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We provide a detailed analysis of how bosonic dark matter “condensates” interact with compact
stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass
mB, such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically
form “breathing” configurations, where both the spacetime geometry and the field oscillate, and can
interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a
bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-
matter-rich environments. These composite stars oscillate at a frequency which is a multiple of
f ¼ 2.5 × 1014ðmBc2=eVÞ Hz. Using perturbative analysis and numerical relativity techniques, we show
that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the
growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning
dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star,
nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop
in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

DOI: 10.1103/PhysRevD.93.044045

I. INTRODUCTION

There is now compelling evidence that most of the mass
and energy enclosed in our Universe is made of yet unseen
forms of matter and energy. For the standard picture of the
evolution and structure of the Universe to agree with
observational data, about a quarter of the Universe must
come under the form of nonbaryonic matter, generically
called dark matter (DM). The evidence for DM in observa-
tions is overwhelming, starting with galaxy rotation curves,
gravitational lensing and the cosmic microwave background
[2]. While carefully concocted modified theories of gravity
can perhaps explain almost all observations, the most
attractive and accepted explanation lies in DM being com-
posed mostly of cold, collisionless particles [2–4].
Several candidates for dark matter have been proposed

[2–4], of which ultralight bosonic fields, such as axions,
axion-like candidates [5–7] or “hidden photons” [8] are an
attractive possibility. Axions were originally devised to
solve the strong-CP problem, but recently a plethora of
other, even lighter fields with masses 10−10–10−33 eV=c2,
have also become an interesting possibility, in what is
commonly known as the axiverse scenario [9]. On the other

hand massive vector fields arise in the so-called hidden
Uð1Þ sector [10–13]. This family of candidates are part of
what is now referred to as weakly interacting slim particles
[14] in the DM literature.
It is appropriate to emphasize that DM has not been seen

nor detected through any of the known Standard Model
interactions. The only evidence for DM is through its
gravitational effect. Not surprisingly, the quest for DM is
one of the most active fields of research of this century.
Because DM can only interact feebly with Standard Model
particles, and thanks to the equivalence principle, the most
promising channel to look for DM imprints consists of
gravitational interactions.
Massive bosonic fields minimally coupled to gravity can

form structures [15–21]. Self-gravitating complex scalars
may give rise to static, spherically symmetric geometries
called boson stars, while the field itself oscillates [15,16]
(for reviews, see Refs. [22–25]). Very recently, analogous
solutions for complex massive vector fields where also
shown to exist [21]. On the other hand, real scalars may
give rise to long-term stable oscillating geometries, but
with a nontrivial time-dependent stress-energy tensor,
called oscillatons [18]. Both solutions arise naturally as
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the end state of gravitational collapse [18,26,27], and both
structures share similar features.
Because the equivalence principle guarantees that all

forms of matter gravitate, regions where gravity is strong,
such as compact stars, might be a good place to look for
signals of DM. Since massive bosonic fields are viable DM
candidates [2,3], a natural question is whether they can be
accreted inside stars and lead to stable configurations with
observable effects. Although not originally framed in the
context of DM capture, such solutions, made of both a
perfect fluid and a massive complex scalar field, exist
[28–35] and can model the effect of bosonic DM accretion
by compact stars. Complementary to these studies, the
accretion of fermionic DM has also been considered, by
modeling the DM core with a perfect fluid and constructing
a physically motivated equation of state [36–38]. In a recent
Letter [1] we presented an extension of these results by
considering real massive scalar and vector fields. Here, we
provide some details of the results presented in Ref. [1],
while also extending them significantly.

A. Stars may survive dark matter capture

Our work may be useful on several fronts. First, our
results show that stable DM cores inside compact stars are
possible. The question of whether these cores are actually
formed through dynamical processes in DM environments
is harder to answer. The standard lore—which our results
do not support—is that the dynamics happen in two stages
(see e.g., Refs. [39–43]):
(1) Accumulation stage, where DM is captured by the

star due to gravitational deflection and a nonvanish-
ing cross section for collision with the star material
[39,44–46]. The DMmaterial eventually thermalizes
with the star, and accumulates inside a sphere
of r.m.s. radius rth ∼ ðkBT=ρcmDMÞ1=2, where kB is
Boltzmann’s constant, T, ρc are the temperature and
density of the star, and mDM is the mass of the DM
particles.

(2) Black hole formation, after the DM core becomes
self-gravitating. The newly formed black hole (BH)
eventually eats the host star [39–43,45].

Our results indicate that stable, self-gravitating and self-
interacting bosonic DM cores exist and can be explicitly
constructed [1], aswe detail in themain body of this work. In
fact, a similar construction was recently performed for
fermionic DMmodels [37]. Thus, the scenario above cannot
be generic. In fact, all of these works assume that gravita-
tional collapse ensues once DM becomes self-gravitating.
The stability and evolution of stars is a far more complex
affair, and in particular DM dispersion or an increase in the
star temperature can easily rule out the collapse scenario.
We show that the gravitational cooling mechanism [47]
not only disperses bosonic condensates, but it prevents—
generically—gravitational collapse from occurring.

Our results do not take into account nongravitational
interactions between the star and DM; however, there are
strong reasons to suspect that some of the main features are
independent, at the qualitative level, of the nature of the
interaction. For example, although our results are formally
only valid for zero-temperature bosonic condensates,
finite-temperature effects are expected to be negligible
for bosonic masses much larger than the central temper-
ature of the host star [48,49], such as bosonic fields with
masses≳ keV inside old neutron stars or white dwarfs. In
fact, Refs. [48,49] showed that stable bosonic stars exist for
temperatures below a critical temperature which scales
linearly with the boson field mass. Finite temperatures tend
to increase the radius of the boson star (comparing a star
with the same total mass), but do not significantly affect the
star’s maximum stable mass. In addition, for axionic-type
couplings, for instance, all or most of the core energy will
be dissipated away under electromagnetic radiation, on
relatively small time scales [50–52].
Finally, our study predicts that bosonic DM cores drive

the star to vibrate at a frequency dictated by the scalar field
mass, f ¼ 2.5 × 1014ðmBc2=eVÞ Hz [1], providing a clear
means to identify the presence of dark matter in stars,
provided these modes are excited to measurable amplitudes.
Helioseismology, developed to the level of a precision
science, can now measure individual modes each with an
amplitude of ∼10 cm s−1 [53]. Thus, provided efficient
mechanisms exist to gather sufficient DM at the cores of
stars, these oscillations will be a smoking gun for DM.

B. Organization of this work

For the reader’s convenience, we present here the
structure of the paper. In Sec. II we introduce our general
setup and give a brief overview of already known solutions.
The reader interested in the construction of scalar and
vector oscillatons should read Sec. III. There, we first
review how scalar oscillatons are constructed and then
present for the first time details on massive vector field
oscillatons.
Sections IVand VI are devoted to the study of stars with

bosonic cores and their growth. We first study stellar
configurations formed by both a perfect fluid and a real
massive scalar field in Sec. IV. These solutions are a
generalization of the fluid-boson stars found and studied in
detail in Refs. [28–31]. To understand how these stars
might grow, in Sec. VI we study head-on collisions of
oscillatons in full numerical relativity. We confirm and
extend previous results, showing that collapse to a BH can
be avoided whenever gravitational cooling mechanisms are
efficient [47,54–56]. This suggests that previous claims,
assuming the collapse of the host star to a BH above a
certain threshold might not always be valid if DM is
composed of massive bosonic fields.
Those interested in similar solutions in scalar-tensor

theories should jump to Sec. V, where we consider perfect
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fluid stars in massless scalar-tensor theories and argue that
stars with long-lived bosonic cores can exist in these
theories. We conclude our study in Sec. VII, with possible
extensions and follow-ups of this work.

II. SETUP

A. Notation and conventions

Unless otherwise and explicitly stated, we use geom-
etrized units where G ¼ c ¼ 1, so that energy and time
have units of length. We also adopt the ð−þþþ…Þ
convention for the metric. For reference, the following is a
list of symbols that are used often throughout the text.

ðt; r; θ;φÞSpherical coordinates employed in most of this work.

Aμ Electromagnetic four-vector potential, with mass
parameter μV.

AðϕÞ Generic function of a scalar field, in the context of
scalar-tensor theories of gravity.

Ath Amplitude of thermal motion of nucleon inside star.
B Metric component. We deal with diagonal metrics of

the form −Fðt; rÞdt2 þ Bðt; rÞdr2 þ r2dΩ2.
l Integer angular number, related to the eigenvalue lðlþ 1Þ

of spherical harmonics.
λ Coupling constant for quartic interactions, described by

a Lagrangian L ¼ −λϕ4=4.
Mmax Peak value of the mass of a star in a mass-radius

relation (cf. Fig. 1). Determines threshold for
stability.

M⊙ ∼1.989 × 1030 kg, mass of our Sun.
MT Total Arnowitt-Deser-Misner (ADM) or gravitational

mass, as measured by observers at large distances.
MF;B Time-average total mass in fluid and bosons,

respectively.
M0 Mass of standard star, in absence of scalar field, for the

same value of central density.
mN Baryon mass.
μS;V Mass parameter of (scalar or vector) bosonic fields. The

physical mass mB is written as mB ¼ ℏμS;V .
NF;B Total number of fermions and bosons in star, associated

with conserved baryon number and Noether charge.
nF Baryonic number density in fluid frame.
ϕ Scalar field, taken to be fundamental and of mass μS.
ρϕ Energy density of scalar field.
ρF Energy density, in the fluid frame, of a perfect fluid

usually modeled with a polytropic equation of state
P ¼ KργF.

P Pressure of perfect fluid.
R Radius of bosonic condensate, defined to be the radius

containing 98% of the mass.
w1;2 Width of scalar pulse initial data, in the context of

collisions of scalar condensates.
ω Fourier transform variable, parametrizing the time

dependence of variables, ∼e−iωt.
Ωth Vibration frequency of nucleon inside fluid star, due to

thermal motion.
V Radial, coordinate velocity of a given fluid element in

the star.

B. Framework

We will be interested in a massive scalar ϕ or vector Aμ

minimally coupled to gravity, and described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

R
κ
− 1

4
FμνF̄μν − μ2V

2
AνĀν

−
1

2
gμνϕ̄;μϕ;ν − μ2Sϕ̄ϕ

2
þ Lmatter

�
: ð1Þ

We take κ ¼ 16π, Fμν ≡∇μAν −∇νAμ is the Maxwell
tensor and Lmatter describes additional matter fields, that we
consider to be described by a perfect fluid. We focus on
massive, non-self-interacting fields, but our results are
easily generalized. In fact, we discuss in Sec. VI how
our results generalize to a quartic self-interaction term. The
mass mB of the boson under consideration is related to
the mass parameter above through μS;V ¼ mB=ℏ, and the
theory is controlled by the dimensionless coupling

G
cℏ

MTμS;V ¼ 7.5 × 109
�
MT

M⊙

��
mBc2

eV

�
; ð2Þ

where MT is the total mass of the bosonic configuration.
Varying the action (1), the resulting equations of

motion are

∇μ∇μϕ ¼ μ2Sϕ; ð3aÞ

∇μFμν ¼ μ2VA
ν; ð3bÞ

1

κ

�
Rμν − 1

2
gμνR

�

¼ 1

4π

�
1

2
Fðμ
α F̄νÞα − 1

8
F̄αβFαβgμν − 1

4
μ2VAαĀαgμν

þ μ2V
2
AðμAνÞ

�
− 1

4
gμνðϕ̄;αϕ

;α þ μ2Sϕ̄ϕÞ

þ 1

4
ϕ̄;μϕ;ν þ 1

4
ϕ;μϕ̄;ν þ 1

2
Tμν
fluid: ð3cÞ

Here, the stress-energy tensor for the perfect fluid is given
by [57]

Tμν
fluid ¼ ðρF þ PÞuμuν þ Pgμν; ð4Þ

where uμ is the fluid’s four-velocity, ρF is its total energy
density in the fluid frame and P is its pressure. The massive
vector field equations (3a) imply that the vector field must
satisfy the constraint,

μ2V∇μAμ ¼ 0; ð5Þ

while from the Bianchi identities, it follows that the fluid
must satisfy the conservation equations
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∇μT
μν
fluid ¼ 0: ð6Þ

In addition we impose conservation of the baryonic
number [57]:

∇μðnFuμÞ ¼ 0; ð7Þ
where nF is the baryonic number density in the fluid frame
and mNnF is the fluid’s rest-mass density for baryons of
massmN . To close this system of equations we also need to
complement the system with an equation of state relating
nF, ρF and P. Specific equations of state will be discussed
in Sec. IV.
In the following we consider only everywhere regular

solutions of the system (3a)–(3c).

C. Brief overview of solutions

Compact solutions of the system (3a)–(3c), without
including the perfect fluid, exist for both real and complex
fields. Scalar fields have been extensively studied in the
literature, while similar solutions for vector fields have only
recently been shown to exist [1,21,26]. Here we give a brief
summary of the most popular solutions which have been
studied so far. For more detailed reviews on the subject see
Refs. [22–25].
(a) Boson stars. Boson stars are regular compact solutions

of the Einstein-Klein-Gordon equations for a complex
massive scalar field. Some of these solutions have
been claimed in the literature as possible candidates
for supermassive horizonless BH mimickers [58].
They can be classified according to the scalar potential
in the Klein-Gordon Lagrangian (1) [23]:
(i) Mini boson stars: The scalar field potential is

given by VðϕÞ ¼ μ2Sjϕj2, where μS is the scalar
field mass. For nonrotating boson stars the
maximum mass is Mmax ≈ 0.633m2

P=μS, with
mP being the Planck mass [15,16]. Considering
values of μS typically found within the Standard
Model, this mass limit is much smaller than the
Chandrasekhar limit for a fermion star, approx-
imately m3

P=μ
2. For ultralight boson masses μS,

such as those motivated by string axiverse sce-
narios [9], and relevant in the DM context, mini
boson stars may have a total mass compatible
with that observed in active galactic nuclei [23].

(ii) Massive boson stars: The scalar potential has an
additional quartic scalar field term, VðϕÞ ¼
μ2Sjϕj2 þ λjϕj4=2 [59] (see also Ref. [60] for
a detailed study of these solutions in the context
of DM physics). In this case the maximum
mass can be comparable to the Chandrasekhar
limit and for λ ≫ μ2S=m

2
P one can estimate

Mmax ≈ 0.062λ1=2m3
P=μ

2
S.

One can also find other types of boson stars by changing
the scalar potential or by considering nonminimal

couplings as done in Ref. [61]. For some nonlinear
potentials, similar solutions, generically called Q-balls,
exist even in flat space [62,63]. (When coupled to gravity
some of these solutions can give rise to very heavy boson
stars [64]. See also Ref. [65] for potentials with more
generic self-interaction terms.) Finally, boson stars can also
be found in alternative theories of gravity, such as scalar-
tensor theories [66–68]. A more detailed list of solutions
can be found in Ref. [23].
(b) Oscillatons. For a real massive scalar field minimally

coupled to gravity, with VðϕÞ ¼ μ2Sϕ
2, compact con-

figurations were first shown to exist in Ref. [18], while
the generalization for a scalar field with a quartic
interaction was considered in Ref. [69]. Interestingly,
for some nonlinear potentials, such as the Higgs
double-well potential or the axionic sine-Gordon po-
tential, a real scalar field counterpart of theQ-balls exist
and are dubbed oscillons [70–74] (note that oscillons
are built in a Minkowski background). Unlike boson
stars, since the scalar field stress-energy tensor is itself
time dependent, for oscillatons both the metric and the
scalar field oscillate periodically in time. Oscillatons
(and oscillons) are not truly periodic solutions of the
field equations, as they decay through quantum and
classical processes. However, their lifetime Tdecay is
extremely large for the masses of interest [75,76],

Tdecay ∼ 10324
�
1 meV
mBc2

�
11

yr: ð8Þ

For real massive vector fields, Ref. [26] found con-
vincing indications that the same kind of oscillatory
solutions form in the gravitational collapse of a wide
set of initial data.

Boson stars and oscillatons share very similar
structures, as summarized in Fig. 1, where we plot
the mass-radius relation for spherically symmetric
boson stars and oscillatons (including massive vectors
that will be discussed in the next section). Boson stars
and oscillatons have a maximum mass Mmax, given
approximately by

Mmax

M⊙
¼ 8 × 10−11

�
eV

mBc2

�
; ð9Þ

for scalars and slightly larger for vectors.

(c) Boson-fermion stars. The extension to mixed stars,
composed both by a complex scalar field and a perfect
fluid, was first considered in Ref. [28] and further
studied in Refs. [29–31] (exact solutions in 2þ 1
dimensions were also found in Ref. [32]). The stability
of these objects was studied in Refs. [77–80]. Slowly
rotating boson-fermion stars were constructed in
Ref. [33], while extensions to allow for an interaction
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between the scalar field and the fermionic fluid were
considered in Ref. [34,35].

Boson-fermion stars were shown to exist in a wide
variety of configurations. For small boson masses they can
be either dominated by the bosonic component or the
fermionic, or have bosonic and fermionic components
of the same order of magnitude [28–31]. For large boson
masses only two types of configurations exist, either
bosonic dominated or fermionic dominated, with a sharp
transition between the two configurations, when one of the
configurations reaches ∼10% of the total mass [29,30].
In this paper we will show that similar solutions also

exist for real massive fields. However in this case the fluid
must itself oscillate with a dominant frequency given by
twice the boson mass.

III. OSCILLATONS

In this section we construct compact solutions of the
Einstein field equations, either for a minimally coupled real
massive scalar or vector field. We first review the formalism
introduced in Ref. [18] to construct massive scalar oscil-
latons and then show how this formalism can be extended
to massive vector fields.

A. Massive scalar field

We start by considering a real massive scalar minimally
coupled to gravity. In Ref. [18] it was shown that solutions
to the field equations describing spherically symmetric
compact configurations exist. We consider a general time-
dependent spherically symmetric metric

ds2 ¼ −Fðt; rÞdt2 þ Bðt; rÞdr2 þ r2dΩ2: ð10Þ

Rescaling the scalar field as ϕ → ϕ=
ffiffiffiffiffiffi
8π

p
and defining the

function Cðt; rÞ ¼ Bðt; rÞ=Fðt; rÞ, the field equations (3a)
and (3c) lead to a system of partial differential equations
(PDEs) given by

_B
B
¼ r _ϕϕ0; ð11Þ

B0

B
¼ r

2
ðC _ϕ2 þ ðϕ0Þ2 þ Bμ2Sϕ

2Þ þ 1

r
ð1 − BÞ; ð12Þ

C0

C
¼ 2

r

�
1þ B

�
1

2
r2μ2Sϕ

2 − 1

��
; ð13Þ

ϕ̈C ¼ −
1

2
_C _ϕþϕ00 þ ϕ0

�
2

r
− C0

2C

�
− Bμ2Sϕ; ð14Þ

where an overdot denotes ∂=∂t and a prime denotes ∂=∂r.
These equations suggest the following periodic expansion:

Bðt; rÞ ¼
X∞
j¼0

B2jðrÞ cos ð2jωtÞ;

Cðt; rÞ ¼
X∞
j¼0

C2jðrÞ cos ð2jωtÞ;

ϕðt; rÞ ¼
X∞
j¼0

ϕ2jþ1ðrÞ cos ½ð2jþ 1Þωt�: ð15Þ

Inserting this expansion into the system (12)–(14) and
truncating the series at a given j, yields a set of ordinary
differential equations for the radial Fourier components of
the metric functions and the scalar field. We note that out of
the four Eqs. (11)–(14) we only need to use three. The
remaining one can be checked to be satisfied a posteriori.
In practice we only compute the Fourier expansion (15) up
to j ¼ jmax. This introduces a certain error in the accuracy
at which the full system of equations is satisfied. In general
the larger jmax is, the smaller the error [76,81], and we
explicitly checked that this was the case.
We impose regular boundary conditions at r ¼ 0, i.e.,

ϕ0
2jþ1ð0Þ¼0, B0ð0Þ¼1, B2jðrÞ¼0 for j≥ 1, while ϕ2jþ1ð0Þ

and C2jð0Þ are free parameters. At infinity r → ∞, asymp-
totic flatness requires ϕ2jþ1 → 0, C0 ¼ B0 → 1 and C2j ¼
B2j → 0 for j ≥ 1.1 The system (12)–(14) supplemented
with this set of boundary conditions is an eigenvalue
problem for the frequency ω. Fixing one of the free
parameters, e.g, ϕ1ð0Þ, one can shoot for the other
remaining free parameters, requiring that the boundary
conditions are satisfied. For each choice of ϕ1ð0Þ there will

0 10 20 30 40 50
μR

0

0.2

0.4

0.6

0.8

1.0

1.2
μM

T
vector oscillaton
vector boson star
scalar oscillaton
scalar boson star

FIG. 1. Comparison between the total mass of a boson star
(complex scalar or vector fields) and an oscillaton (real scalar or
vector fields), as a function of their radius R. R is defined as the
radius containing 98% of the total mass. The procedure to find the
diagram is outlined in the main text.

1For asymptotically flat spacetimes the metric function
Cðt; rÞ → B2ðrÞ=αðtÞ when r → ∞, for some arbitrary function
αðtÞ. Thus we can always rescale t such that Cðt; rÞ → B2ðrÞ at
r → ∞.
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be a unique family of solutions satisfying the above
boundary conditions, characterized by the number of nodes
in the scalar field profile.
Due to the presence of a mass term in the scalar

potential, the scalar field decays in a Yukawa-like fashion

e−r
ffiffiffiffiffiffiffiffiffiffi
μ2S−ω2

p
=r at large distances. Thus, at infinity the metric

asymptotically approaches the Schwarzschild solution
and the total mass of a given configuration can be
computed using

MT ¼ lim
r→∞

mðrÞ ¼ lim
r→∞

ðB − 1Þr
2B

: ð16Þ

We should note that oscillatons are not truly stable
configurations, but decay on very long time scales due
to a radiative tail. However, since the amplitude of this tail
is exponentially suppressed, for our purposes it is enough to
compute the mass at some finite radius and consider it to be
the mass of the oscillaton. Although these stars do not
possess a well-defined surface where the field vanishes,
the configuration is exponentially suppressed at a radius
r ∼ 1=μS. Thus, one can define an effective radius inside
which much of the mass is localized. We will define the
radius R of the oscillaton as being the radius such thatmðRÞ
is 98% of the total mass MT .
In Fig. 2 we show an example of a configuration. The

profile is smooth everywhere and we find that the series
(15) typically converges already for j ¼ 2. The fundamen-
tal frequency satisfies ω≲ μS as shown in Fig. 3, where we
plot the massMT as a function of ω. In the Newtonian limit
MT → 0, the solutions become spatially diluted with ω →
μS (cf. Fig. 1). For smaller ω the star becomes more
compact, with a maximum mass given by MT ∼ 0.6=μS for
ω ∼ 0.864μS, in agreement with previous studies [18,54].
Due to the time dependence of these solutions, a

perturbative analysis of their linear stability is very chal-
lenging. However the close similarity between oscillatons
and boson stars, suggests that the solutions are stable from

ω ¼ μS down to the maximal mass [82,83]. The results of
Refs. [18,54], where numerical relativity techniques were
used to study how oscillatons behave when slightly
perturbed, suggest that this is indeed the case. Since scalar
oscillatons have been widely discussed in the literature, we
will not discuss them further and instead show that similar
configurations exist for massive vector fields.

B. Massive vector field

Very recently, the Einstein-Proca field equations (3b) and
(3c) have been shown to admit compact configurations,
similar to scalar boson stars, for a complex massive vector
field [21]. On the other hand, for real vector fields, Ref. [26]
found strong numerical evidences that vector oscillatons
can form in the gravitational collapse of a real massive
vector field. Using the formalism introduced above, we can
show that real massive vector fields can indeed form
oscillating compact structures when minimally coupled
to gravity. This is, as far as we are aware, the first time that
these solutions are explicitly constructed.
We consider the metric (10) and a spherically symmetric

vector field

Aμdxμ ¼ Atðt; rÞdtþ Arðt; rÞdr: ð17Þ
To simplify the equations we define the following functions:

Xt ≡
ffiffiffiffi
C

p
At; Xr ≡ 1ffiffiffiffi

C
p Ar; W ≡

ffiffiffiffi
C

p

B
ð _Ar − A0

tÞ;

ð18Þ
where again C≡ B=F. From Eqs. (3b) and (5) we find

X0
t ¼

Xr
_C

2
þ C _Xr − Xt

r
ðB − 1Þ − BWð1 − rWXtÞ; ð19Þ

_Xt ¼
1

r2
∂rðr2XrÞ; ð20Þ
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FIG. 2. Left: Scalar field configuration ϕ at ωt ¼ 0 for ϕ1ð0Þ ¼ 0.2828 and its first Fourier components with jmax ¼ 1. Right:
Corresponding radial metric coefficient B at ωt ¼ 0 and its first Fourier components. This configuration has a total massMT ≈ 0.57=μS
and fundamental frequency ω ≈ 0.912μS.
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Xt ¼ − 1

μ2Vr
2
∂rðr2WÞ; ð21Þ

_W ¼ −μ2VXr; ð22Þ

while from Einstein’s field equations (3c) we have

_B
B
¼ 2rμ2VXrXt; ð23Þ

B0

B
¼ rðμ2VCX2

r þ μ2VX
2
t þ BW2Þ þ 1

r
ð1 − BÞ; ð24Þ

C0

C
¼ 2

r
½1þ Bðr2W2 − 1Þ�: ð25Þ

These equations suggest the following Fourier expansions:

Xtðt; rÞ ¼
X∞
j¼0

Xt2jþ1ðrÞ cos ½ð2jþ 1Þωt�;

Xrðt; rÞ ¼
X∞
j¼0

Xr2jþ1ðrÞ sin ½ð2jþ 1Þωt�;

Wðt; rÞ ¼
X∞
j¼0

W2jþ1ðrÞ cos ½ð2jþ 1Þωt�; ð26Þ

while the metric functions are expanded as in Eq. (15).
Once more, Eq. (23) will not be used to find the solutions.
On the other hand, from Eq. (22), one can find W2jþ1

algebraically, which greatly simplifies the equations [note
that W is just an auxiliary function that we introduced to
simplify the equations, and so one can easily check that,
after findingW2jþ1 from Eq. (22) and X0

r2jþ1 from Eq. (20),
Eq. (21) is automatically satisfied]. Similarly to the scalar
case, we can find a set of ordinary differential equations by
truncating the series at some j and then solve the eigenvalue
problem, imposing regular boundary conditions at r ¼ 0
and asymptotic flatness. This imposes Xr2jþ1ð0Þ¼0,
B0ð0Þ¼1, B2jðrÞ¼0 for j≥1, while Xt2jþ1ð0Þ and C2jð0Þ
are free parameters. At infinity, besides the usual conditions
for the metric functions, we require Xt2jþ1 ¼ Xr2jþ1 → 0.
We can then find solutions by fixingXt1ð0Þ and use the same
method as for the scalar case.
Our results are summarized in Figs. 4 and 5. The overall

behavior is analogous to the scalar case. The series (26)
converges rapidly and already for j ¼ 2 one gets an
accuracy for the ADM mass better than ∼0.2%. The total
mass MT as a function of frequency ω is shown in Fig. 5.
The behavior is analogous to the one found in the scalar
case, although the maximum is slightly larger, MT ∼
1.07=μV (cf. Fig 1), and occurs at ω ∼ 0.875μV . Not
surprisingly, the overall behavior is almost identical to
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FIG. 3. Total mass MT of the scalar oscillaton as a function of
the fundamental frequency ω. The maximum mass is MT ∼
0.6=μS for ω ∼ 0.864μS. This point marks the threshold between
stable and unstable configurations. Stars to the right of the
maximum are stable while those to the left are unstable.
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FIG. 4. Left: Vector field profiles at their peak values for Xt1ð0Þ ¼ 0.1 and its first Fourier components with jmax ¼ 1. Right:
Corresponding radial metric coefficient B at ωt ¼ 0 and its first Fourier components. This configuration has a total mass MT ≈
1.044=μV and fundamental frequency ω ≈ 0.902μV.
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the one found for Proca stars (i.e. complex vector field
boson stars) [21], as can be seen in Fig. 1.
By considering radial perturbations of Proca stars, it was

shown in Ref. [21] that the maximum mass also corre-
sponds to a branching point separating unstable from stable
solutions. Although full numerical simulations are needed,
vector oscillatons should also follow the same pattern. In
particular, similar conclusions should hold: configurations
which reach the unstable branch will either quickly collapse
to BHs or migrate back to the stable branch via mass
ejection, a phenomenon known as the gravitational cooling
mechanism [47,54,55] (see also Sec. VI).
As a final word, we should note that although we only

discussed fundamental states, characterized by Xt having
one node and Xr being nodeless, excited states—solutions
with more nodes—also exist. Since those are expected to be
unstable [84,85] we will not discuss them here.

IV. STARS WITH DARK MATTER CORES

A. Setting and Fourier expansion

In the previous section we showed that self-gravitating
massive bosonic fields can form compact configurations.
An interesting possibility is that these structures might be
accreted by stars, forming a bosonic core in their interior.
For complex bosonic fields, such solutions were already
considered in the literature [28–35]. In a recent Letter [1]
we showed that real bosonic fields can also cluster inside
stars and give rise to oscillating configurations, where both
the star’s material and the field oscillate. In the following
we provide details on these solutions.
We consider the system (3a), (3c), and for simplicity we

focus only on the scalar case. Similar configurations should
also exist for vector fields. Due to the presence of the scalar
field the fluidwill, in general, oscillatewith a radial velocity:

dr=dt ¼ ur=u0 ¼ Vðt; rÞ; ð27Þ

where u0 ¼ Γ= ffiffiffiffiffiffiffiffiffi−gttp
and Γ ¼ ð1 −U2Þ1=2 is the Lorentz

factor connecting the fluid’s comoving frame with the
frame of the observer at rest with respect to a spacelike
hypersurface of constant t [86]. Using the normalization
condition uμuμ ¼ −1 one has U ¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−grr=gtt
p

. In the
Letter [1] we did not assume conservation of the baryonic
number, given by Eq. (7). This is equivalent to neglecting
the radial velocity V ∼ 0. As we show below, this is indeed
a good approximation for small bosonic cores. Physically,
nonconservation of the baryonic number leads to a con-
version of bosonic matter to baryonic matter and vice versa.
This mimics a fundamental interaction between the scalar
field and the star’s material for which the baryon number is
not conserved. On the other hand, whether a conversion
between fundamental fields can indeed occur indirectly
through their gravitational coupling is an interesting dis-
cussion that we leave for future work. We should also note
that for complex fields, which give rise to the boson-
fermion stars first studied in Refs. [28,29], the fluid and the
metric are static, and so for this case we set V ¼ 0.
Once more, we will work with a rescaled scalar field,

ϕ → ϕ=
ffiffiffiffiffiffi
8π

p
and consider a general time-dependent,

spherically symmetric metric, as in Eq. (10). The field
equations, together with the conservation equations (6) and
(7) lead to a system of PDEs given by

_B=B ¼ r

�
_ϕϕ0 − 8πBVðPþ ρFÞ

1 −U2

�
; ð28Þ

_ρF ¼ ðPþ ρFÞ
_nB þ Vn0F

nF
− Vρ0F; ð29Þ

B0=B ¼ r
2

�
C _ϕ2 þ ðϕ0Þ2 þ B

�
μ2Sϕ

2 þ 16π
ρF þ PU2

1 −U2

��
þ ð1 − BÞ=r; ð30Þ

C0=C ¼ 2=rþ Brðμ2Sϕ2 þ 8πρF − 8πPÞ − 2B=r; ð31Þ

ϕ̈C ¼ − _C _ϕ =2þ ϕ00 þ 2ϕ0=r − C0ϕ0=ð2CÞ − Bμ2Sϕ; ð32Þ

2P0 ¼ −ð1 −U2ÞðPþ ρFÞðCB0 − BC0Þ=ðBCÞ
þ V½ðPþ ρFÞð4CV − r _CÞ − 2rC _P�=r

− 2ðPþ ρFÞC _V þ 2CVðPþ ρFÞ
_nB þ VnF 0

nF
; ð33Þ

V 0 ¼−ð1−U2Þ½ð _BþVB0Þ=ð2BÞþð _nBþVnF 0Þ=nF�
−V½4þCð2r _V−4V2Þþ rVð _CþVC0Þ�=ð2rÞ ð34Þ

where we recall that C≡ B=F and U ≡ ffiffiffiffi
C

p
V. We will not

make use of the conservation equations (28) and (29). One
can check a posteriori that these equations are satisfied up
to a certain error introduced by the ansatz we use.
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FIG. 5. Total mass MT of the vector oscillaton as a function of
the fundamental frequency ω. The maximum mass is MT ≈
1.07=μV for ω ≈ 0.875μV. This point marks the threshold
between stable and unstable configurations.
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Employing the periodic expansion (15), one can easily see
that the fluid’s energy density, rest-mass density, pressure
and radial velocity can be consistently expanded as

ρFðt; rÞ ¼
X∞
j¼0

ρF2jðrÞ cos ð2jωtÞ;

nFðt; rÞ ¼
X∞
j¼0

nF2jðrÞ cos ð2jωtÞ;

Pðt; rÞ ¼
X∞
j¼0

P2jðrÞ cos ð2jωtÞ;

Vðt; rÞ ¼
X∞
j¼1

V2jðrÞ sin ð2jωtÞ: ð35Þ

The equations of motion need to be supplemented by an
equation of state. We will focus on an ideal fluid and
polytropic equation of state [57]:

P ¼ KðmNnFÞγ; ρFðPÞ ¼ ðP=KÞ1=γ þ P=ðγ − 1Þ;
ð36Þ

where we take K ¼ 100=μ2S and γ ¼ 2, which can mimic
neutron stars [80,87]. For this choice, the star is also
isentropic, i.e. the fluid’s specific entropy is constant along
the star [57]. In the Letter [1] we considered the equation of
state P ¼ KργF, which is equivalent to the previous one
when the fluid’s internal energy density is much smaller
than the fluid’s rest-mass density. This is a good model for
cold and old neutron stars [57]. In the following, we will
compare the results obtained in both models. In geometrical
unitsG ¼ c ¼ 1 and γ ¼ 2,

ffiffiffiffi
K

p
has units of length and can

be used to set the length scale of the problem in the absence
of the scalar field [88]. Without loss of generality we will
also set mN ¼ 1. The choice K ¼ 100 was considered in
e.g. Ref. [80], which we used to check the accuracy of our
code. Other values of K can be obtained by fixing μS and
rescaling all the quantities accordingly. For example, by
fixing μS ¼ 1, the mass and radius are measured in units offfiffiffiffi
K

p
. Although our results can be generalized to other

equations of state, we should note that generic equations of
state do not allow for a straightforward expansion such as
Eq. (35). A possibility is to consider the oscillating
components to be a small perturbation of a static star,
along the lines of what is usually done to construct slowly
rotating stars [89,90].2 The construction here presented can
then be straightforwardly applied. We have explicitly

checked that using this approach one can generalize our
results to a generic equation of state.

B. Numerical procedure

To construct the stars we employ the same method used
in the previous section, the difference being that, due to the
presence of the fluid, the solutions are now parametrized by
two parameters, e.g., nF0ð0Þ and ϕ1ð0Þ, while for the radial
velocity we impose V2jð0Þ ¼ 0. Additionally, we also need
to impose boundary conditions at the star’s radius. We
define the radius R of the star to be the location where the
pressure drops to zero, PðRÞ ¼ 0. For high scalar field
central densities, first-order terms j ¼ 1 in the density
might become of the order of the zeroth-order term, making
it difficult to find these configurations with good accuracy
and impose the boundary condition at the star’s radius.
However, as explained below, for a given nF0ð0Þ, we expect
these configurations to become unstable at some threshold
ϕ1ð0Þ > ϕc

1ð0Þ. To avoid these numerical difficulties, we
will mostly focus on small ϕ1ð0Þ.
Due to the different length scales present in the problem,

the solutions can also be characterized by the mass
coupling μSM0, where M0 is the mass of the static star
for vanishing scalar field, corresponding to the same value
of central rest-mass density nF0ð0Þ. Depending on the
numerical value of μSM0, we employ different numerical
strategies. For small μSM0, the scalar field density profile
extends beyond the star’s radius. For this case we compute
the profile inside the star and at the star’s radius impose the
matching with the outer solution. The full solution is then
found by imposing asymptotically flat boundary condi-
tions. For large μSM0, the scalar field is exponentially
suppressed inside the star. To avoid numerical errors to
spoil the full solution, we perform tree integrations: we first
find the radius at which the scalar field drops to zero and
then compute the remaining solution by imposing the scalar
field to be zero after this radius. The solution outside the
star is then found by matching it with the inner solution.
A useful quantity to describe scalar-fluid stars is the

scalar field’s energy density, given by

2ρϕ ¼ −2T0
0 ¼ − _ϕ2=gtt þ ϕ02=grr þ μ2Sϕ

2; ð37Þ

and the energy density measured by an observer at rest with
respect to a spacelike hypersurface of constant t, given by

ρF ¼ −T0
0 ¼ Γ2ðρF þ PÞ − P: ð38Þ

Note that, for our solutions, the contribution from the
fluid’s kinetic energy to ρF is negligible, and so we have in
general Γ ∼ 1 and ρF ∼ ρF. With this, we define the time-
average total mass in the fluid and bosons as

MF;B ¼
Z

∞

0

4π
D ffiffiffiffi

B
p

ρF ;ϕ

E
r2dr; ð39Þ

2In this case, at lowest order, the expansion (35) would
be given by ρFðt; rÞ ¼ ρF0ðrÞ þ ϵ2P2ðrÞ∂ρF0=∂P0 cos ð2ωtÞ,
nFðt; rÞ ¼ nF0ðrÞ þ ϵ2P2ðrÞ∂nF0=∂P0 cos ð2ωtÞ, Pðt; rÞ ¼
P0ðrÞ þ ϵ2P2ðrÞ cos ð2ωtÞ, where ϵ is a small bookkeeping
parameter and we assume an equation of state in the absence
of the scalar field of the form ρF0 ≡ ρF0ðP0Þ and nF0 ¼ nF0ðP0Þ.
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where hi denotes a temporal average. The total mass MT
can be found in the usual way through the metric
component grr which asymptotically approaches the
Schwarzschild solution at infinity [cf. Eq. (16)].

C. Results

We will discuss our results assuming baryon conserva-
tion during DM accretion and dynamics, but we will also
discuss stars for which the DM-baryon cross section is so

large that conversion between one and the other is extreme,
to the point where solutions with zero fluid velocity are
allowed. These solutions conserve baryon number on the
average, but not instantaneously. Additionally, this also
serves as a model for stars composed of fields for which
there is no conserved current, such as Majorana fermions or
real bosonic fields.

1. Conserved baryon number

Our results for composite stars with conserved total
baryon numbers are summarized in Figs. 6–9. The overall
behavior and global structure of these DM-cored stars is
dependent on the new mass scale introduced by the scalar
field mass. For very small μM0, the Compton wavelength
of the scalar is very large and the scalar field spreads
throughout the spacetime. This is shown in the left panel of
Fig. 6 for μSM0 ¼ 0.1. For very large scalar field masses,
on the other hand, the scalar is confined to a small region
inside the star, as seen in the right panel of Fig. 6 for
μSM0 ¼ 20. In fact, when μSM0 is extremely large, as
happens for many DM models [c.f. Eq. (2)], the scalar core
hardly knows about the existence of the star outside, and
behaves, to a very good precision, exactly like the pure
oscillatons we described in the last sections. Notice also
that for large mass couplings, one can have a large density,
small oscillaton inside a fluid star. As we discuss below, our
argument then indicates that the oscillaton can be in the
stable branch, indicating that the whole configuration is
stable. In other words, stable, self-gravitating bosonic DM
cores inside stars are possible. These results complement
similar recent findings for fermionic DM cores [37].
Accordingly, the detailed structure of these stars will also

depend on the dimensionless coupling μSM0. For large
couplings, one can think of these composite stars as a
regular fluid star, where at the center sits a small pulsating
oscillaton. It is then natural to expect that the oscillations in
the oscillaton density will induce oscillations in the fluid
material. Indeed, this is a generic feature borne out of our
results. A typical star structure is shown in Fig. 7 for a
0.54% scalar composition and μM0 ¼ 10, corresponding to
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FIG. 6. Comparison between the (time average) energy density
of the scalar field ρϕ and the fluid ρF for mixed scalar oscillatons
and fermion fluids, for scenarios where the total baryon number is
conserved (fluid velocity V ≠ 0). We fix ρF0ð0Þ ¼ 0.0006332,
and have from left to right, μSM0 ¼ 0.1, MB=MT ≈ 21%,
corresponding to ϕ1ð0Þ¼ 0.026 and ωM0 ≈ 0.0993, μSM0 ¼ 1,
MB=MT ≈0.66%, corresponding to ϕ1ð0Þ¼0.025 and ωM0 ≈
0.863, and μSM0 ¼ 20, MB=MT ≈ 0.54%, corresponding to
ϕ1ð0Þ ¼ 0.015 and ωM0 ≈ 16.221. Squares denote the corre-
sponding quantities for complex fields (i.e. mixed boson-fluid
stars for the same MF and MB). The overlap is nearly complete.
Here M0 and ρϕ¼0 are the total mass of the star [for the same
ρF0ð0Þ] and the energy density of the fluid (for the same MF),
respectively, when the scalar field vanishes everywhere. In the left
panel, the ρϕ¼0 and the ρF lines are indistinguishable, because
light fields have a negligible influence on the fluid distribution.
For ρF0ð0Þ ¼ 0.0006332, we have, in our units, M0 ¼ 1 which
corresponds to a star with M0 ∼M⊙. Solutions with larger
ρF0ð0Þ can also be obtained and the qualitative picture remains
the same.
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FIG. 7. Scalar field (left) configuration, density profile of the fluid (center), and corresponding metric component grr (right) for
μSM0 ¼ 10 and MB=MT ≈ 0.54%, corresponding to ϕ1ð0Þ ¼ 0.015, nF0ð0Þ ¼ 0.0006332 and ωM0 ≈ 8.118. We plot the first Fourier
components for jmax ¼ 1.
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a scalar core well inside the fermion fluid. A general feature
of these stars is that they oscillate, driven by the scalar field,
with a frequency

f ¼ 2.5 × 1014
mBc2

eV
Hz: ð40Þ

In particular, the local density is a periodic function of time
with a period dictated by the scalar field. These oscillations
are signalled by a nonzero j ¼ 1 component of the fermion
density expansion (35), and are driven by the time-varying
component of the oscillaton’s density; therefore, the am-
plitude of the fluid’s oscillations is expected to scale with
the mass of the oscillaton. As shown in Fig. 8, for small
mass ratios MB=MT and large μM0 we find that the
amplitude of these oscillations is described by the approxi-
mate relation

δρF2 ≡ ρF2ð0Þ=ρF0ð0Þ ∼ 10ðμM0Þ1=2MB=MT: ð41Þ
Even for MB=MT ¼ 0.01, and for μSM0 ¼ 10 the oscil-
lations are of the order of 30% of the static component. For
this particular setup, where the baryon number is con-
served, the fluid velocity is nonzero, and is shown in Fig. 9.

2. Nonconservation of baryon number

The previous results can be compared and contrasted
with the extreme case where DM and baryonic matter can
convert into one another. Under this assumption, we find
that there are solutions, summarized in Figs. 10–12, that
allow a star to have zero fluid velocity (see also the
discussion in Sec. IVA). We find that despite this, the
overall qualitative behavior is the same as those of baryon-
conserving stars.
The density distribution of baryon nonconserving stars is

shown in Fig. 10 for different dimensionless mass cou-
plings. We remind the reader that these are V ¼ 0 and P ¼
KργF stars that were considered in the Letter. Again, the
mass coupling changes drastically the global behavior of
these stars; large mass couplings result in a small bosonic
DM core which is oblivious of the fermions surrounding it.
The structure of a star is shown in Fig. 11. Because the

equations are technically less challenging to handle in this
case, we can accurately compute their j ¼ 2 Fourier
components and consider larger values of MB=MT . As
we said, the qualitative behavior is similar, and in particular
these composite stars also oscillate in density, driven by the
density-varying oscillaton sitting at their center. Since the
effect of the radial velocity is negligible for smallMB=MT ,
taking V ∼ 0 describes with very good accuracy the main
properties of these stars. For large μM0, the only noticeable
effect of V on the solution is to slightly increase the
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FIG. 9. Velocity profile of the fluid for the star in Fig. 7 [V2 is
the dominant time-dependent component of the velocity profile,
cf. Eq. (35)].

10
-4

10
-3

10
-2

10
-1

10
0

10
1

MB / MT (%)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

|δ
ρ F

2|

μSM0=0.1
μSM0=1.0
μSM0=10
μSM0=20

FIG. 8. Amplitude of the oscillations δρF2 ≡ ρF2ð0Þ=ρF0ð0Þ
as a function of MB=MT . The symbols denote actual
solutions that we computed. We find that for small mass ratios
MB=MT and large μM0 the amplitude is well fitted by
δρF2 ∼ 10ðμM0Þ1=2MB=MT .

0 5
μSr

0

1

2

3

4

5

6

7

8

9

10

ρF (x10
4)

ρφ(x10
7)

ρφ=0(x10
4)

0 5 10 15
μSr

ρF (x10
4)

ρφ (x10
4)

ρφ=0 (x10
4)

0 50 100 150 200
μSr

ρF (x10
4)

ρφ (x10
3)

ρφ=0 (x10
4)

FIG. 10. Same as Fig. 6 but for the case considered in the Letter,
i.e., V ¼ 0 and P ¼ KργF. We fix ρF0ð0Þ ¼ 0.00057092, and have
from left to right, μSM0 ¼ 0.1,MB=MT ≈ 21%, corresponding to
ϕ1ð0Þ ¼ 0.026 and ωM0 ≈ 0.0993, μSM0 ¼ 1, MB=MT ≈ 5%,
corresponding to ϕ1ð0Þ ¼ 0.064 and ωM0 ≈ 0.873, and
μSM0 ¼ 10, MB=MT ≈ 5%, corresponding to ϕ1ð0Þ ¼ 0.06982
and ωM0 ≈ 8.629. Once more, squares denote the corresponding
quantities for complex fields (i.e. mixed boson-fluid stars for the
same MF and MB).
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amplitude of the oscillations in comparison to the V ¼ 0
case. A comparison for the solution of Fig. 7, where this
difference is noticeable, is shown in Fig. 12. In general, the
smaller μM0 andMB=MT the better the agreement between
the two cases.
We stress that the overall behavior might have been

anticipated from an analysis of Fig. 1: for light fields,
μSM0 < 1 the scalar profile is extended and the pure
oscillaton solution is broad and light. As such, the scalar
has a negligible influence on the fluid distribution (as can
be seen from the fact that the zero-scalar line ρϕ¼0 overlaps
with the fluid line in Figs. 6 and 10), and these stars simply
have an extended scalar condensate protruding away from
them. In fact, our results are compatible with a decoupling
between the boson and fluid for large μSMB. For this case,
Fig. 1 alone is enough to interpret the bosonic distribution.
For example, for μSM0 ¼ 10, MB=MT ¼ 5%, we get
μSMB ∼ 0.3, which would imply from Fig. 1 that
μSR ∼ 20 for the scalar field distribution. This is indeed

apparent from Fig. 10. Similar conclusions were reached
when studying mixed fermion fluid/boson stars with
complex fields [30]. In fact, the structure of mixed
oscillatons and fluid stars is almost identical to that of
boson stars and fluids, as can be seen from Figs. 6 and 10,
where we overplot with dotted lines the complex field case.
Overall, our results are consistent with what was

previously found for boson-fermion fluid stars [28,29].
We expect that field configurations with high MB=MT for
large μSM0 should follow the same kind of behavior as that
found in boson-fermion stars. In particular we expect that
bosonic-dominated stars should also be possible when
increasing MB=MT [28,29].
Finally, as we discuss below, a careful stability analysis

shows that, for sufficiently small ϕ1ð0Þ and for stars which
are stable in the absence of scalars, composite stars are
dynamically stable. On the other hand, our results show that
these configurations can be understood well from the mass-
radius relation of oscillatons. The maximum mass sup-
ported is Eq. (9), Mmax=M⊙ ¼ 8 × 10−11 eV=ðmBc2Þ,
which for a neutron star and an axion field of mass
10−5 eV falls well within the stability regime [91].

3. Stability of fluid-boson stars

As was mentioned before, the stability properties of
fluid-boson stars are not expected to depend on the details
of the scalar field description. Therefore, we will focus here
on the well-studied case of a fermionic star with a complex
scalar field, and assume that the results will hold in more
generic cases (in particular, when the scalar field is real).
Since fermion-boson star solutions depend on two param-
eters (i.e., for instance fnFð0Þ;ϕ1ð0Þg), the stability the-
orems for single parameter solutions cannot be directly
applied. This implies that the change in stability of these
solutions cannot easily be inferred from the extremes of a
mass versus radius diagram, and requires a more careful
analysis. Nevertheless, one can argue that a necessary
condition for stability is that the binding energy MT −
mNNF −mBNB be negative [29], where NB is the number
of bosons (associated to the conservation of the Noether
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charge) and NF is the number of fermions (associated
to the conservation of the baryonic number) defined,
respectively, by

NF ¼
Z

∞

0

4π
ffiffiffiffi
B

p
nFr2dr; ð42Þ

NB ¼
Z

∞

0

4π
ffiffiffiffi
C

p
ωjϕj2r2dr: ð43Þ

For the solutions shown in Fig. 8, the binding energy
defined in terms of the masses MT −MF −MB is always
negative. Although negative values do not necessarily
imply stability, they do give strong support to the claim
that these configurations are stable. A more careful stability
analysis shows that for sufficiently small ϕ1ð0Þ and for stars
which are stable in the absence of scalars, the negativity of
the binding energy is a good criterion for stability [78].
A more strict stability criterion to find the critical

point—which separates the stable from the unstable
configurations—can be obtained through a dynamical
analysis, since at the critical point the lowest eigenvalue
in the (radial) perturbations of the star passes zero. In
general this dynamical analysis might become rather
involved and simpler alternative approaches have been
proposed. For instance, it has been observed that in a
critical point there must be a direction n such that the
directional derivatives of fM;NF;NBg vanish [78], imply-
ing that at the stability boundary n is tangential to the level
curves of constantM, NB, and NF. Using this property, the
stability boundary can be found by drawing contours onto
the plane fnFð0Þ;ϕ1ð0Þg for fixed values of the particle
numbers, and looking for the points where these curves
meet and are tangential to each other [78] (see e.g. Fig. 1 of
Ref. [78] and Fig. 2 of Ref. [80]).
It was also noticed [80] that, since a level curve of

constant total mass Mc implicitly defines the trajectory
ϕ1ð0Þ ¼ ϕ1ð0Þ½nFð0Þ;Mc�, the equilibrium critical con-
figurations also correspond to the extreme values of the
number of particles when surveyed along a level curve of
constant total mass. Therefore, a simple procedure to find
the critical point is to calculate the extremes of the particle
numbers when the total mass is held fixed:

∂NF

∂nFð0Þ
����
MT¼Mc

¼ ∂NB

∂nFð0Þ
����
MT¼Mc

¼ 0: ð44Þ

This method was employed in Ref. [80] to obtain the
critical point and distinguish stable from unstable configu-
rations. These results were validated by numerical evolu-
tions, showing that only the stars on one side of such an
extreme were stable against perturbations. The stars on the
other side of the critical point were unstable and could,
depending on the initial perturbation, either migrate to a
stable star or collapse to a BH. Unfortunately, only cases
with a small dark matter component were considered, so the

question regarding what happens with self-gravitating
scalar fields remained unanswered.
These studies can be easily extended to fermion-boson

stars with self-gravitating scalar fields by allowing for
solutions with a comparable number of bosonic and
fermionic particles. Similar masses can be achieved by
either modifying the equation of state of the baryonic fluid
or the mass of the boson particle. Here we allow for mixed
stars dominated either by fermions or bosons by setting
fK;mBg such that the maximum mass of isolated fermion
and boson stars are the same MB ¼ MF ¼ 0.633.
In Fig. 13 the number of particles NF and NB, rescaled

with the total constant mass MT ¼ 0.55, are plotted as a
function of the central rest-mass fluid density mNnFð0Þ.
Clearly, there are two different solution regimes: at low
fluid density the solutions are dominated by the scalar
field component such that NB > NF and ρϕð0Þ > ρFð0Þ.
On the other hand, for high fluid densities, the solutions
are dominated by the fermionic part, so NF > NB and
ρϕð0Þ < ρFð0Þ. An extreme, corresponding to the critical
point separating stable from unstable configurations, is
present in these two regimes. It is easy to show that, in each
regime, the branch on the left of the maximum corresponds
to the stable solutions. This result is indeed confirmed by
numerical evolutions, which are performed with the code
and the techniques described in detail in Ref. [80]. Four
representative equilibrium configurations, one on each side
of the extreme present in each regime, are modified by a
small initial perturbation. The time evolution of the central
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FIG. 13. Number of bosonic and fermionic particles as a
function of nF, rescaled with the total mass MT ¼ 0.55. The
maximum mass for either an isolated boson star or fermion star is
Mmax ¼ 0.633. There are two solution regimes, one with NB >
NF for low fluid densities and another with NF > NB for high
fluid densities. We also display the ratio of energy densities at the
origin ρϕð0Þ=ρFð0Þ, showing that the solutions with low fluid
density correspond to a self-gravitating scalar field. Each regime
of equilibrium configurations has a maximum/minimum corre-
sponding to a critical point. Vertical lines represent the configu-
rations, on both sides of each extreme, being evolved in time to
confirm their stability.
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fluid density mNnFð0Þ is displayed in Fig. 14. Under small
perturbations, the stable configurations just oscillate with
the quasinormal modes, while unstable configurations
either migrate to a stable star or collapse to a BH.
These results confirm that there is nothing special

regarding fermion-boson stars with self-gravitating scalar
fields, in contrast to some claims in the literature [39–43];
these configurations can be either stable or unstable,
depending on the parameters of the system.

V. STARS WITH SCALAR CORES IN
SCALAR-TENSOR THEORIES

Scalar fields are a fundamental component of scalar-
tensor theories of gravity, one of the most natural and
extensively studied extensions of general relativity [92].
These theories are normally characterized by a nonminimal
coupling between a scalar field and gravity. Very compact
stars with vanishing scalar in scalar-tensor theories can be
unstable towards the growth of a scalar field, a phenome-
non called spontaneous scalarization [93–96]. The final
state is a static star with a nonvanishing but static scalar
profile.
A natural consequence of our work is that in these

theories stars can also have scalar cores if the scalar field is
massive and time dependent. Given that massive scalar-
tensor theories are poorly constrained, this opens the way to
improve current bounds on these theories from binary
pulsar experiments. We will leave this for future work and
focus instead on massless scalar-tensor theories. We argue
that even for a massless scalar field, some theories might
admit stars with long-lived scalar cores.
We focus on the simplest possible case, that of a complex

scalar-tensor theory. This is conceptually easier to handle
because it allows for the existence of spherically symmetric

solutions with a static metric. This theory is formally
equivalent to a tensor-multiscalar theory with two real
scalar fields [97,98]. Our results also apply to single scalar-
tensor theories with nonminimally coupled real scalar
fields, the difference being that in these theories the
geometry must also oscillate.
In the physical (Jordan) frame the scalar is nonminimally

coupled to the Ricci scalar [92]. By performing a conformal
transformation, one can write the theory in the Einstein
frame as [97,98]

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

R
16π

− gμν∂μϕ̄∂νϕ

�
þ Sm½A2ðϕ; ϕ̄Þgμν;Φ�; ð45Þ

where ϕ̄ denotes the complex conjugate of ϕ, A2ðϕ; ϕ̄Þ
is a generic function of the scalar field, and Sm denotes
the matter action. The matter fields, denoted collectively by
Φ, are minimally coupled to the Jordan-frame metric
~gμν ¼ A2ðϕ; ϕ̄Þgμν, where the tilde denotes quantities com-
puted in the Jordan frame. This guarantees that the weak
equivalence principle holds. By varying the action (45), one
obtains the following scalar field equation (apart from the
Einstein-Klein-Gordon equations minimally coupled to the
matter fields):

□ϕ ¼ −2 ∂ logA∂ϕ̄ T; ð46Þ

where T denotes the trace of the matter fields’ stress-energy
tensor. The physical stress-energy tensor (written in the
Jordan frame) is related to the Einstein-frame stress-energy
tensor by

Tμ
ν ¼ A4 ~Tμ

ν ; Tμν ¼ A2 ~Tμν; T ¼ A4 ~T; ð47Þ
where ~Tμν is the physical stress tensor in the Jordan frame,
given by Eq. (4) (for details see e.g. Ref. [99]).
We will assume that at spatial infinity the scalar field

vanishes and that the function A can be expanded as

A ≈ 1þ αϕþ ᾱ ϕ̄þ 1

2
βϕϕ̄þ 1

4
β1ϕ

2 þ 1

4
β̄1ϕ̄

2 þ � � � ;
ð48Þ

where β is a real constant, while α and β1 are complex
numbers. Without loss of generality we set α ¼ β1 ¼ 0.
Applying this expansion to Eq. (46) one immediately sees
that the field acquires an effective position-dependent mass
term given by μ2eff ¼ −βT [100,101]. By taking the ansatz

ϕ ¼ 1ffiffiffiffiffiffiffiffi
16π

p ϕðrÞe−iωt; ð49Þ

and expanding the equations of motion around ϕ0 ¼ 0,
we find
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FIG. 14. Central fluid densitymNnFð0Þ as a function of time for
four representative equilibrium configurations from Fig. 13. The
two configurations on the left side of the local extremes are stable
and remain constant (or oscillating) under small perturbations.
The configurations on the right side are unstable, and small
perturbations lead the star either to migrate to a stable star or to
collapse to a BH.
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B0=B ¼ ðr=4Þ½Cω2ϕ2 þ ðϕ0Þ2 þ Bð4βρFϕ2 þ 32πρFÞ�
þ ð1 − BÞ=r; ð50Þ

C0=C ¼ 2=rþ ðBrÞ=2½2βϕ2ðρF − PÞ þ 16πρF − 16πP�
− 2B=r; ð51Þ

ϕ00 ¼ βBðρF−3PÞϕ−Cω2ϕ−2ϕ0=rþC0ϕ0=ð2CÞ; ð52Þ

2P0 ¼ −ðPþ ρFÞðCB0 − BC0Þ=ðBCÞ
− βϕϕ0ðPþ ρFÞ=ð16πÞ: ð53Þ

Here, we consider the matter fields to be described by a
perfect fluid. Note that in all the equations we are only
considering terms up to order ϕ2. The method to find
compact stars is the same as described in the previous
sections, so we will not dwell on it further. For the perfect
fluid we will consider the polytropic equation of state
P ¼ KργF, with the parameters used in the previous
sections.
A solution is shown in Fig. 15. We have not been able to

find solutions for which the scalar decays exponentially at
infinity.3 However, we find that for some specific frequen-
cies ω the scalar field is exponentially suppressed inside the
star. Outside the star these solutions display an oscillating
tail, indicating that they are not truly stable solutions but are
instead long-lived solutions, slowly decaying through the
emission of scalar radiation. This is very similar to what
happens for oscillatons [76,81]. We have only been able to
find such solutions in the range β ≫ 1. Negative values of β
are highly constrained by binary pulsar experiments [102];
however positive values of β remain unconstrained.4

Although a careful analysis is out of the scope of this
paper, our results make it possible that some massless
scalar-tensor theories allow for the existence of stars with
long-lived scalar cores. We would like to emphasize that
our results are formally only valid up to order ϕ2. In the
regime where such solutions exist, higher-order terms are in
general important and should be taken into consideration.
For the specific cases we tried, in particular A ¼ eβjϕj2=2,
higher-order terms change drastically the solution as shown
in Fig. 16. Although, for some specific frequencies, some
solutions display a nontrivial profile inside the star, the
amplitude of the radiative tail is non-negligible (and thus
these solutions will dissipate over smaller time scales).
However full dynamical studies are needed to accurately

compute the time scale over which these configurations
disperse.

VI. ACCRETION AND GROWTH OF DARK
MATTER CORES

We have shown that pulsating stars with DM cores exist
as solutions of the field equations, even when the scalar
DM core is self-gravitating. Although more studies are
required, we also argued that these equilibrium solutions
are stable. Do they form dynamically? Pulsating purely
bosonic states certainly do, through collapse of generic
initial data [18,26,27]. There are two different channels for
the formation of composite fluid/boson stars. One is
through gravitational collapse in a bosonic environment,
through which the star is born already with a DM core. The
second process consists of the capture and accretion of DM
into the core of compact stars. A careful analysis for weakly
interacting massive particles has been done some time ago,
showing that a significant amount of DM can be captured
during the star’s lifetime [44,45]. The capture rate calcu-
lation for bosonic condensates follows through, if the
condensate is small enough that it can be considered
pointlike (we recall that bosonic condensates have a size
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FIG. 15. Scalar field (top) and fluid’s density (bottom) profiles
for β ¼ 7000 and ϕð0Þ ¼ 0.07, by expanding the system (50)–
(53) up to order ϕ2. For this solution we get ω ¼ 1.22. The inset
of the left panel shows a zoom of the scalar field at large
distances.

3And thus truly stationary solutions. In other words, a time-
varying scalar that decays as 1=r at large distances leads to a
nonzero flux of energy at infinity.

4However see Refs. [103,104] for a recent proposal to
constrain positive values of β.

INTERACTION BETWEEN BOSONIC DARK MATTER AND STARS PHYSICAL REVIEW D 93, 044045 (2016)

044045-15



determined by its total mass; very light condensates are
spatially broad). If the condensate is ultralight and mac-
roscopically sized, interactions with the star are likely to be
enhanced.

A. Growth of DM cores for noninteracting fields

Once the scalar is captured it will interact with the boson
core. Interactions between complex fields have shown that
equal-mass collisions at low energies form a bound
configuration [105,106]. In other words, two bosonic cores
composed of complex fields interact and form a more
massive core at the center. This new bound configuration is
in general asymmetric and will decay on large time scales
[25], the final state being spherical [107].
The analysis of the previous sectionmakes it clear that for

large and small bosonmasses, the boson and fluid behave as
decoupled entities.As such, accretion by theDMcore iswell
approximated by considering the collision between oscil-
latons. Using the methods of numerical relativity outlined in
Refs. [108,109] (see also Appendix B), we have considered
collisions between two scalar oscillatons for three differ-
ent cases:

(i) Two equal-mass oscillatons colliding at sufficiently
small energies. An example of such a collision is

shown in the upper panels of Fig. 17 for oscillatons
each with MTμS ∼ 0.36 (corresponding to the curve
P2 in Fig. 22). Note that the total mass is larger than
the peak value and one would naively predict
gravitational collapse to a BH. Instead, the final
result is an oscillating object below the critical mass
as shown by the red solid curve in Fig. 18 (see also
the convergence test in Appendix B).

(ii) Unequal-mass oscillatons for a total mass above the
peak value. The result of this collision is depicted in
the middle panels of Fig. 17. Also in this case the
final configuration relaxes to a perturbed configu-
ration which oscillates around a stable configuration
on the curve of Fig. 1. The time evolution of the total
mass is depicted by the green dashed curve in
Fig. 18, where one can see that the total mass
gradually decreases after the collision.

(iii) Two equal-mass oscillatons but for a totalmass below
the peak value. Even for this case, the final outcome is
also an oscillating object below the critical mass
whosemass as a function of time is shown by the blue
dotted curve in Fig. 18. It is also important to
highlight that the final total mass is higher than those
of the individual stars, showing that cores can grow.

All these collisions share common features. In particular,
one of our main results is that collapse to a BH is generically
avoided for the cases where the total mass is larger than the
critical stable mass.5 This is a general feature of what has
been termed the “gravitational cooling mechanism”: a very
efficient (dissipationless) mechanism that stops them from
growing past the unstable point, through the ejection ofmass
[47,54,55]. Such features have been observed in the past in
other setups, such as spherically symmetric gravitational
collapse [47] (see Fig. 2 in Ref. [27]), slightly perturbed
oscillatons [54] or fields with a quartic self-interacting term
[55]. Gravitational cooling provides a counterexample to an
often used assumption in the literature, that stars accreting
DMwill grow past the Chandrasekhar limit for the DM core
and will collapse to a BH [40–42,45,46,112–114]. Our
results show that this need not be the case, if the DM core is
prevented from growing by a self-regulatory mechanism,
such as gravitational cooling. In fact, avoidance of the BH
final state has been seen in collisions of supercritical neutron
stars as well [115,116], which means that the phenomena is
not exclusive of scalar fields.

B. Effects of self-interaction

The previous results concerned exclusively noninteract-
ing fields (in the notation of Appendix B, λ ¼ 0). We have
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FIG. 16. Scalar field (top) and fluid’s density (bottom) profiles
for A ¼ eβjϕj2=2, β ¼ 7000 and ϕð0Þ ¼ 0.07. For some specific
frequencies the scalar field acquires a nontrivial profile inside the
star. However the amplitude of the radiating tail is non-negligible.

5Collapse toBHs can occur for certain special initial conditions,
such as high-energy collisions of boson stars or even spherically
symmetric collapse [27,110,111]. These results are however not in
contradiction with our statement and findings that, for accretion-
related problems collapse to BHs seems to be avoided.
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extended our calculations to quartic self-interactions as
well; the formalism is laid down in Appendix B. In Fig. 19,
we investigate the effects of self-interaction on the evolu-
tion of the collision of two equal-mass oscillatons. We
define the parameter of self-interaction strength by
Λ≡ λ=μ2. Our results show that the same qualitative
features arise also for self-interacting fields, in particular
strong gravitational-cooling effects.
Thus, even though other more detailed simulations are

still needed, the likely scenario for evolution would
comprise a core growth through minor mergers, slowing
down close to the mass-radius peak (see Fig. 1), at which
point it stops absorbing any extra bosons [27,54]. In other
words, the unstable branch is never reached. This phe-
nomenology is especially interesting, as it would also
provide a capture mechanism for these fields which is
independent of any putative nucleon-axion interaction

time: tμ= 0

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50
zμ

time: tμ

Density
    0.01
   0.001

  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50
zμ

time: tμ=2160

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=2160

Density
     0.1
    0.01

   0.001
  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=3240

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

z μ

time: tμ=3240

Density
     0.1
    0.01
   0.001

  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

z μ

time: tμ= 0

Density
    0.01
   0.001

  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=1687.5

Density
     0.1
    0.01

   0.001
  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=2700.0

Density
    0.01
   0.001

  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ= 0

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ

Density
   0.001
  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=1140

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=1140

Density
     0.1
    0.01

   0.001
  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=2850

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

time: tμ=2850

Density
    0.01
   0.001

  0.0001
   1e-05

-50 -40 -30 -20 -10  0  10  20  30  40  50
xμ

 0

 10

 20

 30

 40

 50

zμ

FIG. 17. Snapshots of the density ρϕ during the collision of two oscillatons. Upper panels: Equal-mass oscillatons, each with
MTμS ∼ 0.36, RμS ∼ 20, along the plane of collision, for half the space (the remaining space can be obtained by symmetry). Note that the
initial total mass of the system is above the Chandrasekhar mass (i.e, the maximum mass in Fig. 1). At very late times, we find that it
relaxes to a point on the curve of Fig. 1. Middle panels: Unequal-mass oscillatons with MTμS ∼ 0.36, RμS ∼ 20 and MTμS ∼ 0.3,
RμS ∼ 30 along the plane of collision. Again, the total mass is above the Chandrasekhar mass, but the final state is an oscillaton in the
stable branch of the diagram. Bottom panels: Equal-mass oscillatons each with MTμS ∼ 0.3, RμS ∼ 30, along the plane of collision.
Notice that the final star is more massive than any of the individual colliding stars, showing that it is possible to grow DM cores.
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cross section: as we discussed, the bosonic core grows (in
mass) through accretion until its peak value. At its
maximum, it has a size RB=M⊙ ∼MB=M⊙. This is the
bosonic core minimum size, as described by Fig. 1. In other
words, even for MB ¼ 0.01MT the boson core has a non-
negligible size and is able to capture and trap other low-
energy oscillatons.

C. Thermal effects inside stars

Finally, we need to discuss thermal effects on the long-
term evolution of these DM cores. We have just learned that
boson stars and oscillatons are prone to mass loss in highly
dynamical situations. It is, in principle, possible that the
thermal motion of the star’s material alone is enough to
disperse completely a scalar condensate.
We will investigate this issue in a conservative setup,

where we turn off all nongravitational interactions between
the oscillaton and the host star. We focus first on a single
nucleon in the star undergoing thermal agitation of
amplitude Ath; see Fig. 20. The density of the star material
can be related to Ath and each nucleon’s mass mN via
ρ ¼ mN=A3

th. For simplicity, we model the nucleon’s
position to be given by a fixed radius R and an azimuthal
angle

φ ¼ Ath

R
sinΩtht: ð54Þ

The frequency Ωth of the nucleon can be related to its mean
free path Ath via mNðAthΩthÞ2 ¼ kBT. It is clear that
emission of gravitational and scalar waves is suppressed
for energy scales Ω ≪ μS, since the excitations are then
confined to the interior of the boson star or oscillaton.
However, for Ωth ≫ μS the fluctuations induced by the
thermal motion are free to propagate to infinity and leave
the star, leading to mass loss of the oscillaton. In other
words, for very light fields, μS ≲ 10−5 eV and realistic star

temperatures T ≳ 105 K, a nonzero mass loss occurs,
which we now need to estimate. Notice that we neglect
the tail of the Maxwell-Boltzmann distribution, and there-
fore our estimate will be doubly conservative.
Our approach will give us an order-of-magnitude esti-

mate of the scalar radiation loss due to the thermal motion
of the star material. We will make two assumptions:

(i) The stresses causing the nucleon to move as in
Eq. (54) can be neglected. Effectively then, to
compute the radiation released in the process, one
only uses the stress-energy tensor of the nucleon.
This approximation neglects whatever is causing the
(nongeodesic) motion. This assumption will cause
factors of order unity to be neglected [117]. It does
not, in principle, affect the order of magnitude of the
numbers we show.

(ii) The thermal motion of all the nucleons is taken into
account by adding incoherently the radiation from a
single nucleon. This is, in principle, a reasonable
assumption and is taken on the grounds that the
motion of the nucleons is random. This assumption
implies that if one nucleon radiates a scalar flux _E1

then the total scalar flux is _EN ¼ N _E1, where N is
the total number of nucleons effectively contributing
to the flux.

The details of our calculations are given in Appendix A.
We find that the flux of scalar radiation at infinity scales as

_E1 ∼m2
N

�
Ath

r0

�
2

ðΩth=μSÞ4; ð55Þ

for large Ωth=μS. The lifetime of a condensate with mass
MB, due to these thermal effects, can be estimated as
τ ∼MB= _E; even for ultralight fields and compact and large
condensates this time scale is much larger than the age of
the Universe.

FIG. 20. Cartoon depicting the thermal motion of nucleons
inside stars, a fraction of which may be occupied by a boson star.
The motion of the nucleons is model ed as harmonic and is due to
collisions with other nucleons.

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0  500  1000  1500  2000  2500  3000  3500

M
T
μ

tμ

Λ=    0
Λ=    1
Λ=  10
Λ=  50
Λ=100

FIG. 19. Time variation of total mass for the collision including
self-interaction λ. Each initial oscillaton is described by the
Gaussian P2 (Aw ¼ 0.9 and wμ ¼ 18) in Fig. 22.
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In summary, in this setup where nongravitational inter-
actions are shut off, thermal effects have no impact on the
dynamics of DM condensates at the center of stars.

VII. CONCLUSIONS

The main purpose of this work (and of the recent Letter
[1]) is to understand how DM might affect the structure of
compact stars, using a fully relativistic setup. The picture
we discussed is quite generic and shows that any self-
gravitating, massive bosonic field can form compact
structures, either in the form of boson stars or oscillatons.
In particular, we showed for the first time that real self-
gravitating massive vector fields can form oscillatons and
boson stars [21].
These structures can cluster inside stars leading to

oscillating configurations with distinctive imprints. In
particular, since the fundamental frequency is ω ∼ μS;V
for noncompact stars (cf. Sec. IV), these oscillations imply
that both the bosonic field and the fluid density (which is
coupled to it gravitationally), vary periodically with a
frequency

f ¼ 2.5 × 1014
�
mBc2

eV

�
Hz; ð56Þ

or multiples thereof. For axion-like particles with masses
∼10−5 eV=c2, these stars would emit in the microwave
band. These oscillations are driven by the boson core and
might have observable consequences; it is in principle even
possible that resonances occur when the frequency of the
scalar is equal to the oscillation frequency of the unper-
turbed star. The joint oscillation of the fluid and the boson
might be called a global thermalization of the star, and is
expected to occur also for boson-star-like cores (which give
rise to static boson cores), once the scalar is allowed to have
nonzero couplings with the star material. Such couplings
where recently considered in Ref. [118], which showed that
the oscillations could leave imprints in the Earth’s breathing
modes and possibly be observable with Earth-based detec-
tors. Although further work is needed, our analysis shows
that stars could also work as good DM detectors. Additional
signatures could also occur in the presence of aDMcore. For
example, bosonic cores are intrinsically anisotropic. A
certain degree of anisotropy in a neutron star might leave
important imprints that could potentially bemeasured [119].
(Some effective field theories going beyond the mean-field
approximation also predict that inside neutron stars, nuclear
matter may become anisotropic; see e.g. Refs. [120–123].
The interplay between these two effects is also an interesting
subject for future research.)
Using full nonlinear evolutions of the field equations and

arguments based on the structure of these DM cores, we
showed that composite structures can be stable, even when
the DM core is self-gravitating. We also provide clear and
precise criteria for the onset of instabilities.

We should stress that previous works on the subject of
DM accretion by stars have implicitly assumed that the DM
core is able to grow without bound and eventually collapse
to BHs [45,46,112–114]. Our results, from full nonlinear
simulations of the field equations, show that the core may
stop growing when it reaches a peak value, at the threshold
of stability, if DM is composed of light massive fields.
Gravitational cooling quenches the core growth for massive
cores and the core growth halts, close to the peak value
(c.f. Fig. 1). Similar mechanisms have also been shown to
be effective in collisions of super-critical neutron stars
[115] (see also[116] and references therein), and thus this
phenomena is a very generic feature of self-gravitating
solutions, and not only of bosonic fields. Together with our
work, these studies show that BH formation depends very
sensitively on the initial conditions of the system and
cannot be solely inferred from the linear stability of
the stars.
Our study focused on core growth through lump accre-

tion, and does not address other forms of growth, in
particular more continuous processes like spherical accre-
tion or wind accretion. Partial results in the literature
indicate that gravitational cooling mechanisms are also
active in these setups [124]. To study BH formation in these
different scenarios, a complete scan of the parameter space
would be necessary. This could be done along the lines of
Refs. [124,116].
Future works should consider more realistic equations of

state and possibly include viscosity in the star’s fluid and
local thermalization. Viscous time scales for neutron star
oscillations can be shown to be large compared to the star
dynamical time scale R, but small when compared to the
(inverse of) the accretion rate likely to be found in any
realistic configuration [125]. As such, we expect that
viscosity will damp global oscillations of the star, even-
tually leading to a depletion of the scalar field core. A
similar effect will occur with local thermalization of the
scalar with the star material if the central temperature
of the star is much larger than the mass of the bosonic field
[48,49]. On the other hand, although more detailed
studies of these effects are still necessary, the results of
Refs. [48,49] suggest that, for bosonic fields with masses≳
keV inside old neutron stars or white dwarfs, local
thermalization should not significantly affect our results.
We also argued that in theories where a scalar field

acquires an effective mass due to the presence of matter,
long-lived oscillating configurations might form inside
stars, in a region of the parameter space which remains
unconstrained. Whether these configurations actually form
and whether they have peculiar observable imprints, can
only be accessed through a fully dynamical analysis. On the
other hand, our results apply directly to massive scalar-
tensor theories (see e.g. Ref. [126]). Further work is still
needed, but our results raise the interesting possibility that
DM cores could be used to further constrain these theories.
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There are a number of other setups where similar results
may hold. For example, minimally coupled, multiple (real)
scalars, interacting only gravitationally, were also shown to
give rise to similar configurations [127]. In higher dimen-
sions, one may ask if purely gravitational oscillatons exist.
Such solutions could arise due to the compactification of
extra dimensions, which effectively give rise to massive
bosonic fields. A natural extension of our work would be to
look for such solutions in theories with massive gravitons
[128], which have received considerable attention in the
past few years. Another outstanding open problem con-
cerns the construction of rotating oscillatons. Rotating
boson stars were obtained for both complex scalar fields
[129] and more recently for complex vector fields [21]. For
real fields, the time dependence of the metric makes the
explicit construction of rotating oscillatons a highly intri-
cate task. A possibility would be to use numerical relativity
methods to construct such solutions. We hope to possibly
solve some of these problems and further develop this
subject in the near future.
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APPENDIX A: OSCILLATING NUCLEONS
AND DM LOSS

In order to investigate themass loss via thermal effects,we
consider a single nucleon vibrating, due to thermal effects,
withasmallamplitudeAth inside theDMcore.Thisnucleonis
at a fixed radius r0, but its azimuthal angle changes as

φ ¼ Ath

r0
sinðΩthtÞ: ðA1Þ

The formalism to study the perturbations induced by
particles at a fixed radius in a bosonic condensate was
developed in Refs. [25,130]. Since we are interested in the
DM mass loss, we focus only in the polar sector of the
perturbations. We shall assume the metric to be the one for
a mini boson star, with maximum mass configurations,
described by the line element

ds2 ¼ −FðrÞdt2 þ BðrÞdr2 þ r2dΩ2: ðA2Þ
Generically, the relevant coefficients of the expansion in the
tensorial spherical harmonics (in the time domain) for a
particle moving inside the star configuration are given by

Að1Þ
lm ¼ i

ffiffiffi
2

p

r2
mNγ

ffiffiffiffiffiffiffi
FB

p dr
dt

δðr − rpÞYlm�
p ; ðA3Þ

Blm ¼ mNγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

lðlþ 1Þ

s
r−1 dr

dt

ffiffiffiffi
B
F

r
δðr − rpÞ

d
dt

Ylm�
p ; ðA4Þ

Bð0Þ
lm ¼ imNγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

lðlþ 1Þ

s
r−1

ffiffiffiffi
F
B

r
δðr − rpÞ

d
dt

Ylm�
p ; ðA5Þ

Flm ¼mNγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl−2Þ!
ðlþ2Þ!FB

s
δðr− rpÞ

×

�
1

2

��
dθ
dt

�
2−

�
dφ
dt

�
2

sin2θp

�
Wlm

�
pþ

dθ
dt

dφ
dt

Xlm
�
p

�
;

ðA6Þ
where the subscript p stands for the nucleon quantities,
Ylm
p ≡ Ylmðθp;φpÞ are the spherical harmonics, and

γ ¼ dt=dτ. The angular quantitiesWlm and Xlm are defined
in Refs. [131,132]. To specialize to our model for a fixed
radius rp ¼ r0, we can, without loss of generality, take the
motion to be in the plane θp ¼ π=2. Additionally, we have

dr
dt

¼ 0;
dφ
dt

¼ Ath

r0
Ωth cosðΩthtÞ;

dθ
dt

¼ 0; ðA7Þ

γ ¼
�
Fðr0Þ − r20

dφ
dt

2
�−1=2

: ðA8Þ

Note that the nucleon frequency is restricted to
AthΩth < Fðr0Þ. Therefore, for an oscillating nucleon at
a fixed radius, we have
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Að1Þ
lm ¼ 0; Blm ¼ 0; ðA9Þ

Bð0Þ
lm ¼ imNmγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F

lðlþ 1ÞB

s
r−1δðr − r0Þe−imφ dφ

dt
Yl0�ðπ=2Þ;

ðA10Þ

Flm ¼ mNγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!

2ðlþ 2Þ!FB

s
½lðlþ 1Þ − 2m2�

× δðr − r0Þ
�
dφ
dt

�
2

e−imφYl0�ðπ=2Þ: ðA11Þ

To extract the corresponding source terms in the frequency
domain, one has to perform the integral

R
dtð⋆Þeiωt

(cf. Refs. [25,130]). For a particle in a circular motion
this is a direct task, because the time dependence is on φ, as
e−imΩtht, and the integral results in a delta function
δðω −mΩthÞ. For the oscillatory motion, the time depend-
ence is still encoded into the azimuthal angle, but the
integration is not direct. In order to perform the integra-
tions, we can use

e−imφ ¼
X∞
n¼0

Xn
k¼0

Anke−ið2k−nÞΩtht; ðA12Þ

ðA13Þ

where

Ank ¼
ð−1Þkþn

2nk!ðn − kÞ!
�
mAth

r0

�
n

ðA14Þ

together with the redefinitions of the trigonometric func-
tions in terms of exponentials, expanding in powers of
Ath=r0. At first order in Ath=r0, the only nonvanishing
source function is

Bð0Þ
lm ¼ F ðr; r0ÞðeiΩtht þ e−iΩthtÞδðr − r0Þ; ðA15Þ

where

F ðr;r0Þ¼−Ath

r0
mN

γmΩth

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ1Þp

ffiffiffiffi
F
B

r
Yl0�ðπ=2Þ; ðA16Þ

where at this order γ ¼ Fðr0Þ−1=2. Therefore, at first order,
the time integral (and the source term in the frequency
domain) results in two terms proportional to δðω� ΩthÞ. To
integrate the differential equations, we can use the same
method exploited in Refs. [25,130]. The energy flux is
given by

dE
dt

¼ ðΩth þ ω0Þkþjϕþðr → ∞Þj2 ðA17Þ
where ω0 is the frequency of the background scalar field,
kþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩth þ ω0Þ2 − μ2S

p
, and ϕþ describes the perturba-

tion induced by the moving nucleon (radiating DM field).
From the above expression it is clear that the scalar
radiation is suppressed for Ωth ≪ μS. Scalar radiation
appears for values of Ωth such that ðΩth þ ω0Þ2 > μ2S.

Our numerical results are summarized in Fig. 21, and
are consistent with a dependence _E ∼m2

NA
2
th=r

2
0ðΩth=μSÞ4

at large frequencies.

APPENDIX B: HEAD-ON COLLISION OF
OSCILLATONS

In this appendix, we review the time evolution scheme
using numerical relativity, for a real scalar field minimally
coupled to Einstein’s equations. For completeness, we also
consider self-interactions of the form λϕ4, as discussed in
the main text. In particular, we focus on the theory

S ¼
Z

d4x

�
R
2κ

− 1

2
∇μϕ∇νϕ − 1

2
μ2Sϕ

2 − 1

4
λϕ4

�
:

1. Time evolution formulation

Let us first consider a generic line element in four-
dimensional spacetimes given by

ds2¼−ðα2− γijβ
iβjÞdt2þ2γijβ

jdxidtþ γijdxidxj; ðB1Þ

where α, βi and γij denote the lapse function, the shift
vector and induced metric, respectively. We introduce the
conjugate momenta for the metric and a massive scalar field
ϕ minimally coupled to gravity,

Kij ¼ − 1

2α
dtγij; Π ¼ − 1

α
dtϕ; ðB2Þ

where dt is the Lie derivative along the shift vector given by
dt ≡ ∂t − Lβ. In the ADM formalism, we describe the time
evolution for these conjugate momenta using
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FIG. 21. Energy flux from a (fluid) point particle vibrating
inside a boson star of radius RμS ¼ 7.84, and at a distance r0
away from the center. The flux is shown as a function of the point
particle’s vibration frequency Ωth. At large frequencies the flux
scales as _E ∼ Ω4

th.
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dtKij ¼ −DiDjαþ αðRij − 2Kk
iKjk þ KKijÞ

þ 4παðγijðS − ρÞ − 2SijÞ;
dtΠ ¼ αð−DiDiϕþ KΠþ μ2Sϕþ λϕ3Þ −DkαDkϕ;

ðB3Þ

where Rij is the three-dimensional Ricci tensor and
projected quantities of the energy-momentum tensor are
given by

ρ ¼ 1

2
Π2 þ 1

2
DkϕDkϕþ 1

2
μ2Sϕ

2 þ 1

4
λϕ4;

ji ¼ ΠDiϕ;

Sij ¼ DiϕDjϕþ 1

2
γij

�
Π2 −DkϕDkϕ − μ2Sϕ

2 − 1

2
λϕ4

�
:

The remaining equations by the 3þ 1 decomposition yield
the Hamiltonian and momentum constraints,

H≡ Rþ K2 − KijKij − 16πρ ¼ 0;

Mi ≡DjKj
i −DiK − 8πji ¼ 0: ðB4Þ

A stable set of evolution equations (BSSN formulation
[133,134]) can be obtained by the decompositions

~γij ¼ χγij; det ~γij ¼ 1;

Kij ¼ χ−1 ~Aij þ
1

3
γijK;

~Γi ≡ −∂j ~γ
ij; ðB5Þ

yielding

dtχ ¼ 2

3
χðαK − ∂iβ

iÞ;

dt ~γij ¼ −2α ~Aij þ ~γil∂jβ
l þ ~γjl∂iβ

l − 2

3
~γij∂lβ

l;

dtK ¼ α

�
~Aij

~Aij þ 1

3
K2 þ 4πðρþ SÞ

�
−DiDiα;

dt ~Aij ¼ χ½αðRij − 8πSijÞ −DiDjα�TF þ αðK ~Aij − 2 ~Ail
~Al
jÞ

þ ~Alj∂iβ
l þ ~Ail∂jβ

l − 2

3
~Aij∂lβ

l;

dt ~Γi ¼ 2α

�
~Γi
jk
~Ajk − 3

2

∂jχ

χ
~Aij − 2

3
~γij∂jK − 8π ~γijjj

�

− 2 ~Aij∂jαþ ~γjk∂j∂kβ
i þ 1

3
~γij∂j∂kβ

k

− ~Γj∂jβ
i þ 2

3
~Γi∂jβ

j − 16πα~γijjj; ðB6Þ

where the superscript TF denotes the trace-free part,
e.g. ½Rij�TF ≡ Rij − 1

3
γijR.

In addition, when we focus on a spherically symmetric
geometry for single oscillatons, we take the following
metric ansatz instead of Eq. (B1):

ds2 ¼ − α2dt2 þ ψ4ηijdxidxj; ðB7aÞ

Kij ¼
1

3
ψ4ηijK; ðB7bÞ

where ηij is the Minkowski 3-metric in spherical coordi-
nates and Kij is the extrinsic curvature of the conformally
flat metric γij ¼ ψ4ηij. The constraints (B4) become

ψ−5Δψ −K2

12
þπ

�
Π2þψ−4ϕ02þμ2ϕ2þ1

2
λϕ4

�
¼ 0;

2

3
K0 þ8πΠϕ0 ¼ 0; ðB8Þ

and the evolution equations are explicitly described by

_ψ ¼ −
1

6
αψK;

_K ¼ −
△α

ψ4
− 2

ψ5
ψ 0α0 þ α

3
K2 þ 4πα

�
2Π2 − μ2ϕ2 − λ

2
ϕ4

�
;

_ϕ ¼ −αΠ;

_Π ¼ αΠK − α

ψ4
△ϕ − 1

ψ4
α0ϕ0 − 2α

ψ5
ψ 0ϕ0 þ αμ2ϕþ αλϕ3;

ðB9Þ

where Π≡− _ϕ=α is the momentum conjugate of ϕ, a dot
and a prime denote derivatives with respect to t and r,
respectively, and △ is the flat Laplacian operator. The
system must be closed by prescribing a gauge condition for
the lapse function. We choose the 1þ log slicing condition
defined by

_α ¼ −2αK: ðB10Þ

To ensure that the boundary conditions are not contami-
nating the results, the outer boundary of the numerical
domain is placed sufficiently far away.

2. Initial data

Single oscillaton: Initial data for a single oscillaton can
be constructed by choosing ϕ ¼ 0, the maximal slicing
condition K ¼ 0 and considering the ansatz [27]

Π ¼ A
2π

ψ−5
2 exp

�
− r2

w2

	
; ψ ¼ 1þ uðrÞffiffiffiffiffiffi

4π
p

r
; ðB11Þ

where A and w are constants denoting the amplitude and
width of the initial scalar pulse and we assume that the
scalar field is initially centered around r ¼ 0. The
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Hamiltonian constraint, Eq. (B8), reduces to an ordinary
differential equation

u00ðrÞ þ A2rffiffiffiffiffiffi
4π

p exp

�
− 2r2

w2

	
¼ 0: ðB12Þ

A particular solution, which is regular at infinity, is
given by

uðrÞ ¼ A2w3

16
ffiffiffi
2

p erf

� ffiffiffi
2

p
r

w

�
: ðB13Þ

The ADM mass can then be computed using

MT ¼ uðr → ∞Þffiffiffi
π

p ¼ A2w3

16
ffiffiffiffiffiffi
2π

p : ðB14Þ

Collision of two oscillatons:We choose again ϕ ¼ 0, the
maximal slicing condition K ¼ 0, and we take the ansatz

Π ¼ Π1 þ Π2; Πi ¼
Ai

2π
ψ−5

2 exp

�
− r2i
w2
i

	
;

ψ ¼ 1þ u1ðrÞffiffiffiffiffiffi
4π

p
r1

þ u2ðrÞffiffiffiffiffiffi
4π

p
r2

þ uðrÞffiffiffiffiffiffi
4π

p
r
; ðB15Þ

where Ai, ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − ziÞ2

p
and wi are constants

denoting the amplitude, location and width of the initial
scalar pulses. With this ansatz, and setting z1 ¼ w2

1L and
z2 ¼ −w2

2L to cancel linear terms in z, the Hamiltonian
constraint reduces to three ordinary differential equations

u001ðr1Þ þ
A2
1r1ffiffiffiffiffiffi
4π

p exp

�
− 2r21

w2
1

	
¼ 0;

u002ðr2Þ þ
A2
2r2ffiffiffiffiffiffi
4π

p exp

�
− 2r22

w2
2

	
¼ 0;

u00ðrÞ þ Ā2rffiffiffiffiffiffi
4π

p exp

�
− 2r2

w2

	
¼ 0; ðB16Þ
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FIG. 23. Time variation of total mass for the equal-mass
collision with different resolutions. Initial data corresponds to
the blue curve P2 (Aw ¼ 0.9 and wμ ¼ 18) in Fig. 22. Upper:
Time resolution dependence. Two oscillatons merge at the time
tμ ∼ 600. Lower: Total mass difference among different spatial
resolutions with μΔt ¼ 0.065625 fixed. The resolutions are set
by μΔh ¼ 54=40 for lowest, μΔh ¼ 54=60 for middle and
μΔh ¼ 54=80 for highest resolution, respectively. The conver-
gence factor is ∼2.86 and then, the error is at most 0.1% in our
computational time.

TABLE I. Initial data for a single oscillaton.

Aw wμ

1.5 8
0.9 18
0.82 19
0.6 25
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where 2=w2 ≡ ðw2
1 þ w2
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1w
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.
Particular solutions, analogous to the single oscillaton

initial data (B13), can be found and are given by
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A2
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Equal-mass oscillatons can then be obtained by setting
A1 ¼ A2 ¼ A and w1 ¼ w2 ¼ w.

3. Single oscillaton

In Fig. 22, we show that our initial data for single
oscillatons, within an appropriate choice of parameters,

result in single oscillatons. We trace the time evolution for
each initial data summarized in Table I. Note that collapse
to a BH occurs when the amplitude of the scalar field is
much larger than the critical value discussed in Ref. [27],
while for very small amplitudes the field simply decays
away to spatial infinity.

4. Collision of two oscillatons

Finally, we show the resolution study for the equal-
mass collision in Fig. 23. The upper figure shows the
time resolution dependence and it indicates that high
resolutions for the time scale of the oscillation, μΔt, are
needed in order to avoid a large dissipation due to
insufficient resolution. The lower figure shows the differ-
ence among total masses with different spatial resolutions
as a function of time. This shows that our error for the
total mass is at most 0.1% in our simulation. The results
in the main text are obtained using appropriate spatial
and time resolutions.
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