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The unphysical spin-2 massive degrees of freedom in higher-derivative gravity may be either massive
unphysical ghosts or tachyonic ghosts. In the last case there is no Planck-scale threshold protecting vacuum
cosmological solutions from instabilities. Within the anomaly-induced action formalism the photon-driven
IR running of the coefficient of the Weyl-squared term makes the ghost eventually become tachyonic,
which should produce a gravitational explosion of vacuum. This effect is stable under higher-loop
corrections and takes place also in known versions of perturbative quantum gravity. However, the
contribution of massless fields in the far IR are not the same in flat and de Sitter spaces. In the
asymptotically de Sitter case one can observe a kind of IR decoupling, which protects the cosmological
solution from the future tachyonic instabilities.
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I. INTRODUCTION

It is well-known that fourth-derivative terms are neces-
sary in the gravitational action, to render the theory
consistent at the semiclassical level (see Refs. [1,2] for
an introduction to the subject and also Ref. [3] for a recent
pedagogical review). In quantum gravity (QG) the same
fourth-derivative terms provide renormalizability of the
theory [4]. At the same time, adding fourth-derivative terms
to the standard Einstein-Hilbert action has an undesirable
effect, since the spectrum of the theory in the spin-2 sector
gains a massive unphysical ghost in addition to the usual
healthy graviton. An attempt to remove these unphysical
states from the initial quantum state leads to a nonunitary
quantum theory. In the semiclassical theory, when gravity is
a classical background for quantum matter fields, there is
no problem with the unitarity of the gravitational S-matrix,
and hence the condition of consistency can be reduced to
the requirement of stability of the physically relevant
classical solutions with respect to small metric perturba-
tions. In the present work we will discuss a new aspect of
this problem, related to the difference between the massive
unphysical ghost and the tachyon.
Let us start by fixing the notations. The action of gravity

corresponding to the renormalizable semiclassical theory
(for an introduction one can see, e.g., Refs. [1–3], further
references therein and also recent more formal work [5])
consists of the following terms:

Svac ¼ SEH þ SHD; ð1Þ

where SEH is the Einstein-Hilbert action with a cosmo-
logical constant term,

SEH ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p fRþ 2Λg ð2Þ

and SHD includes a minimal necessary set of higher-
derivative terms,

SHD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fa1C2 þ a2E4 þ a3□Rþ a4R2g: ð3Þ

In this expression

E4 ¼ R2
μναβ − 4R2

αβ þ R2 ð4Þ
is the Gauss-Bonnet term (Euler density in d ¼ 4) and C2 is
the square of the Weyl tensor. Furthermore, we use units
corresponding to c ¼ ℏ ¼ 1 and denote with Mp ¼ 1=

ffiffiffiffi
G

p
the Planck mass. The metric has signature ðþ;−;−;−Þ. For
the sake of simplicity we assume that the absolute value of
a1 is of order one.
A general observation about the form of the action and

especially the higher-derivative terms (3) is in order. One
can deal with these terms in two different (albeit physically
equivalent) ways. First, it is possible to consider the
classical action of gravity being free of higher-derivative
terms. Then one can observe that (different from the flat-
space QED, for instance) there are higher-derivative diver-
gences, corresponding to the running of these terms and
hence the nonlocal structures such as those we shall discuss
later on in Eq. (22). This means that even if the terms (3) are
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not introduced at the classical level, the corresponding
quantum contributions emerge anyway. Second, one can
follow the standard quantum field theory approach and
introduce into the classical action all those terms which will
emerge with divergent coefficients in the loop corrections.
The main advantage of this procedure is technical simplic-
ity, because one can always deal with a usual renormaliza-
tion procedure, consider the renormalization group running
in a useful conventional way [2] etc. The last observation is
that the list of the terms in Eqs. (2) and (3) follows from the
fact that only these structures emerge in the semiclassical
approach at all loop orders. This fact is known starting from
the classical work of Utiyama and DeWitt [6], and can be
easily seen from the covariant renormalizability and power
counting for the semiclassical theory [5].
The spectrum of the theory (1) linearized around a

Minkowski background contains in the spin-2 sector the
massless graviton and an additional spin-2 particle with mass
of order Mp. If a1 is negative this particle has positive mass
square, negative kinetic energy and hence is a ghost. For a
positive a1 the mass square is negative and the particle is a
ghost and a tachyon at the same time [7]. We postpone the
detailed description of these two types of particles to the next
section and now only make some general observations.
According to the recent discussion in Ref. [8], at least on

a cosmological Friedmann-Robertson-Walker (FRW) back-
ground massive ghost excitations are not generated far
below the Planck threshold of frequencies. The same result
was found much earlier [9–12] for a de Sitter (dS) back-
ground. Qualitatively similar considerations can be found
in Ref. [13] for generic models of massive gravity, where
one can also meet massive ghosts or tachyons. The result of
Ref. [8] means that a massive unphysical ghost can be
destructive for the theory, but only if it appears as a real
physical particle. On the other side, the presence of a ghost
in the mass spectrum of the theory may not affect stability if
such a ghost is just a virtual particle in the vacuum state of
the theory. One can note that the problem of a massive
ghost is a tree-level problem of quantum theory. It is
equivalent to the absence of stability in the classical theory.
In practical terms the conclusion of Ref. [8] means that one
can choose the initial condition in such a way that the
system does not develop instability for a sufficiently long
time. According to Ref. [8] this choice of initial conditions
is possible for a1 < 0.
On the contrary, for the case a1 > 0 the extra massive

particle is a ghost and tachyon at the same time and satisfies
an antioscillator equation with exponential solutions. Then
instabilities are unavoidable, even without the presence of
an external force. Moreover, the intensity of the instability
may be even enhanced if the mass of the tachyon increases.
There is no possible choice of initial conditions which can
help to control the instabilities in this case.
One can naturally ask whether we can define a1 to be

zero and thus avoid having both ghost and tachyon states

in the spectrum. The answer to this question is negative,
because at the quantum level the parameter a1 runs due to
the change of the energy scale. In this work we will assume
that gravity is classical and we take into account only
quantum effects of matter fields. In the last section we will
also comment on the possible role of quantum gravity
within some of the existing approaches.
Let us stress that the running of a1 is a pretty well-

explored theoretical phenomenon. In particular, the full
expressions for the “physical” β functions in the momen-
tum subtraction scheme of renormalization were calculated
in Refs. [14] and [15]. At low energies one can observe
quantum decoupling, which is a close analog of the
Appelquist and Carazzone theorem in QED [16]. This
means that in the present-day Universe, when the typical
energy scale of the background is of the order of
H0 ∼ 10−42 GeV, all massive fields are too massive to
affect the running of a1 in the IR. Hence, in the late
universe it is sufficient to take into account quantum effects
produced by the unique massless particle, which is the
photon. Starting from Sec. III it will be done in the
framework of the anomaly-induced effective action, which
is the most appropriate formalism for classically conformal
fields.
It is well known that the renormalization group in gravity

meets a hard problem in identifying the energy scale μwith
some physical quantity related to gravity (see, e.g., the
discussion of this issue in Ref. [17] and also the scale-
setting procedure suggested in Refs. [18,19]). At the same
time, all these difficulties concern only quantum effects of
massive fields, while the case of the photon is different. The
point is that electromagnetic fields are massless and possess
local conformal invariance. Thanks to this symmetry one
can integrate the conformal anomaly [20–22] and arrive at
the reliable form of the semiclassical corrections to the
classical action. The anomaly-induced effective action [23]
can be regarded as a local version of the renormalization
group [24].
The purpose of the present work is to use the anomaly-

induced action to explore the running of a1 in the far IR due
to loop effects of virtual photons on a cosmological
background. This running predicts that at some point in
the distant future the parameter a1 changes sign and
becomes positive. At this instant the tachyonic mode with
mass parameter unbounded from above m2 ∼ 1=a1 will
manifest an explosive growth of gravitational waves within
the full range of frequencies starting from zero to the Planck
scale. This means that in a very short time interval metric
perturbations break down the linear regime.
The paper is organized as follows. Section II mainly

serves pedagogical purposes and describes the classifica-
tion of ghosts and tachyons in free theories with actions of
both second and fourth order in derivatives. We also discuss
the difference between ghosts and tachyons in the effective
field theory approach. In Sec. III we summarize the main
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results concerning the anomaly-induced effective action of
gravity and explore the effective equations of motion on
cosmological backgrounds for radiation-, matter- and
cosmological-constant-dominated solutions. Section IV
includes the final results for the physical running of a1
in the same three cases. In Sec. V we specialize our study to
the late de Sitter phase of the evolution of the universe and
estimate the time period for the universe to accelerate until
the instant when a1 changes sign from negative to positive.
Finally, in Sec. VI we critically discuss the list of
assumptions which have been introduced in our analysis
and draw our conclusions.

II. GHOSTS AND TACHYONS

In this section we briefly describe the classification of
free fields into normal “healthy” ones, ghosts and tachyons.
For our purpose it is sufficient to consider flat space-time.

A. Second-order theories

For the second-order theory the general action of a free
field hðxÞ ¼ hðt; rÞ is

SðhÞ ¼ s1
2

Z
d4xfημν∂μh∂νh − s2m2h2g

¼ s1
2

Z
d4xf _h2 − ð∇hÞ2 − s2m2h2g: ð5Þ

Both s1 and s2 are sign factors which take values �1 for
different types of fields. In what follows we consider all
four combinations of these signs.
It proves useful to perform the Fourier transform in the

space variables,

hðt; rÞ ¼ 1

ð2πÞ3
Z

d3keik·rhðt;kÞ; ð6Þ

and consider the dynamics of each component h≡ hðt;kÞ
separately. It is easy to see that this dynamics is defined by
the action

SkðhÞ ¼
s1
2

Z
dtf _h2 − k2h − s2m2h2g

¼ s1
2

Z
dtf _h2 −m2

kh
2g; ð7Þ

where

k2 ¼ k · k; and m2
k ¼ s2m2 þ k2: ð8Þ

The properties of the field are defined by the sign of s1 and
s2. The possible options can be classified as follows.

(i) A normal healthy field corresponds to s1 ¼ s2 ¼ 1.
The kinetic energy of the field is positive and
the minimal action can be achieved for a static

configuration. Also, the equation of motion is of
the oscillatory type,

ḧþm2
kh ¼ 0; ð9Þ

with the usual periodic solution.
(ii) A tachyon has s1 ¼ 1 and s2 ¼ −1. The classical

dynamics of tachyons is described in the literature,
e.g., Refs. [25,26], and hence we present just a very
brief review.

For relatively small momenta m2
k < 0 in Eq. (8)

and the equation of motion is

ḧ − ω2h ¼ 0; ω2 ¼ jm2
kj: ð10Þ

Then we have an antioscillatory equation with
exponential solutions,

h ¼ h1eωt þ h2e−ωt; ω2 ¼ jm2
kj: ð11Þ

If the particle moves faster than light the solution is
of the oscillatory kind, indicating that such a motion
is “natural” for this kind of particle [25,26].
An additional observation concerning tachyons is

in order. For a field interacting with an external
gravitational background, it is not impossible to
have a situation where the same wave changes from
being a normal healthy state to a tachyonic one in
different parts of the space-time manifold. In prin-
ciple, this situation may produce very strong effects
at both quantum [27] and classical [28] levels. In the
present paper we are considering a qualitatively
similar situation, where the massive component of
the gravitational wave changes its fundamental
properties due to the change of the energy scale
or due to the time evolution in a de Sitter vacuum.

(iii) A massive ghost has s1 ¼ −1 and s2 ¼ 1. It is not a
tachyon, because m2

k ≥ 0. In this case the kinetic
energy of the field is negative, but one can
postulate zero variation of the action and arrive
at the normal oscillatory equation (9). A particle
with negative kinetic energy has the tendency to
achieve a maximal speed, but a free particle cannot
accelerate, for this would violate energy conser-
vation. Hence a free ghost does not produce any
harm to the environment, being isolated from it.
However, if we admit an interaction with healthy
fields, the tendency of a ghost is to accelerate and
transmit a positive energy difference to these
healthy fields [29], e.g., in the form of quantum
emission of the corresponding particles. There are
many detailed discussions of the fundamental
problems at both classical and quantum levels
which arise in the theories with ghosts (see, e.g.,
Refs. [30] and [31]). In general, the problem of
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ghosts and the consequent conflict between re-
normalizability and unitarity is one of the most
important for quantum gravity, and hence has
attracted a lot of attention. The list of references
on the possible approaches to avoid the problem of
higher-derivative ghosts can be found in Ref. [8].
In this work we also suggested a new approach to
dealing with ghosts, which is based on the effective
field theory ideas, but is technically classical and
very simple. There are strong indications that the
creation of ghost states from vacuum is strongly
suppressed for a relatively weak cosmological
background of the late universe. The consideration
presented below is based on the same idea, and
assumes the same approach.

(iv) A tachyonic ghost has s1 ¼ s2 ¼ −1. For relatively
small k2 we have m2

k < 0. The kinetic energy is
negative and the derivation of the equations of
motion requires an additional definition similar to
the nontachyonic ghost case. After that, one can
notice that the equation of motion is of the anti-
oscillatory type [Eq. (10)] and the solutions are
exponential [Eq. (11)].

B. Fourth-order gravity at the linearized level

In the fourth-order gravity (1) the equations for the
metric perturbations in flat space can be easily obtained
from the more general ones on cosmological backgrounds
[12] [see also Eq. (52) in Sec. V],

h
∷
þ 2k2ḧþ k4h −

1

32πGa1
ðḧþ k2hÞ ¼ 0: ð12Þ

It proves useful to introduce a new notation

1

32πGa1
¼ −s2m2; ð13Þ

where s2 ¼ −signa1 and m2 > 0. Then one can recast
Eq. (12) into the form

� ∂2

∂t2 þ k2

�� ∂2

∂t2 þm2
k

�
h ¼ 0; ð14Þ

where m2
k ¼ k2 þ s2m2. The solutions of the last equation

can be different, depending on the sign of a1 and hence of
s2. The general formula for the frequencies is

ω1;2 ≈�iðk2Þ1=2 and ω3;4 ≈�ð−m2
kÞ−1=2: ð15Þ

For a negative a1 there are only imaginary frequencies
and hence oscillator-type solutions. On the contrary, for a
positive a1 we have s2 ¼ −1 and the roots ω3;4 are real,
since in this case−m2

k > 0 for sufficiently small k2. Indeed,
the first couple of roots corresponds to the massless

graviton, and the second couple to an extra massive
particle. According to our classification, this particle is a
ghost for a1 < 0 and, simultaneously, a ghost and tachyon
for a1 > 0 (see Ref. [7] for a detailed discussion).

C. Ghost vs tachyon

The main difference between ghosts and tachyons is that
a ghost may cause instabilities only when it couples to
some healthy fields or to the background, while with
tachyons there is no such protection.
The situation with ghosts can be kept under control in the

effective field theory framework, as it was recently dis-
cussed in Ref. [32]. In an effective field theory there may be
an apparent ghost due to the low-energy expansion in the
powers of E=M, where E is the energy and M is the cutoff.
At the same time, there could be no ghost in the underlying
fundamental quantum theory. In this situation one can
safely use an effective description for energies E ≪ M
and not pay much attention to the presence of ghosts.
The situation in gravity is similar, but with an important
difference that the ghost-free UV completion of the
renormalizable theory is not known. Let us note that string
theory cannot be regarded as such a UV completion, since
the R2

μν-like terms which are the source of ghosts are
removed in string theory by a special transformation of the
background metric [33] and not by a low-energy expansion.
On the other side, there are strong indications that the
gravitational theory with massive ghosts can be free of
instabilities at low energies, since for E ≪ MP the ghost
may be a virtual particle and effectively it is not created
from vacuum [8] (including Erratum of this paper). The
reason is that a weak gravitational background does not
provide a sufficient density of energy to generate a ghost as
a real particle excitation. Only for the typical frequencies
of the Planck order of magnitude does a ghost become
destructive, while at much lower energies one does not
need to worry about its presence in the spectrum. By the
end of the day the situation is very close to the one in
effective field theories [32].
On the contrary, no low-energy protection can be

expected in the theory with tachyons, because they produce
instabilities independently of their interaction with normal
particles or of the intensity of the background. In other
words, for tachyons the exponential behavior (11) occurs at
all frequencies, and not only above the Planck threshold
[8]. Therefore, the difference between ghosts and tachyons
is expected to be critical for the low-energy regimes.

III. ANOMALY-INDUCED EFFECTIVE ACTION IN
THE COSMOLOGICAL SETTING

In what follows we will use the formalism of the
anomaly-induced effective action of the vacuum, so let
us start by describing an application of this approach to the
late-epoch cosmology.
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For a general theory including Ns massless conformal
scalars, Nf massless Dirac fermions and Nv massless
vectors, the anomalous trace of the energy-momentum
tensor is [1]

hTμ
μi ¼ −ðβ1C2 þ β2E4 þ β3□RÞ; ð16Þ

where

ð4πÞ2β1 ¼
1

120
Ns þ

1

20
Nf þ

1

10
Nv;

ð4πÞ2β2 ¼ −
1

360
Ns −

11

360
Nf −

31

180
Nv;

ð4πÞ2β3 ¼
1

180
Ns þ

1

30
Nf −

1

10
Nv: ð17Þ

It was already mentioned in the Introduction that in the late
universe the loops of all massive fields decouple from
gravity. The reason is that the typical energy scale of the
universe is usually defined by the Hubble parameter, which
has the present-day order of magnitude H0 ∝ 10−42 GeV.
This is a very small value if compared even to the lightest
known particles, e.g., the standard estimate for the neutrino
is mν ∝ 10−12 GeV. Therefore, according to the existing
results on the gravitational decoupling [14,15] in the
present-day (and certainly later) universe one needs to
take into account only the contribution of photons, which
are massless. Hence one has to set Ns ¼ Nf ¼ 0 and
Nv ¼ 1 in the expressions for the β functions (17). Then
these β functions [Eq. (17)] boil down to

βIR1;2;3 ¼
1

10ð4πÞ2
�
1;−

31

18
;−1

�
≡ ðω; b; cÞ: ð18Þ

In order to find the anomaly-induced action one has to
solve the equation

2ffiffiffiffiffiffi−gp gμν
δΓ̄ind

δgμν
¼ −hTμ

μi ¼ ωC2 þ bE4 þ c□R: ð19Þ

The solution of this equation has been originally found in
Ref. [23] and was discussed, e.g., in Ref. [3,34]. Let us
present only the final result for the covariant local form of
the solution with two auxiliary fields [34,35],

Γ̄ind ¼ Sc½gμν� þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
φΔ4φ −

1

2
ψΔ4ψ

−
3cþ 2b

36
R2 þ 1

2
φ

� ffiffiffiffiffiffi
−b

p �
E4 −

2

3
□R

�

−
1ffiffiffiffiffiffi
−b

p ωC2

�
þ ω

2
ffiffiffiffiffiffi
−b

p ψC2

�
; ð20Þ

where

Δ4 ¼ □
2 þ 2Rμν∇μ∇ν −

2

3
R□þ 1

3
R;μ∇μ ð21Þ

is a covariant, self-adjoint, fourth-derivative, conformal
operator [36].
The relevance of the auxiliary scalars φ and ψ is based on

the fact that the boundary conditions for these fields are
equivalent to the boundary conditions for the two Green
functions of the same operator Δ4 in the nonlocal covariant
form of Γind. The importance of having two auxiliary fields
has been addressed in Refs. [34,35,37,38] and Ref. [3],
where the discussion of the role of conformal functional
Sc½gμν� can also be found.
Let us make an important general observation. The

dependence on the conformal factor in the Weyl-squared
term is exactly the same as the one in the well-known
logarithmic form factor for the massless quantum fields1

ΓWs ¼ −
β1
2

Z ffiffiffiffiffiffi
−g

p
Cαβλτ log

�
□

μ2

�
Cαβλτ; ð22Þ

where ΓWs means ΓWeyl−squared and β1 ¼ ð160π2Þ−2 for the
photon. One has to remember that the term (22) comes from
quantum corrections (loop of photon, in our case; see Fig. 1
for the illustration) independently of whether the higher-
derivative term (3) is included or not into the classical
vacuum action. Including this term is useful to make the
procedure of renormalization more simple and regular.
However, a finite term such as Eq. (22) will show up even if
we set a1 ¼ 0. In what follows it will be shown that an
arbitrary a1 will also come from fixing the initial condition
for the solutions of the effective equations obtained by
taking the term (20) into account.2 The same happens in the
case of the quantum term (22), in the instant at which we fix
the value of μ. Therefore it is not critically relevant for our
considerations that we started from the classical theory with
higher-derivative terms [Eq. (3)], since the same terms
emerge from quantum corrections in any case. This con-
sideration shows also the deep relation between the
anomaly-induced action and renormalization group. This
relation will be extensively used in Sec. VI.
Starting from Eq. (20) one can derive the anomaly-

induced effective equations for various cosmological
epochs. Consider the effective action

FIG. 1. Photon loops with two external gravitational lines.

1At the end of Sec. VI we will discuss the IR limits of this
correspondence in the asymptotically dS space.

2One can see the details of this procedure in Eqs. (44), (45)
and (46).
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Γ ¼ Svac þ Γind; ð23Þ
where the classical action Svac was defined in Eq. (1) and
the quantum correction Γind in Eq. (20).
The equations for the auxiliary fields ψ and ϕ are

ffiffiffiffiffiffi
−g

p �
Δ4ϕþ

ffiffiffiffiffiffi
−b

p

2

�
E4−

2

3
□R

�
−

ω

2
ffiffiffiffiffiffi
−b

p C2

�
¼ 0; ð24Þ

ffiffiffiffiffiffi
−g

p �
Δ4ψ −

ω

2
ffiffiffiffiffiffi
−b

p C2

�
¼ 0: ð25Þ

The conformal transformation of the metric

gμνðxÞ ¼ ḡμνðxÞe2σðxÞ; ð26Þ
gives the following transformation for the quantities of our
interest (the reader can check Ref. [39] for details):

ffiffiffiffiffiffi
−g

p
Δ4 ¼

ffiffiffiffiffiffi
−ḡ

p
Δ̄4;

ffiffiffiffiffiffi
−g

p �
E4 −

2

3
□R

�
¼ ffiffiffiffiffiffi

−ḡ
p �

Ē4 −
2

3
□̄ R̄þ4Δ̄4σ

�
: ð27Þ

For the sake of simplicity we consider only the spatially flat
metric,

gμν ¼ ημνa2ðηÞ ¼ ημνe2σðηÞ; ð28Þ
where η is conformal time, and use the identities (27). Then
Eqs. (24) and (25) become

□
2ϕ ¼ −2

ffiffiffiffiffiffi
−b

p
□

2σ; ð29Þ

□
2ψ ¼ 0; ð30Þ

where the d’Alembertian is the flat-space one.
Solutions of Eqs. (29) and (30) can be found for various

epochs of the cosmological evolution of our Universe, i.e.
separately during radiation, matter and during the de Sitter
phase which is the asymptotic future for the ΛCDM
universe.

(i) During the radiation epoch, aðηÞ ∝ η and Eqs. (29)
and (30) become

ϕðivÞ ¼ 12
ffiffiffiffiffiffi
−b

p
η−4; ð31Þ

ψ ðivÞ ¼ 0; ð32Þ
where primes indicate derivatives with respect to
conformal time. The solutions have the form

ψ ¼ d0 þ d1ηþ d2η2 þ d3η3; ð33Þ

ϕ ¼ c0 þ c1ηþ c2η2 þ c3η3 − 2
ffiffiffiffiffiffi
−b

p
log

�
η

η0

�
;

ð34Þ

where d0;…d3, c0;…c3, are integration constants
and η0 is a generic reference time.

(ii) During the matter-dominated period, aðηÞ ∝ η2 and
Eqs. (29) and (30) become

ϕðivÞ ¼ 24
ffiffiffiffiffiffi
−b

p
η−4; ð35Þ

ψ ðivÞ ¼ 0; ð36Þ

with solutions

ψ ¼ d0 þ d1ηþ d2η2 þ d3η3; ð37Þ

ϕ ¼ c0 þ c1ηþ c2η2 þ c3η3 − 4
ffiffiffiffiffiffi
−b

p
log

�
η

η0

�
;

ð38Þ

where d0;…d3, c0;…c3, are integration constants in
general different from the corresponding ones in
radiation.

(iii) During the de Sitter phase, we have aðηÞ ∝ jηj−1 and
Eqs. (29) and (30) become

ϕðivÞ ¼ −12
ffiffiffiffiffiffi
−b

p
η−4; ð39Þ

ψ ðivÞ ¼ 0; ð40Þ

with solutions

ψ ¼ d0 þ d1ηþ d2η2 þ d3η3; ð41Þ

ϕ ¼ c0 þ c1ηþ c2η2 þ c3η3 þ 2
ffiffiffiffiffiffi
−b

p
log

�
η

η0

�
:

ð42Þ

Here d0;…d3, c0;…c3, are integration constants, in
general different from the corresponding ones in the
radiation- and matter-dominated periods.

IV. EFFECTIVE CORRECTIONS TO THE
CLASSICAL ACTION

In Refs. [10,12] and [8] tensor perturbations of the
classical theory (1) around a FRW background have been
investigated in detail. The result is that the stability is fully
determined by the sign of the coefficient a1 of the Weyl-
squared term and by the frequency of the perturbation
k ¼ jkj. It was found that

(i) if a1 < 0 and k ≪ Mp, the theory is stable under
tensor perturbations;

(ii) if a1 < 0 and above some frequency k, which is
comparable to Mp, the theory starts to be unstable
under tensor perturbations;
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(iii) if a1 > 0, the theory is unstable under tensor
perturbations ∀k.

This result can be easily understood by taking into
account the physical content of the higher-derivative theory
linearized around Minkowski space, as it was explained in
Sec. II. Our main interest is the dynamics of tensor modes
in the late universe. According to Ref. [8], for a1 < 0
gravitational waves start an exponential growth only if their
frequencies are close to the Planck order of magnitude.
For this reason in what follows we will restrict our analysis
to frequencies satisfying k ≪ m2; this means that the
Planck scale physics is beyond our consideration. One
can assume that starting from the Planck scale the high-
energy gravitational theory passes through some qualitative
change. For instance, in this regime the appropriate
description may be (super)string theory, which is free of
the problems of ghosts by construction (see Sec. VI B 5).
In the late universe the cosmological background is

varying quite slowly and one can define an effective
coefficient of the Weyl-squared term (3), which takes into
account semiclassical anomaly-induced effects (20),

aeff1 ðηÞ ¼ a1 þ
ω

2
ffiffiffiffiffiffi
−b

p ½ψðηÞ − ϕðηÞ�: ð43Þ

Using the results of Sec. III, we obtain, in terms of physical
time t,

radiation aeff1 ¼ aC1 þ A1t1=2 þ A2tþ A3t3=2

þ ω

2
log

�
t
t0

�
; ð44Þ

matter aeff1 ¼ aC1 þ A1t1=3 þ A2t2=3 þ A3t

þ 2ω

3
log

�
t
t0

�
; ð45Þ

de Sitter aeff1 ¼ aC1 þ A1e−Ht þ A2e−2Ht

þ A3e−3Ht þ ωHt; ð46Þ

where t0 is a reference time, the coefficients Ai are arbitrary
integration constants and aC1 contains both the classical a1
and the constant part of the semiclassical contributions.
In each epoch the A1 and aC1 constant coefficients may
be different but for the sake of simplicity, we adopted the
same notation for all the cases.
The expressions (44), (45) and (46) come from the

anomaly-induced action (20), but they can be seen as a
local version of the renormalization group running for the
parameter a1. Since the quantum electromagnetic field is
strictly massless, one can trace this flow to the far IR. In the
given theory the UV turns out to be more complicated,
because starting from some high-energy scale massive fields
start to contribute to the running of a1. The contribution of
massive fields breaks down the elegant form of the induced

effective action, until the deep UV regime, when all the fields
can be treated as massless again [40,41].
Let us additionally comment on the expressions (44),

(45) and (46). The complete solution for aeff1 requires that
the integration constants aC1 and A1;2;3 are determined from
experimental or observational data and the solutions for
different phases are connected by requiring continuity.
However, it is difficult to put this program into practice,
because of the Planck suppression which makes impossible
a direct observation of the effects of a1 or its running. The
unique way to have information about this coefficient is
related to the evidence that the present universe is stable
under tensor perturbations. We shall see in what follows
that this is sufficient to obtain some physically interesting
information.
Our own existence shows that starting from the begin-

ning of the radiation epoch and along the cosmological
evolution up to present time, the sign of aeff1 has been
negative. If not, the tensor perturbations would have been
of the tachyonic type with an energy density of the Planck
order of magnitude. Therefore, the proper fact of our
existence puts strong restrictions on the values of aC1 and
A1;2;3 until the present time.

V. TENSOR PERTURBATIONS IN THE
ASYMPTOTICALLY DE SITTER PHASE

According to the recent observations [42,43] our
Universe is now entering into a phase of its evolution
dominated by the cosmological constant. The analysis of
the time-dependent parameter aeff1 ðtÞ during the last phase
of the evolution of the ΛCDM universe deserves a special
consideration and will be explored in this section.
Let us parametrize tensor perturbations around the de

Sitter background ĝμν as

gμν ¼ ĝμν þ hμν: ð47Þ

Since the variation of a1 in Eq. (46) is quite slow, it is
possible to consider a constant a1 in the equations for the
tensor perturbations (see also discussions in Refs. [12]
and [8]).
The equations of motion in the transverse and traceless

(TT) gauge can be cast into the form [8,10,12]

�
□þ 4Λ

3
þm2

2

��
□þ 2Λ

3

�
hμν ¼ 0; ð48Þ

where □ is the d’Alembertian operator on a de Sitter
background andm2 is the mass of the massive spin-2 mode
m2

2 ¼ −ð32πGa1Þ−1. Equation (48) also agrees with
Refs. [44,45]. The theory propagates a massless graviton

hðmÞ
μν , satisfying
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�
□þ 2Λ

3

�
hðmÞ
μν ¼ 0 ð49Þ

and a massive spin-2 field hðMÞ
μν , satisfying

�
□þ 4Λ

3
þm2

2

�
hðMÞ
μν ¼ 0: ð50Þ

Since we are interested only in the tensor part of the
perturbation hμν, let us consider

hμν ¼ htensμν ¼
�
0 0

0 hTTij a
2

�
; ð51Þ

where we used TT gauge δijhTTij ¼ 0, ∂ihTTij ¼ 0 and set
aðtÞ ¼ að0ÞeHt, with að0Þ ¼ 1.
For the analysis of tensor perturbations it is more

practical to use physical time t. Furthermore, after we
separate the hTTij mode, there is no need to write indices and
the field variable can be simply denoted as h ¼ hðtÞ. Then
Eq. (48) can be written as

h
∷
þ 6Hh

…
þ
�
11H2 þm2

2 þ
2k2

a2

�
ḧ

þ
�
6H3 þ 3Hm2

2 þ
2Hk2

a2

�
_hþ

�
k4

a4
þm2

2k
2

a2

�
h ¼ 0;

ð52Þ

where we have used the background constraint Λ ¼ 3H2

and where dots indicate time derivatives. For a1 ¼ 0,
Eq. (52) reduces to the usual equation for general relativity
(GR) tensor perturbations around a de Sitter background.
The numerical investigation of Eq. (52) for both signs of

a1 has been performed in Ref. [8]. As we have already
mentioned, for frequencies k ≪ Mp the case of a1 < 0
shows oscillating solutions without growing amplitudes.
This behavior for three different frequencies is shown in
Fig. 2. On the contrary, for a1 > 0 one can observe a rapid
growth of the metric perturbations for all frequencies;
see Fig. 3.3

We now want to quantify which is the typical time scale
at which anomaly-induced corrections to the classical
coefficient of the Weyl-squared term, a1, come into play.
In pure de Sitter, we found that the behavior of aeff1 is
described by Eq. (46). We focus our analysis on time scales
of order t ∼ 1=Mp, since this is the expected scale of the
instabilities. On these scales, the decaying exponentials in
Eq. (46) vary slowly and can be treated as constant
functions. Hence, we can parametrize Eq. (46) as

aeff1 ðtÞ ¼ ~a1 þ ωHðt − tdSÞ; ð53Þ

where tdS is the time at which the density of matter and
radiation become effectively negligible and a pure de Sitter
phase starts.
Since we are not assisting an overproduction of gravi-

tational waves at present time, the present-day value of aeff1

has to be negative (i.e., we are in the regime in which tensor
perturbations are stable). As soon as aeff1 ðtÞ crosses zero
going to positive values, the gravitational waves enter the
unstable phase (the massive ghost becomes tachyonic).
Then an exponential instability in the tensor sector instan-
taneously shows up.
One can ask whether the stable phase, characterized by a

negative aeff1 will last for a long period of time. We can
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FIG. 2. Behavior of tensor perturbations in the case a1 < 0, for
different frequencies. The frequency k is measured in Planck
units.
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FIG. 3. Dynamics of tensor perturbations for a1 > 0, for three
different frequencies k ¼ jkj. The plot for the lowest frequency
has been rescaled to fit the figure.

3Let us note that the numerical integration cannot be performed
for positive a1’s which are too close to zero, since the growth of
tensor perturbations is too fast in this case.
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assume that the stable phase in which we are living today
will last at least until the beginning of the “pure” de Sitter
phase of the expansion of our Universe, and hence we take
~a1 ¼ aeff1 ðtdSÞ to be negative and of order one. In the
ΛCDM model, with ΩΛ ¼ 0.7, the value of the Hubble
parameter in the pure de Sitter phase is

HΛ ¼
ffiffiffiffi
Λ
3

r
≃ 0.8H0 ≃ 1.2 × 10−42 GeV: ð54Þ

Replacing H ¼ HΛ in Eq. (53) we find the time tq at which
tachyonic modes emerge in the spectrum of gravitational
waves,

tq ¼
j ~a1j
HΛω

≃ 2.4 × 1013 yr ¼ 2.4 × 104bi: ð55Þ

Hence with the assumption j ~a1j ∼ 1 the remaining time
until the gravitational-wave explosion is about 1000 times
longer than the time which already passed from the big
bang. Of course, since we have no experimental data to
define the present-day value of j ~a1j, the estimate given
above has an ambiguity. According to Eq. (55) larger values
of j ~a1j correspond to a longer stable phase, while smaller
values of j ~a1j imply a shorter period of stability before the
tachyonic explosion.
Regardless of the quantitative side of this prediction, it

looks interesting that our knowledge of quantum correc-
tions to gravity is sufficient to know how the ΛCDM
universe will end up. According to our analysis, there will
be an instant gravitational-wave explosion due to the
tachyonic instabilities.

VI. DISCUSSION OF THE ASSUMPTIONS

We have started from a minimal set of hypotheses and
arrived at the conclusion that the final destiny of the ΛCDM
universe is not a peaceful infinitely long slightly accel-
erated expansion in the homogeneous and isotropic phase.
On the contrary, the universe will end up in a strong
tachyonic explosion of tensor perturbations. At first sight
the intensity of this explosion (at least in the first-order
approximation) looks unrestricted, since at the instant when
aeff1 changes sign, the mass of the unstable mode is infinite,
according to Eq. (11). Then gravitational waves of all
frequencies will experience a fast exponential growth.
However, since one cannot trust the semiclassical approxi-
mation completely, the conservative estimate is that the
tachyonic modes will have, at most, an energy density of
the Planck order of magnitude. Certainly, this is more than
sufficient to provide a dramatic effect on the geometry and
matter contents of the universe.
Another natural restriction comes from the fact that the

instability which we have found corresponds to linear
perturbations. It might happen that next orders in the
perturbative expansion in hμν will restore the stability.

However, from the practical side both these restrictions do
not matter too much, because even this “restricted” gravi-
tational explosion should be capable of destroying the
symmetry (homogeneity and isotropy) of the metric,
and thus lead to the strong changes of the properties of
space-time.
Since the result of our study looks so dramatic, it is

interesting to consider the list of all the approximations
which have been introduced in our analysis. Let us
formulate various possibilities to avoid the instabilities in
the form of questions and answers.

A. Completeness of the one-loop approximation

Can we expect some qualitative changes in the result by
taking higher-order loops into account? Formally, higher-
loop contributions do not change the sign of the β1 function
[40,41], but this is not sufficient to draw the conclusion
about the relevance of higher-loop terms. In the UV regime
there will be higher logarithmic contributions compared to
the one-loop form factor (22) and this could produce a
strong effect on the running of a1. However, the situation at
low energies is quite different. Let us remember that
second- and higher-loop corrections to the one-photon
bubble include a loop of electrons or of other massive
charged fermions, as shown in Fig. 4. Because of the
Appelquist and Carazzone decoupling theorem in QED, the
contribution of such a loop is suppressed at least by a factor
ðH0=meÞ2 ≈ 10−77 for the dynamics of the conformal
factor. Since this is the part which governs the running
of aeff1 , there are no chances that higher loops can change
the result found for the conformal factor dynamics.
At the same time, we have to remember that the goal of

our study is not the dynamics of the conformal factor itself,
but its interaction with gravitational waves. Indeed, the
term in the effective action which we implicitly deal with is
Eq. (22). At the two-loop order there will be nonlocal
corrections to the photon propagator and photon-graviton
vertex. Since we do not quantize gravity, the last type of
diagrams can be ruled out. The simplest diagram at higher
loops will be the one from Fig. 1 with the polarization
operator insertion shown in Fig. 4, due to the electron loop.
Concerning this and further diagrams it is easy to see that

the mass which defines the scale of decoupling will be the
mass of the quantum fermion, while the typical energy of

FIG. 4. One-loop diagram with electron loop and two external
electromagnetic lines and the diagram representing the two-loop
correction to the photon loop from Fig. 1, with the electron-loop
insertion. The diagram at the left is subject to decoupling in
the IR.
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the external particle will be the one of the gravitational
wave. Finally, the relevant ratio which defines the effective
cutoff for the higher-loop contributions to the running of a1
is ðEGW=meÞ2 for a tensor mode with energy EGW. Of
course this energy can be much bigger than H0. For
instance, taking EGW ¼ 1 eV we have “only” ten-orders
decoupling. Indeed, the gravitational-wave production with
its corresponding energy density will have a very strong
physical and geometrical effect.
It is worth noting that we are dealing with the diagrams

which consist of the loops of matter fields and external lines
of gravity. Therefore, the one-loop part is given by the
contributions of free fields on a gravitational background.
For this reason there is no dependence on the coupling
constants at one-loop order, and such dependence can be
observed only starting from the second loop [1,2]. Finally,
the one-loop effects of photons are not suppressed by mass,
since the photon is massless. However, all particles to
which a photon is coupled, are massive (and their masses
are huge compared to the gravitational-wave energy) and
that is why the two-loop effects are indeed strongly
suppressed.
The consideration presented above shows that the one-

loop results (44), (45) and (46) are sufficiently robust in the
framework of the semiclassical theory, at least for gravi-
tational waves with a frequency smaller than the electron
mass. The case of waves with higher frequencies deserves
an additional investigation, but it cannot change the
qualitative result which we obtained at the one-loop level.

B. The possible role of quantum gravity

What about QG effects, which have been neglected so
far? It is not easy to give a definite answer due to the variety
of existing models of QG. Let us consider a short list of the
possibilities which have been better explored up to now.4

1. Effective IR quantum gravity

The standard effective framework for the IR effects of
QG assumes that GR is a universal theory of IR quantum
gravity [49] (see also Ref. [50] for earlier work in this
direction and Ref. [51] for an alternative opinion).
The first thing to note is that GR is not a conformal

theory, and therefore a compact representation of quantum
corrections in the form of Eq. (20) is not possible. In this
situation one can make use of the renormalization group
and of the perturbative β function β1 for the parameter a1.
The β1 function gives, in the case of the massless theory

(e.g., quantum GR), the coefficient in the logarithmic form
factor (22). Therefore, it can be still considered a good
approximation in the present case. In this framework the
change of sign of the renormalization group equation (53)
looks unclear, at least beyond the one-loop level. The
reason is that higher-loop contributions of QG are beyond
our control, because QG based on GR is nonrenormaliz-
able. Still we can draw some conclusions about the
effective quantum gravity. At the one-loop level, the
Weyl-squared quantum counterterm is known to be
gauge-fixing dependent [52]. Then one can provide any
desirable value of β1 by a special choice of the gauge-fixing
parameters. This also means that the corresponding con-
tribution vanishes on shell and therefore cannot be regarded
as a physical effect. Furthermore, similar gauge-fixing
dependence is expected for the leading-logarithmic cor-
rections at higher loops. Therefore, while the subject is not
completely clear, one can suppose that the leading con-
tributions of QG in this framework will be sublogarithmic.
As we have already seen in Sec. VI A, this means that the
change of sign of β1 in Eq. (17) due to effective low-energy
QG is very unlikely.

2. Weyl conformal gravity

In this case the form (20) of quantum corrections is
available and the effect of QG is to increase the positive
value of β1. The reason is that the contribution of conformal
QG is positive [53–55], exactly as the one of all matter
fields (17). The expression for Nv copies of massless vector
fields has the form

β1 ¼
1

ð4πÞ2
�
Nv

10
þ 199

30

�
; ð56Þ

where the last term is the QG contribution. It is easy to see
that no cancellation is possible, and for Nv ¼ 1 the QG
contribution shortens the period of time until the sign
transition for aeff1 by about 1 order of magnitude.

3. General version of QG with fourth derivatives

In this case, exactly like in the effective QG described in
Sec. VI B 1, the form of quantum corrections of the type
(20), is not viable, because the original theory is not
conformal, and hence there is no anomaly to integrate.
At the same time the β function for the parameter a1 is well
defined, free of ambiguities [35,53,56] and, according to
well-verified calculations [53,56,57] has the same positive
sign as Eq. (17). The overall β1 function for Nv copies of
massless vector fields has the form

β1 ¼
1

ð4πÞ2
�
Nv

10
þ 133

10

�
: ð57Þ

In the physically interesting case we have one photon,
Nv ¼ 1, and no cancellation can be expected. Moreover, in

4Let us note that the problem of quantum stability of de Sitter
space and the validity of the semiclassical approximation has
been extensively discussed in Ref. [46] and more recently in
Refs. [47] and [48]. The difference between our conclusions and
the ones of these works can be probably explained by the special
role of tachyon tensor modes which we consider in the present
work.
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the far IR the ghost which provides some part of the QG
contribution in Eq. (57), is supposed to decouple, and we
come back to the situation described in Sec. VI B 1.

4. Super-renormalizable QG

The super-renormalizable models of QG have been
first formulated in Ref. [58] on the basis of a polynomial
action and shortly after that in Ref. [59] on the basis of an
action of gravity that is nonpolynomial in derivatives. In
the polynomial case this model of QG has many (tensor
and scalar) ghosts. In the nonlocal model of Ref. [59]
there are no ghosts at the tree level; however loop
corrections lead to the emergence of an infinite amount
of massive ghost-like states, corresponding to complex
poles [60].
In both cases quantum corrections are well defined, but

the β1 function for the parameter a1 can be modified by
adjusting the terms of third and fourth orders in the
curvature tensor [60]. Therefore, it is not difficult to
construct the theory with the cancellation of the photon
contribution in Eq. (17). However, this cancellation will
take place in the UV region, where the quantum effects of
ghosts are not suppressed. There is no systematic study of
decoupling of massive modes in higher-derivative QG, but
in principle one can expect that in the IR the massive ghost
states will decouple and the low-energy situation will be
covered by the effective QG, as described in Sec. VI B 1.
After all, super-renormalizable models of QG cannot be
expected to change the sign of β1 in the IR limit.

5. String theory

In (super)string theory the terms providing the β function
for the parameter a1 are usually removed by means of the
Zwiebach transformation [33,61,62]). The procedure is
ambiguous [63], but, by construction the β function for
the parameter a1 is zero. At the same time, string theory is
not supposed to provide a significant correction to the
quantum field theory results at low and very low energies,
for otherwise we would observe such corrections in
precision experiments, e.g., the ones that test QED and
Standard Model calculations. Therefore using string theory
to evaluate the β1 function in the far IR is not reasonable
from a conceptual point of view.
In conclusion, we can see that QG can provide the

change of sign of the β function for a1, but only at high
energies and in the framework of super-renormalizable
models of QG of Refs. [58] and [59]. On the other hand, the
IR limit of the QG theory with a number of massive states
(ghosts and normal particles) should be taken with great
care [49,51] and it is expected that the sign of the β1
function in the IR would remain positive. Hence, we arrive
at the conclusion that the main result concerning the
positiveness of the β function for the parameter a1 remains
robust even if gravity is quantized.

C. Completeness of the anomaly-induced
approximation

As we have seen, there is practically no way to avoid the
change of sign of a1 within the anomaly-induced effective
action (20). However, we know that this effective action is
based on the artificial minimal substraction (MS) scheme of
renormalization. This scheme is always working perfectly
well in the UV. On the other side, it is known that for the
theory of massive quantum fields, this scheme is not
working well in the IR, because of the decoupling theorem
[16], which was also obtained for semiclassical gravity in
Refs. [14,15] (see also Ref. [3] for the review and further
references). In the flat space-time the masslessness guar-
antees that the main features of the UV will repeat in the IR,
due to the UV-IR “duality” of the logarithmic form factor
such as the one in Eq. (22). Is it true that the situation is the
same in curved space-time? The question is not simple,
especially in the asymptotically dS space, which has a
natural IR cutoff scale H.
For instance, the scalar curvature in the space with

σðtÞ ¼ H0t (with H0 ¼ const) has the global scaling
similar to the □ operator, namely R ¼ −6e−2σ · σ00 2 in
the spatially flat case, but the derivatives here are with
respect to conformal time η, where dt ¼ aðηÞdη. As a result
R does not run with time; instead it is a constant,5

R ¼ −12H2
0. Similar consideration applies to the operator

□ in the logarithm of the form factor in Eq. (22). For
instance, let us consider□ acting on a scalar field φ. For the
sake of simplicity we assume that this scalar depends only
on time, φ ¼ φðtÞ. Then a very simple calculation leads to
the result

□φ ¼ φ̈þ 3H0 _φ: ð58Þ

One has to note that in the last equation the dependence
φðtÞ corresponds to the fiducial (flat) metric and, therefore,
time derivatives of φ are expected to be of the same order of
magnitude in different epochs. Thus, Eq. (58) shows that
the dependence of time drops out from the coefficients of
the equation for perturbations. A similar calculation for the
Weyl-squared term provides the result (here we kept the
possibility that H is nonconstant for the sake of generality)

ffiffiffiffiffiffi
−g

p
Cαβρτ

□Cαβρτ

¼ ffiffiffiffiffiffi
−ḡ

p
C̄αβρτf∂2

t − 4H∂t − 2 _H − 10H2gC̄αβρτ

þ 8
ffiffiffiffiffiffi
−ḡ

p
C̄αβρtfH∂t − _H þ 2H2gC̄αβρt: ð59Þ

The dependence of space coordinates does not change
the result qualitatively, if the wave vector is taken in the
physical space, that is after the rescaling k → k · eσ.

5The authors are very grateful to A.A. Starobinsky for
suggesting this example as an argument against IR running in
de Sitter space.
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The expression (59) shows that in the asymptotic future,
where the background becomes very close to de Sitter space,
therewill not be physical running ofa1. The reason is that the
extreme IR corresponds to dS and has its own scaleH, such
that the correspondence between the logarithmic asymptotic
(22) and anomaly-induced action (20) gets violated.
Recently, explicit calculations of the curvature-curvature
correlators on a deSitter backgroundhave beenperformed in
Ref. [64]. It is remarkable that these calculations (performed
by a completely different method) have also shown the
absence of leading-log corrections in the far IR. Our
interpretation of this result is a specific IR decoupling in
the IR on a de Sitter space background, where H plays the
role of the natural minimal mass scale.
Indeed, according to the same logic, the results for the

radiation- and dust-dominated epochs, Eqs. (44) and (45)
are valid and the same is true for the beginning of the
transition period between matter- and cosmological-
constant-dominated epochs. However, since we are now
in the situation when the Hubble parameter is quite close to
the future constant value H, this means the universe is
entering the epoch of IR decoupling of all quantum effects
in the higher-derivative sector of the theory, including the
ones of photons. Hence in the real situation the transition to
the positive sign of a1 is very improbable.

VII. CONCLUSIONS

The anomaly-induced effective action of the vacuum is a
very efficient tool for a local implementation of the
renormalization group running. According to this
approach, the semiclassical effects drive the coefficient
a1 of the Weyl-squared term in the vacuum (gravitational)
action to the positive side. It turns out that the one-loop
contribution is exact in this case, and hence the future of the
universe should be related to the tachyonic instabilities.
Since the time dependence of a1 is linear, one can easily
calculate the time which remains until the change of its
sign, which would be an instant when the massive ghost
transforms into a tachyonic ghost.
The difference between the two types of ghosts is

dramatic. For the “usual” ghost there is a mass threshold
and hence a possible situation when the ghost is harmless.
The situation can be understood in the spirit of consid-
erations presented in Ref. [30]. Let us note that the
approach pursued in these papers by Simon and Parker
and Simon is effectively equivalent to the one of Ref. [8].

In both cases Planck frequencies are “forbidden” without a
clear explanation (we believe that one can find a solution
of this problem, but this will be discussed elsewhere).
Furthermore, in both cases a physically reasonable choice
of initial conditions can be done, and as a result the system
does not fall into the runaway solutions. As a result higher-
derivative terms produce only tiny, Planck-suppressed
corrections and can be simply ignored. For the gravitational
waves this means that the dynamics of metric perturbations
is essentially the same as in GR, as it was actually shown
by Starobinsky in the second paper of Ref. [9].
As far as the ghost also becoming a tachyon, no mass

threshold exists and no reasonable choice of initial con-
ditions can be done. Then an instantaneous explosion of
gravitational waves starts at all frequencies, independent
of initial conditions. Our calculations show that in the
framework of the anomaly-induced effective action the
transition to a tachyonic ghost is unavoidable in the far
future of the ΛCDM universe. It is easy to show that the
higher-loops corrections do not change this result, at least
for the frequencies below the electron mass scale.
However, in the dS-background case, which is a final

stage of the ΛCDM universe, there is a qualitatively new
type of IR decoupling which takes place even for massless
fields. As a result, the anomaly-induced approximation,
which is based on the MS scheme of renormalization
becomes inappropriate in the IR, exactly as it happens in
the massive theory. Therefore, there are no real chances of
the tachyonic explosion of the universe even in the far
future, since no change of the sign of a1 can be expected.
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