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We develop a geometric criterion that unambiguously characterizes the residual symmetries of a
gravitational Ansatz. It also provides a systematic and effective computational procedure for finding all the
residual symmetries of any gravitational Ansatz. We apply the criterion to several examples starting with
the Collinson Ansatz for circular stationary axisymmetric spacetimes. We reproduce the residual
symmetries already known for this Ansatz including their conformal symmetry, for which we identify
the corresponding infinite generators spanning the two related copies of the Witt algebra. We also consider
the noncircular generalization of this Ansatz and show how the noncircular contributions on the one hand
break the conformal invariance and on the other hand enhance the standard translation symmetries of the
circular Killing vectors to supertranslations depending on the direction along which the circularity is lost.
As another application of the method, the well-known relation defining conjugate gravitational potentials
introduced by Chandrasekhar, which makes possible the derivation of the Kerr black hole from a trivial
solution of the Ernst equations, is deduced as a special point of the general residual symmetry of the
Papapetrou Ansatz. In this derivation we emphasize how the election of Weyl coordinates, which
determines the Papapetrou Ansatz, breaks also the conformal freedom of the stationary axisymmetric
spacetimes. Additionally, we study AdS waves for any dimension generalizing the residual symmetries
already known for lower dimensions and exhibiting a very complex infinite-dimensional Lie algebra
containing three families: two of them span the semidirect sum of the Witt algebra and scalar
supertranslations and the third generates vector supertranslations. Independently of this complexity we
manage to comprehend the true meaning of the infinite connected group as the precise diffeomorphisms
subgroup allowing to locally deform the AdS background into AdS waves.
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I. INTRODUCTION

A frequent scenario in the now centennial theory of
general relativity is that solving Einstein equations can lead
to integration constants and even integration functions that
turn out to be redundant, i.e. they can be eliminated by
appropriate coordinate transformations and are not related
to the truly dynamical content of the theory. This is due to
the fact that after realizing the original symmetries of the
physical configuration under study through a chosen
Ansatz, a sort of gauge freedom can remain, defining a
residual symmetry on the defining variables of the Ansatz.
Consequently, these eliminations can be expected previous
to the integration process by virtue of its kinematical
character. In order to illustrate the point, let us consider
as an example the Collinson Ansatz for a circular stationary
axisymmetric spacetime [1–3]

ds2 ¼ e−2Q
�
−
ðdτ þ adσÞðdτ − bdσÞ

aþ b
þ e−2Pdzdz̄

�
; ð1Þ

where the structural functions a, b, P, and Q only depend
on the complex coordinate z and its complex conjugate z̄.
If one performs the following diffeomorphism,

ðτ; σ; zÞ ↦ ð~τ ¼ τ þ εσ; ~σ ¼ σ; ~z ¼ zÞ; ð2Þ

it can be compensated for by the next redefinition of the
structural functions,

ða;b;P;QÞ↦ ð ~a¼ a− ε; ~b¼ bþ ε; ~P¼P; ~Q¼QÞ; ð3Þ

which means that in terms of the new variables the metric is
form invariant

ds2 ¼ e−2 ~Q
�
−
ðd~τ þ ~ad ~σÞðd~τ − ~bd ~σÞ

~aþ ~b
þ e−2 ~Pd~zd~̄z

�
: ð4Þ

This fact implies that if a solution for the functions a and b
is found such that both contain homogeneous contributions
differing only in sign, as the ones exhibited in the
redefinitions (3), these contributions can be eliminated
with the previous diffeomorphism (2), which is just a
simple rotation in the ðτ; σÞ plane.
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The above is a concrete example of a residual symmetry
of the Collinson Ansatz, and it is natural to wonder whether
there are more such symmetries and obviously how to find
them. Unfortunately, these kinds of symmetries are usually
discovered by the large use of experience and having an eye
for that is crucial. Hence, it is fundamental to understand if
there exists a general way to characterize residual sym-
metries that additionally provides a systematic way to find
all of them. The main objective of this work is precisely to
propose a criterion which allows us to accomplish these
goals for any metric Ansatz.
More concretely, suppose you have a metric whose

components gαβ explicitly depend on some of the coor-
dinates xμ and its remaining dependence implicitly occurs
through some a priori unknown functions uJ ¼ uJðxμÞ,
giving rise to a concrete metric Ansatz

ds2 ¼ gαβðxμ; uJÞdxαdxβ: ð5Þ

We are interested in the following question: what are the
continuous transformations that preserve the form of this
Ansatz? Namely, coordinate transformations

xα ↦ ~xα ¼ ~xαðxμ; uJ; εÞ; ð6aÞ

and redefinitions of the Ansatz functions

uI ↦ ~uI ¼ ~uIðxμ; uJ; εÞ; ð6bÞ

depending on at least one parameter ε, such that they satisfy

ds2 ¼ gαβðxμ; uJÞdxαdxβ
¼ gαβð~xμ; ~uJÞd~xαd~xβ ¼ d~s2; ð7Þ

where the latter expressionmeans that the dependence of the
gravitational potentials gαβ in terms of the new quantities
must be exactly the same than in the original variables. We
emphasize that, in order to cover the more general situation,
it is convenient to consider mixed transformations where the
coordinates xμ and the unknown functions uJ are handled as
independent variables, i.e. the transformations (6) are just
point to point maps in a space built of spacetime coordinates
togetherwith theAnsatz functions. The advantage of dealing
with a parametric family lies in the fact that we can assume
that (6) form a one-parameter group of point transformations
or, equivalently, a Lie-point transformation and apply the
machinery of continuous symmetry groups originally intro-
duced by Sophus Lie for the systematic study of differential
equations [4–7].
The Lie-point symmetries of vacuum Einstein equations

are well understood [8,9], as well as their local Lie-
Bäcklund generalizations [10–12]. Even how to implement
nonlocal Lie-Bäcklund generalizations in the presence of
Killing vectors is known, see [13] and references therein.
However, for the case of configurations enjoying a given

symmetry as the ones in which we are interested, also
called group invariant solutions, no systematic study is
known about their residual symmetries. An exception
is Ref. [14] where the Lie symmetry reduction method is
reexamined in the context of general relativity in comparison
with the standard derivations of exact solution in this field.
Residual symmetries play an important role in this con-
struction, they were termed the automorphism group in this
reference, where the expression residual groupwas reserved
for the symmetries of the reduced field equations. Another
exception is Ref. [15] which focuses the study of residual
symmetries to the case of homogeneous spaces.
The work is organized as follows. In Sec. II we establish

the theoretical framework used in order to derive the criterion
to study the residual symmetries of a generic metric Ansatz.
With the criterion at hand, in Sec. III we return to the subject
of the residual symmetries of the Collinson Ansatz (1). After
solving the restrictions imposed by the criterion we con-
sistently found the whole class already exhibited by
Collinson himself [1]. In Sec. IV we treat the well-known
case of spherically symmetric spacetimes in its static version
as well as the time-dependent one and we emphasize its
similarities and differences. We investigate the so-called
anti–de Sitter (AdS) waves for any dimension in Sec. V, we
generalize the residual symmetries of the lower-dimensional
cases presented in Refs. [16,17]. The renowned Papapetrou
Ansatz [18] is studied in Sec. VI. The knowledge of its more
general residual symmetry transformation allows us to find
as a particular limiting case the conjugate transformation
between the Ernst potentials introduced by Chandrasekhar
[19]. We remark that this conjugate transformation is the one
allowing us to relate a trivial but unphysical solution of the
Ernst equations [20] to the celebrated Kerr black hole [21].
Finally, we explore the noncircular generalization of the
Collinson Ansatz [3] in Sec. VII. In this case, the noncircular
contributions change dramatically the nature of the residual
symmetries of the Ansatz if they are compared to those of the
original Collinson metric. The detailed calculations showing
how to solve the proposed criterion for each case are
included in separate appendixes in order to emphasize the
simplicity of the method.

II. THE CRITERION

In this section we will provide a geometrical characteri-
zation of residual symmetries. The starting point is to think
of coordinates and structural functions à la Lie, i.e. all
handled as independent variables in an abstract space (we
return to this point later). After that, we consider the
infinitesimal version of the one-parameter Lie-point trans-
formations defining the residual symmetries (6)

~xα ¼ xα þ εξαðxμ; uJÞ þ � � � ; ð8aÞ

~uI ¼ uI þ εηIðxμ; uJÞ þ � � � ; ð8bÞ
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which give rise to the generator

X ¼ ξαðxμ; uJÞ∂α þ ηIðxμ; uJÞ∂I; ð9Þ

with components defined as usual

ξαðxμ; uIÞ≡ ∂ ~xα
∂ε

����
ε¼0

; ð10aÞ

ηIðxμ; uJÞ≡ ∂ ~uI
∂ε

����
ε¼0

: ð10bÞ

For example, it is easy to see that the residual symmetry of
the Collinson Ansatz defined by the transformations (2) and
(3) coincides with their infinitesimal version, giving as
generator

X ¼ σ∂τ − ∂a þ ∂b: ð11Þ

We are now ready to explore the infinitesimal conse-
quences of the form-invariant condition (7)

d~s2 ¼ gαβðxμ þ εξμ þ � � � ; uJ þ εηJ þ � � �Þ
× dðxα þ εξα þ � � �Þdðxβ þ εξβ þ � � �Þ

¼ ds2 þ ε½ðξμ∂μgαβ þ 2gμα∂βξ
μ þ ηI∂IgαβÞdxαdxβ

þ 2gαβ∂Iξ
βdxαduI� þ � � � ; ð12Þ

i.e. keeping the form of the metric requires necessarily the
following conditions on the infinitesimal generators

ξμ∂μgαβ þ 2gμðα∂βÞξμ ¼ −ηI∂Igαβ; ð13aÞ

∂Iξ
β ¼ 0: ð13bÞ

These conditions are interpreted as follows. The condition
(13b) establishes that the components of the generator
along spacetime depend only on the spacetime coordinates,
i.e. these components represent genuine one-parameter
diffeomorphisms of spacetime generated by the vector
field ξ ¼ ξμðxαÞ∂μ. At the same time, a one-parameter
diffeomorphism changes the metric by the corresponding
Lie derivative, £ξgμν, which is just what appears in the
left-hand side of condition (13a). Hence, the fact that the
right-hand side of condition (13a) is minus the directional
derivative of the metric along the components of the
generator associated with the structural functions,
ηðgμνÞ ¼ ηI∂Igμν, only indicates that the above spacetime
diffeomorphisms are compensated for by appropriate rede-
finitions of the structural functions: £ξgμν ¼ −ηðgμνÞ. These
conditions are entirely compatible with the given definition
of residual symmetry and are obtained by an elementary
infinitesimal reasoning.
For example, it is easy to check that the generator (11)

indeed satisfy the conditions (13) once they are evaluated in

the Collinson Ansatz. Regarding the question posed in the
Introduction on whether there are more residual sym-
metries, we emphasize that for any given fixed gravitational
background the conditions (13) are an overdetermined
system of linear partial differential equations for the
components of the generator as functions of the coordinates
and the structural functions; the general solution for such
systems can always be found [5].
Before embarking on the expedition to explore the

consequence of the obtained conditions on concrete
gravitational backgrounds, we would like to highlight that
the Lie-point transformation (6) describing residual sym-
metries, its infinitesimal version (8) with generator (9), and
the resulting conditions (13) all have a more geometrical
and intuitive interpretation if we consider an abstract space
with coordinates

zA ¼ ðxμ; uIÞ: ð14Þ

In applications to differential equations the use of a
prolonged version of this space is common which includes
also the derivatives of structural functions as coordinates,
zA¼ðxμ;uI;uIμ1 ;uIμ1μ2 ;…;uIμ1…μnÞ, and it is formally known
in mathematics as the nth jet space [5], where uIμ1…μn

denotes the nth derivative of the structural function uI with
respect to spacetime coordinates xμ. In our case, the metric
does not depend on derivatives, therefore, it is sufficient to
consider the 0th jet space or simply jet space.1 The residual
symmetries (6) are now standard diffeomorphisms in jet
space, zA ↦ ~zA ¼ ~zAðzB; εÞ, having as infinitesimal trans-
formations

~zA ¼ zA þ εXAðzBÞ þ � � � ; ð15Þ

whose generator is a standard vector field in jet space,

X ¼ XAðzBÞ∂A; XAðzBÞ≡ ∂ ~zA
∂ε

����
ε¼0

: ð16Þ

The spacetime metric (5) can be considered as an object in
jet space,

ds2 ¼ gABðzCÞdzAdzB ¼ gαβðxμ; uJÞdxαdxβ; ð17Þ

with the trivial choices gμI ¼ 0 ¼ gIJ for all μ, and I, J.
Since the transformations are now standard one-parameter
diffeomorphisms of jet space, the residual symmetries are
only standard isometries of the jet space metric (17), i.e. the
obvious criterion to find residual symmetries in this
geometrical approach is that the generators are just jet
space Killing fields,

1There are some special examples of metric Ansatz which also
depend on the derivatives of the structural functions. They
deserve separate attention [22].
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£XgAB ¼ XC∂CgAB þ 2gCðA∂BÞXC ¼ 0: ð18Þ
Using the fact that the jet space metric (17) has only
nontrivial components along spacetime directions we
exactly recover the conditions (13) already obtained by
an elementary infinitesimal reasoning.
The necessity of conditions (13) is beyond doubt, indeed,

it is reinforced by the fact that the previous alternative
geometrical viewpoint gives exactly the same result.
However, we are obliged to ask whether they are sufficient
to characterize the residual symmetries. Fortunately, the
geometrical picture sheds some light on how to answer this
question. What we have learned so far is that residual
symmetries are isometries of the trivial lifting of the metric
to jet space. It is very common in many Ansätze that some
of their structural functions do not depend on all coor-
dinates. Hence, there is a subset of the involved jet space
isometries for which the following anomalous scenario is
possible: we can compensate for some spacetime diffeo-
morphisms with redefinitions which keep invariant the
form of the metric only formally, because they fail to
respect the original dependencies of the structural functions
on spacetime coordinates. Consequently, these are not
residual symmetries in a strict sense. In order to illustrate
this situation we use again the Collinson Ansatz (1), where
all structural functions are independent of τ and σ. Now,
consider generalizing the rotation (2) in the ðτ; σÞ plane to
any other one-parameter reparametrization on the same
plane acting exclusively in the time coordinate

ðτ; σ; zÞ ↦ ð~τ ¼ ~τðτ; σ; εÞ; ~σ ¼ σ; ~z ¼ zÞ: ð19Þ

If one compensates for the previous diffeomorphism with
the following redefinitions,

ða; b; P;QÞ ↦ ð ~a ¼ a∂τ ~τ − ∂σ ~τ; ~b ¼ b∂τ ~τ þ ∂σ ~τ;

~P ¼ P −
1

2
ln ∂τ ~τ; ~Q ¼ Qþ 1

2
ln ∂τ ~τÞ;

ð20Þ
it is easy to verify that the form of the metric remains
unchanged as in (4), but the present transformed line
element does not represent anymore a manifestly stationary
axisymmetric Ansatz since the new structural functions
depend now on the new coordinates ~τ and ~σ. However, the
generator associated with the previous transformation,
which according to definitions (10) is

X ¼ ξτðτ; σÞ∂τ þ ða∂τξ
τ − ∂σξ

τÞ∂a þ ðb∂τξ
τ þ ∂σξ

τÞ∂b

−
1

2
∂τξ

τ∂P þ
1

2
∂τξ

τ∂Q; ð21Þ

perfectly satisfies the vanishing Lie-derivative condition
(18), or its dimensional reduction (13), evaluated on
the Collinson Ansatz (1). Unfortunately, this is not the
only example of formal form invariance; an exclusive

reparametrization of the angular coordinate σ leads to
similar results. The geometrical approach is elegant and
concise, but it is blind to the above problem if one does not
provide additional information. In summary, the conditions
(13) are not sufficient to characterize strict form invariance.
In order to prevent situations as those described above,

we need to supplement the Lie-derivative conditions with
others including the relevant information on concrete
dependencies. This is done by knowing how Lie-point
transformations (6) are prolonged to act on the derivatives
uIα ≡ ∂uI=∂xα. In particular at the infinitesimal level (8) we
have

~uIα ≡ ∂ ~uI
∂ ~xα ¼

duI þ εdηI þ � � �
dxα þ εdξα þ � � � ¼ uIα þ εηIα þ � � � ; ð22Þ

where the prolongations are given in terms of the compo-
nents of the original generator as [4]

ηIα ≡ ∂ ~uIα
∂ε

����
ε¼0

¼ ∂αη
I þ uJα∂Jη

I − uIβð∂αξ
β þ uJα∂Jξ

βÞ: ð23Þ

It is easy to see from here that even when the derivative of a
given structural function, let us say uĪ, with respect to a
particular coordinate, e.g. xα̂, vanishes, its transformed
counterpart is not necessarily zero since it receives many
other contributions. Suppose we classify the coordinates
and structural functions according to the following: xα ¼
ðxᾱ; xα̂Þ and uI ¼ ðuĪ; uÎÞ, where uĪ denotes a subset of
structural functions which depend exclusively on the subset
of coordinates xᾱ, i.e. uĪ ¼ uĪðxᾱÞ. The rest of the functions
and coordinates are denoted by uÎ and xα̂, respectively,
where in general uÎ ¼ uÎðxᾱ; xα̂Þ. Then, if for the starting
Ansatz uĪα̂ ¼ 0, in order to avoid the described problem we
need to keep the same condition after the transformation,
i.e. ~uĪα̂ ¼ 0, which according to (22) is infinitesimally
equivalent to demanding

ηĪα̂ ¼ ∂ α̂η
Ī þ uĴα̂∂ Ĵη

Ī − uĪ
β̄
∂ α̂ξ

β̄ ¼ 0; ð24Þ

where we have made use of conditions (13b). Since this
condition must be satisfied for any values of the indepen-
dent derivatives uĴα̂ and uĪ

β̄
, their companion coefficients

must vanish independently, which defines the definitive
supplemental conditions

∂ α̂η
Ī ¼ ∂ Ĵη

Ī ¼ ∂ α̂ξ
β̄ ¼ 0: ð25Þ

These conditions establish that if a structural function uĪ is
independent of some coordinates xα̂, then their correspond-
ing generator component ηĪ is also independent of such
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coordinates as well as of those structural functions that do
depend on xα̂, and additionally that the components ξβ̄

along the other coordinates also are independent of xα̂.
Summarizing, the full criterion defining the residual

symmetries of a gravitational Ansatz is given by the next set
of equations

ξα∂αgμν þ 2gαðμ∂νÞξα þ ηI∂Igμν ¼ 0; ð26aÞ

∂Iξ
α ¼ 0; ð26bÞ

∂ α̂η
Ī ¼ ∂ Ĵη

Ī ¼ ∂ α̂ξ
β̄ ¼ 0: ð26cÞ

As we will show in detail in the following section and in the
appendixes this criterion provides an effective computa-
tional procedure for finding all the residual symmetries of
almost any gravitational Ansatz of interest. In solving this
linear system we will find integration constants or functions
that parametrize the components of the generator (9). It is
an easy task to show that the commutator of two residual
symmetry generators also satisfies the above conditions.
Hence, the constants or functions appearing in the inte-
gration process just span finite- or infinite-dimensional Lie
algebras. In other words the solution of the proposed
system will be a linear superposition of independent
infinitesimal generators of residual symmetries of the
metric. As a byproduct, we consequently find the Killing
vectors of the corresponding metric as part of the solution;
it is done in an easier way than solving the standard Killing
equations, where the Ansatz functions are considered as
dependent variables. Once we know such independent
infinitesimal generators we promote them to their corre-
sponding finite one-parameter transformations. For inte-
grating the generators we use the method of differential
invariants described in Appendix A. The composition of all
the one-parameter transformations gives rise to the most
general connected residual symmetry group for any gravi-
tational Ansatz. In the following sections we examine the
consequences of applying the proposed criterion to several
metric Ansätze, finding their corresponding residual sym-
metry algebras and groups. We start with the illustrative
example used so far: the Collinson Ansatz.

III. THE COLLINSON ANSATZ

We now reconsider the Collinson Ansatz, whose line
element was given in the Introduction. The Ansatz (1) was
relevant at the beginning of the search of interior solutions
for the Kerr exterior spacetime. The so-called Collinson
theorem establishes that if a stationary axisymmetric
spacetime is also conformally flat then it must be neces-
sarily static [1–3]. Hence, there are no conformally flat Kerr
interiors as opposed to the conformally flat interior of the
Schwarzschild metric. The virtue of this Ansatz is that
allows us to write in a simple way the components of the

Weyl tensor, producing an almost straightforward integra-
tion of the conformally flat conditions.
The jet space parametrization of the Collinson Ansatz,

zA ¼ ðxμ; uIÞ, consists of the spacetime coordinates
xμ ¼ ðτ; σ; z; z̄Þ together with the structural functions
uI ¼ ða; b; P;QÞ. Moreover, the structural functions are
all independent of the coordinates xα̂ ¼ ðτ; σÞ and using the
classification of the previous section uĪ ¼ uI (uÎ ¼ f0g),
i.e. all of them only depend on the coordinates xᾱ ¼ ðz; z̄Þ.
This implies the complementary residual conditions (26c)
become

∂τη
I ¼ ∂ση

I ¼ ∂τξ
z ¼ ∂σξ

z ¼ 0: ð27Þ

Using also the condition (26b), the general form of the
infinitesimal generator of residual symmetries for the
Collinson Ansatz is the following

X ¼ ξτðτ; σ; z; z̄Þ∂τ þ ξσðτ; σ; z; z̄Þ∂σ þ ξzðz; z̄Þ∂z

þ ξ̄zðz; z̄Þ∂z̄ þ ηaðz; z̄; a; b; P;QÞ∂a

þ ηbðz; z̄; a; b; P;QÞ∂b þ ηPðz; z̄; a; b; P;QÞ∂P

þ ηQðz; z̄; a; b; P;QÞ∂Q; ð28Þ

where all the components are real except ξz, and ξ̄z denotes
its complex conjugate. We are now in position to imple-
ment the remaining residual conditions (26a), which give
the following system of partial differential equations for the
components of the previous generator

2ηQ þ ðηa þ ηbÞ
aþ b

− 2∂τξ
τ þ ðb − aÞ∂τξ

σ ¼ 0; ð29aÞ

ðb − aÞηQ þ ðbηa − aηbÞ
aþ b

þ ∂σξ
τ − ab∂τξ

σ

−
1

2
ðb − aÞð∂τξ

τ þ ∂σξ
σÞ ¼ 0; ð29bÞ

2abηQ −
ðb2ηa þ a2ηbÞ

aþ b

− ðb − aÞ∂σξ
τ − 2ab∂σξ

σ ¼ 0; ð29cÞ

ηQ þ ηP −
1

2
ð∂zξ

z þ ∂ z̄ξ̄
zÞ ¼ 0; ð29dÞ

ðb − aÞ∂zξ
σ − 2∂zξ

τ ¼ 0; ð29eÞ

ðb − aÞ∂zξ
τ þ 2ab∂zξ

σ ¼ 0; ð29fÞ

∂ z̄ξ
z ¼ 0; ð29gÞ

where the complex conjugate of Eqs. (29e)–(29g) must also
be included.
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In order to integrate the above system we need to
remember that in this context the structural functions of
the Ansatz and the spacetime coordinates are all assumed as
independent variables. This turns the integration process
into a very easy job; e.g. in Eqs. (29e) and (29f), since the
spacetime components of the generator are independent of
the structural functions, the only way in which these
equations hold is if the coefficients in front of all the
functionally independent expressions of the structural
functions vanish separately

∂zξ
τ ¼ 0 ¼ ∂zξ

σ: ð30Þ

Since the complex conjugates of these conditions are also
valid we conclude that ξτ ¼ ξτðτ; σÞ and ξσ ¼ ξσðτ; σÞ.
Additionally, Eq. (29g) implies the component along
the complex plane is holomorphic ξz ¼ ξzðzÞ. Another
consequence of the independency between the structural
functions and the coordinates can be obtained when
Eqs. (29a)–(29d) are derived with respect to the Killing
coordinates τ and σ and the conditions (27) are used; the
resulting equations are only satisfied if the following
derivatives are constant

∂τξ
τ ¼ Ĉ1; ∂σξ

τ ¼ C3;

∂σξ
σ ¼ Ĉ2; ∂τξ

σ ¼ C4: ð31Þ

This system has the trivial solution

ξτ ¼ Ĉ1τ þ C3σ þ κ1; ð32aÞ

ξσ ¼ Ĉ2σ þ C4τ þ κ2: ð32bÞ

If one replaces now the set of conditions (31) or their
solutions in Eqs. (29a)–(29d), a linear algebraic system of
equations for the ηI is obtained whose solution is given
below

ηa ¼ C4a2 þ C2a − C3; ð33aÞ

ηb ¼ −C4b2 þ C2bþ C3; ð33bÞ

ηP ¼ 1

2
ð∂zξ

z þ ∂ z̄ξ̄
z − C1Þ; ð33cÞ

ηQ ¼ 1

2
C1; ð33dÞ

where we have redefined two of the integration constants as
C1 ¼ Ĉ1 þ Ĉ2 and C2 ¼ Ĉ1 − Ĉ2. This ends the integra-
tion of the residual system (29), giving the following
generator for the residual symmetries of the Collinson
Ansatz

X ¼ C1ðτ∂τ þ σ∂σ þ ∂Q − ∂PÞ
þ C2ðτ∂τ − σ∂σ þ 2a∂a þ 2b∂bÞ
þ C3ðσ∂τ − ∂a þ ∂bÞ þ C4ðτ∂σ þ a2∂a − b2∂bÞ

þ ξz∂z þ ξ̄z∂z̄ þ
1

2
ð∂zξ

z þ ∂ z̄ξ̄
zÞ∂P

þ κ1∂τ þ κ2∂σ : ð34Þ

As we anticipate in the previous section the resulting
solution is a linear combination of vector fields, each one
generating a one-parameter group of residual symmetries.
We label these individual generators as follows

X1 ¼ τ∂τ þ σ∂σ − ∂P þ ∂Q; ð35aÞ

X2 ¼ τ∂τ − σ∂σ þ 2a∂a þ 2b∂b; ð35bÞ

X3 ¼ σ∂τ − ∂a þ ∂b; ð35cÞ

X4 ¼ τ∂σ þ a2∂a − b2∂b; ð35dÞ

X̂ξz ¼ ξz∂z þ ξ̄z∂z̄ þ
1

2
ð∂zξ

z þ ∂ z̄ξ̄
zÞ∂P; ð35eÞ

k ¼ ∂τ ; ð35fÞ

m ¼ ∂σ ; ð35gÞ

where as was pointed out previously, ξz ¼ ξzðzÞ is an
arbitrary holomorphic function and ξ̄z is its complex
conjugate. The generators (35a)–(35e) are associated with
the residual symmetries of the Collinson Ansatz while (35f)
and (35g) are their corresponding Killing vectors. On the
one hand, these Killing vectors together with the first four
generators (35a)–(35d) form a six-dimensional Lie sub-
algebra. On the other hand, the generator (35e) represents
an infinite-dimensional Lie subalgebra. The concrete Lie
algebra is characterized by Table I, where the entry for a
given row and column represents the corresponding
commutator.
The infinite-dimensional subalgebra can be character-

ized as follows. In Table I we denote

Ωz ¼ ξz1∂zξ
z
2 − ξz2∂zξ

z
1: ð36Þ

Since ξz is a holomorphic function we can expand it by a
Laurent series,

ξzðzÞ ¼
X∞
n¼−∞

anð−znþ1Þ; ð37Þ

and the generator (35e) becomes an infinite expansion
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X̂ξz ¼
X∞
n¼−∞

½anLn þ ānL̄n�; ð38Þ

on the complex generators

Ln ¼ −znþ1∂z −
nþ 1

2
zn∂P; ð39Þ

and their complex conjugate L̄n. Both sets of vector fields
obey the following algebra

½Ln;Lm� ¼ ðn −mÞLnþm; ð40Þ

½L̄n; L̄m� ¼ ðn −mÞL̄nþm; ð41Þ

i.e. the infinite-dimensional subalgebra of the residual
symmetries of the Collinson Ansatz is composed of just
two copies of the Witt algebra [23], i.e. the so-called
conformal algebra without the central extension.
Now we proceed to integrate the various infinitesimal

transformations generated by the vector fields (35), in order
to find their corresponding one-parameter finite transfor-
mations. We made use of the method of differential
invariants explained in Appendix A, where it is explicitly
shown how to integrate several generators, which repeat-
edly appears in most of the examples. Hence, we do not
include the specific details of each case here. The case of
generator (35e) is slightly different since it involves the use
of an arbitrary function of the z coordinate, but their
integration is also included in Appendix A as an example
of how to deal with these kind of generators. Using the
method of this appendix, the finite transformation found by
integrating the generator (35a) is the following

~τ ¼ λτ; ~σ ¼ λσ; ~z ¼ z;

~a ¼ a; ~b ¼ b;

~P ¼ P − lnðλÞ; ~Q ¼ Qþ lnðλÞ; ð42Þ

where λ ¼ exp ε. In other words, if the Killing coordinates
τ and σ scale in the same way, this is compensated for by
appropriate translations along the functions P and Q. For
the generator (35b) we get the transformation

~τ ¼ λτ; ~σ ¼ λ−1σ; ~z ¼ z;

~a ¼ λ2a; ~b ¼ λ2b; ~P ¼ P; ~Q ¼ Q: ð43Þ

This time we see that if τ and σ scale inversely, this must be
compensated for with a double scaling in the functions a
and b. The transformation arising from the exponentiation
of the vector field (35c) is

~τ ¼ τþ εσ; ~σ ¼ σ; ~z¼ z;

~a¼ a− ε; ~b¼ bþ ε; ~P¼ P; ~Q¼Q; ð44Þ

which is precisely the residual symmetry we use as an
example at the beginning. As was already emphasized, this
transformation establishes that the effects of rotating the
time coordinate τ in the Killing plane ðτ; σÞ can be
eliminated by translations with different signs in the
functions a and b. Now, we present the residual symmetry
that we get after integrating the generator (35d)

~τ¼ τ; ~σ¼ σþ ετ; ~z¼ z;

~a¼ a
1− εa

; ~b¼ b
1þ εb

; ~P¼P; ~Q¼Q; ð45Þ

i.e. if one instead rotates the angle σ in the Killing plane it is
neutralized by appropriate special conformal transforma-
tions on the functions a and b. Finally, the case of the
generator (35e) is studied in detail in Appendix A, where
the following finite transformation is obtained

~τ¼ τ; ~σ ¼ σ; ~z¼ ~zðzÞ;

~a¼ a; ~b¼ b; ~P¼Pþ ln

����d~zdz
����; ~Q¼Q: ð46Þ

In this case, any conformal transformation of the complex z
plane will be compensated for by a supertranslation of the
conformal function P, involving the nonvanishing deriva-
tive of the holomorphic transformation in z.
We are ready to write now the most general connected

residual transformation that the Collinson Ansatz (1)
admits. It is defined by the composition of the trans-
formations (42)–(46) and is given by

~τ ¼ ατ þ βσ; ~σ ¼ δσ þ γτ; ~z ¼ ~zðzÞ;

~a ¼ αa − β

−γaþ δ
; ~b ¼ αbþ β

γbþ δ
;

~P ¼ Pþ ln

���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αδ − βγ

p d~z
dz

����; ~Q ¼ Qþ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αδ − βγ

p
;

ð47Þ

where αδ − βγ > 0. This transformation tells us that the
Collinson Ansatz is form invariant under two-dimensional
general linear transformations, with positive determinant,

TABLE I. The commutator table for a Collinson Ansatz.

X1 X2 X3 X4 k m X̂ξz
2

X1 0 0 0 0 −k −m 0
X2 0 0 −2X3 2X4 −k m 0
X3 0 2X3 0 −X2 0 −k 0
X4 0 −2X4 X2 0 −m 0 0
k k k 0 m 0 0 0
m m −m k 0 0 0 0
X̂ξz

1

0 0 0 0 0 0 X̂Ωz
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on the Killing ðτ; σÞ plane and arbitrary conformal trans-
formations on the complex z plane, provided that the
structural functions will be redefined according to
Eq. (47). These are precisely the transformations actively
used in Refs. [1–3].
In the following sections we study many other spacetime

examples emphasizing just the main results regarding their
residual symmetries. The corresponding details can be
found in the appendixes.

IV. SPHERICALLY SYMMETRIC ANSATZ

We follow up now by studying the very well-known and
studied case of spherically symmetric spacetimes. In their
static version they are described by the following metric

ds2 ¼ − N2ðrÞFðrÞdt2 þ dr2

FðrÞ
þ Y2ðrÞðdθ2 þ sin2θdφ2Þ; ð48Þ

where a gauge election remains to be done. Since such an
election is done in practice in many different ways, we
prefer to keep this freedom in order that our analysis can be
adapted to the different choices. The involved jet space
coordinates zA ¼ ðxμ; uIÞ are now the spacetime spherical
coordinates xμ ¼ ðt; r; θ;φÞ and the metric functions
uI ¼ ðN;F; YÞ. The infinitesimal generators of the corre-
sponding residual symmetries are studied in detail in
Appendix B, being the final result

X1 ¼ t∂t − N∂N; ð49aÞ

X̂ξr ¼ ξrðrÞ∂r þ ∂rξ
rð2F∂F − N∂NÞ; ð49bÞ

Lx ¼ sinφ∂θ þ cot θ cosφ∂φ; ð49cÞ

Ly ¼ cosφ∂θ − cot θ sinφ∂φ; ð49dÞ

Lz ¼ ∂φ; ð49eÞ

k ¼ ∂t: ð49fÞ

The generators (49c)–(49f) are just the spherically sym-
metric and stationary Killing vectors of the metric, there-
fore there are only two generators strictly corresponding to
residual symmetries and one of them spans an infinite-
dimensional subalgebra. The generators (49) give rise to the
algebra shown in Table II.
The infinite-dimensional subalgebra is obtained from the

Lie bracket of the family of vector fields X̂ξr among
themselves, where we define

Ωr ¼ ξr1∂rξ
r
2 − ξr2∂rξ

r
1: ð50Þ

Expanding the function ξr as a Fourier series,

ξrðrÞ ¼
X∞
n¼−∞

anð−ie−inrÞ; ð51Þ

the generator (49b) is written as a linear combination of the
infinite number of vector fields

Ln ¼ −ie−inr½∂r þ inðN∂N − 2F∂FÞ�; ð52Þ

whose lie brackets obey the Witt algebra (40).
Let us focus now on the finite transformations associated

with the residual symmetries that we find using the
methods illustrated in Appendix A. The transformation
found by integrating the generator (49a) is

~t ¼ λt; ~r ¼ r; ~θ ¼ θ; ~φ ¼ φ;

~F ¼ F; ~N ¼ λ−1N; ~Y ¼ Y; ð53Þ

which tells us that any rescaling on time is compensated for
with the inverse rescaling on the function N; a very well-
known and -used property of the spherically symmetric
Ansatz. The family of generators (49b) involving a general
dependence must be treated similarly to the last example of
Appendix A. We get the finite transformations

~t ¼ t; ~r ¼ ~rðrÞ; ~θ ¼ θ; ~φ ¼ φ;

~F ¼
�
d~r
dr

�
2

F; ~N ¼
�
d~r
dr

�
−1
N; ~Y ¼ Y; ð54Þ

encoding that an arbitrary radial reparametrization is
compensated for with a local rescaling in the functions
N and F involving the derivative of the radial trans-
formation. Consequently, the general residual transforma-
tion admitted by the static spherical metric Ansatz (48) is
given by

~t ¼ λt; ~r ¼ ~rðrÞ; ~θ ¼ θ; ~φ ¼ φ;

~F ¼
�
d~r
dr

�
2

F; ~N ¼
�
λ
d~r
dr

�
−1
N; ~Y ¼ Y: ð55Þ

It is illustrative to analyze how the above results are
generalized when the spherically symmetric metric is
allowed to depend on time

TABLE II. The commutator table for a static spherical Ansatz.

X1 k Lx Ly Lz X̂ξr
2

X1 0 −k 0 0 0 0
k k 0 0 0 0 0
Lx 0 0 0 Lz −Ly 0
Ly 0 0 −Lz 0 Lx 0
Lz 0 0 Ly −Lx 0 0
X̂ξr

1

0 0 0 0 0 X̂Ωr
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ds2 ¼ − N2ðt; rÞFðr; tÞdt2 þ dr2

Fðt; rÞ
þ Y2ðt; rÞðdθ2 þ sin2θdφ2Þ: ð56Þ

The coordinates for the jet space are the same as the ones
for the static case, but as now the structural functions also
depend on time the supplementary conditions (26c) are
different, see Appendix B. The criterion gives the following
two families of generators for the residual symmetries

X
̬

ξt ¼ ξtðtÞ∂t − ∂tξ
tN∂N; ð57aÞ

X̂ξr ¼ ξrðrÞ∂r − ∂rξ
rðN∂N − 2F∂FÞ; ð57bÞ

together with the Killing vectors of the sphere (49c)–(49e).
This means that losing the stationary symmetry (49f)
enhances the time scaling (49a) to a time reparametrization.
The Lie algebra spanned by the involved generators is
presented in Table III. This time we have two commuting
infinite-dimensional subalgebras, and the quantities defin-
ing them are

Ωk ¼ ξk1∂kξ
k
2 − ξk2∂kξ

k
1; ð58Þ

where k is a generic label for the coordinates t or r, and no
summation over k is understood. The generator (57b) is the
same appearing in the static case (49b). Hence, expanding
the function ξrðrÞ in a Fourier series (51) we obtain a Witt
algebra. A similar expansion for the function ξtðtÞ of the
other generator (57a) gives a second copy of the Witt
algebra satisfied by the generators

L
̬

n ¼ −ie−intð∂r þ inN∂NÞ: ð59Þ

These two copies are a manifestation of the conformal
algebra without central charge.
The finite symmetry arising from generator (57a) is

~t ¼ ~tðtÞ; ~r ¼ r; ~θ ¼ θ; ~φ ¼ φ;

~F ¼ F; ~N ¼
�
d~t
dt

�−1
N; ~Y ¼ Y; ð60Þ

i.e. any time reparametrization is compensated for with a
local scaling of the function N. The finite residual trans-
formation that results from the exponentiation of the vector
field (57b) is exactly the one displayed in the static case
(54), with the obvious difference that in the present case F
and N depend also on time. The composition of both
transformations gives the most general connected residual
symmetry allowed by a spherically symmetric gravitational
Ansatz

~t ¼ ~tðtÞ; ~r ¼ ~rðrÞ; ~θ ¼ θ; ~φ ¼ φ;

~F ¼
�
d~r
dr

�
2

F; ~N ¼
�
d~t
dt
d~r
dr

�−1
N; ~Y ¼ Y: ð61Þ

As indicated by the related infinite algebras these trans-
formations are the conformal freedom enjoyed by the
Lorentzian fibers orthogonal to the spheres.

V. AdS WAVES

We study now the so-called AdS waves [16,17]. They
have proved to be a very useful tool to inspect the
dynamical and asymptotic properties of highly nontrivial
theories since they represent exact realizations of the
propagating degrees of freedoms of gravity in several
contexts [16,17,24,25]. An AdS wave in D dimensions
is given by the metric

ds2 ¼ l2

y2
½−Fðu; y; ~xÞdu2 − 2dudvþ dy2 þ d~x2�; ð62Þ

where ~x is a D − 3 Euclidean vector. The existence of
residual symmetries of this Ansatz in lower dimensions is
already known [16,17], and has been exploited to gauge
away the nonpropagating degrees of freedoms of standard
gravity in lower dimensions. Nevertheless, the uniqueness
of such symmetries has not been established. Additionally,
little is known about their general behavior in higher
dimensions, except that their famous three-dimensional
relation with the Virasoro algebra [26] can be extended to
any dimension [27]. It is our interest in this section to apply
the derived criterion to the AdS waves to fully investigate
these questions. The related jet space coordinates are zA ¼
ðxμ; uIÞ where xμ ¼ ðu; v; y; ~xÞ, uI ¼ ðFÞ. The infinitesi-
mal generators of residual symmetries are thoroughly
studied in Appendix C, and the final result is

X1 ¼ 2v∂v þ y∂y þ xi∂i þ 2F∂F; ð63aÞ

Jij ¼ xi∂j − xj∂i; ð63bÞ

~Xα ¼ αðuÞ∂v − 2_α∂F; ð63cÞ

X
̬

ξu ¼ ξuðuÞ∂u þ
_ξu

2
ðy∂y þ xi∂i − 2F∂FÞ

þ 1

4
ðy2 þ ~x2Þ ~X ̈ξu ; ð63dÞ

X ~P ¼ ~PðuÞ þ ~x · ~X _~P
; ~PðuÞ ¼ PiðuÞ∂i: ð63eÞ

The null Killing vector of the AdS waves, ∂v, corresponds
to the particular case of the generator (63c) when the
function α is a constant. It is important to emphasize that
the rotations (63b) are not isometries, since in general the
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structural function F in metric (62) is not rotation invariant,
but will change respecting the standard diffeomorphism
rule and consequently leaving the Ansatz form invariant.
The Lie algebra obeyed by these vector fields is displayed
in Table IV, where the quantities appearing in the table are
defined as follows

Ωu ¼ ξu1 _ξ
u
2 − ξu2 _ξ

u
1; ð64Þ

~γa½~P� ¼ ξua
_~P −

1

2
_ξua ~P; a ¼ 1; 2; ð65Þ

~Pij ¼ ðPiδ
k
j − Pjδ

k
i Þ∂k; ð66Þ

and the structural constants cij;klmn are those of standard
rotations,

cij;klmnJmn ¼ 2δi½kJl�j − 2δj½kJl�i: ð67Þ

In the present case we have three different infinite-
dimensional families which make very complex and non-
trivial the algebra of residual symmetries of the AdS waves.
The first family of generators (63c), ~Xα, span an infinite-
dimensional Abelian subalgebra. We shall see later that it
generates scalar supertranslations (78). An expansion in
Fourier series of the function labeling these generators,

αðuÞ ¼
X∞
n¼−∞

anð−ie−inuÞ; ð68Þ

shows that they are a linear combination,

~Xα ¼
X∞
n¼−∞

anKn; ð69Þ

of the infinite commuting generators

Kn ¼ −ie−inuð∂v þ 2in∂FÞ: ð70Þ

The Lie brackets of the family of generators (63d), X
̬

ξu ,
among themselves have the same structure as the infinite-
dimensional subalgebras we have studied before both in the
Collinson Ansatz and in the spherically symmetric one, and
for which we have obtained the Witt algebra. Following the
same lines as in those cases, expanding the function
parametrizing the generator in Fourier series

ξuðuÞ ¼
X∞
n¼−∞

bnð−ie−inuÞ; ð71Þ

the generator X
̬

ξu becomes a linear superposition of the
infinite generators

Ln ¼ −ie−inu
�
∂u −

in
2
ðy∂y þ xj∂j − 2F∂FÞ

−
n2

4
ðy2 þ ~x2Þð∂v þ 2in∂FÞ

�
; ð72Þ

which also obey the Witt algebra (40). It has been shown by
Bañados, Chamblin, and Gibbons [27] that the related
algebra of Noether charges associated to these symmetries
acquires a central extension in any dimension, generalizing
the famous three-dimensional result of Brown and
Henneaux [26]. The last family of generators (63e), X ~P,
does not form an algebra by itself, but it does in union with
the Abelian family ~Xα. This family generates vector super-
translations (80). An expansion in Fourier series of the
vector

~P ¼
X∞
n¼−∞

~cnð−ie−inuÞ; ð73Þ

allows us to write the vector field X ~P as a linear
combination,

X ~P ¼
X∞
n¼−∞

ð~cnÞjðMnÞj; ð74Þ

of the infinite generators

ðMnÞj ¼ −ie−inu∂j − inxjKn: ð75Þ

The Lie algebra can be written now in terms of the infinite
generators Ln, Kn, and ðMnÞj, which is done in Table V. It
is easier to identify in Table V that the subalgebra spanned

TABLE III. The commutator table for a spherical Ansatz.

Lx Ly Lz X
̬

ξt
2

X̂ξr
2

Lx 0 Lz −Ly 0 0
Ly −Lz 0 Lx 0 0
Lz Ly −Lx 0 0 0
X
̬

ξt
1

0 0 0 X
̬

Ωt 0
X̂ξr

1

0 0 0 0 X̂Ωr

TABLE IV. The commutator table for AdS waves.

X1 Jkl ~Xβ X
̬

ξu
2

X ~Q

X1 0 0 −2 ~Xβ
0 −X ~Q

Jij 0 cij;klmnJmn 0 0 −X ~Qij

~Xα 2 ~Xα
0 0 − ~X _αξu

2

0

X
̬

ξu
1

0 0 ~X _βξu
1

X
̬

Ωu X~γ1½ ~Q�
X ~P X ~P X ~Pkl

0 −X~γ2½~P� ~X
~P·

_~Q− _~P· ~Q
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by the conformal generators Ln and the scalar super-
translations Kn is the semidirect sum of the Witt algebra
and the loop algebra of uð1Þ. This algebra and their central
extension appear in the context of the Kerr/CFTandWAdS/
CFT correspondences and are used to compute the entropy
of the involved black holes [28–31]. More recently, it has
been shown they appear also in the near horizon geometry
of stationary black holes [32].
We would like to emphasize that regardless of the

complexity of the whole infinite-dimensional subalgebra,
it is possible to give a precise interpretation for their infinite
connected group as a well-defined subgroup of the diffeo-
morphism group mapping AdS space to the AdS wave
Ansatz (62). In order to arrive at this interpretation we need
to study the finite version of the AdS wave residual
symmetries following the methods of Appendix A. We
start with the vector field (63a), which gives rise to the
anisotropic scaling

~u ¼ u; ~v ¼ λ2v; ~y ¼ λy; ~~x ¼ λ~x;

~F ¼ λ2F: ð76Þ

The following vector field (63b) generates rotations

~u ¼ u; ~v ¼ v; ~y ¼ y; ~xi ¼ Λi
jxj;

~F ¼ F; ð77Þ

where Λi
j ∈ SOðD − 3Þ, i.e. it is a ðD − 3Þ × ðD − 3Þ

orthogonal matrix whose determinant is one. We emphasize
these rotations are not precisely isometries since the
structural function F depends in general on the spatial
coordinates and changes according to the diffeomorphism
rule keeping invariant the value of the function at each
point; this obviously preserves the form of the Ansatz. In
the case of the generator (63c), the corresponding finite
residual symmetry is

~u ¼ u; ~v ¼ vþ αðuÞ; ~y ¼ y; ~~x ¼ ~x;

~F ¼ F − 2_α; ð78Þ

we see that any scalar supertranslation along the null rays
can be compensated for by another one in the function F
involving the derivative of the original supertranslation.

The residual symmetry related to generator (63d) is a
reparametrization of the retarded time, which is compen-
sated accordingly

~u ¼ ~uðuÞ; ~v ¼ vþ 1

4

d
du

�
ln
d ~u
du

�
ðy2 þ ~x2Þ;

~y ¼
ffiffiffiffiffiffi
d ~u
du

r
y; ~~x ¼

ffiffiffiffiffiffi
d ~u
du

r
~x;

~F ¼
�
d ~u
du

�
−1
�
F þ

�
d ~u
du

�
1=2 d2

du2

�
d ~u
du

�
−1=2

ðy2 þ ~x2Þ
�
:

ð79Þ

The details of their derivation can be followed step by step
in Appendix C. The integration of the generator (63e)
establishes the following finite transformation

~u¼ u; ~v¼ vþ
_~P
2
· ð2~xþ ~PÞ; ~y¼ y; ~~x¼ ~xþ ~PðuÞ;

~F¼F− ~̈P · ð2~xþ ~PÞ; ð80Þ

where this time a vector supertranslation along the spatial
coordinates ~x can be suitably compensated for.
The most general connected residual symmetry of AdS

waves is the composition of the above transformations and
can be written as

~u ¼
Z

du
f2

;

~v ¼ λ2
�
v −

1

2

_f
f
ðy2 þ ~x2Þ þ f

d
du

ðf−1 ~PÞ · ~x

þ 1

2

Z
du

�
F0 þ _~P

2
− _f

d
du

ðf−1 ~P2Þ
�	

;

~y ¼ λ

f
y; ~~x ¼ λ

f
Λ
↔
· ð~xþ ~PÞ;

~F ¼ ðλfÞ2½F − F2ðy2 þ ~x2Þ − ~F1 · ~x − F0�; ð81aÞ

where f, F0, and ~P are arbitrary functions of the retarded
time u determining the functions

TABLE V. The commutator table for AdS waves II: infinite generators.

X1 Jkl Km Lm ðMmÞl
X1 0 0 −2Km 0 −ðMmÞl
Jij 0 cij;klmnJmn 0 0 −2δl½iðMjmjÞj�
Kn 2Kn 0 0 nKmþn 0
Ln 0 0 −mKmþn ðn −mÞLnþm ðn=2 −mÞðMmþnÞl
ðMnÞi ðMnÞi 2δi½kðMjnjÞl� 0 −ðm=2 − nÞðMnþmÞi δilðn −mÞKnþm
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F2 ¼ −
f̈
f
; ~F1 ¼ 2ð ̈~Pþ ~PF2Þ; ð81bÞ

and the involved parameters are the scaling constant λ and

the matrix Λ
↔

∈ SOðD − 3Þ. Except for the anisotropic
scaling, this transformation becomes the one already
known in the literature for D ¼ 4 [16] and D ¼ 3 [17],
since no rotation exists for these dimensions. The resulting
transformation is the infinite-dimensional subgroup of the
connected group of residual symmetries, which can be
understood in lower and higher dimensions according to
the following lines. It is well known that a vanishing
structural constant, F ¼ 0, is just the AdS spacetime in
Poincaré coordinates. However, as was first noticed by
Siklos [16], this is only the minimal way to represent AdS
spacetime with the AdS wave Ansatz. Imposing that the
AdS waves have a constant curvature (Weyl and traceless
Ricci tensors vanish), i.e. that they are locally equivalent to
AdS, the following expression for the structural function is
obtained

FAdS ¼ F2ðy2 þ ~x2Þ þ ~F1 · ~xþ F0; ð82Þ

where here F0, ~F1, and F2 are arbitrary functions of the
retarded time u. As is proved at the end of Appendix C, this
is the most general way to express AdS spacetime with the
AdS wave Ansatz (62) in any dimension and it must be
locally equivalent to the metric with F ¼ 0. It is straight-
forward to check that the local transformation reducing the
above expression for the structural function to the vanishing
one is precisely the infinite-dimensional subgroup of the
connected group of residual symmetries contained in (81)

for λ ¼ 1 and Λ
↔

¼ 1. The only requirement is to choose the
functions in the transformation to coincide with the ones in
(82), which imposes differential equations for the functions

f and ~P via the relations (81b). Consequently, for a given
AdS wave any quadratic, linear, or homogeneous depend-
encies on the front-wave coordinates, such as the ones
appearing in (82), are reminiscences of the freedom to
express AdS spacetime within this Ansatz and can be
consistently eliminated. This is the interpretation of the
infinite-dimensional sector of residual symmetries of the
AdS wave Ansatz.

VI. THE PAPAPETROU ANSATZ

In this section we study the popular Ansatz of Papapetrou
[18] which also describes circular stationary axisymmetric
spacetimes, as the initial Collinson Ansatz (1), and whose
metric is given by

ds2 ¼ −
ρ2

X
dt2 þ Xðdφþ AdtÞ2 þ e2h

X
ðdρ2 þ dz2Þ; ð83Þ

where X, h, and A are functions of the spatial coordinates ρ
and z only. The main difference of the Papapetrou Ansatz
with respect to the one of Collinson is that the conformal
freedom of the latter is fixed in the former choosing the so-
called Weyl coordinates [19]. These coordinates exploit the
fact that in vacuum and electrovacuum, one of the gravi-
tational potentials becomes harmonic and can be incorpo-
rated in the conformal transformation to play the role of the
real or imaginary part of the spatial complex coordinates of
the Collinson Ansatz. Concretely, this potential is identified
with the spatial coordinate ρ in (83). As result, the
Papapetrou Ansatz has one structural function less than
in the Collinson case and this is the starting point of the
standard approach to study integrable circular stationary
axisymmetric systems in general relativity and which
results in the so-called Ernst equations [20]. The jet space
coordinates for the Papapetrou Ansatz are xμ ¼ ðt;φ; ρ; zÞ
and uI ¼ ðX; A; hÞ. The generators of residual symmetries
that we found in Appendix D using the criterion (26) are
shown below

X1 ¼ t∂t þ φ∂φ − 2ρ∂ρ − 2z∂z − 2X∂X þ ∂h; ð84aÞ

X2 ¼ t∂t − φ∂φ þ 2X∂X − 2A∂A þ ∂h; ð84bÞ

X3 ¼ φ∂t − 2AX∂X þ ðA2 þ ρ2=X2Þ∂A − A∂h; ð84cÞ

X4 ¼ t∂φ − ∂A; ð84dÞ

X5 ¼ ∂z; ð84eÞ

k ¼ ∂t; ð84fÞ

m ¼ ∂φ: ð84gÞ

We recognize in the generators (84f) and (84g) to the
stationary and axisymmetric Killing vectors, the rest are
generators of genuine residual symmetries and they
together form the Lie algebra exhibited in Table VI.
The finite transformations generated by these vector

fields are easily obtained using the methods of Appendix A.
After integrating the generator (84a) we obtain

~t ¼ λt; ~φ ¼ λφ; ~ρ ¼ λ−2ρ; ~z ¼ λ−2z;

~X ¼ λ−2X; ~A ¼ A; e2~h ¼ λ2e2h: ð85Þ

We see that scaling Killing coordinates is compensated for
by other scalings in both the remaining spatial coordinates
and the structural functions. This transformation and their
generator (84a) are similar to the Killing scaling of the
Collinson Ansatz, see Eqs. (35a) and (42). The finite
transformation we found in the case of generator (84b)
is the following
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~t ¼ λt; ~φ ¼ λ−1φ; ~ρ ¼ ρ; ~z ¼ z;

~X ¼ λ2X; ~A ¼ λ−2A; e2~h ¼ λ2e2h: ð86Þ

Therefore, scaling Killing coordinates inversely can also be
compensated for with appropriated scalings, this time from
the structural functions only. This is the analog of the
inverse Killing scaling of the Collinson Ansatz described in
Eqs. (35b) and (43). In the case of the generator (84c) we
have the following transformation

~t ¼ tþ εφ; ~φ ¼ φ; ~ρ ¼ ρ; ~z ¼ z;

~X ¼ X½1 − 2εAþ ε2ðA2 − ρ2=X2Þ�;
~A ¼ A − εðA2 − ρ2=X2Þ

1 − 2εAþ ε2ðA2 − ρ2=X2Þ ;

e2~h ¼ e2h½1 − 2εAþ ε2ðA2 − ρ2=X2Þ�: ð87Þ

In other words, rotating time in the Killing plane is
compensated for by redefining the structural functions
with a sort of special conformal transformation. In turn,
integration of the vector field (84d) gives a rotation of the
angle in the Killing plane,

~t ¼ t; ~φ ¼ φþ εt; ~ρ ¼ ρ; ~z ¼ z;

~X ¼ X; ~A ¼ A − ε; e2~h ¼ e2h; ð88Þ

which is compensated for with a translation. These last two
Killing rotations are equivalent to those appearing for the
Collinson Ansatz, Eqs. (44) and (45), with generators (35c)
and (35d). The simplest residual symmetry for the
Papapetrou Ansatz comes from the vector field (84e) and
is a translation on the spatial coordinate z. This is not an
isometry since the structural functions depend in general on
this coordinate, but they will change as functions do under
diffeomorphisms which preserve the form of the Ansatz.
This z translation is the residual symmetry left after
breaking the conformal freedom of the Collinson Ansatz
by fixing Weyl coordinates, choosing one of the gravita-
tional potentials as the coordinate ρ.
The composition of the latter transformations leads to the

most general connected residual symmetry admitted by the
Papapetrou metric (83),

~t ¼ αtþ βφ; ~φ ¼ γtþ δφ;

~ρ ¼ ρ

αδ − βγ
; ~z ¼ z

αδ − βγ
þ ϵ;

~X ¼ X
α2 − 2αβAþ β2ðA2 − ρ2=X2Þ

ðαδ − βγÞ2 ;

~A ¼ ðαδþ βγÞA − βδðA2 − ρ2=X2Þ − αγ

α2 − 2αβAþ β2ðA2 − ρ2=X2Þ ;

e2~h ¼ e2h½α2 − 2αβAþ β2ðA2 − ρ2=X2Þ�; ð89Þ

where αδ − βγ is a positive quantity. A very well-known
residual symmetry of the Papapetrou Ansatz is the one
linking the so-called conjugate potentials introduced by
Chandrasekhar. Between other applications it allows us to
derive the famous Kerr metric [21] from an unphysical
trivial solution to the Ernst equations [19]. It is easy to
check that taking the following values for the parameters of
transformation (89),

α ¼ δ ¼ τ ¼ 0; β ¼ −γ ¼ 1; ð90Þ

one recovers the relation defining the conjugate potentials
[19],

~t ¼ φ; ~φ ¼ −t; ~ρ ¼ ρ; ~z ¼ z;

~X ¼ X

�
A2 −

ρ2

X2

�
;

~A ¼ −A
�
A2 −

ρ2

X2

�−1
;

e2~h ¼ e2h
�
A2 −

ρ2

X2

�
: ð91Þ

VII. THE NONCIRCULAR COLLINSON ANSATZ

The so-called Collinson theorem we mention at the
beginning of Sec. III was first established for circular
stationary axisymmetric spacetimes for which the metric is
block diagonal, with one block related with the Killing
directions and the other with the remaining spatial sector
[1,2]. It was later extended to general stationary axisym-
metric spacetimes by considering also noncircular contri-
butions [3]. This was possible due to the following
generalization of the Collinson Ansatz

ds2 ¼ e−2Q
�
−

1

aþ b
ðdτ þ adσ þMdyÞ

× ðdτ − bdσ − NdyÞ þ e−2Pðdx2 þ dy2Þ
�
; ð92Þ

describing the most general stationary axisymmetric space-
times and where the structural functions include now the
noncircular contributions M and N, and all the functions

TABLE VI. The commutator table for the Papapetrou Ansatz.

X1 X2 X3 X4 X5 k m

X1 0 0 0 0 2X5 −k −m
X2 0 0 −2X3 2X4 0 −k m
X3 0 2X3 0 −X2 0 0 −k
X4 0 −2X4 X2 0 0 −m 0
X5 −2X5 0 0 0 0 0 0
k k k 0 m 0 0 0
m m −m k 0 0 0 0
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depend exclusively of the spatial coordinates ðx; yÞ [3]. In
this case the jet space coordinates zA ¼ ðxμ; uIÞ are given
by xμ ¼ ðτ; σ; x; yÞ and uI ¼ ða; b; P;Q;M;NÞ. The infini-
tesimal generators of residual symmetries found in
Appendix E for the generalization (92) are listed below

X1 ¼ τ∂τ þ σ∂σ − ∂P þ ∂Q þM∂M þ N∂N; ð93aÞ

X2 ¼ τ∂τ − σ∂σ þ 2a∂a þ 2b∂b þM∂M þ N∂N; ð93bÞ

X3 ¼ σ∂τ − ∂a þ ∂b; ð93cÞ

X4 ¼ τ∂σ þ a2∂a − b2∂b þMa∂M − Nb∂N; ð93dÞ

X5 ¼ x∂x þ y∂y þ ∂P −M∂M − N∂N; ð93eÞ

X6 ¼ ∂x; ð93fÞ

X7 ¼ ∂y; ð93gÞ

XF1
¼ F1ðyÞ∂σ − F0

1ða∂M þ b∂NÞ; ð93hÞ

X̂F2
¼ F2ðyÞ∂τ − F0

2ð∂M − ∂NÞ: ð93iÞ

Note that the Killing vectors of the metric are a particular
case of the generators (93h) and (93i) when the involved
functions are constant, in other cases they generalize to two
commuting infinite-dimensional Abelian Lie subalgebras.
The rest of the generators (93a)–(93g) form a seven-
dimensional Lie subalgebra, and all them together give
the algebra observed in Table VII.
The generators (93a)–(93d) are just those appearing for

the circular Collinson Ansatz (35a)–(35d), but modified by
noncircular contributions. An exception is the generator
(93c), which is exactly the same for both spacetimes, as is
appreciated in Eq. (35c). The vector fields (93e), (93f), and
(93g) correspond to the cases where the conformal gen-
erator (35e) becomes ξzðzÞ ¼ z ¼ xþ iy, ξzðzÞ ¼ 1, and
ξzðzÞ ¼ i, respectively, where the first case is additionally
supplemented by noncircular contributions. In other words,

the infinite conformal freedom enjoyed by the circular
Collinson Ansatz breaks in these three generators, which is
a consequence of the presence of noncircular terms.
Conversely, as we check later, the standard translations
symmetries of the circular Killing vectors (35f) and (35g)
enhance to supertranslations (93h) and (93i) depending on
the direction along which the circularity is lost.
We study now how the finite transformations are

extended to include noncircular components using again
the methods of Appendix A. The finite residual symmetry
obtained after integrating generator (93a) is

~τ ¼ λτ; ~σ ¼ λσ; ~x ¼ x; ~y ¼ y;

~a ¼ a; ~b ¼ b; ~P ¼ P − ln λ; ~Q ¼ Qþ ln λ;

~M ¼ λM; ~N ¼ λN; ð94Þ

which is just the Killing scaling (42) trivially extended to
the noncircular portions. Something similar happens with
generator (93b) with regard to the anisotropic Killing
scaling (43)

~τ ¼ λτ; ~σ ¼ λ−1σ; ~x ¼ x; ~y ¼ y;

~a ¼ λ2a; ~b ¼ λ2b; ~P ¼ P; ~Q ¼ Q;

~M ¼ λM; ~N ¼ λN: ð95Þ

Since the generator (93c) is the same as in the circular case
(35c), their finite residual symmetry is the time rotation
(44) used as an example at the beginning of the work and
with no effect along the noncircular contributions. In
opposition, the angular rotation generated by the vector
field (93d),

~τ ¼ τ; ~σ ¼ σ þ ετ; ~x ¼ x; ~y ¼ y;

~a ¼ a
1 − εa

; ~b ¼ b
1þ εb

; ~P ¼ P; ~Q ¼ Q;

~M ¼ M
1 − εa

; ~N ¼ N
1þ εb

; ð96Þ

nontrivially extends the circular one (45), since it also
needs to be compensated for by special conformal trans-
formations of the noncircular structural functions. The
residual transformation one gets after exponentiation of
the vector field (93e) is the following spatial scaling

~τ ¼ τ; ~σ ¼ σ; ~x ¼ λx; ~y ¼ λy;

~a ¼ a; ~b ¼ b; ~P ¼ Pþ ln λ; ~Q ¼ Q;

~M ¼ λ−1M; ~N ¼ λ−1N; ð97Þ

which is compensated for by a translation in P and inverse
scalings in N and M. The conformal symmetry (46) breaks
to this spatial scaling and to the spatial translations (93f)
and (93g). We emphasize these last two are not precisely

TABLE VII. The commutator table for the noncircular Collin-
son Ansatz.

X1 X2 X3 X4 X5 X6 X7 XF1
X̂F2

X1 0 0 0 0 0 0 0 −XF1
−X̂F2

X2 0 0 −2X3 2X4 0 0 0 XF1
−X̂F2

X3 0 2X3 0 −X2 0 0 0 −X̂F1
0

X4 0 −2X4 X2 0 0 0 0 0 −XF2

X5 0 0 0 0 0 −X6 −X7 XyF0
1

X
̬

yF0
2

X6 0 0 0 0 X6 0 0 0 0
X7 0 0 0 0 X7 0 0 0 0
XG1

XG1
−XG1

X̂G1
0 −XyG0

1
0 0 0 0

X̂G2
X̂G2

X̂G2
0 XG2 −X

̬

yG0
2

0 0 0 0
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isometries, since in general all the structural functions
depend on the spatial coordinates and will change accord-
ing to the diffeomorphism rule for functions, which
preserve the form of the Ansatz. The generator (93h) leads
to the following finite residual symmetry

~τ ¼ τ; ~σ ¼ σ þ F1ðyÞ; ~x ¼ x; ~y ¼ y;

~a ¼ a; ~b ¼ b; ~P ¼ P; ~Q ¼ Q;

~M ¼ M − aF0
1; ~N ¼ N − bF0

1; ð98Þ

saying that the circular translation isommetry along the
angle is improved to a supertranslation whose local
dependence is determined by the spatial direction where
the noncircularity appears and which is compensated for by
superrotating the noncircular structural functions M and N
in the planes ða;MÞ and ðb;NÞ, respectively. The vector
field (93i) enhances the time translation isometry of the
circular case to a similar supertranslation,

~τ ¼ τ þ F2ðyÞ; ~σ ¼ σ; ~x ¼ x; ~y ¼ y;

~a ¼ a; ~b ¼ b; ~P ¼ P; ~Q ¼ Q;

~M ¼ M − F0
2; ~N ¼ N þ F0

2; ð99Þ

but compensated for this time with supertranslations along
the noncircular structural functions.
Finally, we would like to comment that there is a more

symmetrical version of the noncircular Ansatz where the
diffeomorphism gauge freedom is not enterally fixed and
that involves considering M and N arbitrary complex
functions [3]. This has the advantage of preserving the
conformal invariance of the circular case. However, as is
explicitly proved here, this huge and useful symmetry is
lost after gauge fixing.

VIII. CONCLUSIONS

In this work we have analyzed how to unambiguously
define the residual symmetries of a gravitational Ansatz.
The intuitive conditions that spacetime diffeomorphisms
must be compensated for with redefinitions of the structural
functions determining the Ansatz have a very nice and
geometrical interpretation in terms of general diffeomor-
phisms on jet space, where both spacetime coordinates and
the functions are independent variables. Consequently,
these conditions are interpreted such that the generators
of residual symmetries are jet space Killing fields of the
trivial lifting of the metric. However, it has the disadvantage
of including excessively general transformations that only
preserve the Ansatz formally by changing the original
dependencies of the structural functions. Studying the
transformations of the structural functions derivatives,
we provide the complementary conditions needed to avoid
this situation and obtain residual symmetries in a strict
sense. The supplemental conditions make the integration of

the system of partial differential equations determining the
generators easier. In fact, the full criterion provides an
effective computational procedure for finding all the residual
symmetries of almost any gravitational Ansatz of interest.
We describe also how to integrate the resulting infinitesimal
generators to obtain the related finite transformations by
means of the efficient method of differential invariants.
We apply the criterion to study five different gravita-

tional Ansätze. We start with the case of the Collinson
Ansatz describing circular stationary axisymmetric space-
times and we recover all the residual symmetries previously
found by Collinson himself. Apart from the isometries,
the finite-dimensional subalgebra includes two Killing
scalings and two Killing rotations appropriately compen-
sated for by scalings, translations, and special conformal
transformations on the structural functions. There is also an
infinite-dimensional subalgebra which is just a conformal
symmetry on the spatial plane orthogonal to the Killing
vectors. Using a complex Laurent series we characterize the
concrete infinite generators spanning the two related copies
of the Witt algebra.
Later we study the spherically symmetric Ansatz in its

static and time-dependent versions and previous to com-
pletely fixing the gauge on the radial variable. In the static
case in addition to the isometries there is a time scaling and
consequently a radial reparametrization as residual sym-
metries. In the time-dependent case we have the same radial
reparametrization and losing the stationary isometry enhan-
ces the above time scaling to a time reparametrization. We
identify, by means of a Fourier expansion this time, the
infinite generators providing also in this example two
copies of the Witt algebra characterizing the conformal
symmetry now enjoyed by the Lorentzian fibers orthogonal
to the spheres.
We also generalize the residual symmetries already

known for lower-dimensional AdS waves to higher dimen-
sions. The resulting infinite-dimensional subalgebra has a
very complex structure formed by three infinite-
dimensional families. One of them forms a Witt algebra
by itself and has been the base to show that the appearance
of a central extension associated with their Noether charges
is not exclusive of three dimensions. The other two families
are scalar and vector supertranslations forming a more
complex algebra. Independently of this complexity we
manage to understand the precise meaning of the infinite
connected group. It is just the well-defined subgroup of the
diffeomorphism group encoding the freedom to represent
the AdS space by means of the AdS wave Ansatz.
We study another famous example of an Ansatz describ-

ing a circular stationary axisymmetric spacetime, which is
the Papapetrou Ansatz. It is restricted by the election of the
so-called Weyl coordinates, which exist when one of the
gravitational potentials is harmonic and can be chosen as
one of the spatial coordinates, a situation occurring for
vacuum and electrovacuum spacetimes. Obviously, this
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election breaks the conformal symmetry of the circular
stationary axisymmetric spacetimes explicitly manifest in
the Collinson Ansatz. We found the same Killing scalings
and rotations as the Collinson case together with the
isometries. We also observe that the previous conformal
freedom breaks to a single translation of the other spatial
coordinate not identified with one of the gravitational
potentials. In other words, Weyl coordinates are undeter-
mined modulo this translation. Additionally, from the
general connected group of resulting residual symmetries
we identify the precise point defining the relation between
conjugate potentials introduced by Chandrasekhar. They
are well known by allowing us to derive the famous Kerr
metric from an unphysical trivial solution of the Ernst
equations.
Finally, we also explore the inclusion of noncircular

contributions in the Collinson Ansatz. There are two
immediate effects of losing circularity, the first is that
again the conformal symmetry is broken, in this case to
spatial translations and a scaling. The second is that the
standard translations symmetries of the circular Killing
vectors enhance to supertranslations which depend on the
direction along which the circularity is lost.
An immediate generalization of our work is to consider

gravitational Ansätze that also depend on derivatives of the
structural functions. There are interesting examples of this
kind in the literature; we will report on these examples in
the future. Another extension which can be very useful is to
try to include in the unifying perspective of the present
approach the study of the asymptotic symmetries of space-
times, which are nothing but a very particular kind of
residual symmetries.
Last but not least, an issue that must be inevitably

addressed is the further development of these methods to
include matter fields. In the case of a gauge field one should
look for diffeomorphisms and gauge transformations that
together are compensated for by redefinitions of the
structural functions defining the Ansatz for the gauge field.
However, it is enough to study the residual symmetries of
gauge invariant quantities as the field strength in the
Abelian case or the energy-momentum tensor in the
non-Abelian one, the latter simply being the quantity
defining the coupling to the gravitational field. The addi-
tional criterion must reduce to the vanishing of the jet space
Lie derivative of these gauge invariant quantities along
generators prolonged in the new structural directions.
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APPENDIX A: DIFFERENTIAL
INVARIANTS METHOD

Any Lie-point transformation (6) defines an infinitesimal
generator (16) on jet space zA ¼ ðxμ; uI;…Þ. Conversely,
given the infinitesimal generator one can find the associated
finite transformations, ~zB ¼ ~zBðzA; εÞ, which are defined as
the solution to the dynamical system

d~zBðεÞ
dε

¼ XBð~zAðεÞÞ; ~zBð0Þ ¼ zB; ðA1Þ

where the starting coordinates play the role of the initial
conditions. In this appendix we review how to integrate
this system and find the finite transformations from the
infinitesimal ones by means of the method of differential
invariants.
A local function Ω ¼ ΩðzAÞ on jet space is a differential

invariant of the group of transformations provided
that [4–7]

Ωð~zAÞ ¼ ΩðzAÞ; ðA2Þ

i.e. they are jet space functions that keep their local
functional form under the action of the one-parameter
group. Since the infinitesimal action is characterized by the
corresponding generator (16), a differential invariant must
be constant along the integral curves of the generator

XðΩÞ ¼ XA∂AðΩÞ ¼ X1
∂Ω
∂z1 þ � � � þ Xm ∂Ω

∂zm ¼ 0: ðA3Þ

This is a linear homogeneous first order partial differential
equation which has m − 1 functionally independent
solutions, where m is the jet space dimension. These
functionally independent differential invariants are just
the m − 1 integration constants, ΩiðzAÞ ¼ ci, of the corre-
sponding characteristic system of ordinary differential
equations

dz1

X1ðzAÞ ¼
dz2

X2ðzAÞ ¼ � � � ¼ dzm

XmðzAÞ : ðA4Þ

The idea of the method is to eliminate m − 1 coordinates
from the differential invariants and rewrite the equation for
the remaining coordinate, let us say zB

̬

, as an autonomous
first order ordinary equation for this single variable,

dzB
̬

XB
̬

ðzB
̬

;Ω1;…;Ωm−1Þ
¼ dε; ðA5Þ
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which is integrable, at least in quadrature. Integrating this
equation with general initial conditions zA at ε ¼ 0 and
denoting the solutions for a generic value of the parameter
as ~zA, we obtain the one-parameter transformation ~zB

̬

¼
~zB

̬

ðzA; εÞ after substituting all the differential invariants
evaluated on the full initial conditions. The remaining
transformations are found by isolating the other m − 1
coordinates from the definitions of the differential invar-
iants Ωið~zAÞ ¼ ΩiðzAÞ. In our opinion, this method is more
efficient and straightforward than the standard exponentia-
tion of the vector fields. We present some examples which
make the involved procedure more clear.
We start with the well-known example of the SO(2)

group acting on the plane, which has as generator

X ¼ −y∂x þ x∂y: ðA6Þ

In this case the characteristic equation

−
dx
y

¼ dy
x
; ðA7Þ

can be rewritten as

dðx2 þ y2Þ ¼ 0; ðA8Þ

giving rise to the single differential invariant

Ω1ðx; yÞ ¼ x2 þ y2: ðA9Þ

In order to find the finite transformation for x we must
integrate its ordinary equation,

dε ¼ −
dx
y

¼ −
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω1 − x2
p ; ðA10Þ

making use of the differential invariant (A9), which is
constant along the integral curves of the SO(2) generator.
Integrating Eq. (A10) from 0 to ε and denoting the initial
conditions by ðx; yÞ and the solutions by ð~x; ~yÞ yields

~x ¼ cosðεÞx − sinðεÞy; ðA11Þ

after substituting back the differential invariant evaluated at
the initial conditions. The remaining transformation is
found from the definition of the differential invariant since

~x2 þ ~y2 ¼ x2 þ y2: ðA12Þ

Then solving for ~y and substituting Eq. (A11) gives

~y ¼ sinðεÞxþ cosðεÞy: ðA13Þ

The transformations (A11) and (A13) are the standard
rotations in the ðx; yÞ plane as expected.
The next example is the following three-dimensional

generator

X ¼ −y∂x þ x∂y þ ð1þ z2Þ∂z; ðA14Þ

having as a characteristic system

−
dx
y

¼ dy
x

¼ dz
1þ z2

: ðA15Þ

In this case we have two differential invariants and the first
equality yields the same differential invariant presented in
the previous example (A9). Consequently, the planar
rotations (A11) and (A13) hold again. The second equality
can be written as

dz
1þ z2

¼ dy
x

¼ dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω1 − y2

p ; ðA16Þ

by means of the first differential invariant, giving the exact
differential

d

�
arctan z − arcsin

yffiffiffiffiffiffi
Ω1

p
�

¼ 0; ðA17Þ

whose integration gives us the second differential invariant.
Since any function of a differential invariant inherits that
property as well, we choose

Ω2ð~xÞ ¼ tan

�
arctan z − arcsin

yffiffiffiffiffiffi
Ω1

p
�

¼ xz − y
xzþ x

: ðA18Þ

Using now the definition for a differential invariant we have
the following relation between the solution ~~x and the initial
condition ~x

~x ~z−~y
~y ~zþ~x

¼ xz − y
yzþ x

; ðA19Þ

from which after substituting the planar rotations (A11)
and (A13) and isolating ~z we obtain the SLð2; IRÞ
transformation

~z ¼ cosðεÞzþ sinðεÞ
− sinðεÞzþ cosðεÞ : ðA20Þ

The transformations (A11), (A13), and (A20) are the
finite version of the infinitesimal ones described by the
generator (A14).
The last example is one where the generator is charac-

terized by an arbitrary dependence. Those cases involve
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general subclasses of diffeomorphisms and represent
infinite-dimensional algebras. We choose the generator
(35e) of the Collinson Ansatz,

X̂ξz ¼ ξz∂z þ ξz∂z̄ þ
1

2
ð∂zξ

z þ ∂ z̄ξ̄
zÞ∂P;

whose characteristic system is

dz
ξzðzÞ ¼

dz̄
ξ̄zðz̄Þ ¼

2dP
∂zξ

z þ ∂ z̄ξ̄
z : ðA21Þ

Here ξzðzÞ is an arbitrary holomorphic function on the
complex z plane. In order for this generator to be uniquely
integrable this function must be nonvanishing, hence, this
component represents an arbitrary conformal transforma-
tion, i.e. a general one-parameter holomorphism

~z ¼ ~zðz; εÞ; ξzðzÞ≡ ∂ ~z
∂ε

����
ε¼0

; ðA22aÞ

with nonvanishing derivative

d~z
dz

¼
~ξzð~zÞ
ξzðzÞ ≠ 0; ðA22bÞ

and which thus is holomorphically invertible. Now,
Eq. (A21) can be rewritten in a way allowing us to identify
the corresponding differential invariant,

dðP − ln jξzjÞ ¼ 0 ⇒ Ωðz; PÞ ¼ P − ln jξzj: ðA23Þ

By definition, using again the notation of writing the
solutions with a tilde and the initial conditions without
it, the differential invariant must comply with

~P − ln j~ξzj ¼ P − ln jξzj; ðA24Þ

from which we derive the remaining transformation,

~P ¼ Pþ ln j d~z
dz

j: ðA25Þ

In summary, the generator (35e) of the Collinson Ansatz
represents the infinitesimal version of a conformal trans-
formation (A22) compensated for by the supertranslation
(A25) on the structural function P.
The three examples studied in this appendix are repre-

sentative of the procedures needed to find the finite version
of the generators appearing throughout the paper, by means
of the use of the differential invariant method.

APPENDIX B: SPHERICALLY SYMMETRIC
ANSATZ, DETAILS

In this appendix and the following ones we provide the
details of the calculations concerning the remaining exam-
ples we study in the paper. This appendix is devoted to the
spherically symmetric Ansatz. We start with the static case
(48) having jet space coordinates zA ¼ ðt; r; θ;φ; F; N; YÞ.
Since all the structural functions are radial functions then,
according to the classification of Sec. II, uĪ¼uI¼ðF;N;YÞ,
xᾱ ¼ ðrÞ, and xα̂ ¼ ðt; θ;φÞ, which reduce the comple-
mentary conditions (26c) to

∂tη
I ¼ ∂θη

I ¼ ∂φη
I ¼ ∂tξ

r ¼ ∂θξ
r ¼ ∂φξ

r ¼ 0: ðB1Þ

Therefore, the generator of infinitesimal residual
symmetries must have the following general form

X ¼ ξtðt; r; θ;φÞ∂t þ ξrðrÞ∂r þ ξθðt; r; θ;φÞ∂θ

þ ξφðt; r; θ;φÞ∂φ þ ηFðr; F; N; YÞ∂F

þ ηNðr; F; N; YÞ∂N þ ηYðr; F; N; YÞ∂Y : ðB2Þ

The spherical Lie-derivative criterion (26a) reads

NηF þ 2FηN þ 2NF∂tξ
t ¼ 0; ðB3aÞ

ηF − 2F∂rξ
r ¼ 0; ðB3bÞ

ηY þ Y∂θξ
θ ¼ 0; ðB3cÞ

ηY þ Yð∂φξ
φ þ cotðθÞξθÞ ¼ 0; ðB3dÞ

∂rξ
t ¼ ∂rξ

θ ¼ ∂rξ
φ ¼ 0; ðB3eÞ

− N2F∂θξ
t þ Y2∂tξ

θ ¼ 0; ðB3fÞ

−N2F∂φξ
t þ Y2sin2ðθÞ∂tξ

φ ¼ 0; ðB3gÞ

∂φξ
θ þ sin2ðθÞ∂θξ

φ ¼ 0: ðB3hÞ

From Eq. (B3e) and using in Eqs. (B3f) and (B3g) the
fact that the structural functions of the Ansatz are free
variables from which the generator components along
spacetime are independent, we conclude that ξt is a
function of t only and ξθ, ξφ are functions of θ and φ
only. Using this in Eqs. (B3a), (B3c), and (B3d) and that
the generator components along the structural functions
are independent of t, θ, and φ, these equations are only
satisfied if

∂tξ
t ¼ C1; ðB4aÞ

∂θξ
θ ¼ C2 ¼ ∂φξ

φ þ cot θξθ; ðB4bÞ
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where C1 and C2 are constants. This subsystem can be
solved together with Eq. (B3h). In fact, deriving Eq. (B3h)
with respect to φ and using Eq. (B4b) we obtain that
C2 ¼ 0 and ∂2

φξ
θ ¼ −ξθ, from which the integration is

straightforward,

ξt ¼ C1tþ κ4; ðB5aÞ

ξθ ¼ κ1 sinφþ κ2 cosφ; ðB5bÞ

ξφ ¼ ðκ1 cosφ − κ2 sinφÞ cot θ þ κ3; ðB5cÞ

and the κ’s are new integration constants. Now it only
remains to solve the consistent algebraic system (B3a)
and (B3c) for the generator components along the structural
functions, which results after substituting the solutions
(B5), that gives us

ηN ¼ −ð∂rξ
r þ C1ÞN; ðB6aÞ

ηF ¼ 2∂rξ
rF; ðB6bÞ

ηY ¼ 0: ðB6cÞ

This allows us to arrive at the final form of the generator
(B2) of residual symmetries on static spherically symmetric
spacetimes,

X ¼ C1ðt∂t − N∂NÞ
þ ξrðrÞ∂r þ ∂rξ

rð2F∂F − N∂NÞ
þ κ1ðsinφ∂θ þ cot θ cosφ∂φÞ
þ κ2ðcosφ∂θ − cot θ sinφ∂φÞ
þ κ3∂φ þ κ4∂t; ðB7Þ

which is a linear combination of the generators (49a)–(49e)
exhibit in the main text.
We continue by studying the differences with respect to

the previous behavior of considering a time-dependent
spherically symmetric Ansatz (56). Incorporating time
dependency changes the jet space classification of
Sec. II to uĪ¼uI¼ðF;N;YÞ, xᾱ¼ðt;rÞ, and xα̂¼ðθ;φÞ,
giving now the complementary conditions

∂θη
I ¼ ∂φη

I ¼ ∂θξ
t ¼ ∂φξ

t ¼ ∂θξ
r ¼ ∂φξ

r ¼ 0; ðB8Þ

which modify the generator (B2) accordingly. In the
residual criterion (B3), the Eqs. (B3a)–(B3d), which
algebraically determine the generator components along
the structural functions, remain unchanged, but the rest is
transformed to

∂tξ
r − N2F2∂rξ

t ¼ 0; ðB9aÞ

∂tξ
θ ¼ ∂rξ

θ ¼ ∂tξ
φ ¼ ∂rξ

φ ¼ 0; ðB9bÞ

∂φξ
θ þ sin2ðθÞ∂θξ

φ ¼ 0: ðB9cÞ

Performing a similar analysis as in the static case we end
with the same solution except for the component ξt, which
is now an arbitrary function of t, and this modifies the
component along N as follows

ηN ¼ −ð∂rξ
r þ ∂tξ

tÞN: ðB10Þ

Consequently, in the time-dependent case the generator
(B7) then changes to

X ¼ ξtðtÞ∂t − ∂tξ
tN∂N

þ ξrðrÞ∂r − ∂rξ
rðN∂N − 2F∂FÞ

þ κ1ðsinφ∂θ þ cot θ cosφ∂φÞ
þ κ2ðcosφ∂θ − cot θ sinφ∂φÞ þ κ3∂φ: ðB11Þ

APPENDIX C: AdS WAVES, DETAILS

In the jet space coordinates for the D-dimensional AdS
waves (62), zA ¼ ðu; v; y; ~x; FÞ, the structural function
uĪ ¼ uI ¼ ðFÞ depends only on the retarded time and
the front-wave coordinates xᾱ ¼ ðu; y; ~xÞ, i.e. it is inde-
pendent of the null ray parameter xα̂ ¼ ðvÞ. Hence, the
complementary conditions (26c) take the form

∂vη
F ¼ ∂vξ

u ¼ ∂vξ
y ¼ ∂vξ

i ¼ 0; ðC1Þ

giving the following general form for the generator of
infinitesimal residual symmetries

X ¼ ξuðu; y; ~xÞ∂u þ ξvðu; v; y; ~xÞ∂v þ ξyðu; y; ~xÞ∂y

þ ~ξðu; y; ~xÞ þ ηFðu; y; ~x; FÞ∂F; ðC2Þ

where i ¼ 1;…; D − 3 and we use the standard notation for
Euclidean vectors ~v ¼ vi∂i.
The Lie-derivative criterion (26a) gives the following

system of equations

ηF þ 2

�
∂uξ

u −
ξy

y

�
F þ 2∂uξ

v ¼ 0; ðC3aÞ

∂uξ
u þ ∂vξ

v −
2

y
ξy ¼ 0; ðC3bÞ

∂yξ
u ¼ ∂iξ

u ¼ 0; ðC3cÞ

∂yξ
v − ∂uξ

y ¼ 0; ðC3dÞ
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∂iξ
v − ∂uξi ¼ 0; ðC3eÞ

∂yξ
y −

ξy

y
¼ 0; ðC3fÞ

∂iξ
y þ ∂yξi ¼ 0; ðC3gÞ

∂ðiξjÞ −
ξy

y
δij ¼ 0; ðC3hÞ

where we denote ξi ¼ δijξ
j. The first obvious conclusion

from (C3c) is that the component along the retarded time
only depends of the retarded time, ξu ¼ ξuðuÞ. Second,
deriving the system with respect to the null ray parameter v
and using the complementary conditions (C1) we obtain

∂2
vuξ

v ¼ ∂2
vvξ

v ¼ ∂2
vyξ

v ¼ ∂2
viξ

v ¼ 0; ðC4Þ

which means the dependence of ξv in v is linear and
separable in sum with respect to the rest of the coordinates

ξv ¼ 2C1vþ Vðu; y; ~xÞ: ðC5Þ

Then, isolating from Eq. (C3b) we obtain

ξy ¼ y
2
ð_ξu þ 2C1Þ; ðC6Þ

where the dot represents the derivative with respect to the
retarded time u. This implies that ξy is a function of u and y
only, using this fact in Eq. (C3g) to allow us to conclude
that the spatial components ξi are functions of u and ~x only.
Additionally, the symmetric part of their spatial derivatives
∂iξj is obtained from Eq. (C3h) as

∂ðiξjÞ ¼
1

2
ð_ξu þ 2C1Þδij; ðC7Þ

and consequently, the derivatives themselves are given by

∂iξj ¼
1

2
ð_ξu þ 2C1Þδij þ βijðu; ~xÞ; ðC8Þ

where βij ¼ −βji is the antisymmetric part of the deriva-
tives. Now deriving the symmetric part (C7) with respect to
xl we end with

∂2
ilξj þ ∂2

ljξi ¼ 0; ðC9aÞ
and permuting indices we can also write

∂2
ljξi þ ∂2

jiξl ¼ 0; ðC9bÞ

∂2
jiξl þ ∂2

ilξj ¼ 0: ðC9cÞ

Adding Eqs. (C9a) and (C9c) and subtracting Eq. (C9b) we
arrive at

2∂l∂iξj ¼ 2∂lβij ¼ 0: ðC10Þ

Then, the βij’s are functions of u only. This allows us to
straightforwardly integrate (C8) as

ξj ¼
1

2
ð_ξu þ 2C1Þxj þ βijxi þ PjðuÞ: ðC11Þ

Using all this information Eqs. (C3d) and (C3e) reduce to

∂yV ¼ y
2
̈ξu; ðC12aÞ

∂iV ¼ xi
2
ξ̈u þ _βjixj þ _Pi: ðC12bÞ

Taking the integrability conditions of Eq. (C12b) we get

0 ¼ ∂ ½ji�V ¼ _βji;

concluding that the antisymmetric matrix is in fact a
constant one, βij ¼ Cij. The system (C12) is then inte-
grable and from (C5) the general solution for the compo-
nent along the null ray is given by

ξv ¼ 2C1vþ
1

4
ðy2 þ ~x2Þξ̈u þ _~P · ~xþ αðuÞ: ðC13Þ

Finally, we determine the component along the structural
function from Eq. (C3a)

ηF ¼ 2C1F − _ξu −
1

2
ðy2 þ ~x2Þξu

…
− 2

̈~P · ~x − 2_α: ðC14Þ

When we substitute Eqs. (C6), (C11), (C13), and (C14) in
the generator (C2) we obtain

X ¼ C1ð2v∂v þ y∂y þ xi∂i þ 2F∂FÞ

þ 1

2
Cijðxi∂j − xj∂iÞ þ αðuÞ∂v − 2_α∂F

þ ξuðuÞ∂u þ
_ξu

2
ðy∂y þ xi∂i − 2F∂FÞ

þ 1

4
ðy2 þ ~x2Þð̈ξu∂v − 2ξu

…
∂FÞ

þ ~PðuÞ þ ~x · ð _~P∂v − 2
̈~P∂FÞ; ðC15Þ

where the spatial indices ði; jÞ are raised and lowered using
the Euclidean metric δij.

1. Finite reparametrization of the retarded time

The result of the previous derivation is a superposition of
the vector fields (63a)–(63e) we report in Sec. V. Using the
method of differential invariants explained in Appendix A,
it is very easy to integrate most of these vector fields to
show that the corresponding finite transformations are
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those also reported in the same section. The integration of
the generator (63d) is a little more difficult since it
comprises an arbitrary function similar to the example
related to the Collinson Ansatz we study in Appendix A.
Since the present case is more involved we found it
convenient to give the details of its integration. The
characteristic system for the generator (63d) is

du
ξu

¼ 2dy
_ξuy

¼ 2dx1

_ξux1
¼ � � � ¼ 2dxD−3

_ξuxD−3

¼ 4dv
̈ξuðy2 þ ~x2Þ

¼ −2dF
2_ξuF þ ξu

…
ðy2 þ ~x2Þ

; ðC16Þ

and is equivalent to the set of equations

dx{̂

x{̂
¼

_ξudu
2ξu

; ðC17aÞ

dv ¼ 1

4

x{̂x{̂

ξu
̈ξudu; ðC17bÞ

ξudF ¼ −
�
_ξuF þ 1

2
ξu
…
x{̂x{̂

�
du; ðC17cÞ

where x{̂ ¼ ðy; x1;…; xD−3Þ are the wave-front coordinates
and no sum is understood in the first equation. We proceed
as we did for the Collinson Ansatz, remembering that the
arbitrary function ξu ¼ ξuðuÞ is the infinitesimal version of
a general reparametrization of the retarded time ~u ¼ ~uðu; εÞ
and

d ~u
du

¼
~ξuð ~uÞ
ξuðuÞ : ðC18Þ

This relation will allow us to eliminate the appearances of
the infinitesimal contributions of the reparametrization in
favor of the finite one and their derivatives. We begin with
the first characteristic equations (C17a) which can be
straightforwardly integrated given the first D − 2 differ-
ential invariants,

d ln

�
x{̂ffiffiffiffiffi
ξu

p
�

¼ 0;⇒ Ω{̂ðu; x{̂Þ ¼ x{̂ffiffiffiffiffi
ξu

p : ðC19Þ

Using their invariant property

~x{̂ffiffiffiffiffiffiffiffiffiffiffi
~ξuð ~uÞ

q ¼ x{̂ffiffiffiffiffiffiffiffiffiffiffi
ξuðuÞp ; ðC20Þ

and the relation (C18) we find the D − 2 finite trans-
formations for the wave-front coordinates

~x{̂ ¼
ffiffiffiffiffiffi
d ~u
du

r
x{̂: ðC21Þ

For solving the second characteristic equation (C17b) we
use that any function of a differential invariant is also a
differential invariant, hence, from definition (C19) we get
that

Ω{̂Ω{̂ ¼ x{̂x{̂

ξu
; ðC22Þ

is a differential invariant. Replacing it in Eq. (C17b) we
arrive at a new differential invariant

d

�
v −

1

4
Ω{̂Ω{̂ _ξu

�
¼ 0;

⇒ Ωvðu; vÞ ¼ v −
1

4
Ω{̂Ω{̂ _ξu: ðC23Þ

Using their invariant property Ωvð ~u; ~vÞ ¼ Ωvðu; vÞ and the
derivative of the relation (C18) we obtain the finite trans-
formation for the null ray parameter

~v ¼ vþ 1

4
x{̂x{̂

_ξuð ~uÞ − _ξuðuÞ
ξuðuÞ

¼ vþ 1

4
x{̂x{̂

d
du

ln

�
d ~u
du

�
: ðC24Þ

The last characteristic equation (C17c) can be rewritten
using (C22) as

ξudF þ
�
_ξuF þ 1

2
Ω{̂Ω{̂ξu ξ

…u
�
du ¼ 0; ðC25Þ

which is an integrable equation since the crossed partial
derivatives coincide. Hence, the equation is an exact
differential of the last differential invariant,

ΩFðu; FÞ ¼ ξuF þΩξ̂Ωξ̂

2

�
ξu ̈ξu −

1

2
ð_ξuÞ2

�
: ðC26Þ

From their invariance ΩFð ~u; ~FÞ ¼ ΩFðu; FÞ and using the
second derivative of the relation (C18) we get the finite
transformation for the structural function

~F ¼
�
d ~u
du

�
−1
�
F þ

�
d ~u
du

�
1=2 d2

du2

�
d ~u
du

�
−1=2

x{̂x{̂
�
: ðC27Þ

Equations (C21), (C24), and (C27) are the way in which the
rest of the variables involved in the AdS wave Ansatz (62)
must change in order to compensate for an arbitrary
reparametrization of the retarded time ~u ¼ ~uðuÞ. This is
precisely the transformation (79) reported in the main text.
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2. AdS from AdS waves

The last issue we address in this appendix is the
derivation of the most general way to locally express the
AdS spacetimewith the AdS wave Ansatz (62), which gives
just the structural function (82). This is relevant to the
interpretation of the infinite-dimensional subgroup of
the connected group of residual symmetries we provide
at the end of Sec. V. AdS is defined as the spacetime having
constant negative curvature in any dimension D and we
need to impose this condition on the AdS waves. Spacetime
curvature is in general decomposed in their completely
traceless part represented in the Weyl tensor, Wα

βμν, and
their first trace defining the Ricci tensor, Rαβ. In turn, the
Ricci tensor has a traceless part, Sαβ ¼ Rαβ − Rgαβ=D, and
its trace which is the scalar curvature, R. Hence, the Weyl
tensor, the traceless part of the Ricci tensor, and the scalar
curvature completely determine the full curvature. Spaces
where one or both of the traceless parts vanish have special
properties: due to the conformal invariance of the Weyl
tensor its vanishing defines the conformally flat spacetimes,
a vanishing traceless part of the Ricci tensor defines the so-
called Einstein spaces, and when both tensors vanish the
full curvature is completely determined by the scalar
curvature, which is necessarily constant. The latter are
the constant curvature spaces. Since the AdS waves (62)
already have constant negative scalar curvature, we only
impose they are conformally flat and at the same time
Einstein spaces. The traceless curvature tensors for these
backgrounds are given by

Wαβμν ¼
2l2

y2

�
∂2
{̂ |̂F −

∂ k̂∂ k̂F
D − 2

δ{̂ |̂

�
δu½αδ

{̂
β�δ

u
½μδ

|̂
ν�; ðC28Þ

Sαβ ¼
1

2

�
∂ k̂∂ k̂F −

D − 2

y
∂yF

�
δuαδ

u
β: ðC29Þ

The vanishing of the Weyl components

Wu{̂u|̂ ¼
l2

2y2
∂2
{̂ |̂F ¼ 0; {̂ ≠ |̂ ðC30Þ

implies the structural function characterizing the profile of
the AdS wave is separable in sum in all the front-wave
coordinates,

Fðu; x{̂Þ ¼ Yðu; yÞ þ X1ðu; x1Þ þ � � � þ XD−3ðu; xD−3Þ:
ðC31Þ

From the differences of the Weyl components

Wuiui −Wuyuy ¼
l2

2y2
ð∂2

iiF − ∂2
yyFÞ ¼ 0; ðC32Þ

for each i ¼ 1;…; D − 3 (no sum in i is understood), and
using the separability (C31) we obtain

∂2
yyY ¼ ∂2

11X
1 ¼ � � � ¼ ∂2

D−3;D−3X
D−3 ¼ 2F2ðuÞ; ðC33Þ

i.e. the equality between the different dependencies is only
possible if there is no dependence at all on the front-wave
coordinates for these second derivatives, which in turn
defines the function F2 depending only on the retarded
time. Equation (C33) can be easily integrated to give the
most general conformally flat AdS wave profile,

FCF ¼ F2ðuÞx{̂x{̂ þ F1 {̂ðuÞx{̂ þ F0ðuÞ: ðC34Þ

Imposing now that the last backgrounds are additionally
Einstein spaces,

Sαβ ¼ −
D − 2

2

F1y

y
δuαδ

u
β ¼ 0; ðC35Þ

implies the vanishing of the function F1y, which reduces
the conformally flat profiles (C34) to the constant curvature
ones defining AdS spacetime (82).

APPENDIX D: PAPAPETROU
ANSATZ, DETAILS

The jet space coordinates for the Papapetrou Ansatz are
zA ¼ ðt;φ; ρ; z; X; A; hÞ, where the structural functions
uĪ ¼ uI ¼ ðX; A; hÞ are functions of the spatial coordinates
xᾱ ¼ ðρ; zÞ and are independent of the Killing coordinates
xα̂ ¼ ðt;φÞ. In this case the complementary conditions
(26c) are

∂tη
I ¼ ∂φη

I ¼ ∂tξ
ρ ¼ ∂tξ

z ¼ ∂φξ
ρ ¼ ∂φξ

z ¼ 0; ðD1Þ

and the generator of residual symmetries has the following
general form

X ¼ ξtðt;φ; ρ; zÞ∂t þ ξφðt;φ; ρ; zÞ∂φ þ ξρðρ; zÞ∂ρ

þ ξzðρ; zÞ∂z þ ηIðρ; z; uJÞ∂I: ðD2Þ

The criterion (26a) in this case gives the following
system of equations for the components of the generator

ðA2 þ ρ2=X2ÞηX þ 2AXηA þ 2AX∂tξ
φ

þ 2XðA2 − ρ2=X2Þ∂tξ
t −

2ρ

X
ξρ ¼ 0; ðD3aÞ

AηX þ XηA þ ðA2 − ρ2=X2ÞX∂φξ
t

þ X∂tξ
φ þ AXð∂tξ

t þ ∂φξ
φÞ ¼ 0; ðD3bÞ

ηX þ 2AX∂φξ
t þ 2X∂φξ

φ ¼ 0; ðD3cÞ

ηX − 2Xηh − 2X∂ρξ
ρ ¼ 0; ðD3dÞ

ηX − 2Xηh − 2X∂zξ
z ¼ 0; ðD3eÞ
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∂ρξ
z þ ∂zξ

ρ ¼ 0; ðD3fÞ

ðA2 − ρ2=X2Þ∂ρξ
t þ A∂ρξ

φ ¼ 0; ðD3gÞ

ðA2 − ρ2=X2Þ∂zξ
t þ A∂zξ

φ ¼ 0; ðD3hÞ

∂ρξ
φ þ A∂ρξ

t ¼ ∂zξ
φ þ A∂zξ

t ¼ 0: ðD3iÞ

Since the spacetime components of the generator are
independent of the structural functions, Eqs. (D3g)–(D3i)
only hold if ξt and ξφ exclusively depend on t and φ. In
Eqs. (D3b) and (D3c) we have dependencies on t and φ
through the derivatives of the previous components, and
they are compatible with the independence of the ηI on t
and φ (D1) only if additionally

∂tξ
t ¼ Ĉ1; ∂φξ

t ¼ C3;

∂φξ
φ ¼ Ĉ2; ∂tξ

φ ¼ C4;

	

⇒

�
ξt ¼ Ĉ1tþ C3φþ κ1;

ξφ ¼ Ĉ2φþ C4tþ κ2:

This makes Eqs. (D3b) and (D3c) a compatible linear
system for ηX and ηA. Inserting their solution into Eq. (D3a)
it is possible to solve also for ξρ giving

ξρ ¼ −ðĈ1 þ Ĉ2Þρ; ðD4Þ

ηX ¼ −2ðĈ2 þ C3AÞX; ðD5Þ

ηA ¼ −C4 − ðĈ1 − Ĉ2ÞAþ C3

�
A2 þ ρ2

X2

�
: ðD6Þ

Since ξρ is independent of z it follows from Eq. (D3f) that
ξz is independent of ρ. Moreover, from Eqs. (D3d) and
(D3e) we obtain

ξz ¼ −ðĈ1 þ Ĉ2Þzþ C5: ðD7Þ

Finally, from Eq. (D3d) we find

ηh ¼ Ĉ1 − C3A: ðD8Þ

The generator (D2) is fixed as

X ¼ C1ðt∂t þ φ∂φ − 2ρ∂ρ − 2z∂z − 2X∂X þ ∂hÞ
þ C2ðt∂t − φ∂φ − 2A∂A þ 2X∂X þ ∂hÞ
þ C3½φ∂t − 2AX∂X þ ðA2 þ ρ2=X2Þ∂A − A∂h�
þ C4ðt∂φ − ∂AÞ þ C5∂z þ κ1∂t þ κ2∂φ; ðD9Þ

where we redefined Ĉ1 ¼ C1 þ C2 and Ĉ2 ¼ C1 − C2.
This is a linear combination of the generators (84) given
in the main text.

APPENDIX E: NONCIRCULAR COLLINSON
ANSATZ, DETAILS

The jet space coordinates of the noncircular Collinson
Ansatz are extended to include the noncircular contribu-
tions as zA ¼ ðτ; σ; x; y; a; b; P;Q;M;NÞ. Since all the
structural functions uĪ ¼ uI ¼ ða; b; P;Q;M;NÞ are inde-
pendent of the Killing coordinates xα̂ ¼ ðτ; σÞ and depend
only on the spatial coordinates xᾱ ¼ ðx; yÞ, the comple-
mentary conditions (26c) are

∂τη
I ¼ ∂ση

I ¼ ∂τξ
x ¼ ∂τξ

y ¼ ∂σξ
x ¼ ∂σξ

y ¼ 0: ðE1Þ

Hence, the generator of residual symmetries for the line
element (92) has the general form

X ¼ ξτðτ; σ; x; yÞ∂τ þ ξσðτ; σ; x; yÞ∂σ þ ξxðx; yÞ∂x

þ ξyðx; yÞ∂y þ ηIðx; y; uJÞ∂I: ðE2Þ
The Lie-derivative criterion (26a) gives the following

system of equations for the components of the previous
generator

2ηQ þ ηa þ ηb

aþ b
− 2∂τξ

τ þ ðb − aÞ∂τξ
σ ¼ 0; ðE3aÞ

ðb − aÞηQ þ bηa − aηb

aþ b
þ ∂σξ

τ − ab∂τξ
σ

−
1

2
ðb − aÞð∂τξ

τ þ ∂σξ
σÞ ¼ 0; ðE3bÞ

− 2abηQ þ b2ηa þ a2ηb

aþ b
þ 2ab∂σξ

σ

þ ðb − aÞ∂σξ
τ ¼ 0; ðE3cÞ

ðM −NÞð2ηQ − ∂τξ
τ − ∂yξ

yÞ þM −N
aþ b

ðηa þ ηbÞ− ηM þ ηN

þ ðb− aÞ∂yξ
σ þ ðMbþNaÞ∂τξ

σ − 2∂yξ
τ ¼ 0; ðE3dÞ

ðMbþ NaÞð2ηQ − ∂σξ
σ − ∂yξ

yÞ þM − N
aþ b

ðbηa − aηbÞ
− bηM − aηN − 2ab∂yξ

σ − ðb − aÞ∂yξ
τ

þ ðM − NÞ∂σξ
τ ¼ 0; ðE3eÞ

ηP þ ηQ − ∂xξ
x ¼ 0; ðE3fÞ

− 2ðaþ bÞ
�
e−2P þ MN

aþ b

�
ðηQ − ∂yξ

yÞ − MN
aþ b

ðηa þ ηbÞ

þ NηM þMηN − 2ðaþ bÞe−2PηP − ðM − NÞ∂yξ
τ

þ ðMbþ NaÞ∂yξ
σ ¼ 0; ðE3gÞ

ðb − aÞ∂xξ
σ − ðM − NÞ∂xξ

y − 2∂xξ
τ ¼ 0; ðE3hÞ
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ðb − aÞ∂xξ
τ þ ðMbþ NaÞ∂xξ

y þ 2ab∂xξ
σ ¼ 0; ðE3iÞ

− ðM − NÞ∂xξ
τ þ ðMbþ NaÞ∂xξ

σ

þ 2ðaþ bÞe−Pð∂yξ
x þ ∂xξ

yÞ þ 2MN∂xξ
y ¼ 0: ðE3jÞ

Since the structural functions of the metric and the
spacetime coordinates are understood as independent
variables in jet space, and the spacetime components of
the generator only depend on the latter, then Eqs. (E3h)–
(E3j) are only fulfilled if

∂xξ
τ ¼ ∂xξ

σ ¼ ∂yξ
x ¼ ∂xξ

y ¼ 0: ðE4Þ

Therefore, ξτ and ξσ are independent of x while ξy and ξx

only are functions of y and x, respectively. Using the same
argument together with the complementarity conditions
(E1), after taking the derivatives of Eqs. (E3a)–(E3g) with
respect to τ and σ, results in the additional constraints

∂2
ττξ

τ ¼ ∂2
σσξ

τ ¼ ∂2
τσξ

τ ¼ ∂2
τyξ

τ ¼ ∂2
σyξ

τ ¼ 0;

∂2
ττξ

σ ¼ ∂2
σσξ

σ ¼ ∂2
τσξ

σ ¼ ∂2
τyξ

σ ¼ ∂2
σyξ

σ ¼ 0: ðE5Þ

They imply that the components ξτ and ξσ are separable in
sum in all their dependencies and are additionally linear in
the Killing coordinates τ and σ

ξτ ¼ C1τ þ C2σ þ F1ðyÞ; ðE6Þ

ξσ ¼ C3τ þ C4σ þ F2ðyÞ: ðE7Þ

When we substitute the above solutions into the seventh
equations (E3a)–(E3g) we obtain a linear system of
equations for the six ηI’s plus a constraint. The constraint
is just the condition

∂xξ
x ¼ ∂yξ

y; ðE8Þ

which is solved as

ξx ¼ C5xþ C6; ðE9Þ

ξy ¼ C5yþ C7: ðE10Þ

Now Eqs. (E3a)–(E3f) are a consistent linear system whose
solution is given by

ηa ¼ C3a2 þ ðC1 − C4Þa − C2; ðE11Þ

ηb ¼ −C3b2 þ ðC1 − C4Þbþ C2; ðE12Þ

ηP ¼ C5 −
1

2
ðC1 þ C4Þ; ðE13Þ

ηQ ¼ 1

2
ðC1 þ C4Þ; ðE14Þ

ηM ¼ ðC1 − C5ÞM þ C3aM − ∂yF2a − ∂yF1; ðE15Þ

ηN ¼ ðC1 − C5ÞN − C3bN − ∂yF2bþ ∂yF1: ðE16Þ

Therefore, the generator of residual symmetries for the
noncircular Collinson Ansatz takes the form

X¼C1

�
τ∂τ þa∂aþb∂bþM∂M þN∂N −

1

2
∂Pþ

1

2
∂Q

�

þC2ðσ∂τ −∂aþ∂bÞ
þC3ðτ∂σ þa2∂a−b2∂bþMa∂M −Nb∂NÞ

þC4

�
σ∂σ −a∂a−b∂b−

1

2
∂Pþ

1

2
∂Q

�

þC5ðx∂xþ y∂y−M∂M −N∂N þ∂PÞ
þC6∂xþC7∂yþF1∂τ − ∂yF1ð∂M −∂NÞ
þF2∂σ − ∂yF2ða∂M þb∂NÞ; ðE17Þ

which is a linear combination of the vector fields reported
in the main text equations (93).
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