance of the
second root of dV=dr� ¼ 0 near the real axis of r�,
which we can imagine for VSN, ð−−Þ, ðþ−Þ, and ðþþÞ
cases for a=M ≳ 0.7 as the appearance of double extrema
or a wavy shape in the plot of jVj. The appearance of the
second root is confirmed also by direct calculation. By
contrast, VD does not seem to suffer from any significant
contribution from other roots up to a=M ¼ 0.8.
Our purpose in the current study is to establish the

picture that the QNMs are approximately originating from
the peak location of the potential. The peak location varies
depending on the choice of the potential, but the variance is
not very large as seen in Figs. 2, 7, and 10. Furthermore, we
find that the estimate of the QNM frequencies by using the
VSN, VD, and ðþþÞ cases is better than that in the ð−−Þ and
ðþ−Þ cases. If the cases that give the worse estimate of
the QNM frequencies, i.e., the ð−−Þ and ðþ−Þ cases, are
excluded, the variance of the peak location becomes even
smaller.

In the high frequency regime the real and imaginary parts
of the QNM frequencies are thought to be related to the
orbital frequency of the light ring orbit and the Lyapunov
exponent of the perturbation around it, respectively (see
Refs. [63–68] for the related works and a useful lecture note
[69]). In Figs. 2, 7, and 10 we display the inner light ring
radius on the equatorial plane as a reference. From this
comparison, the peak location is found to be well approxi-
mated by the inner light ring radius, especially for the VSN,
VD, and ðþþÞ cases. This fact suggests that even for the
lowest order QNM with n ¼ 0 the light ring radius is a
good approximation for the region that is responsible for
generation of QNMs (see pioneer works in Refs. [70,71]).
One may think that QNM frequencies depend on the

boundary condition imposed in the very vicinity of the
event horizon, and therefore modification to general rela-
tivity through the change of the boundary condition may
lead to some observable effect. However, we find it unlikely
to find the effect as modified QNM frequencies, from the
following consideration. Suppose that a complete reflection
boundary condition is imposed at a distance δ in the proper
distance from the event horizon. This radius is, roughly
speaking, M lnðδ=MÞ, in the r� coordinate, and hence it
takes time of OðM lnðδ=MÞÞ before a wave completes a
round trip between r� ∼ 2M and this hypothetical reflection
boundary. If we choose the Planck length for δ as expected
by the stringy modification such as the firewall, this time
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scale for the round trip becomes as long as ∼200M, which
is much longer than the time scale of the decay of QNMs,
which is typically ∼20M. Therefore, we find that the effect
of the modified boundary condition will not appear as a
measurable shift of the QNM frequencies in the near future,
even if we assume an extreme situation such as a complete
reflection. However, the effect of the modification of the
boundary condition may arise in a different manner or in a
very accurate future measurement of the QNM frequencies
as an observable signature (see Refs. [36,37]). We may
come back to this issue in our future publication.
In Ref. [25] we discussed binaries such that form a

60M⊙ BH with a=M ¼ 0.7. In the expected noise curve
of KAGRA [bKAGRA, VRSE(D) configuration] presented
in Ref. [72], the parameter estimation (1σ) errors for the
real and imaginary parts with SNR ¼ 35 are �0.8% and
ð−6%;þ7%Þ, respectively, by using the Fisher analysis
(see, e.g., Refs. [73–76] for the QNM gravitational wave
data analysis). Therefore, we concluded that we have a
good chance to confirm the existence of a black hole
formed as a result of binary merger.
When we have at hand not just a feature of black hole

candidates but clear evidence for the existence of BHs by
the QNM observation, we will have to wait sitting on a gold
mine, if we cannot find a clue to carry out further research.
The breakthrough might be brought by the detection of
the electromagnetic counterpart. Let us consider a merged
BH with mass M ∼ 60M⊙ moving with the velocity
V ∼ km s−1 in the interstellar gas with the number density
n. Then, the accretion rate _M is estimated as

_M¼π

�
2M
V2

�
2

mpnV

¼1.34×1020 gs−1
�

M
60M⊙

�
2
�

n
102 cm−3

��
V

1 kms−1

�−3

¼1.25×1040 ergs−1
�

M
60M⊙

�
2

×

�
n

102 cm−3

��
V

1 kms−1

�−3
; ð45Þ

wheremp is the mass of the proton and 10.4% efficiency of
the available gravitational energy at the innermost stable
circular orbit (ISCO) for a=M ¼ 0.7 is assumed. The
luminosity is comparable to the Eddington luminosity of
a 60M⊙ star, i.e., 7.4 × 1039 erg s−1. If this energy is
emitted mainly in x rays, a wide field x-ray telescope such
as the ISS Lobster can observe up to about ∼1 Mpc since
the limiting flux is ∼10−10 erg cm−2 s−1 [77]. While if the
energy is emitted mainly in the optical band, it can be
detected up to ∼300 Mpc by Subaru-HSC [78] and LSST
[79] with the limiting magnitude 26, for example. It should
be noted that, since the sky location of this gravitational
wave source is ∼1.7° × 1.7° for the event with SNR ¼ 35,

this area can be covered by one or a few shots with Subaru-
HSC [78] and LSST [79].
The mass formula of the Kerr BH with the gravitational

mass M and the angular momentum J is given by

M2 ¼ M2
irr þ

J2

4M2
irr

; ð46Þ

whereMirr is the irreducible mass of the Kerr BH (see, e.g.,
Ref. [80]). Expressing J ¼ aM ¼ qM2, we have

M2 ¼ M2
irr þ

M4q2

4M2
irr

; ð47Þ

where q2 ¼ ða=MÞ2 < 1. Equation (47) is solved as

M2 ¼ 2M2
irr

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p : ð48Þ

Therefore, the maximum energy available from the extrac-
tion of all the angular momentum is given by

ΔE ¼ M

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p
2

s 1
CA: ð49Þ

For q ¼ 0.7, ΔE becomes

ΔE ¼ 8 × 1054 erg

�
M

60M⊙

�
: ð50Þ

This energy is so huge that a possible electromagnetic
counterpart of Pop III 30M⊙–30M⊙ mergers exists.
Therefore, one might think that the Blandford-Znajek
(BZ) [81] luminosity might be much larger. Now the
rotational velocity at ISCO is vISCO ∼ 1010 cm s−1.
Assuming the equipartition of the ram pressure energy
to the magnetic field energy at ISCO, the magnetic strength
B is roughly estimated as

B ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _MvISCO

q
rISCO

∼ 5 × 107 gauss: ð51Þ
According to Eq. (A6) of Penna et al. [82], the BZ power
derived from the magnetic flux Φ ¼ 4πBMrþ of their
Eq. (A4) and the angular velocity of the event horizon
ωþ ¼ q=ð2rþÞ as

LBZ ∼
π

6

�
2GMq
c2

�
2

cB2

∼ 7.4 × 1038 erg s−1; ð52Þ
which is smaller than the accretion energy unfortunately.
Here, we recovered c and G in the above equation for
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convenience. We need a certain process to increase the
magnetic field strength near the event horizon to liberate
the huge energy shown in Eq. (50) to be visible in
electromagnetic radiation to identify the position as well
as the strong gravity space-time near the event horizon of
the BH since the mean distance to the Pop III BH merger is
z ∼ 0.3, i.e., ∼1.4 Gpc in the luminosity distance.
Finally we would like to mention that the current

scenario that SGRBs are identified with NS-NS and/or
NS-BH mergers does not have any smoking gun so far. For
example, it is usually claimed that no SGRB accompanied
the supernova explosion, and hence SGRBs are different
from long GRBs (LGRBs). However, there are at least two
LGRBs without the supernova association [83]. Only the
detection of gravitational waves from SGRBs can be the
smoking gun of this scenario. Concerning this, before 1997
almost all GRB scientists except for a few people including
Paczynski believed that GRBs are not at a cosmological
distance but within at most the halo of our Galaxy from
various suggestions, without any smoking gun. The cos-
mological redshift found in the afterglow of GRB 970508
was the smoking gun of the cosmological origin of GRBs
to make more than 2000 papers useless. As one of the
countertheories against the current scenario, there is, for
example, a unified model of LGRB, SGRB, XRR (x-ray
rich GRB), and XRF (x-ray flash) (see, e.g., Yamazaki et al.
[84]). Even if the current scenario of SGRBs turns out to be
incorrect unexpectedly, Pop III BH-BH binary mergers
discussed in this paper would be another plausible candi-
date for an important source of gravitational waves to
search for the strong gravity space-time near the event
horizon of a BH of mass ∼60M⊙.
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APPENDIX: ANOTHER ESTIMATION

In this appendix, we summarize the effective peak radius
derived from the real part of the radius that satisfies
dV=dr� ¼ 0. Figure 13 shows the radii obtained from
various potentials. Although it is difficult to understand
the jump in the radius between a=M ¼ 0.6 and 0.7 in the
analysis of the maximum of the absolute value of the
potential jVSNj, we find the reason from the calculation of
dV=dr� ¼ 0 in the complex plane. For a=M ¼ 0.6, we
have a solution r0 ¼ 2.49187 − 0.00352404i. On the other
hand, we have two solutions for a=M ¼ 0.7, r0 ¼
2.58852 − 0.0588482i and 2.07427þ 0.0268525i. Here,
the peak location of jVSNj for a=M ¼ 0.7 corresponds to
the latter solution. It is also noted that the imaginary part
of the solution for dV=dr� ¼ 0 is always an order of
magnitude smaller than the real part in the current analysis
between a=M ¼ 0 and 0.8, and we find a good agreement
between the peak location of jVSNj and the real part of r�0 of
dVSN=dr� ¼ 0, comparing Figs. 2, 7, and 10 with Fig. 13.
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