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The pseudo-Newtonian potential of Paczynski and Wiita for particles orbiting a Schwarzschild black
hole is generalized to arbitrary static and spherically symmetric spacetimes, including black hole solutions
of alternative theories of gravity. In addition to being more general, our prescription differs substantially
from a previous one in the literature, showing that the association of a pseudo-Newtonian potential even
with a simple black hole metric is not unique.
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I. INTRODUCTION

Black holes are central to several areas of astrophysics,
and supermassive black holes in the cores of galaxies are
important factors in galactic evolution. Black holes in
astrophysical environments are surrounded by matter and
fluids which may form accretion disks orbiting around
them. Although black holes were discovered theoretically
just after the introduction of general relativity, most (if not
all) relativistic theories of gravity are believed to have black
hole solutions. There is currently much interest in theories
of gravity alternative to Einstein theory for several reasons
[1–7]. From the theoretical point of view, attempts to
renormalize general relativity and to produce a quantum
theory of gravity invariably produce deviations from
Einstein theory in the form of higher-order derivatives in
the field equations, extra degrees of freedom, or scalar
fields coupled nonminimally to gravity and matter [6]. The
present acceleration of the Universe discovered with type Ia
supernovae [8] can be explained in the context of general
relativity by re-introducing the problematic cosmological
constant with an incredible amount of fine-tuning, by
advocating a completely ad hoc dark energy [9], an even
more problematic backreaction of cosmological inhomo-
geneities on the cosmic dynamics [10], or by changing the
theory of gravity altogether [4,5,9]. Recently, this last
possibility has motivated an enormous interest in alter-
native theories of gravity.
Going back from cosmology to astrophysics, modifying

gravity would have implications for black holes and particles
and fluids surrounding them and forming accretion disks.
There is, therefore, interest in using observations of black
holes in the near future to test deviations from general
relativity and possibly detect scalar hair [6,7,11,12].

Due to the complication of relativistic motions around
black holes, pseudo-Newtonian potentials have been used
for decades to provide an effective simplified description of
timelike geodesics for massive particles orbiting black
holes [13–17]. These pseudopotentials are surprisingly
accurate in determining orbits, given their simplicity: for
example, the phase space of massive test particles in the
Schwarzschild metric is not too dissimilar from that of the
associated pseudopotential [18], a fact that can be under-
stood by noting that the pseudopotential is defined in such a
way as to preserve the fixed points of the relevant
dynamical system [13,15].
The first pseudo-Newtonian potential introduced in the

literature, the Paczynski-Wiita potential [13,15], reproduces
exactly the location of the innermost stable circular orbit
(ISCO or marginally stable orbit) RISCO, the location of the
marginally bound orbit Rmb, and the form of the Keplerian
angular momentum LðRÞ. It also reproduces accurately, but
not exactly [13,15], the form of the Keplerian angular
velocity and the form of the radial epicyclic frequency.
In this article we address the possibility of introducing a

pseudo-Newtonian potential in theories of gravity alter-
native to Einstein gravity. For simplicity, we limit ourselves
to spherically symmetric spacetimes (spherically symmet-
ric pseudopotentials are often used even for rotating black
holes). Since the field equations of the theories of gravity
are used only to provide black hole solutions, it is
straightforward to generalize to arbitrary spherically sym-
metric static metrics the pseudo-Newtonian potential intro-
duced by Paczynski and Wiita [13] for the Schwarzschild
spacetime, following the pedagogical derivation of
Ref. [15]. A recent derivation of a pseudo-Newtonian
potential for certain spherically symmetric black hole
metrics in Ref. [17] produced a different pseudo-
Newtonian potential. Although the difference becomes
irrelevant asymptotically far away from the inner edge of
the accretion disk, it persists close to it, showing that the
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association of a pseudo-Newtonian potential with a black
hole spacetime is not unique.
We use units in which Newton’s constantG and the speed

of light in vacuo c are unity, and we follow the notation and
conventions of Ref. [19]. The symbol R denotes the areal
radius of spherically symmetric geometries.

II. THE PACZYNSKI-WIITA POTENTIAL FOR
ANY STATIC SPHERICAL BLACK HOLE

Here we derive the analogue of the Paczynski-Wiita
pseudo-Newtonian potential [13] for any static and spheri-
cally symmetric metric. We follow, step by step, the
pedagogical derivation of Ref. [15]. In a restricted class
of static spherically symmetric spacetimes, a different
pseudo-Newtonian potential was obtained in Ref. [17]
by studying the same equations for timelike geodesics
(see below).
Any static and spherically symmetric metric can be

written in the form

ds2 ¼ g00ðRÞdt2 þ g11ðRÞdR2 þ R2dΩ2
ð2Þ ð1Þ

in polar coordinates ðt; R; θ;φÞ, where R is the areal radius
and dΩ2

ð2Þ ¼ dθ2 þ sin2θdφ2 is the metric on the unit 2-

sphere. The timelike and spacelike Killing vectors ξa ¼
ð∂=∂tÞa and ψa ¼ ð∂=∂φÞa are associated with the time
and rotational symmetries, respectively. Let ua be the
4-tangent to a timelike geodesic followed by a particle
of mass m, then ξaua ¼ u0 ¼ −E and ψaua ¼ u3 ¼ R2u3

are constants of motion along these geodesics, correspond-
ing to conservation of energy and angular momentum
(per unit mass). Because of spherical symmetry, the orbits
of test particles are planar and, without loss of generality,
we assume that they take place in the θ ¼ π=2 plane, so that
u2 ¼ 0. The normalization of the 4-velocity gives

g00ðu0Þ2 þ g11ðu1Þ2 þ g33ðu3Þ2 ¼ −1; ð2Þ

or

g00ðu0Þ2 þ g11ðu1Þ2 þ g33ðu23Þ ¼ −1: ð3Þ

Now, setting [15]

g11ðu1Þ2 ≡ v2 ≪ 1; ð4Þ

where v is the radial velocity, we have

1þ v2 ¼ −g00ðu0Þ2 − g33ðu3Þ2
¼ ðu0Þ2ð−g00 − g33L2Þ; ð5Þ

with L≡ u3=u0 ¼ const. Taking the logarithm gives

ln ð1þ v2Þ ¼ 2 ln u0 þ ln ð−g00 − g33L2Þ ð6Þ

and, expanding for small v,

ln u0 ¼
v2

2
−
1

2
ln ð−g00 − g33L2Þ; ð7Þ

where ln u0 ¼ const. Equation (7) has the form of an
energy conservation equation v2=2þUðRÞ ¼ E=m, where

UðRÞ ¼ −
1

2
ln

�
−g00 −

L2

R2

�
: ð8Þ

Stable and unstable circular orbits are located at the
extrema of this potential, where

dU
dR

¼ 1

g00 þ L2

R2

�
−
1

2

d
dR

ðg00Þ þ L2

R3

�
¼ 0: ð9Þ

The last equation is equivalent to

dΦ
dR

−
L2

R3
¼ 0; ð10Þ

where ΦðRÞ is the sought-after pseudo-Newtonian poten-
tial, which is defined up to an irrelevant additive constant.
The choice

ΦðRÞ ¼ 1

2
ð1þ g00Þ ¼ 1

2

�
1þ 1

g00ðRÞ
�

ð11Þ

reproduces the Paczynski-Wiita pseudo-Newtonian poten-
tial for the Schwarzschild metric, which has −g00 ¼ g−111 ¼
1 − 2m=R [13]:

ΦPW ¼ −m
R − 2m

: ð12Þ

Equation (11) gives trivially

g00 ¼ −
1

1 − 2Φ
; ð13Þ

which, in the weak-field limit jΦj ≪ 1, would yield
g00 ¼ −ð1þ 2ΦÞ, a relation familiar from the post-
Newtonian limit of general relativity (e.g., [19]), but this
limit is not appropriate here because the goal is to
investigate strong gravity near black hole horizons. This
aspect brings us to the dichotomy inherent in the use of
pseudo-Newtonian potentials: one wants to explore strong
gravity, but doing this in a Newtonian way, and Newton’s
theory is intrinsically linear and limited to the weak-field
regime. This procedure apparently entails a contradiction.1

However, pseudo-Newtonian potentials do not attempt to
describe all aspects of physics in the strong gravity regime,

1It is also obvious that this pseudo-Newtonian potential cannot
be a truly Newtonian description of gravity because, in vacuo
(e.g., for the Schwarzschild geometry), it should then be
∇2Φ ¼ 0, while in general, this Laplacian does not vanish.
Replacing the flat space Laplacian with the Laplace-Beltrami
operator gij∇i∇jΦ (i; j ¼ 1, 2, 3) does not help, either.
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but only to catch certain aspects, i.e., the innermost stable
and outermost marginally stable circular orbits. Tejeda and
Rosswog [17] define a pseudo-Newtonian potential for
static, spherically symmetric metrics of the form (1) which,
in addition, satisfy the condition g00g11 ¼ −1. Their pseu-
dopotential is

ΦTRðRÞ ¼ −
ðg00 þ 1Þ

2
; ð14Þ

which, using Eq. (13), relates to our potential (11) through

ΦTR ¼ Φ
1 − 2Φ

: ð15Þ

It is only in the limit jΦj ≪ 1 that the two pseudopotentials
coincide, and we have already discussed how this limit is
not appropriate in the vicinity of a black hole. That the
pseudo-Newtonian potentials Φ and ΦTR do not coincide is
best seen at the horizon: when g00 → 0−, Φ → −∞ while
ΦTR → −1=2. Apart from a sign, the difference resides
basically in the fact that the inverse metric coefficient g00

appears in the generalized Paczynski-Wiita potential (11),
while g00 appears in the Tejeda-Rosswog potential (14).
Sarkar, Ghosh, and Bhadra [20] introduce a velocity-
dependent potential to include special-relativistic effects
in the dynamics, by considering spherically symmetric
static metrics with the usual restriction g00g11 ¼ −1. When
the velocity terms are dropped, their potential reduces
to (14).
The lesson to draw from Eq. (15) is that, at least in

principle if not in practice, the pseudo-Newtonian potential
associated with a given spacetime metric is not unique.
At this point, it is appropriate to make explicit the

assumptions used to derive Eq. (11):
(i) The spacetime metric gab is static and spherically

symmetric.
(ii) The metric is written in the gauge (1) using the areal

radius R (which is defined in a geometric, coordi-
nate-independent way).

(iii) The radial velocities v of the massive test particles
defined by v2 ≡ g11ðu1Þ2 are small everywhere
along the timelike geodesics in comparison with
the speed of light (the tangential velocities, by
contrast, are not restricted to be small).

(iv) The pseudo-Newtonian potential is required to
produce at its extrema the circular orbits of the
spacetime geometry (1).

In particular, the Einstein equations have not been used
and the formula (11) is valid in any theory of gravity in
which massive test particles follow timelike geodesics.
What is more, asymptotic flatness of the metric (1) is not
required (see below).
The fact that the result (11) does not depend on the

theory of gravity (provided that test particles follow geo-
desics) will be useful to study particle trajectories and

accretion around black holes in alternative theories of
gravity. Before approaching this problem, however, it is
useful to restrict to general relativity and give a geometric
characterization of the pseudo-Newtonian potential (11)
obtained and some examples.

III. GENERAL RELATIVITY

In this section, we restrict ourselves to general relativity,
and we assume that the geometry is described by Eq. (1).

A. Relation with the Misner-Sharp-Hernandez
mass in general relativity

In this subsection, we make the further assumption that

g00g11 ¼ −1: ð16Þ
This assumption encompasses a wide class of spherically
symmetric geometries2: the condition (16) has been studied
in Ref. [23], where it is shown that it is equivalent to require
that the (double) projection of the Ricci tensor onto radial
null vectors la vanishes, Rablalb ¼ 0. This condition is also
equivalent to require that the restriction of the Ricci tensor
to the ðt; RÞ subspace is proportional to the restriction of
the metric gab to this subspace [23]. Equivalently, the areal
radius R is an affine parameter along radial null geodesics
[23]. These results hold in higher spacetime dimension as
well, and the geometries satisfying the condition (16) in
general relativity include vacuum, electrovacuum with
either Maxwell or nonlinear Born-Infeld electrodynamics,
and a spherical global monopole (“string hedgehog” [24])
[23]. Under this assumption, we can use the characteriza-
tion of the Misner-Sharp-Hernandez mass MMSH [25],

1 −
2MMSH

R
¼ ∇cR∇cR; ð17Þ

and the fact that, in the coordinates ðt; R; θ;φÞ used,
∇cR∇cR ¼ gRR to obtain

ΦðRÞ ¼ −
MMSHðRÞ

R − 2MMSHðRÞ
; ð18Þ

where MMSHðRÞ is the Misner-Sharp-Hernandez mass
contained in a 2-sphere of symmetry of radius R. This is
a quasilocal mass: the Hawking-Hayward quasilocal
energy [26], which seems to be favored by the relativity
community among the various notions of quasilocal energy
introduced in general relativity since the 1960s (see the
review [27]), is well known to reduce to the Misner-Sharp-
Hernandez mass in spherical symmetry [28]. Since both the
areal radius and the Misner-Sharp-Hernandez mass are
geometric quantities defined in a coordinate-independent
way, this formula constitutes a geometric characterization

2Early interest in these metrics includes Refs. [21,22].
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of the generalized Paczynski-Wiita potential (11).
Moreover, Eq. (18) generalizes Eq. (12) valid for the
Schwarzshild geometry. The use of the Misner-Sharp-
Hernandez mass to express the pseudo-Newtonian potential
is particularly appropriate because this construct has a
Newtonian character, contrary to other quasilocal energies
in the literature [29,30].
The (apparent) horizons in spherical symmetry are

located at the roots of the equation ∇cR∇cR ¼ 0 (see,
e.g., [31]) and therefore the pseudopotential Φ diverges at
the (apparent) black hole horizon of radius RAH, where
RAH ¼ 2MMSHðRAHÞ which is, of course, reminiscent of
the behavior of the Paczynski-Wiita potential at the
Schwarzschild horizon. If, in addition, asymptotic flatness
is imposed, the metric coefficient g00 → −1 as R → þ∞
and Φ → const in this limit. However, it is not necessary to
impose asymptotic flatness and in certain situations it may
even be inappropriate (e.g., in the Schwarzschild–de Sitter–
Kottler solution). For example, alternative theories of
gravity designed to explain the present acceleration of
the Universe without invoking an ad hoc dark energy
contain an effective time-dependent cosmological “con-
stant” and black hole solutions are not asymptotically flat in
these theories, but asymptotically Friedmann-Lemaître-
Robertson-Walker [4].
The spherically symmetric metric considered in Ref. [17]

satisfies the condition g00g11 ¼ −1. It is, therefore, possible
to express the Tejeda-Rosswog potential (14) using the
Misner-Sharp-Hernandez mass. The result is

ΦTR ¼ −
MMSH

R
; ð19Þ

which shows again the crucial difference between Φ and
ΦTR at the horizon R ¼ 2MMSHðRÞ.
The Misner-Sharp-Hernandez mass [25] (or, more in

general, the Hawking-Hayward mass [26]) is only defined
in general relativity and in Lovelock gravity [32]; therefore,
Eq. (18) does not apply to other theories of gravity, while
Eq. (11) does.

B. Examples in Einstein theory

We have already discussed how Eq. (11) reproduces the
original Paczynski-Wiita potential for the Schwarzschild
black hole. Let us consider now other examples in Einstein
theory.

1. Schwarzschild–de Sitter–Kottler black hole

A second example is given by the Schwarzschild–de
Sitter–Kottler geometry, which can be written in static
coordinates as

ds2 ¼ −
�
1 −

2m
R

−H2R2

�
dt2 þ dR2

1 − 2m
R −H2R2

þ R2dΩ2
ð2Þ; ð20Þ

where H0 ¼
ffiffiffiffiffiffiffiffiffi
Λ=3

p
is the constant Hubble parameter and

Λ > 0 is the cosmological constant. The locally static
metric is already in the form (1) with g00g11 ¼ −1 in the
region between the cosmological and black hole horizons,
and the corresponding pseudo-Newtonian potential is

ΦSdSðRÞ ¼ −
ðmR þ H2R2

2
Þ

1 − 2m
R −H2R2

; ð21Þ

which coincides with the pseudo-Newtonian potential for
Schwarzschild–de Sitter found in Refs. [33,34]. This exam-
ple shows how asymptotic flatness is not a requirement for
the pseudo-Newtonian description (11). This fact has some
importance because, as noted above, in theories of modified
gravity designed to explain the present acceleration of the
Universe without dark energy, black holes are asymptotically
Friedmann-Lemaître-Robertson-Walker. Currently, there is
much theoretical effort devoted to predicting the effects of
scalar (and other) hair around black holes in modified gravity
[11], which makes them nonisolated.

2. Kiselev black hole

The Kiselev solution of the Einstein equations [35]
describes a static spherical black hole surrounded by n
noninteracting quintessence fluids. It can be used as a toy
model to study the qualitative modifications induced on a
black hole by a dark energy environment. The line element
is [35]

ds2 ¼ −
�
1 −

2m
R

−
Xn
j¼1

�
Rj

R

�
3wjþ1

�
dt2

þ dR2

1 − 2m
R −

P
n
j¼1 ðRj

R Þ3wjþ1
þ R2dΩ2

ð2Þ; ð22Þ

where the equation of state parameters of the n fluids
satisfy −1 < wj < −1=3 (j ¼ 1;…n). This solution has a
black hole horizon at the roots of the equation gRR ¼ 0
(when these exist).
Using Eq. (11), the pseudo-Newtonian potential for the

Kiselev black hole is found to be

ΦKiselev ¼ −
2mþP

n
j¼1

	
R
3wjþ1

j

R3wj




2
h
R − 2m −

P
n
j¼1

	
R
3wjþ1

j

R3wj


i ; ð23Þ

or, for a single fluid,

ΦKiselev ¼ −
½mþ R

2
ðR0

R Þ3wþ1�
R − 2m − RðR0

R Þ3wþ1
: ð24Þ

Reference [14] derives the pseudo-Newtonian potential for
the special case of a single fluid with w ¼ −2=3 (although

FARAONI, BELKNAP-KEET, and LAPIERRE-LÉONARD PHYSICAL REVIEW D 93, 044042 (2016)

044042-4



the generalization to any value of w in the interval
ð−1;−1=3Þ is straightforward), and the result coincides
with Eq. (24) specialized to this single fluid. The
Schwarzschild–de Sitter–Kottler solution (20) and the
corresponding pseudo-Newtonian potential (21) are recov-
ered in the parameter limit w → −1 for a single fluid.
The determination of marginally stable orbits (innermost

stable circular orbit and outermost circular orbit) for the
Kiselev solution is not trivial because it involves solving a
quintic equation for the radii of these orbits [14,36]. The
Sturm theorem was applied to this problem, determining
the condition for the existence of these orbits, in Ref. [36].

IV. PSEUDO-NEWTONIAN POTENTIAL IN
MODIFIED GRAVITIES

Currently, there is significant theoretical research
devoted to probing and testing gravity using black holes
in view of the Event Horizon Telescope, aiming at resolving
the surroundings of black holes up to 1.5 Schwarzschild
radii (e.g., [12]). Therefore, it is appropriate to explore
solutions of alternative theories of gravity to obtain some
insight on the qualitative deviations of black hole properties
from those of general relativity. Physical observables are
the size of the accretion disks around black holes, which are
characterized by the innermost and the outermost stable
orbits and the frequency of the radiation emitted near the
inner edge of the accretion disk.

A. Modified Schwarzschild black holes in
quadratic gravity

A formalism incorporating small deviations from a
Schwarzschild black hole in a wide class of quadratic
theories of gravity was proposed in Ref. [37]. The action
includes dynamical Chern-Simons gravity as a special case
and is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ α1f1ðϕÞR2 þ α2f2ðϕÞRabRab

þα3f3ðϕÞRabcdRabcd þ α4f4ðϕÞRabcd
�Rabcd

−
β

2
∇cϕ∇cϕþ LðmÞ

�
; ð25Þ

where R is the Ricci curvature of the metric gab with
determinant g, Rab; Rabcd, and �Rabcd are the Ricci and
Riemann tensor and the dual of the latter, respectively, ϕ is
a scalar field, αi and β are coupling constants, and fiðϕÞ
(i ¼ 1;…; 4) are coupling functions which can be Taylor-
expanded around ϕ ¼ 0. The spherically symmetric, static,
and asymptotically flat geometry describing deviations
from the Schwarzschild metric is found to be [37]

ds2 ¼ −
�
1 −

2M
R

�
ð1þ hðRÞÞdt2 þ 1þ kðRÞ

1 − 2M
R

dR2

þ R2dΩ2
ð2Þ; ð26Þ

where

hðRÞ ¼ ζ

3ð1 − 2M=RÞ
�
M
R

�
3
~hðRÞ; ð27Þ

kðRÞ ¼ −ζ
1 − 2M=R

�
M
R

�
2
~kðRÞ; ð28Þ

ζ ¼ 16πα23
βM4

0

; ð29Þ

and where M0 is a bare mass related to the physical
mass M by

M ¼ M0

�
1þ 49ζ

80

�
; ð30Þ

which leads to the implicit equation for the dimensionless
function ζðMÞ [37]

ζ

�
1þ 49ζ

80

�
4

¼ 16πα23
βM4

: ð31Þ

The functions h̄ðRÞ and k̄ðRÞ are given by [37]

~hðRÞ ¼ 1þ 26M
R

þ 66M2

5R2
þ 96M3

5R3
−
80M4

R4
; ð32Þ

~kðRÞ ¼ 1þM
R
þ 52M2

3R2
þ 2M3

R3
þ 16M4

5R4
−
368M5

3R5
: ð33Þ

The solution (26) is regular everywhere except at R ¼ 0,
where it exhibits the usual black hole spacetime singularity.
Equation (11) then yields the pseudo-Newtonian potential
in the wide class of quadratic theories of gravity (25):

ΦðRÞ ¼ −M
R

1 − ζ
6ð1−2M=RÞ ðMRÞ2ð1 − 2M=RÞ ~hðRÞ

ð1 − 2M=RÞ½1þ 3
ð1−2M=RÞ ðMRÞ3 ~hðRÞ�

: ð34Þ

The radius of the innermost stable circular orbit corre-
sponding to Φ0ðRÞ ¼ 0 is computed in [37] as

RISCO ¼
�
6 −

16297ζ

9720

�
M: ð35Þ

In this case, the spacetime metric does not satisfy the
condition g00g11 ¼ −1 and, in the weak-field limit, there
are two post-Newtonian potentials since the post-
Newtonian line element has the form

ds2 ¼ −ð1 − 2ΦÞdt2 þ ð1þ 2ΨÞdR2 þ R2dΩ2
ð2Þ: ð36Þ

This feature is well known in alternative theories of gravity,
also for cosmological perturbations. The fact that the
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pseudo-Newtonian potential apparently depends only on
g00 (and not on g11) seems to be a limitation of attempts to
probe alternative theories of gravity near black hole
horizons which use such pseudopotentials. However, this
is not entirely true since v2 depends also on g11, as shown
by Eq. (4). This aspect is discussed in the next subsection.

B. Epicyclic frequency

Consider now orbits in the equatorial plane z ¼ 0.
Switching from spherical to cylindrical coordinates
ðr;φ; zÞ, the effective potential and the pseudopotential
(11) are cylindrically symmetric, U ¼ Uðr; zÞ and
Φ ¼ Φðr; zÞ. Consider an equatorial circular orbit at an
extremum of the effective potential U, given by ðr0;φ0 þ
Ωt; 0Þ (where φ0 is an azimuthal initial condition) and
constant angular momentum Lð0Þ. The Keplerian frequency
Ω ¼ _φ of this orbit satisfies (e.g., [38])

Ω2 ¼ 1

r
∂Φ
∂r

����
ðr0;0Þ

¼ Lð0Þ
r20

: ð37Þ

In the case of the potential (11), we have

Ω2 ¼ 1

2r
∂g00
∂r

����
ðr0;0Þ

: ð38Þ

Now perturb this circular orbit so that

rðtÞ ¼ r0 þ δrðtÞ; ð39Þ

φðtÞ ¼ φ0 þΩtþ δφðtÞ; ð40Þ

zðtÞ ¼ δzðtÞ; ð41Þ

and the angular momentum per unit mass is L ¼ Lð0Þ þ δL.
In the approximation of small perturbations, the horizontal
and vertical epicyclic frequencies κ and ν are given by

κ2 ¼
�∂2Φ
∂r2 þ

3L2
ð0Þ

r4

�
ðr0;0Þ

¼ 2Ω
r

∂
∂r ðΩ

2rÞj
ðr0;0Þ

¼ 4Ω2 þ r
∂ðΩ2Þ
∂r

����
ðr0;0Þ

; ð42Þ

ν2 ¼ ∂2Φ
∂z2

����
ðr0;0Þ

; ð43Þ

respectively [38]. In our case, these formulas give

κ2 ¼ 1

2

∂2g00

∂r2
����
ðr0;0Þ

; ð44Þ

ν2 ¼ 1

2

∂2g00

∂z2
����
ðr0;0Þ

: ð45Þ

In the case of a stable circular orbit of radius r0, a test
particle will oscillate with δr ¼ δx1 ¼ δ0 cos ðκtÞ.
As for the radius of the innermost stable circular orbit, it

seems that the horizontal and vertical epicyclic frequencies
depend only on g00 and not on other metric components.
However, the quantity v appearing in the conservation
equation v2=2þUðRÞ ¼ E=m of the previous section is
related with gRR by Eq. (4). This relation can be interpreted
as saying that, if proper (instead of coordinate) radii
and vertical distances are to be used, then one must replace
the intervals dr and dz with drprop ¼ ffiffiffiffiffiffi

grr
p

dr and
dzprop ¼ ffiffiffiffiffiffi

gzz
p

dz. This replacement is consistent with the
definition of the radial velocity v2 ≡ g11ðu1Þ2 in [15]. Then
the expressions of the Keplerian and epicyclic frequencies
Ω, κ and ν should be replaced by Ω= ffiffiffiffiffiffi

grr
p

, κ=
ffiffiffiffiffiffi
grr

p
, and

ν=
ffiffiffiffiffiffi
gzz

p
, making these physical quantities dependent on

metric components other than g00. Then, testing particle
orbits would mean doing more than merely testing gravi-
tational shifts. Remember, however, that the Paczynski-
Wiita potential does not reproduce the epicyclic frequencies
accurately even in the Schwarzschild spacetime [15].
Let us discuss now the condition (4) in cylindrical

coordinates in the equatorial plane. Consider the coordinate
transformation

fxμg ¼ ðt; r;φ; zÞ → fxμ0 g ¼ ðt; R; θ;φÞ ð46Þ

with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
; ð47Þ

φ ¼ φ; ð48Þ

θ ¼ tan−1
�
r
z

�
; ð49Þ

and inverse

r ¼ R sin θ; ð50Þ

φ ¼ φ; ð51Þ

z ¼ R cos θ: ð52Þ

Equation (4) states that v2 ¼ gRRðuRÞ2, where uR ≡ dR=dτ
and τ is the proper time along a timelike geodesic. Using
the transformation property of the metric tensor,

gμ0ν0 ¼
∂xμ
∂xμ0

∂xν
∂xν0 gμν; ð53Þ

one obtains
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gRR ¼ ∂xμ
∂R

∂xν
∂R gμν

¼ grr

�∂r
∂R

�
2

þ grr

�∂z
∂R

�
2

þ 2grz
∂z
∂R

∂r
∂R

¼ sin2θgrr þ cos2θgzz þ sinð2θÞgrz: ð54Þ

On the equatorial plane θ ¼ π=2, it is gRR ¼ grr. We now
have

uR ≡ dR
dτ

¼ 1

R
ðrur þ zuzÞ; ð55Þ

using Eq. (47) and, on the equatorial plane, uR ¼ ur.
Therefore, it is also

v2 ¼ gRRðuRÞ2 ¼ grrðurÞ2 ð56Þ
on the z ¼ 0 plane. The radial velocity near an equatorial
circular orbit then obeys

δ_r≡ dδr
dt

¼ dr
dτ

dτ
dt

¼ δur

u0
¼ vffiffiffiffiffiffi

grr
p

u0
≃ vffiffiffiffiffiffi

grr
p ð57Þ

to first order. Since v depends on grr, which is in general
distinct from g00 in alternative theories of gravity, there is
hope for tests of black hole metrics which solve these
theories.

V. CONCLUSIONS

Given the many reasons to study theories of gravity
alternative to general relativity and, as a consequence, black
holes in these theories, and given that the future Event
Horizon Telescope promises to image the black hole SgrA�
at the center of our Galaxy with a resolution of 1.5
Schwarzschild radii [12], it is of interest to study the
dynamics of particles around black holes in general space-
times, not only in those (Schwarzschild or Kerr) which solve
the Einstein equations of general relativity. A simplifying
tool widely used in numerical simulations of accretion
disks around black holes is the pseudo-Newtonian potential.
Restricting, for simplicity, to static and spherically

symmetric black hole metrics, we have shown how a
pseudo-Newtonian potential can be derived for any such
spacetime, following step by step the pedagogical derivation
of the Paczynski-Wiita potential [13] given in Ref. [15]. The
generalization of the Paczynski-Wiita potential to any static
spherically symmetric metric (not necessarily representing a
black hole3) is straightforward, but nevertheless it comes
with a surprise. A previous generalization of this potential,
restricted to the subclass of static spherical symmetric
metrics satisfying the condition g00g11 ¼ −1 [17], produces
a different pseudo-Newtonian potential, although essentially
the same equations (i.e., the equations for timelike geo-
desics) were considered in [17]. There is no obvious
compelling reason to prefer one of the two potentials over
the other. Therefore, this discrepancy means that even the
pseudo-Newtonian potential associated with a simple black
hole spacetime is not unique. There are now many pseudo-
Newtonian potential functions in the literature, for both
spherical and cylindrically symmetric (rotating) black holes.
Since these potentials are just effective quantities, mere tricks
used to simplify complicated equations, one should not
regard them as fundamental quantities and attribute to them
more importance than they deserve. Nevertheless, these
pseudopotentials are used in practical calculations in astro-
physics and it would be worth understanding them fully
together with their limitations. An interesting aspect is the
expression of the (generalized) Paczynski-Wiita potential in
terms of the Hawking quasilocal mass (which in spherical
symmetry reduces to the Misner-Sharp-Hernandez mass). It
would be interesting to relate this potential, and other
pseudo-Newtonian potentials, also to the other known
quasilocal energy constructs if possible.
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