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We study four-dimensional quantum gravity using nonperturbative renormalization group methods.
We solve the corresponding equations for the fully momentum-dependent propagator, Newtons coupling
and the cosmological constant. For the first time, we obtain a global phase diagram where the non-Gaussian
ultraviolet fixed point of asymptotic safety is connected via smooth trajectories to a classical infrared fixed
point. The theory is therefore ultraviolet complete and deforms smoothly into classical gravity as the
infrared limit is approached.
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I. INTRODUCTION

Understanding the quantization of the gravitational force
is an outstanding problem in theoretical physics. Any viable
theory of quantum gravity must connect stable infrared (IR)
physics with a well-behaved ultraviolet (UV) limit. The
asymptotic safety scenario provides a UV-completion in a
natural way. It is based on a non-Gaussian UV fixed point,
which leads to vanishing β-functions in the limit of
arbitrarily high energy scales and renders the couplings
finite even beyond the Planck scale [1].
The asymptotic safety scenario received growing atten-

tion during the past decades and has been studied with
different methods. The underlying fixed point structure was
found in the nonperturbative continuum approach [2–11],
as well as in lattice simulations [12–14]. The former is
based on the functional renormalization group, in particular
on its formulation for the effective action [15]. The crucial
UV fixed point is confirmed in various approximations,
including the coupling to gauge and matter fields [16–21],
dilaton gravity [22] and higher derivative calculations
[23–27]. There is also a rich field of phenomenological
applications based on asymptotically safe quantum gravity.
This includes e.g. implications for the standard model and
its extensions [28,29], black hole physics [30–33], collider
experiments [34,35] and cosmology [36,37]. However, the
standard calculations lead to an ill-defined IR limit since
the trajectories exhibit a singular behavior on large length
scales.
In [2] an IR fixed point has been found as the end point

of a singular line. The existence of this fixed point was only
seen within a proper distinction of background and
dynamical couplings. The singular behavior in the vicinity
of the IR fixed point was attributed to the approximation.
The first smooth IR fixed point in asymptotically safe
gravity, allowing for a theory that is well defined on all

energy scales, was found in [3]. There, however, a non-
classical behavior in the vicinity of the IR fixed point has
been computed, therefore leading to modified gravity on
very large length scales. Again, the nonclassical behavior
may be attributed to the approximation. Further discussions
on this issue from different perspectives can be found in
[38–41].
In the present paper, we construct a qualitatively

enhanced approximation within the systematic vertex
expansion scheme introduced in [3]. With this enhanced
approximation the theory is asymptotically safe in the UV,
and exhibits an IR fixed point which describes classical
gravity. The corresponding renormalization group (RG)
trajectories are globally smooth. They connect the known
IR physics with classical gravity on large length scales with
a viable theory of Planckian and trans-Planckian gravity.
The present scenario encodes that quantum gravity effects
set in at about the Planck scale, and are absent for energy
scales E ≪ MPl.
This paper improves the vertex expansion scheme, which

is set up in [3] in several aspects. We compute, for the first
time, fully momentum-dependent wave-function renorm-
alizations for the graviton and the ghost. Note that the
wave-function renormalizations are functions of the covar-
iant Laplacian, and hence this takes into account infinitely
many terms in an expansion of the effective action in
powers of the covariant derivative. Additionally, multi-
graviton interactions are constructed from their scaling
behavior, see [42]: the dependence on the running RG scale
is deduced from consistent RG scaling of the vertex. This
novel self-consistent vertex construction is of major
importance for the transition from UV to IR scaling, and
the stability of the IR regime.
The present paper is organized as follows: We introduce

our approximation scheme in Sec. II, and the vertex
construction in Sec. III A. The flow equations for the fully

PHYSICAL REVIEW D 93, 044036 (2016)

2470-0010=2016=93(4)=044036(19) 044036-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.044036
http://dx.doi.org/10.1103/PhysRevD.93.044036
http://dx.doi.org/10.1103/PhysRevD.93.044036
http://dx.doi.org/10.1103/PhysRevD.93.044036


momentum-dependent propagators are derived in the sub-
sequent subsections. The consistency analysis in Sec. III D
constrains the momentum-independent parts of the vertex
functions, and is crucial for the global properties of the
phase diagram. The latter is the topic of the first section of
the results, Sec. IVA. Moreover, the reliability of all results
is tested within a regulator study. To this end we use the
optimized regulator as well as a class of exponential ones.
The results are found to be stable against variations of the
regulator. The properties of the UV regime are discussed in
Sec. IV B. In this section we also investigate the stability
and reliability of the derivative expansion, at the basis of the
full momentum dependence. In Sec. IV C the properties of
the IR regime are discussed.

II. FLOWS IN QUANTUM GRAVITY

A quantum field theory is entirely described by a
complete set of correlation functions. The generating
functional for the 1PI correlators is the effective action
Γ½ḡ;ϕ�, where we have already introduced a fixed back-
ground metric ḡ and a fluctuation superfield ϕ. In the case
of gravity this superfield is given by the vector
ϕ ¼ ðh; c̄; cÞ, where h is the graviton field and c; c̄ are
the corresponding ghost and antighost fields.
In the present paper we use the functional renormal-

ization group (FRG) approach, for reviews on quantum
gravity see [5–11], for general reviews and other appli-
cations see e.g. [43–57]. With the functional renormal-
ization group, the effective action can be determined via a
functional differential equation for the scale-dependent
effective action Γk½ḡ;ϕ�, which for quantum gravity is
given by [4]

∂tΓk½ḡ;ϕ� ¼
1

2
Tr

�
1

Γð2hÞ
k þ Rk;h

∂tRk;h

�
½ḡ;ϕ�

− Tr

�
1

Γðc̄cÞ
k þ Rk;c

∂tRk;c

�
½ḡ;ϕ�: ð1Þ

It involves an IR regulator Rk which is implemented on
the level of the path integral and carries an IR cutoff
scale k. In addition to that, t denotes the logarithmic RG
scale, t ≔ logðk=k0Þ, with an arbitrary normalization
scale k0, and the Tr implies an integral over all
continuous and a sum over all discrete indices. We will
also make use of the notation ∂tfðkÞ ≕ _fðkÞ for any
scale-dependent quantity. Moreover, we have introduced
the notation

Γðϕ1…ϕnÞ
k ½ḡ;ϕ� ≔ δnΓk½ḡ;ϕ�

δϕ1…δϕn
ð2Þ

for the 1PI vertex functions, which are derivatives of the
effective action with respect to the fluctuation fields and
are the elements of the full super space matrix ΓðnÞ

k .

The right-hand side of the flow equation (1) depends on
the two-point correlators of the fluctuation field ϕ. It is
important to note that the fluctuation correlation functions
do not agree with the background correlations, i.e.

δ2Γk½ḡ;ϕ�
δh2

����
ϕ¼0

≠
δ2Γk½ḡ; 0�

δḡ2
; ð3Þ

for details see [3,19,58–60]. In other words, one cannot
extract dynamical couplings from the flow of the back-
ground field effective action at vanishing fluctuation fields,
ϕ ¼ 0. This directly relates to the fact that the flow
equation (1) for the effective action at ϕ ¼ 0 is not closed
within the standard background field approach. More
importantly, avoiding unphysical background contributions
can be crucial for capturing the correct nonperturbative
physics. In conclusion, in the FRG setup, this strongly
suggests to start from the exact equation for the inverse
fluctuation propagator.
Moreover, the master flow equation (1) leads to an

infinite hierarchy of coupled partial integrodifferential
equations for the scale-dependent vertex functions ΓðnÞ

k .
More precisely, the equation for the n-point vertex
function contains vertex functions of order nþ 1 and
nþ 2. This system is usually not exactly solvable.
Therefore, one has to employ certain approximation
schemes. We assume that the effective action can be
expanded in a functional Taylor series around the fixed
background metric ḡ. Moreover, we choose the flat
Euclidean metric, i.e. the identity ḡμν ¼ δμν, as the
expansion point. We will need this expansion up to fourth
order in the graviton field. In symbolic notation, the
effective action takes the form

Γk½ḡ;ϕ� ¼
X
n

1

n!
ΓðnÞ½ḡ; 0�ϕn

¼ Γk½ḡ; 0� þ ΓðhÞ
k ½ḡ; 0�hþ Γð2hÞ

k ½ḡ; 0�h2

þ Γð3hÞ
k ½ḡ; 0�h3 þ Γð4hÞ

k ½ḡ; 0�h4 þ � � �
þ Γðc̄cÞ

k ½ḡ; 0�c̄cþ…: ð4Þ

The first and second term are of order h0 and h1 and do not
enter the rhs of the flow equations for any ΓðnÞ

k .
The above expansion of the effective action in powers of

the fluctuating field around a flat Euclidean background
ḡμν ¼ δμν also restricts the number of higher derivative
operators which can contribute to the vertex functions of
nth order. For instance, the most general form of the two-
point function derives from an action which includes at
most OðR2Þ operators. This includes terms of the form
RfðΔÞR. All terms with higher order in curvature vanish
after two functional differentiations and evaluation on a flat
background. These terms can only contribute to vertex
functions of order n > 2.
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III. VERTEX EXPANSION

In the present paper we use the systematic vertex
expansion scheme as suggested in (5). The hierarchy of
flow equations that has been introduced in the last section
has to be truncated at finite order. This means that one can
calculate the flow of a vertex function of given order n and
use an ansatz for Γðnþ1Þ

k and Γðnþ2Þ
k . We will compute the

basic quantity of the present approach, the full two-point
correlation functions of the fluctuation fields ϕ, that is
n ¼ 2. The corresponding flows rely on the two- but also
on the three- and four-point functions of the fluctuation
fields. Hence we also introduce approximations for Γð3Þ

k and
Γð4Þ
k that are consistent with the symmetries of the theory

and have the correct RG scaling. The latter property is
essential for the global UV-IR flows considered here.

A. Structure of the vertex functions

First of all, we have to specify the tensor structures of the
vertices. In the present paper, we use the classical tensor
structures which arise from functional differentiation of the
Einstein-Hilbert action. The gauge-fixed Einstein-Hilbert
action, including the ghost part, is given by

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffiffiffiffi
det g

p
ð−Rþ 2ΛÞ

þ
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p
c̄μMμνcν

þ
Z

d4x
ffiffiffiffiffiffiffiffiffi
det ḡ

p 1

2ξ
ḡμνFμFν: ð5Þ

In (5),GN is the Newton constant and Λ is the cosmological
constant. The Faddeev-Popov operator is given by

Mμν ¼ ∇̄αðgμν∇α þ gαν∇μÞ − ∇̄μ∇ν; ð6Þ

and the linear gauge fixing conditions read

Fμ ¼ ∇̄νhμν −
1

2
∇̄μhνν: ð7Þ

Moreover, in this paper we restrict ourselves to Landau
gauge, that is ξ → 0. Extended ghost interactions are
studied e.g. in [61,62].
The standard Einstein-Hilbert truncation amounts to

replacing the gravitational coupling and the cosmological
constant in (5) by running couplings GN;k and Λk. The
vertex functions are then given by functional derivatives of
this effective action. However, this approximation turns out
to be inconsistent in the physical IR limit, which will be
discussed in detail later. We also mention that the basic
Einstein-Hilbert truncation does not disentangle the differ-
ence between a wave-function renormalization and a
running coupling, since the running of the latter is simply
identified with the running of the former. Note that in

Yang-Mills theory such an approximation gives a decon-
fining potential of the order parameter even in the confining
regime, see [60,63,64]. In this case, it is also the nontrivial
momentum dependence of the correlation functions that
plays a crucial role for capturing the correct nonperturba-
tive physics. Additionally, in the UV limit, k → ∞, the full
momentum dependence of correlation functions is poten-
tially relevant. In particular, a derivative expansion implies
p2=scale2 ≪ 1 which relates to low energy physics. So far,
these momentum dependencies have not been taken into
account.
Consequently, we construct more general vertex func-

tions that take into account the above properties while
keeping the classical tensor structures. The construction of
such vertex expansions of the scale-dependent effective
action was introduced in [42] and applied in the context of
Yang-Mills theories. A similar truncation based on these
ideas was recently applied in quantum gravity to [65]. One
guiding principle in this construction is RG invariance, i.e.
invariance of the full effective action under a change of the
renormalization scale μ:

μ
d
dμ

Γ ¼ 0; ð8Þ

where μ should not be confused with the running IR cutoff
scale k, for a detailed discussion see [48]. In addition to
that, we parametrize the vertex functions, i.e. the coeffi-
cients in the expansion (5) schematically as

ΓðnÞ ¼ Z
n
2Γ̄ðnÞ ð9Þ

with a μ-independent part Γ̄ðnÞ and a μ-dependent wave-
function renormalization Zðp2Þ of the attached fields. The
above construction implies the correct scaling behavior for
the fields according to

μ
d
dμ

ϕ ¼ ηϕ: ð10Þ

In the present paper we use a uniform wave-function
renormalization, Zh ¼ Zhi , for all components of the
graviton. The transverse-traceless (TT) part of the full
propagator is now parametrized as

Γð2hÞ
TT ðp2Þ ¼ Zhðp2Þðp2 −M2ÞΠTTðpÞ; ð11Þ

with the transverse-traceless projector ΠTTðpÞ, and an
effective gap parameter M representing the momentum-
independent part of the two-point function. Note that the
Z-factors are functions of the covariant Laplacian Δ, and
therefore include infinitely many terms in a covariant
expansion of the effective action in powers of the
Laplace operator. This is the first RG study of quantum
gravity taking into account this general momentum
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dependence of the graviton and the ghost propagator. The
fully momentum-dependent Z-factors lead to a vertex
construction with the required RG scaling properties.
They also embody a corresponding implicit, noncanonical
momentum dependence of the vertex functions, in line with
the collinear singularity structure of vertex functions. Note
that a similar vertex construction is achieved by simply
taking further h-derivatives of the two-point correlation
function (11) with p2 → Δðḡ; hÞ.
Finally, we allow for additional running parameters ΛðnÞ

k
which govern the (consistent) scale dependence of the
momentum-independent part of the vertex functions. This
takes into account scaling properties of the vertex functions
that are crucial for the global flows structure, and has not
been considered before. The construction of the vertex
functions also include appropriate powers of a scale-
dependent Newton coupling GN;k as prefactors of the
vertex functions. These factors, apart from the wave-
function renormalization factors, encode the correct scale
dependence of the vertices, see [42]. Note that in general

there are separate coupling constants GðnÞ
k for each vertex

function, but we identify GðnÞ
k ¼ G

n
2
−1
N;k in the present paper.

Still, this construction goes far beyond the approximations
considered so far in RG gravity. In summary, the vertex
functions take the form

Γðϕ1���ϕnÞ
k ¼

Yn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zϕi;kðpiÞ

q
G

n
2
−1
N;kT

ðnÞ
k ðp1;…; pn;Λ

ðnÞ
k Þ;

ð12Þ

with tensor structures

T ðnÞ
k ¼ GNSðnÞðp1;…; pn;Λ → ΛðnÞ

k Þ; ð13Þ

that arise from functional differentiation of the classical
Einstein-Hilbert action S given in (5). We left out the
momentum arguments on the lhs as well as the functional
dependence on the fields. If we leave out the functional
argument, it is implicitly understood that the functional is
evaluated at vanishing fluctuation fields and on a flat

background. The tensor structures T ðnÞ
k carry not only

the canonical explicit momentum dependence of the vertex

functions, but also the running parameters ΛðnÞ
k . They are

defined by

T ðnÞ
k ðpi ¼ 0;ΛðnÞ

k Þ ≕ −2ΛðnÞ
k

~T ðnÞðδμνÞ; ð14Þ

where ~T ðnÞðδμνÞ is the tensor structure arising from func-
tional differentiation of the integral of the volume form with
respect to the metric tensor. The factor of −2 in the
definition is introduced such that we recover the classical
cosmological constant in the Einstein-Hilbert action. We
emphasize again that the consistent RG scaling of the

parameters ΛðnÞ
k is of major importance for the transition

from the UV regime to the IR regime, as well as for the

stability of the IR regime. In this regime the ΛðnÞ
k are

determined via a self-consistency analysis of the scaling
behavior. Details will be presented in the corresponding
results sections.
An example for the above vertex construction is the

scalar coefficient of the TT two-point function of the
graviton,

Zhðp2Þðp2 − 2Λð2Þ
k Þ; ð15Þ

see also (11). The tensor structures for the general
two-point function, from which the above results via
TT-projection, are given by (13) and arise from functional
differentiation of the Einstein-Hilbert action. Equations (15)
and (11) entail that Λð2Þ

k is the effective graviton gap
parameter,

M2
k ¼ −2Λð2Þ

k : ð16Þ

Importantly, note that this gap parameter is not the cosmo-
logical constant. The former is just the gap of the fluctuation
propagator, whereas the latter is a background quantity.
Moreover, a physical graviton mass would appear in the
background propagator.

B. Flow of the propagator

The flow of Γð2hÞ in a standard Einstein-Hilbert trunca-
tion has been calculated in [3]. The corresponding flow
equation is obtained by functional differentiation of (1), and
its diagrammatic representation is shown in Fig. 1.
In the present paper, we compute the fully momentum-

dependent two-point functions with the RG-consistent
ansatz (12) for the three- and the four-point function.
With Fig. 1 and (12) the flows of the two-point functions
Γð2Þ depend on

FIG. 1. Diagrammatic representation of the flow of the second
order vertex functions. The dressed graviton propagator is
represented by a double line, the dressed ghost propagator by
a dashed line, while a dressed vertex is denoted by a dot and the
regulator insertion by a crossed circle.
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ðZhðp2Þ; Zcðp2Þ;M2; GN;Λð3Þ;Λð4ÞÞ: ð17Þ

Here we have already dropped the subscript k, and if not
stated otherwise, all generalized couplings are scale
dependent.
The two-point function contains all tensor structures in

the York transverse-traceless decomposition. The trans-
verse-traceless part is not constrained by Slavnov-Taylor
identities and is expected to carry the essential properties of
the graviton. In this paper we identify all wave-function
renormalizations of the graviton modes with that of the
transverse-traceless mode. Hence, from now on, all expres-
sions for the two-point functions relate to the TT-part.
However, note that in the flow all tensor structures of the
propagator enter the loops.
In this paper, we use a regulator of the form Rϕðp2Þ ¼

Zϕðp2ÞR0
ϕðp2Þ with R0

ϕðp2Þ ¼ p2rðp2ÞT ϕ, where T ϕ

denotes the tensor structure of the corresponding two-point
function evaluated at vanishing M2, and rðp2Þ is a
dimensionless shape function. Then, the flow of the inverse
propagator reads

∂tΓð2hÞðp2Þ ¼ ðp2 þM2Þ∂tZhðp2Þ þ Zhðp2Þ∂tM2

¼ Flowð2hÞðp2Þ; ð18Þ

where

Flowð2hÞðp2Þ

¼ GNZhðp2Þ ×
Z

d4q
X
ϕ

�
∂trðq2Þ þ

∂tZϕðq2Þ
Zϕðq2Þ

rðq2Þ
�

× Iϕðp2; q2;ΛðnÞÞ: ð19Þ

In the above equation, Iϕðp2; q2;ΛðnÞÞ are scalar functions
that arise from the contraction of the diagrams and a
subsequent projection onto the TT-structure, and n¼2, 3, 4.
This structure follows from our vertex construction
discussed above. Explicit expressions for the flow equa-
tions are given in Appendix A. For the ghost sector, we
apply the same strategy and arrive at the much simpler
equation

p2∂tZcðp2Þ ¼ Flowðc̄cÞðp2Þ: ð20Þ

Note that with the RG consistent vertex ansatz (12) and the
structure of the flow equations for ΓðnÞ, one can infer that
the wave-function renormalization Zðp2Þ does never enter a
flow equation alone, but always in the combination _Z=Z.
The reason lies in that we chose a regulator which is
proportional to Z. This motivates the definition of the
anomalous dimensions of the graviton,

ηhðp2Þ ≔ −
∂tZhðp2Þ
Zhðp2Þ ; ð21Þ

and of the ghosts,

ηcðp2Þ ≔ −
∂tZcðp2Þ
Zcðp2Þ : ð22Þ

When solving the flow, we have to make sure that the
anomalous dimensions remain below 2 (which is the case in
our study) to ensure that the regulator retains the needed

properties. We note that the rhs of the flow of the Γð2Þ
k does

depend on ηh; ηc;M2 and the three- and four-point func-
tions, see (17). In the standard Einstein-Hilbert setup, a
scale-dependent gravitational coupling is constructed from
the graviton wave-function renormalization, and the
momentum-independent parts of the vertex functions are
all identified with the cosmological constant, ΛðnÞ ≡ Λ.
This procedure closes the Eqs. (18) and (20) and was used
at least in parts in all FRG gravity calculations so far.
In the present paper this identification, which spoils the

scaling properties of the correlation functions, is avoided.
For the gravitational coupling constant GN , we use the
relation of the present framework at flat backgrounds to that
with geometrical effective actions, see [2]. This is discussed
in more detail below. The couplings ΛðnÞ are constrained
within a self-consistency analysis, see Sec. III D.
Finally we introduce dimensionless, scale-dependent

couplings, to wit

g ≔ GNk2; μ ≔ M2k−2; ð23Þ

λ ≔ Λk−2; λðnÞ ≔ ΛðnÞk−2; ð24Þ

with n ≥ 3 and Λ ¼ Λð1Þ. It is left to project the functional
flow onto individual flow equations for all running
couplings.

1. The running gap parameter

The flow equation for the gap parameter M2 is obtained
from the flow of the inverse propagator, evaluated at
the pole of the propagator, i.e. p2 ¼ −M2. Taking the
t-derivative of the on-shell two-point function, Γð2hÞð−M2Þ,
yields

0 ¼ ∂tΓð2hÞðp2Þjp2¼−M2 − Zhð−M2Þ∂tM2: ð25Þ

Solving for the running of the gap parameter, we get

∂tM2 ¼ ∂tΓð2hÞð−M2Þ
Zhð−M2Þ : ð26Þ

One of the goals of this paper is to evaluate the phase
diagram of quantum gravity and its fixed point structure.
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For this reason, it is convenient to derive β-functions for the
dimensionless parameters. Then, the above equation trans-
lates into

∂tμ ¼ −2μþ ∂tΓð2hÞð−M2Þ
k2Zhð−M2Þ

≕ βμ½ηh; ηc�ðg; μ; λð3Þ; λð4ÞÞ: ð27Þ

The explicit form of the β-function is given in Appendix A.
It is clear from (19) that the β-function for the running gap
parameter shows a functional dependence on the anoma-
lous dimensions. It turns out that the final result for the
β-function of μ and the momentum-dependent equation for
the anomalous dimension ηðpÞ does not depend on the
projection point, see Appendix B. The finite difference at
p2 ¼ −M2 is just the most convenient choice.

2. Integral equations for the anomalous dimensions

Starting from the general equation (18), using the above
definition of the anomalous dimension and inserting (26),
we obtain an integral equation for ηh which reads

ηhðp2Þ ¼ −
∂tΓð2hÞðp2Þ
Zhðp2Þ − ∂tΓð2hÞð−M2Þ

Zhð−M2Þ
p2 þM2

½ηh; ηc�: ð28Þ

Note that all isolated Z-factors drop out, see (18). The same
procedure can be applied for the ghost sector. Since there
is no gap in the ghost propagator, we trivially arrive from
(20) at

ηcðp2Þ ¼ −
∂tΓðc̄cÞ

p2Zcðp2Þ ½ηh; ηc�: ð29Þ

The explicit form of Eqs. (28) and (29) is given in
Appendix A. The full expressions are derived and solved
numerically, with the help of FORM [66], XTENSOR [67],
and EIGEN [68].

C. The running gravitational coupling g

As already mentioned, we use geometrical flow equa-
tions for GN in order to close the system of differential
equations. This approach allows an inherently diffeomor-
phism-invariant construction of flows in quantum gravity,
see [69,70]. It has been applied to the phase structure of
quantum gravity in [2], where evolution equations βg for
the dynamical coupling g, and βḡ for the background
coupling ḡ are derived. In the present paper we utilize
the fact that the geometrical approach is directly related to
the present approach in a flat background. In particular, the
dynamical and background couplings in both approaches
agree.
Moreover, with the fully momentum-dependent anoma-

lous dimensions computed in the present paper, we are able

to directly incorporate effects of arbitrarily high powers of
derivatives in the equations for βg,βḡ in [2]. The anomalous
dimensions enter the geometric flow equations in very
much the same way as in (18). However, the wave-function
renormalizations in [2] are momentum independent and can
be pulled outside the integrals. This is not the case in our
setup. Entering the equations with the momentum-depen-
dent ηϕðp2Þ calculated via (28) leads to a modification on
the level of the threshold functions Φ. These modified
threshold functions are given in Appendix A.
With these ingredients, the general structure of the

β-function for the dynamical gravitational coupling is
given by

βg½ηh; ηc�ðg; μÞ ¼ 2gþ Fg½ηh; ηc�ðg; μÞ; ð30Þ

and the one for the background coupling takes the same
form with g being replaced by ḡ and an individual loop
contribution Fḡ½ηh; ηc�ðḡ; μÞ. The functionals Fg and Fḡ are
given in Appendix A. Note that the flow equation of the
background coupling depends on the dynamical coupling
via the anomalous dimensions, while the converse does
not hold.

D. The couplings ΛðnÞ

In Sec. III Awe have introduced an approximation which
takes into account scale-dependent couplings ΛðnÞ for the
momentum-independent part of each vertex function. For
the second order, we have identified Λð2Þ as the graviton
gap M2, see (16). In the present section we discuss the
vertices with n ≥ 3.
The Einstein-Hilbert truncation, which identifies all

ΛðnÞ with the cosmological constant Λ, is ill defined in
the limit μ → −1. As we will see in Sec. IV, this limit is
approached by physical RG trajectories in the deep IR. This
regime is crucial to understand the global phase structure of
Euclidean quantum gravity: the couplings ΛðnÞ play a
distinguished role, as the related singularities arise from
the momentum-independent parts of the vertex functions.
In order to cure the inconsistencies of the Einstein-Hilbert
truncation, we deduce the singularity structure of the
couplings ΛðnÞ with n ≥ 3. The full details are given in
Appendix C. Essentially, the idea is to expand the right-
hand sides of the flow equations for the n-point functions in
powers of 1þ μ and taking into account the singularities of
highest order. Thus, for μ → −1þ we use the ansatz

lim
μ→−1þ

λðnÞ ∼ ð1þ μÞαn ; ð31Þ

for n ≥ 3. We proceed by inserting this ansatz in the flow
equations for ΓðnhÞ and analyze the generic loop integrals to
leading order in the singularities that arise in the limits
under consideration. Consistent scaling of both sides of the
flow equations for arbitrary n leads to the relations
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αn ¼ αn−2 þ α4 − 1; ð32Þ

for n ≥ 5 and

α4 ≤ 2α3 − 1: ð33Þ

The parameter α4 obeys the bound

α4 < 0: ð34Þ
The value of the parameters α3 and α4 cannot be
obtained from the divergence analysis alone. They are
dynamically determined by the flow of the three- and four-
point function. This highlights again that the standard
Einstein-Hilbert approximation with λðnÞ ¼ −μ=2 is incon-
sistent in the IR, and the nonexistence of the IR fixed point
cannot be inferred from such an approximation. It is also
important to stress that the qualitative features of the phase
diagram do not depend on the specific choice of α3 and α4,
see Sec. IVA and Appendix D. In turn, the quantitative
behavior does only mildly depend on variations of these
two parameters.
Still, we can estimate α3 based on the saturation of the

inequality (33). Moreover, the constant parts of the vertex
functions are parametrically suppressed far away from the
singular regime. This entails that there it is viable to
identify ΛðnÞ ¼ Λð2Þ as done in all other approximations
used in the literature. From these conditions one obtains
α3 ≈ −1=9. More details are given in Appendix D. In
Appendix E it is shown that

λðnÞ ¼ −
μ

2
ð1þ δλðnÞÞ ð35Þ

is consistent with all constraints, where δλðnÞ parametrizes
the deviation from the Einstein-Hilbert approximation. The
latter is modeled by

δλðnÞ ¼ sgnðμÞχ
���� μ

1þ μ

����
−αn

; ð36Þ

with χ a parameter to be tuned to match the aforementioned
conditions.

E. The cosmological constant

It is left to discuss the role of the cosmological constant Λ
in the present construction. Written on the right-hand side
of the field equations, it can be interpreted as an additional
source for gravity. In the classical limit, the quantum
equations

δΓ
δϕ

¼ Jext; ð37Þ

with an external source Jext, reduce to the classical
equations of motion. Hence, it is natural to define the

cosmological constant from the one-point function, i.e. we
identify Λð1Þ ¼ Λ as the vacuum energy. More precisely,
with the vertex construction (12), the one-point function
takes the form

δ

δh
Γj

g¼δ
∼

Λffiffiffiffiffiffiffi
GN

p ffiffiffiffiffiffi
Zh

p
: ð38Þ

Note that the one-point function does not enter the flow of
higher order vertex functions. Consequently, the cosmo-
logical constant decouples from the β-functions for
Newtons constant, the gap parameter and the set of integral
equations for the anomalous dimensions. On the other
hand, these quantities obviously determine the running of
the cosmological constant, i.e. the β-function for the
dimensionless cosmological constant λ ≔ Λ=k2 is of the
form

_λ ¼ βλ½ηh; ηc�ðg; λ; μÞ
¼ −2λþ gðA½ηh; ηc�ðμÞ þ λB½ηh; ηc�ðμÞÞ: ð39Þ

The explicit form of this flow equation is given in
Appendix A.

F. Regulators and stability

In order to test the quality of our truncation, we will use
several regulators and vary the parameters χ and αn
introduced before. As regulators, on the one hand we
use the class of exponential regulators given by

raðxÞ ¼
1

xð2exa − 1Þ ; ð40Þ

where x ¼ p2=k2 is the dimensionless squared momentum.
In our analysis, we scanned the parameter range
a ¼ f2; 3; 4; 5; 6g. On the other hand, the Litim regulator
[71] is used,

roptðxÞ ¼
�
1

x
− 1

�
θð1 − xÞ; ð41Þ

where θðxÞ is the Heaviside step function. Note that this
regulator is optimized within the leading order derivative
expansion but not beyond, see [48,71]. Also, with the
semioptimized regulator the divergence analysis for the
ΛðnÞ is slightly different from the one performed in
Appendix C, but leads to similar results.
We also have scanned different values for the parameters

χ and α3 in (36), and we have restricted our investigation to
the case of equality in (33). It turns out that the results do
not depend on the specific choice of α3. Note that the
parameter χ is bounded from above as otherwise the
parametric suppression of the δλ-contribution away from
the singularity is lifted and the UV regime is changed. In
Appendix D, a table is given where the change of the UV
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fixed point values under a change of α3 and χ can be
ascertained.

IV. RESULTS

In this section we present our results in solving the
system consisting out of (27)–(30) and (39). First, the
global phase diagram is discussed. Subsequently, its UV
and IR properties will be examined in more detail. In doing
so, we will also make contact with older results. If not
stated otherwise, all results and pictures are obtained with
the specific choice of the exponential regulator r4.

A. The phase diagram

The phase diagram for the dynamical couplings ðg; μÞ is
depicted in Fig. 2. We find an attractive UV fixed point with
coordinates

ðgUV� ; μUV� Þ ¼ ð0.799;−0.698Þ; ð42Þ

and complex critical exponents θ1;2 ¼ ð−2.167� 3.592iÞ.
This provides further nontrivial evidence for the asymp-
totically safe UV structure of quantum gravity. We also
find the built-in repulsive Gaussian fixed point at
ðgGauss� ; μGauss� Þ ¼ ð0; 0Þ, and the trivial IR fixed point at
ðgIR� ; μIR� Þ ¼ ð0;∞Þ, which corresponds to an AdS-like
fixed point with λ ¼ −∞. The most striking feature of
the present phase diagram is the confirmation of the
attractive nontrivial IR fixed point

ðgIR� ; μIR� Þ ¼ ð0;−1Þ; ð43Þ

which was already found in [3], where it corresponds to a
de Sitter fixed point with λ ¼ 1=2. This fixed point implies
the global existence of trajectories connecting the UV fixed
point with a finite IR fixed point. The present result is a
clear confirmation that this IR fixed point is not a truncation
artifact, but rather a physical property of the theory.
Importantly, it turns out to be an IR fixed point

describing classical gravity. Physical initial conditions
lead to globally defined trajectories that connect the non-
trivial UV fixed point with the physical IR fixed point
ðgIR� ; μIR� Þ ¼ ð0;−1Þ.
Note also that all UV-complete trajectories are also IR

complete, and end in one of the two IR fixed points. In
addition to this structure, there is a repulsive fixed point at
ðgrep� ; μrep� Þ ¼ ð0.344;−0.944Þ. This fixed point was also
found in [2]. All essential features do not depend on the
choice of the regulator rðxÞ, and there are only minor
quantitative changes induced by variations of the latter. The
variation of the UV fixed point values under a variation of
the vertex model parameters χ; α3, (36) is given in
Appendix D.

B. UV regime

Let us further investigate the properties of the UV fixed
point. First of all, the existence of the fixed point does not
depend on the specific choice of the regulator. Moreover, it
is attractive in all four directions investigated here.
Furthermore, even though the critical exponents of the
dynamical quantities ðg; μÞ are complex, the ones of the
physical background couplings ðḡ; λÞ are real. This was
also found in [3] and [65]. Notice that the eigenvalue
corresponding to ḡ is exactly −2, which can be immediately
inferred from the specific structure of the background
coupling flow equation. Also, the eigenvalue correspond-
ing to λ is inherently real, as its flow equation is a
polynomial of order one in the cosmological constant.
All these points are summarized in Table I.
The connection to earlier results is drawn in Table II. The

present results support the qualitative reliability of the
Einstein-Hilbert type approximations in the UV regime.

Ia

Ib

Ib

II

1 0.9 0.8 0.6 0.4 0.2 0 1 4

0

1
4

1
2

1

2

1 0.9 0.8 0.6 0.4 0.2 0 1 4

0

1
4

1
2

1

2

g

FIG. 2. Fixed points and global phase diagram in the ðg; μÞ-
plane. Arrows point from the IR to the UV, red solid lines mark
separatrices while dots indicate fixed points. The black dashed
line is a specific trajectory that connects the UV fixed point with
the nontrivial IR fixed point, which is analyzed further in the text.
In analogy to [3], region Ia corresponds to trajectories leading to
the nontrivial IR fixed point, whereas region Ib leads to the trivial
IR fixed point. Region II is not connected to the UV fixed point,
and thus physically irrelevant.

TABLE I. UV fixed point values and eigenvalues for different
regulator parameters a, and the optimized regulator, with param-
eter values α3 ¼ −0.1 and χ ¼ 0.05.

a 2 3 4 5 6 Opt

μ� −0.689 −0.693 −0.698 −0.701 −0.704 −0.535
g� 0.835 0.816 0.799 0.785 0.774 1.071
ḡ� 0.531 0.518 0.507 0.499 0.492 0.679
λ� 0.522 0.532 0.542 0.551 0.557 0.365
EVs −1.856 −2.116 −2.167 −2.195 −2.215 −2.801

�3.936i �3.679i �3.592i �3.556i �3.539i �3.381i
−2 −2 −2 −2 −2 −2
−1.212 −1.179 −1.159 −1.145 −1.136 −1.353
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The couplings as functions of the RG scale k along one
selected trajectory (marked as a dashed black line in the
phase diagram) are shown in Fig. 5. One can see how the
couplings tend to their finite fixed point values in the UV.
The IR regime will be discussed below.
A further quantity of interest is the anomalous dimen-

sion. The momentum dependence of both graviton and
ghost anomalous dimension is given in Fig. 3 for all used
regulators at their respective UV fixed point. As one can
see, only quantitative differences occur. The graviton
anomalous dimension is of the order of 1, whereas the
ghost anomalous dimension is of the order of −2. The
difference between exponential and optimized regulators is
due to the fact that the regulators integrate out modes at
different scales. Consequently, the effective cutoff scale is
regulator dependent. A formal discussion of scale optimi-
zation can be found in [48], and is applied in the context of
finite temperature Yang-Mills theory in [73]. For instance,
for the exponential cutoff raðxÞ with a ¼ 4, we find that if
one rescales

kopt → 1.15kopt; ð44Þ

the momentum dependence of the anomalous dimension
with an optimized regulator matches the one obtained with
an exponential regulator, see Fig. 4. In general, we
observed that the (TT-part of the) graviton anomalous
dimension is positive, however there are indications that
this does not remain so when the other degrees of freedom
of the graviton receive an individual anomalous dimension.
On the other hand, the ghost anomalous dimension is
strictly negative, as was already found in [74,75]. We also
note that the anomalous dimensions are not the leading
contribution to the flow. This means that by setting ηðq2Þ ¼
0 on the rhs of the flow (19), one captures almost all
qualitative properties discussed here. The one property not
properly described without anomalous dimensions turns
out to be the fact that when neglecting their contribution,
not all UV finite trajectories end in an IR fixed point.
Hence, the anomalous dimensions only constitute correc-
tion effects while the leading term on the rhs of the flow
equations is the one proportional to _r. In the ghost sector
this pattern is even more pronounced, and dynamical ghost
effects on the phase diagram and the running couplings are
very small.
Derivative expansion.—We close this section with a

discussion of the stability of the (covariant) derivative
expansion which is the standard approximation scheme
used so far. The first calculation of the graviton anomalous
dimension has been presented in [3] within the FRG. There,
the flow is projected at p ¼ k. In the paper [65] a derivative
expansion around p ¼ 0 is performed. The full results in
the present study show a strong momentum dependence of
the correlation functions as well as their flows in the cutoff
regime with p2=k2 ≲ 1. Such a strong momentum depend-
ence of the flows either requires higher orders in the
derivatives or a nonlocal expansion that works-in the
information of momenta close to zero and those close to
p2=k2 ¼ 1, see [3,73,76].

TABLE II. Comparison of the UV fixed point coordinates with
earlier results for the optimized cutoff. Parameter values are α3 ¼
−0.1 and χ ¼ 0.05. Methods of the references (in order): back-
ground approximation [5], bilocal projection [3], geometric
approach [2], bimetric approach [72]. The mixed approach is
applied in [65] and is also discussed in the present paper in the
last paragraph of this subsection, Table VI.

Here [5] [3] [2] [72] [65] Table VI

ḡ� 0.679 1.178 2.03 0.966 1.055 1.617 1.684
λ� 0.365 0.250 0.22 0.132 0.222 −0.062 −0.035
ḡ�λ� 0.248 0.295 0.45 0.128 0.234 −0.100 −0.059
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FIG. 3. The momentum dependence of the anomalous dimensions of the graviton (left) and the ghost field (right) for different
regulators at the respective UV fixed points. Only a weak dependence on the parameter is observed. The difference between optimized
and exponential regulators is due to the fact that the modes are not integrated out at the same scale. From the fact that the quadratic
external momentum terms cancel in the flow of the graviton [3], ηh goes to zero in the limit of large external momenta. The same is not
true for the ghosts, where the anomalous dimension goes to a constant.
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Note that there is a strong cutoff dependence of the
graviton anomalous dimension at the UV fixed point for
small momenta p2=k2 ≲ 0.05, see Fig. 3. The occurrence of
this regime is presumably related to the mass-scale set by
the fixed point value of μ. Here we investigate its impact on
the value of ηh in the leading order of the derivative
expansion. We also consider a variation of the expansion
point. We also use the present results with full momentum
dependence in order to investigate the reliability of the
derivative expansion. There, the computation of the anoma-
lous dimension requires

∂p2 _Γð2hÞ
k

Z
¼ −ηþ

_Z0

Z
ðxþ μÞ þ Z0

Z
ð2μþ _μÞ; ð45Þ

e.g. at vanishing momentum, x ¼ p2=k2 ¼ 0. On the other
hand, the momentum derivative of η gives the relation

_Z0

Z
¼ −η0 −

Z0

Z
η: ð46Þ

Inserting (46) in (45) leads to

∂p2 _Γð2hÞ
k

Z
¼ −η − η0ðxþ μÞ þ Z0

Z
½ð2 − ηÞμ − ηxþ _μ�: ð47Þ

In the lowest order derivative expansion, that is Γð2hÞ
k ¼

Zkðp2 þm2Þ, the anomalous dimension ηder is given by
(minus) (47) evaluated at x ¼ 0. Moreover, the lowest order
implies Z0 ¼ 0 and we simply arrive at

ηder ¼ ηð0Þ: ð48Þ

For the regulators used in the present paper this leads to
anomalous dimensions listed in Table III. However, the full
lowest order derivative expansion takes into account the
Z0-terms on the right-hand side. At vanishing momentum
there is the relation

Z0

Z

����
x¼0

¼ 1

2
η0jx¼0: ð49Þ

This is easily derived from

Zkðp2Þ ¼ Zk0ðp2Þ exp
�
−
Z

k

k0

dk̄

k̄
ηk̄ðp2Þ

	
; ð50Þ

where both k and k0 are in the scaling regime. The latter
condition implies that Z0=Z ¼ Z0̄

k
=Zk̄ð0Þ and η0 ¼ ηk̄

0ð0Þ
are independent of k̄ ∈ ½k0; k�. Then we conclude that at
x ¼ 0 we have

Z0
k

Zk
¼ Z0

Z
k2

k20
þ 1

2
η0
�
1 −

k2

k20

�
; ð51Þ

for all k; k0 in the scaling regime and we are led to (49).
Hence, in the scaling regime (with _μ ¼ 0) the full anoma-
lous dimension in the derivative expansion at x ¼ 0 is
given by

ηder ¼ η

�
1þ 1

2
η0μ

�
; ð52Þ

leading to Table IV.
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FIG. 4. Comparison of the momentum dependence of the graviton and the ghost anomalous dimension with the exponential regulator
with a ¼ 4 on the one hand, and the optimized regulator with the cutoff rescaling (44) on the other.

TABLE III. Anomalous dimension ηder in the lowest order
derivative expansion derived from the full flow.

a 2 3 4 5 6 opt

ηder 0.58 0.57 0.60 0.64 0.68 0.59

TABLE IV. Full anomalous dimension ηder in the lowest order
derivative expansion derived from the full flow.

a 2 3 4 5 6 opt

ηder 0.50 0.59 0.72 0.87 1.05 0.74
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To complete the present reliability analysis of Taylor
expansions in momenta p2, we also investigate expansions
about a general expansion point p ¼ αk. We present results
for the optimized regulator and evaluate the anomalous
dimension for g ¼ 1; μ ¼ 0; ηc ¼ 0. The conclusions of this
study do not depend on the choice of these parameters. As
one can see in Table V, the anomalous dimension of the
graviton in a derivative expansion strongly depends on the
specification parameter α. This relates to the fact that such
an expansion only works well if the full flow of the
propagator shows a mild momentum dependence. This is
not the case for the flow of the graviton two-point function,
see [3]. In general, even the sign of the anomalous
dimension depends on the specification parameter. We
conclude that a derivative expansion in quantum gravity
with α ¼ 0 has to be used with great caution.
Effect of identifications of couplings in the UV.—As

already mentioned, the present approximation is the first
work that employs individual running couplings for the
momentum-independent part of each vertex function. In
particular, the graviton gap parameter should not be
identified with the cosmological constant. Still, we have
shown that the full expansion with momentum-dependent
wave-function renormalizations and a gap for the fluctuat-
ing graviton h provides UV fixed point results in qualitative
agreement with that of the standard background field
approach, if we identify the gap parameter a posteriori
with (minus twice) the cosmological constant. Within such
an identification we have a de Sitter fixed point.
For completeness, we also have investigated a mixed

approach: We use a flat anomalous dimension ηh in a
derivative expansion about vanishing momentum, or a
momentum-dependent one, ηhðp2Þ, for the fluctuating
graviton. In turn, the flows of the graviton gap parameter
and the Newton coupling g are extracted from the flow of
the cosmological constant and the Newton coupling in the
background field approximation. This can be interpreted as
an intermediate step towards the full approximation studied
here. Interestingly this leads to a very small and negative
fixed point value for the cosmological constant, see also
[65] for such a mixed expansion with a flat anomalous
dimension. Our fixed point results for the case with a flat
anomalous dimension are given in Table VI. They are in
qualitative agreement with the results of [65]. Notably, the
results in the mixed approach deviate from both, the
background field results and that of the full approximation
introduced in the present paper. We have also checked that
this originates in the identification of the gap parameter

with the cosmological constant, the given alternative
choices for the flow of the Newton constant do not alter
this result.

C. IR regime

The nontrivial IR fixed point is located at ðg; μÞ ¼
ð0;−1Þ. The most important feature is that it is a classical
one, i.e. the essential couplings scale classically and all
quantum contributions vanish: The gravitational couplings
and the cosmological constant scale as

g; ḡ ∼ k2; λ ∼ k−2; ð53Þ

and the anomalous dimensions vanish,

ηh → 0; ηc → 0; ð54Þ

see Appendix F. This leads to flow trajectories that connect
the asymptotically safe UV regime for k → ∞ and short
distances, with a classical IR regime for k → 0 and large
distances. Since μ approaches a finite value in the limit
k → 0, the dimensionful gap M2 ¼ μk2 vanishes in the
deep IR. Moreover, the scaling of Newton’s coupling (53)
allows us to identify a scale in the following way. As g (or
ḡ) scales classically, the coefficient of proportionality, say
C, is nothing else than the Newton constant, because

GN ¼ gk−2 ¼ Ck2k−2 ¼ C: ð55Þ

Thus, scales are measured in units of the Planck mass,
M2

Pl ¼ 1=C. The physical trajectory is then fixed by
measuring the relevant couplings, which is the (back-
ground) Newton constant and cosmological constant, at
a given scale. In Fig. 5 one can see both, the classical
scaling in the IR as well as the vanishing of the β-functions
in the vicinity of the UV fixed point for large k. The
classical scaling regime extends roughly up to half the
Planck scale. This implies the absence of quantum gravity
effects for energies E ≪ MPl, as it is expected in a theory
without a large volume compactification of extra dimen-
sions. Note also that the difference between the two
couplings g and ḡ is only apparent to some degree in
the far UV, which justifies to some extent the background
approximation for the Newton constant.

TABLE V. Anomalous dimension ηder in the standard derivative
expansion with optimized regulator in an expansion around p ¼
αk with ðμ ¼ 0; g ¼ 1Þ.
α 0 0.25 0.5 0.75 1 1.15

ηder 0.57 0.50 0.39 0.25 0.074 −0.016

TABLE VI. Fixed point values g� and λ� and anomalous
dimension ηder at this fixed point in the mixed approach.

a 2 3 4 5 6 opt

g� 1.68 1.72 1.75 1.77 1.80 1.68
λ� −0.064 −0.076 −0.088 −0.100 −0.110 −0.035
ηderh 0.81 0.93 1.03 1.14 1.24 0.86
ηderc −1.08 −1.05 −1.04 −1.03 −1.01 −0.75
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V. SUMMARY AND OUTLOOK

We have presented a quantum gravity calculation that
shows a classical regime on large distances, and asymp-
totically safe physics in the nonperturbative UV limit. The
behavior at large distances relates to an attractive IR fixed
point with classical scaling behavior. This implies that the
dimensionful Newton constant GN and the cosmological
constant Λ do not depend on the energy scale (inverse
length scale) for large distances. Hence, for the first time,
this includes the domain of classical gravity, which has
been tested experimentally, in the renormalization group
approach to quantum gravity. The classical gravity regime
in the vicinity of the IR fixed point is connected to a
nonperturbative UV fixed point, which ensures the finite-
ness of scattering amplitudes at arbitrary high energies. The
small dependence of the results on the regulator indicates
stability of the present truncation. Technically, this paper
introduces a novel approximation scheme in RG-gravity
calculations. This scheme has two essential features: First,
we work in a vertex expansion with fully momentum-
dependent wave-function renormalizations for the graviton
and for the ghost field. Second, the higher order correlation
functions are parametrized by additional couplings for their
momentum-dependent and momentum-independent parts.
The latter become important in the IR and their properties
are determined by a self-consistency scaling analysis. In
particular, we show that the momentum-independent part of
the two-point function cannot be identified with the
cosmological constant at large distances.
In summary, this paper provides further evidence

for the asymptotic safety scenario in quantum gravity.
In addition it substantiates the physics at the IR fixed
point found in [2,3]. By now, the approximation is
quantitative enough to produce classical scaling for
the couplings GN and Λ for large length scales, in
accordance with experimental observations. The present
approximation is readily extended to include higher corre-
lation functions [77].
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APPENDIX A: FLOW EQUATIONS

The modified threshold functions introduced in
Sec. III C are given by

Φp
n ½η�ðωÞ ¼ 1

ΓðnÞ
Z

∞

0

dxxn
_rðxÞ − ηðxÞrðxÞ

ðxð1þ rðxÞÞ þ ωÞp : ðA1Þ

With these threshold functions, the geometric flow equa-
tions in [2], improved by momentum-dependent anomalous
dimensions, are given by

_̄g ¼ 2ḡ −
ḡ2

2π

�
2

3
Φ1

1½ηh�ðμÞ þ
10

3
Φ2

2½ηh�ðμÞ

þ 5

12
Φ1

1½ηc�ð0Þ þ
5

4
Φ2

2½ηc�ð0Þ
�
; ðA2Þ

_g ¼ 2g −
g2

2π

�
1

3
Φ1

1½ηh�ðμÞ þ
20

9
Φ2

2½ηh�ðμÞ þ
5

24
Φ1

1½ηc�ð0Þ

þ 5

6
Φ2

2½ηc�ð0Þ þ _μ

�
1

6
Φ2

1½0�ðμÞ þ
10

9
Φ3

2½0�ðμÞ
��

:

ðA3Þ

The flows of the two-point functions are given by

∂tΓð2hÞðp2Þ
Zhðp2Þ

¼ g
Z

∞

0

dq
Z

1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p q3

3π2

×

�
−
fcðp; q; xÞð_r1 − ηcðq2Þr1Þ

ð1þ r1Þ2ð1þ r2Þ

−
6q2ð3p2 þ 6q2 − 8λð4ÞÞð_r1 − ηhðq2Þr1Þ

ðq2ð1þ r1Þ þ μÞ2

þ fhðp; q; x; λð3ÞÞð_r1 − ηhðq2Þr1Þ
ðq2ð1þ r1Þ þ μÞ2ððp2 þ 2pqxþ q2Þð1þ r2Þ þ μÞ

�
;

ðA4Þ

10 1 1 10 102

10 2

10 1

1
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k MPl

gk

1 k
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k

FIG. 5. The running couplings as functions of the renormaliza-
tion scale k in units of the Planck mass. In the UV the couplings
tend to their finite fixed point values. As one follows the
trajectories down to the IR, one can see the scaling behavior
in the vicinity of the IR fixed point.

CHRISTIANSEN, KNORR, PAWLOWSKI, and RODIGAST PHYSICAL REVIEW D 93, 044036 (2016)

044036-12



∂tΓðc̄cÞðp2Þ
p2Zcðp2Þ

¼ g
Z

∞

0

dq
Z

1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p 4q3

3π2

×
p2ð3þ6x2Þþpqxð−2þ20x2Þþq2ð5−12x2þ16x4Þ

p2þ2pqxþq2

×

�
_r1−ηcðq2Þr1

ð1þ r1Þ2ððp2þ2pqxþq2Þð1þ r2ÞþμÞ

þ q2ð_r1−ηhðq2Þr1Þ
ðq2ð1þ r1ÞþμÞ2ð1þ r2Þ

�
: ðA5Þ

Here, we have introduced the short cuts r1 ¼ rðq2Þ and
r2 ¼ rðp2 þ 2pqxþ q2Þ. The functions fcðp; q; xÞ and
fhðp; q; x; λð3ÞÞ read

fcðp; q; xÞ ¼
16ðp2ð2þ x2Þ þ 6pqxþ 3q2Þ

p2 þ 2pqxþ q2
ðA6Þ

and

fhðp; q; x; λð3ÞÞ ¼
4q2

5ðp2 þ 2pqxþ q2Þ ð15p
6ð1þ 2x2Þ þ 10p5qxð7þ 8x2Þ þ p4q2ð21þ 208x2 þ 56x4Þ

þ 140p3q3xð1þ 2x2Þ þ 4p2q4ð7þ 76x2 þ 22x4Þ þ 8pq5xð17þ 11x2 þ 2x4Þ
þ 4q6ð7þ 6x2 þ 2x4Þ − 4λð3Þ½15p4ð1þ 4x2Þ þ 30p3qxð3þ 4x2Þ þ p2q2ð−9þ 248x2 þ 16x4Þ
þ 20pq3xð5þ 4x2Þ þ 20q4ð1þ 2x2Þ� þ 8ðλð3ÞÞ2½15p2ð1þ x2Þ þ 20pqxð2þ x2Þ
þ 2q2ð9þ 2x2 þ 4x4Þ�Þ: ðA7Þ

Finally, the flow equation for λ from the one-point function
is given by

_λ ¼ − 2λþ g

�Z
∞

0

dq
3q7ð1þ 2λÞ

4π

_rðq2Þ − ηhðq2Þrðq2Þ
ðq2ð1þ rðq2ÞÞ þ μÞ2

þ
Z

∞

0

dq
q3ð3 − λÞ

3π

_rðq2Þ − ηcðq2Þrðq2Þ
ð1þ rðq2ÞÞ2

�
: ðA8Þ

APPENDIX B: PROJECTION PROCEDURE

Here, we want to argue why the projection procedure to
obtain the flow equation for the gap parameter and the
integral equation for the graviton anomalous dimension is
the physical one. First the anomalous dimension must be
finite everywhere, in particular at the pole. Otherwise, the
wave-function renormalization could be written as

Zhðp2Þ ¼ ðp2 þ μÞω ~Zhðp2Þ ðB1Þ

with a nonzero parameter ω and Zhð−μÞ finite and nonzero.
However, the wave-function renormalization should only
determine the residue at the propagator pole. Thus, we
assume that the anomalous dimension is finite.
Next, we consider the flow equation of the two-point

function,

−ηhðp2Þðp2 þ μÞ þ _μþ 2μ ¼ ∂tΓð2hÞðp2Þ
Zhðp2Þ : ðB2Þ

We can evaluate this equation at an arbitrarily chosen fixed
momentum, say l, to obtain the β-function of the gap
parameter:

_μ ¼ −2μþ ∂tΓð2hÞðl2Þ
Zhðl2Þ þ ηhðl2Þðl2 þ μÞ: ðB3Þ

Subtracting this from the original equation leaves an
integral equation for the anomalous dimension,

ηhðp2Þ ¼ −
∂tΓð2hÞðp2Þ
Zhðp2Þ − ∂tΓð2hÞðl2Þ

Zhðl2Þ
p2 þ μ

þ ηhðl2Þ l
2 þ μ

p2 þ μ
: ðB4Þ

One easily sees that the right-hand side of this equation
diverges at p2 ¼ −μ, if ηðl2Þ is not chosen appropriately.
As we already know that the anomalous dimension must be
finite everywhere, we conclude that

ηhðl2Þ ¼
∂tΓð2hÞð−μÞ
Zhð−μÞ − ∂tΓð2hÞðl2Þ

Zhðl2Þ
l2 þ μ

: ðB5Þ

This can be reinserted into (B4), leading to

ηhðp2Þ ¼ −
∂tΓð2hÞðp2Þ
Zhðp2Þ − ∂tΓð2hÞð−μÞ

Zhð−μÞ
p2 þ μ

; ðB6Þ

which is the equation originally proposed in the main text.
We can use the expression for ηhðl2Þ also for the flow
equation of the gap parameter, resulting in
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_μ ¼ −2μþ ∂tΓð2hÞð−μÞ
Zhð−μÞ

; ðB7Þ

again reproducing the result from the main text. Thereby,
we have shown, under the reasonable condition of a finite
anomalous dimension, that our flow equations are unique.

APPENDIX C: INFRARED SCALING ANALYSIS

Here, we discuss the IR divergence analysis in more
detail. Before we can prove a recursion relation for the
parameters αn, we discuss some general properties of such
a setting.
Prerequisites.—The flow of a general n-point vertex

function includes generic loop integrals with dimensionless
external momenta pi and loop momentum q of the form

Z
d4q
ð2πÞ4

fnðq; piÞ
ðq2ð1þ rðq2ÞÞ þ μÞ2

×
Yn−2
i¼1

ððpi þ qÞ2ð1þ rððqþ piÞ2ÞÞ þ μÞ−1; ðC1Þ

with a function fnðq; piÞ resulting from contractions of the
tensor structure ~T defined in (14). Obviously, the diver-
gences are strongest at vanishing external momenta pi ¼ 0.
In this case, all internal propagators carry the loop
momentum q and we are left with

Z
d4q
ð2πÞ4

fnðq; pi ¼ 0Þ
ðq2ð1þ rðq2ÞÞ þ μÞn : ðC2Þ

Moreover, in the limit μ → −1, these divergences emerge
from small momentum modes near q ¼ 0. Consistent
regulators need to fulfill

lim
x→0

xð1þ rðxÞÞ ¼ 1þ ζxþOðx2Þ ðC3Þ

with ζ > 0, because otherwise, the denominator in (C2)
exhibits a zero for μ > −1. The highest pole order is
contained in the momentum-independent part f0n ≕
fnðq ¼ 0; pi ¼ 0Þ. Neglecting the angular integration,
and by the above reasoning, the most divergent part of
the integral takes the form

Z
δ>0

0

dq
q3f0n

ðq2 þ ϵÞn ; ðC4Þ

where we introduced ϵ ¼ 1þ μ for convenience. These
expressions can be integrated which leads to a divergence
structure of the form

Z
δ>0

0

dq
q3

ðq2 þ ϵÞn ∼

8>><
>>:

finite if n < 2

log ϵ if n ¼ 2

ϵ2−n if n > 2.

ðC5Þ

In a simple Einstein-Hilbert truncation one identifies the
constant, momentum-independent parts of the n-point
vertex functions λðnÞ with the gap parameter (or with the
cosmological constant), i. e. λðnÞ ¼ −μ=2 for all n.
However, this approximation incorporates a scaling incon-
sistency, as we will see by the divergence analysis below.
The following analysis is based on a matching of terms

in the limit ϵ → 0 on the rhs and the lhs of the flow
equations for n-point vertex functions. As a generalization
of the Einstein-Hilbert construction we allow for a power
law behavior in ϵ in the limit under consideration. In such
an expansion, logarithmic contributions are subleading, do
not change the power law and are therefore discarded.
Moreover, we keep only the leading order terms, i.e. we
assume a power law

λðnÞ ∼ϵ→0
ϵαn ; n ≥ 3; ðC6Þ

and suppress terms of the form ϵ ~αn with ~αn > αn, since we
are interested in the limit ϵ → 0. Moreover, we observe that
the ϵ-dependence of the function f0n is completely stored in
the parameters λðnÞ. Accordingly, these are the only terms
that we have to take into account in an ϵ-scaling analysis.
The generic form of a β-function for λðnÞ is of the form

_λðnÞ ¼ −2λðnÞ þ gðloop-termsÞ; ðC7Þ

i.e. a canonical term and loop contributions which are
always proportional to the gravitational coupling g. First,
we show that the canonical term does not dominate the
β-functions for λðnÞ with n ¼ 2, 3, 4 in the limit ϵ → 0. In
order to do so, we assume that the canonical term in the beta
functions for λð3Þ dominates in the limit ϵ → 0, i.e.
_λð3Þ ∼ϵ→0 − 2λð3Þ, which implies λð3Þ ∼ϵ→0

1=k2. On the other

hand, dominance of the canonical term means _λð3Þ ∼ϵ→0
ϵα3 .

From Fig. 6 and (C5) we can see that there is a diagram

producing a term ∼ϵ→0
ϵ3α3−2. Dominance of the canonical

term then implies α3 > 1. In this case λð3Þ →
ϵ→0

0. This

contradicts λð3Þ ∼ϵ→0
1=k2 as long as there is no UV fixed

point at ϵ ¼ 0. The same argument goes through for λð4Þ by

using the term ∼ϵ→0
ϵ2α4−1 on the rhs of the respective flow

equation. Thus, we know that the canonical term is
subleading or of equal order as the loop terms. With a
case-by-case analysis of ðλ3 ≶ 1; λ4 ≶ 1Þ, one can show
that α4 < 1. Then, using (C13) below it can be deduced that
the canonical term in the flow equation for λ4 is indeed

subleading and _λ4 ∼ϵ→0g. Together with (C15) this in turn
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implies that _ϵ ∼ϵ→0 g and therefore, the canonical term in _ϵ is
irrelevant as well. Accordingly either

α4 < 0 or α3 < 1=2; ðC8Þ

and additionally, the canonical term in _λn for all n is
subleading too, as both sides of the respective flow
equation must be proportional to g.
Lemma 1.—Assuming the results in Prerequisites, in

particular a power law

λðnÞ ∼ϵ→0
ϵαn ; ðC9Þ

with n ≥ 3, the hierarchy of flow equations implies

α4 ≤ 2α3 − 1: ðC10Þ

Proof.—The flow of the two-point function (evaluated at
vanishing external momentum) leads to the relation

_μ ¼ _ϵ ∼ϵ→0 gmax

�
jλð4Þj; ðλ

ð3ÞÞ2
ϵ

	

∼ gmax fϵα4 ; ϵ2α3−1g; ðC11Þ

where the terms in the curly brackets f·; ·;…g indicate the
leading contributions arising from the distinct diagrams.
The diagrams generating the running of the three-point
function (see Fig. 6) lead to

_λð3Þ ∼ϵ→0gmax fϵα5 ; ϵα3þα4−1; ϵ3α3−2g: ðC12Þ

The next order in the hierarchy, the flow equation for Γð4hÞ,
has the diagrammatic representation Fig. 7. This means that
the diagrams scale in the limit ϵ → 0 as

_λð4Þ ∼ϵ→0gmaxfϵ4α3−3; ϵ2α3þα4−2; ϵ2α4−1; ϵα3þα5−1; ϵα6g:
ðC13Þ

On the other hand, we can calculate _λð3Þ and _λð4Þ from
(C9), i.e. the lhs of the flow equation. Using (C11), this
yields

_λð3Þ ∼ϵ→0
ϵα3−1 _ϵ ∼ϵ→0 gmax fϵα3þα4−1; ϵ3α3−2g; ðC14Þ

and

_λð4Þ ∼ϵ→0
ϵα4−1 _ϵ ∼ϵ→0 gmax fϵ2α4−1; ϵα4þ2α3−2g: ðC15Þ

Consistency requires matching of the leading terms on both
sides of the flow equations.
If the leading term on the lhs is known, the matching

condition induces inequalities on the rhs and we can obtain
relations for αn.
On the left-hand sides of the flow equations for the three-

and the four-point functions we have in each case two
terms, (C14) and (C15). Let us now study the different
cases for the leading terms. Considering the three-point
function, the different cases can be written as

α3 þ α4 − 1 ⪋ 3α3 − 2: ðC16Þ

Analogously, from the lhs of the four-point function we
obtain one of the “dual” relations

2α4 − 1 ⪋ α4 þ 2α3 − 2: ðC17Þ

Obviously, the above relations (C16) and (C17) are
equivalent, i.e. if one of the relations >;¼; < is true, the
corresponding relation holds for the other expression.
Consequently, if we know the leading term on the lhs of
the flow equation for Γð3hÞ, we know the leading term in the
corresponding equation for Γð4hÞ and vice versa. We
proceed with a case-by-case analysis.

(i) Assume

α3 þ α4 − 1 ≥ 3α3 − 2: ðC18Þ
From the dual relation for the four-point function we
know that α4 þ 2α3 − 2 is the dominant term on the

X
X

X

FIG. 6. Diagrams contributing to the divergence analysis of the
three-point function of the graviton.

X
X

X

XX

FIG. 7. Diagrams contributing to the divergence analysis of the
four-point function of the graviton.
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lhs of _λð4Þ and therefore also on the rhs, i.e. in (C13).
Hence, the inequality

α4 þ 2α3 − 2 ≤ 4α3 − 3 ðC19Þ

necessarily holds. This inequality in turn implies
α4 ≤ 2α3 − 1, while (C18) is equivalent to α4 ≥
2α3 − 1. We conclude that

α4 ¼ 2α3 − 1; ðC20Þ

which is equivalent to the assumption 3α3 − 2 ¼
α3 þ α4 − 1 while 3α3 − 2 < α3 þ α4 − 1 produces
a contradiction.
With (C20) we have checked two of the three

cases, i.e. under the ≥ assumption only the ¼ sign is
a consistent solution. The term involving α5 is
subject to the condition

α5 ≥ α3 þ α4 − 1: ðC21Þ

Let us study the other case:
(ii) Assume

α3 þ α4 − 1 < 3α3 − 2: ðC22Þ

Comparing with (C12), we find that the equation for
_Γð3hÞ is trivially consistent with this assumption.
Moreover, the assumption that 2α4 − 1 is the leading
term [which is equivalent to assumption (C22)] is
consistent with the first three diagrams in (C13).
Again, the terms involving α5 and α6 are appropri-
ately constrained, see remark 2 below, and we
can constitute that (C22) is indeed a consistent
assumption. Including both cases, this leads to the
relation

α4 ≤ 2α3 − 1; ðC23Þ

and proves the lemma. ▪
Remark 1.—This means that from _Γð3hÞ and _Γð4hÞ we

obtain an inequality that constrains the relation between α3
and α4, which are at this stage free parameters.
Remark 2.—Lemma 1 with (C8) implies

α4 < 0 ðC24Þ

always, thus α3 cannot be constrained solely by the analysis
above.
Remark 3.—Moreover, we cannot fix αn for n > 4 with

the equations for the three- and the four-point function.
However, since Eqs. (C14) and (C15) are independent of α4
and α5, these terms cannot be the leading contributions in
the limit under consideration, i.e. they cannot generate the
power law. This implies

α5 ≥ α4 þ α3 − 1: ðC25Þ

Applying the same logic to the four-point function, we
arrive at

α6 ≥ 2α4 − 1: ðC26Þ

In order to further constrain the parameters αn with n > 4,
we proceed by analyzing the running of ΓðnhÞ.
Lemma 2.—Under the same conditions as in Lemma 1,

we obtain the recursion relation for n ≥ 5:

αn ¼ αn−2 þ α4 − 1: ðC27Þ

Proof.—In general, assumption (C9) together with (C11)
leads to

_λðnÞ ∼ϵ→0gϵαn−1 _ϵ

∼ϵ→0gmax fϵαnþα4−1; ϵαnþ2α3−2g: ðC28Þ

The canonical term can be dropped since α4 < 0. Lemma 1
ensures that the leading term is always given by ϵαnþα4−1.
Accordingly, all terms generated by the diagrams on the rhs
of the flow equation must be smaller or equal to this term.
For every n, the flow equation for ΓðnhÞ contains a diagram
with two four-point vertices, one (n − 2)-vertex and four
internal propagators. Hence, we can conclude

αn þ α4 − 1 ≤ 2α4 þ αn−2 − 2: ðC29Þ

Moreover, we can generalize the results (C25) and (C26),
by considering the diagram with only one vertex, more
precisely, an (nþ 2)-vertex. Again, consistency requires

αnþ2 ≥ αn þ α4 − 1 ðC30Þ

or equivalently αn ≥ αn−2 þ α4 − 1. Combining this result
with (C29) proves lemma 2. ▪
Remark 4.—Lemma 2 yields a recursion relation con-

necting all αn with α4 and α3. We are therefore left with two
free parameters, with the constraint (C24). Moreover, we
can give explicit, nonrecursive, expressions for αn, depend-
ing on whether n is odd or even. The differenceΔα between
αn and αn−2 is obviously

Δα ¼ α4 − 1; ðC31Þ

and therefore independent of n. For n even we can express
any αn as

αn ¼ α4 þ
�
n − 4

2

�
Δα

¼
�
n
2
− 1

�
α4 −

�
n
2
− 2

�
; n even; n ≥ 6; ðC32Þ
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which can be rewritten as

α2n ¼ ðn − 1Þα4 − ðn − 2Þ; n ≥ 3: ðC33Þ
For n odd we can do the same thing, starting with α3 and
adding multiples of Δα in order to arrive at

α2nþ1 ¼ α3 þ ðn − 1Þα4 − ðn − 1Þ; n ≥ 2: ðC34Þ

APPENDIX D: ESTIMATING α3

Following the argument in Sec. III D, there is a transition
regime between the Einstein-Hilbert type of solutions with
λð2Þ ¼ λð3Þ and an IR regime where they differ as the
trajectories approach ϵ ¼ 0. The simplest form of such a
transition is a sharp switch between the two solutions at a
scale k0 when the trajectories bend over to the separatrix
and are attracted towards the IR fixed point. Such a sharp
crossover between these two regions is certainly different
from the true behavior, and it also differs from our ansatz
(35). However, this type of transition shares the essential
features with the true solution and can thus provide a
reasonable estimate. At the transition scale k0 we have the
connection conditions

λð3Þðk0Þ ¼ λð2Þðk0Þ ¼ −
1

2
μðk0Þ ðD1Þ

and

_λð3Þðk0Þ ¼ _λð2Þðk0Þ ¼ −
1

2
_ϵðk0Þ: ðD2Þ

Using the power law (C6) we have the simple relation for
the logarithmic derivative

ðλð3ÞÞ0
λð3Þ

¼ α3
ϵ
; ðD3Þ

where 0 denotes the derivative with respect to ϵ. The scale
derivative can be expressed as

_λð3Þ ¼ ðλð3ÞÞ0 _ϵ: ðD4Þ

Evaluating the above equation at k ¼ k0 and combining it
with (D2) yields

ðλð3ÞÞ0jk¼k0 ¼ −
1

2
: ðD5Þ

This in turn can be used together with (D2) when evaluating
(D3) at k ¼ k0. Keeping in mind that ϵ ¼ 1þ μ, this
results in

α3 ¼
1þ μðk0Þ
μðk0Þ

: ðD6Þ

Together with α4 ¼ 2α3 − 1 this fixes all αn. From the
phase diagram, one infers that the onset of this transition is
near μ ≈ −0.9 independent of the chosen parameters. This
gives

α3 ≈ −1=9: ðD7Þ

Not sticking to the equality does not alter the results
qualitatively, see Table VII.

APPENDIX E: FUNCTIONAL FORM OF λðnÞ

Here we construct explicit expressions for the functions
λðnÞ. In addition to the singularity structure, there are
further constraints to be fulfilled by such an ansatz. In
the following we show that

λðnÞ ¼ −
μ

2

�
1þ sgnðμÞχ

���� μ

1þ μ

����
−αn

�

¼ −
μ

2
ð1þ δλðnÞÞ ðE1Þ

is consistent with all constraints. In the above formula χ is
an arbitrary parameter. From perturbation theory we know
that in the Gaussian limit μ → 0, we need to recover an
Einstein-Hilbert solution. Indeed, (E1) entails λðnÞ ¼ −μ=2
for all n in the vicinity of μ ¼ 0 as long as αn < 0. In
addition to that, it is clear that the correction cannot contain
further powers of g, since this would interfere with the
singularity structure. Furthermore, the correction should be

TABLE VII. UV fixed point values for different parameters χ and α3 with exponential regulator and a ¼ 4. X
indicates that no fixed point is found for these parameter values.

1=χ α3 ¼ −0.1 α3 ¼ −0.2 α3 ¼ −0.3 α3 ¼ −0.4 α3 ¼ −0.5

20 μ� ¼ −0.698 μ� ¼ −0.704 μ� ¼ −0.713 μ� ¼ X μ� ¼ X
g� ¼ 0.799 g� ¼ 0.787 g� ¼ 0.769 g� ¼ X g� ¼ X

50 μ� ¼ −0.681 μ� ¼ −0.682 μ� ¼ −0.684 μ� ¼ −0.686 μ� ¼ −0.689
g� ¼ 0.837 g� ¼ 0.834 g� ¼ 0.830 g� ¼ 0.824 g� ¼ 0.817

100 μ� ¼ −0.675 μ� ¼ −0.676 μ� ¼ −0.677 μ� ¼ −0.678 μ� ¼ −0.679
g� ¼ 0.848 g� ¼ 0.846 g� ¼ 0.845 g� ¼ 0.843 g� ¼ 0.840

2000 μ� ¼ −0.671 μ� ¼ −0.671 μ� ¼ −0.671 μ� ¼ −0.671 μ� ¼ −0.671
g� ¼ 0.857 g� ¼ 0.857 g� ¼ 0.857 g� ¼ 0.857 g� ¼ 0.857
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inherently dimensionless. With these conditions, a quantity
proportional to powers of the ratio μ=ð1þ μÞ is everything
we have at hand. In the end, we are left with two
(constrained) free parameters, namely α3≤0 and χ∈Rn0.
The proportionality factor χ is in general different for all
λðnÞ and can in principle be calculated from higher order
vertex functions. In our truncation we choose a uniform
constant for simplicity. The IR structure is unaffected by the
value of χ, but a large χ might alter the UV regime. Note
that the scaling analysis is true in the IR limit only.
Consequently, we expect a small χ which does not interfere
with the UV regime.

APPENDIX F: ANOMALOUS
DIMENSIONS IN THE IR

Both anomalous dimensions need to vanish at the IR
fixed point for it to be classical. For the ghost anomalous
dimension, this is the case as long as g=ϵ → 0, which is
equivalent to saying that α3 < 0, in accordance with our
estimate above. On the other hand, the vanishing of the
graviton anomalous dimension is seen as follows: First, as
shown in [3], the terms quadratic in the external momentum
in the flow cancel. Thus, the flow goes to a constant as the
external momentum goes to infinity, and no divergences

can appear there. Next, the flow equation for the gap
parameter can be rewritten as

_μ ¼ −2μþ ∂tΓð2hÞð0Þ
Zhð0Þ

þ ηhð0Þμ: ðF1Þ

We know that in the IR for μ → −1; g → 0, _μ vanishes. This
can be achieved in three different ways: either the flow
vanishes and the anomalous dimension at zero cancels the
canonical scaling, or both the flow and the anomalous
dimension cancel the canonical scaling, or only the flow
remains finite. First assume that the flow vanishes in the
limit μ → −1; g → 0. We know that the leading order
contribution comes from a term ∼gλð4Þ, all other terms
have smaller divergences and thus vanish in the limit
g → 0. If this term vanishes, however, then the flow is 0
everywhere, thus also the anomalous dimension would
vanish everywhere, and we would end up with no fixed
point. On the other hand, assume that gλð4Þ remains finite in
our limit, then still all other terms in the flow vanish, and
thus the flow is a nonzero constant. This in turn implies that
the graviton anomalous dimension must vanish as it is a
finite difference of the flow. We conclude that ηhðp2Þ ¼ 0
at the IR fixed point.
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