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We construct a simple algorithm to derive number density of spin 1=2 particles created in spatially flat
Friedmann-Lemaitre-Robertson-Walker spacetimes and resulting renormalized energy-momentum tensor
within the framework of adiabatic regularization. Physical quantities thus found are in agreement with the
known results. This formalism can be considered as an appropriate extension of the techniques originally
introduced for scalar fields, applicable to fermions in curved space. We apply this formalism to compute the
particle number density and the renormalized energy density and pressure analytically (wherever possible)
and numerically, in two interesting cosmological scenarios: a de Sitter spacetime and a radiation dominated
universe. Results prove the efficiency of the methodology presented here.
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I. INTRODUCTION

One of the inevitable quantum consequences of the
dynamical evolution of the Universe is particle creation by
quantum fields in a classical gravitational background
[1–6]. Such phenomenon was first discovered by Parker
[7–10]. This is conceptually similar to the black hole
radiation [11]. Particle creation during very early moments
of the Universe is useful in explaining the inhomogeneities
in the cosmic microwave background (CMB) radiation and
the large-scale structure of the Universe [12]. Recently
attempts have been made to quantify effects of renormal-
ization on the correlation functions visible in CMB power
spectrum [13,14]. The concept of adiabatic vacuum is
crucial to have a notion of particles in curved space that
comes closest to that in flat space. Studies on quantum
scalar fields in curved spacetime in spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
times revealed the following generic features—(i) in a
comoving volume, the particle number density (jβkj2) in
mode “k” is an adiabatic invariant (which corresponds to
conservation of number of quanta produced by a quantum
oscillator whose length is decreasing infinitely slowly),
(ii) particles of conformally invariant field with zero mass
will not be created, (iii) the total number density of particles
of specific mass, summed over modes is ultraviolet (UV)
divergent and (iv) the resulting stress tensor (Tμν) has
quadratic and logarithmic UV divergences in addition to
the usual quartic divergence or the vacuum energy in
flat space.
Adiabatic regularization was introduced by Parker [15]

to make the total number density for scalar particles finite
and later extended to tame the UV divergences in Tμν by
Parker and Fulling [16]. Adiabatic regularization of formal
quantities having divergences is achieved by subtracting

mode by mode (under the integral sign) each term in the
adiabatic (large mode) expansion of the integrand that
contains at least one UV divergent part for arbitrary values
of the parameters of the theory. The number of time
derivatives of the scale factor in a term of the expansion
is called the adiabatic order of that term. This scheme is
useful for numerical calculations. In [16], the authors have
shown that the adiabatic regularization is equivalent to the
n-wave regularization (which is a variant of Pauli-Villars
regularization [6]) used by Zel’dovich and Starobinsky
[17]. The later method is also useful for numerical
computations and used successfully [18,19] in cases where
it is difficult to find the exact solution to the field equation
due to complexity of the metric functions.
There are other powerful regularization methods that

were developed to apply in curved space, such as
proper-time regularization, point-splitting regularization
(particularly by the Hadamard method), zeta-function
regularization, dimensional regularization, etc. [1–3,5,6].
Recently, the DeWitt-Schwinger point-splitting regulariza-
tion [20–24], is used in [25,26] in the context of massive
scalar, spinor and vector fields in the spatially flat FLRW
universe using asymptotic expansion of the Green function
[17,27] to reproduce the leading order contribution to the
stress tensor found in [28]. All these methods are equivalent
[6]. The renormalized quantities in this methods are mostly
computed directly from the action and not via solving for
jβkj2. Production of spin 1=2 particles in various cosmo-
logical scenarios has been studied by many [29–34] over
the years. Recently, fundamental issues like definition
of a preferred vacuum state at a given time [35,36] and
approximate definition of the particle number via adiabatic
WKB ansatz [37] are addressed. A systematic adiabatic
expansion in the FLRW universe for spin 1=2 field modes
has been constructed in [38–40] and corresponding renorm-
alization is achieved. This lead to a proof of the equivalence*smnphy@gmail.com
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between the adiabatic regularization and the DeWitt-
Schwinger method [41]. It was argued in [38] that the
WKB ansatz is specifically designed to preserve the Klein-
Gordon product and the associated Wronskian condition,
but is not useful to preserve the Dirac product and the
associated Wronskian. In other words, it is not possible to
extend the WKB ansatz for the fermionic modes beyond
the zeroth adiabatic order.
In [42], we introduced a formalism, alternative to [38], to

determine jβkj2 and also to regularize the resulting Tμν for
spin 1=2 particles in the spatially flat FLRW universe
within the framework of adiabatic regularization. This
methodology can also be regarded as an extension of the
formalism presented in [17] (in the context of scalar particle
creation during anisotropic collapse) applicable to spin 1=2
fields. In the following, we review and add to the forma-
lism presented in [42] and present illustrative examples of
application to cosmological scenarios. We define our “in”
state as the adiabatic vacuum (state of adiabatic order zero)
given by the WKB solution to the field equations and the
adiabatic matching with exact state is done using time-
dependent Bogolubov coefficients. Next we use the field
equations to derive the governing equations for jβkj2, in
terms of a set of three real and independent variables sk; uk
and τk (to be defined later), which were introduced in [17].
It is then easy to regularize Tμν by subtracting leading order
terms from the adiabatic expansions of these variables.
The renormalized quantities and conformal anomaly thus
derived match exactly with the known results [1,6,38]. We
also show that this method is manifestly covariant, i.e. the
resulting renormalized stress tensor is conserved. Then we
apply this formalism to two cosmological scenarios of
interest—de Sitter and radiation dominated universes. We
derived analytic (wherever possible) and numerical results
(presented via plots) that match the already known results
to prove the validity and effectiveness of the formalism.

II. DIRAC FIELD IN FLRW SPACETIME

The homogeneous and isotropic FLRW spacetime geom-
etry is given by

ds2 ¼ −dt2 þ a2ðtÞd~x2; ð1Þ

where t is the cosmological time and aðtÞ is the cosmo-
logical scale factor. Now to appreciate the conformal
symmetry of such a background we move to the conformal
time (η ¼ R

dt
aðtÞ) description of the metric,

ds2 ¼ a2ðηÞð−dη2 þ d~x2Þ: ð2Þ

The Dirac equation in generic curved spacetime for field
ψð~x; ηÞ with mass m is given by [1–3,5,6]

ðeμaγa∇μ −mÞψ ¼ 0; ð3Þ

where eaμ are the vierbeins. Greek alphabets denote coor-
dinate indices and Latin alphabets denote frame indices.
γa’s are Dirac matrices (defined in terms of usual Pauli
matrices σi) in Minkowski space, satisfying fγa; γbg ¼ ηab

where ηab is the Minkowski metric ð−1; 1; 1; 1Þ and ∇μ ¼
∂μ − Γμ is the covariant derivative where Γμ is the spin
connection [1,6]. The Dirac matrices in the Dirac-Pauli
representation are given by

γ0 ¼ i

�
I 0

0 −I

�
; γi ¼ i

�
0 σi

−σi 0

�
; ð4Þ

where σi are the Pauli matrices,

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
:

ð5Þ

For metric (2), Eq. (3) leads to

�
γ0
�
∂0 þ

3_a
2a

�
þ γi∂i þma

�
ψ ¼ 0; ð6Þ

where an overdot represents derivative with respect to η.
The Dirac field ψ can be written in terms of the time-
dependent annihilation operator for particles [B~kλðηÞ] and
creation operator for antiparticles [D†

~kλ
ðηÞ] as

ψ ¼
X
λ

Z
d3kðB~kλu~kλ þD†

~kλ
v~kλÞ; ð7Þ

where mode expansion of the eigenfunctions u~kλð~x; ηÞ
and v~kλð~x; ηÞ, which is obtained by charge conjugation
(v ¼ γ2u�) operation on u~kλð~x; ηÞ, is given in terms of two
component spinors by [38]

u~kλð~x; ηÞ ¼
ei~k:~x

ð2πaÞ3=2
�hIkðηÞξλðkÞ
hIIk ðηÞ ~σ:~k

k ξλðkÞ

�
ð8Þ

v~kλð~x; ηÞ ¼
e−i~k:~x

ð2πaÞ3=2
�
−hII�k ðηÞ ~σ:~k

k ξ−λðkÞ
−hI�k ðηÞξ−λðkÞ

�
; ð9Þ

where ξλðkÞ is the normalized two component spinor

satisfying ξ†λξλ ¼ 1 and ~σ:~k
2k ξλ ¼ λξλ, where λ ¼ �1=2

represents the helicity.1 The normalization condition
in terms of the Dirac product for ψ, ðu~kλ; u~k0λ0 Þ ¼
ðv~kλ; v ~k0λ0 Þ ¼ δλλ0δð~k − ~k0Þ, implies

1Using either value of helicity or either of u~kλ and v~kλ, in the
following calculations, leads to exactly the same end results.
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jhIkðηÞj2 þ jhIIk ðηÞj2 ¼ 1: ð10Þ

This condition ensures that the standard anticommutation
relations for creation and annihilation operators are sat-
isfied. Putting Eq. (8) in Eq. (6), we get the following first
order coupled differential equations:

_hIk þ imahIk þ ikhIIk ¼ 0; ð11Þ
_hIIk − imahIIk þ ikhIk ¼ 0; ð12Þ

with the Wronskian

_hIkhII�k − hIk _h
II�
k ¼ −ik: ð13Þ

Equations (11) and (12) can be decoupled to give the
following decoupled second order equations:

ḧIk þ ½Ω2
kðηÞ þ iQðηÞ�hIk ¼ 0; ð14Þ

ḧIIk þ ½Ω2
kðηÞ − iQðηÞ�hIIk ¼ 0; ð15Þ

where ΩkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ k2

p
and QðηÞ ¼ m _a. The adia-

batic vacuum (i.e. state of adiabatic order zero) is given by
the WKB solution of the field equations (see Appendix A)
that naturally generalize the standard Minkowski space
solution,

hIð0Þk ðηÞ ¼ f1e−; hIIð0Þk ðηÞ ¼ f2e− ð16Þ

with

f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk þma

2Ωk

s
; f2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk −ma
2Ωk

s
;

e� ¼ e�i
R

Ωkdη:

ð17Þ

This implies the exact solution can be written as

hIkðηÞ ¼ αkðηÞhIð0Þ − βkðηÞhIIð0Þ�; ð18Þ

hIIk ðηÞ ¼ αkðηÞhIIð0Þ þ βkðηÞhIð0Þ�; ð19Þ

where αkðηÞ and βkðηÞ are the Bogolubov coefficients. The
normalization condition (10) leads to

jαkðηÞj2 þ jβkðηÞj2 ¼ 1: ð20Þ
Here the adiabatic matching [6] is used to obtain a zeroth
order adiabatic vacuum state at a particular initial time, say
η ¼ η0. This matching fixes the initial values of the mode
functions and their first derivatives at η0. Note that,
adiabatic matching at different times results in different
states for the field. In this case, Eqs. (18) and (19) imply the
initial conditions are αkðη0Þ ¼ 1 and βkðη0Þ ¼ 0. Here,

αkðηÞ and βkðηÞ carry all the nonadiabaticity [see the
adiabatic expansion of jβkðηÞj2 shown later]. If one chooses
a state of different adiabatic order, for matching with the
exact state, the associated Bogolubov coefficients (and their
initial values at η0) will be different. In general, one can
write [38]

hIkðtÞ ¼ αðnÞk ðηÞhIðnÞ − βðnÞk ðηÞhIIðnÞ�; ð21Þ

hIIk ðηÞ ¼ αðnÞk ðηÞhIIðnÞ þ βðnÞk ðηÞhIðnÞ�; ð22Þ

where hIðnÞ and hIIðnÞ are solutions of nth adiabatic order

and αðnÞk and βðnÞk carry terms of adiabatic order higher than
“n” i.e. they are constants up to adiabatic order n. However,
as it is impossible to find a consistent WKB solution of
higher order for spin 1=2 fields, we consider the matching
with zeroth adiabatic order only. Our ansatz, Eqs. (18) and
(19) further imply

αkðηÞ ¼ ðf1hIk þ f2hIIk Þeþ; ð23Þ

βkðηÞ ¼ ðf1hIIk − f2hIkÞe−: ð24Þ

The average number density of spin 1=2 particles of

specific helicity and charge with momentum ~k is then [1]

hN~ki ¼ hB†
~kλ
B~kλi ¼ hD†

~kλ
D~kλi ¼ jβkðηÞj2: ð25Þ

Note that the WKB solutions (16) obey the following
Wronskian condition:

_hIð0Þk hIIð0Þ�k − hIð0Þk
_hIIð0Þ�k ¼ F − ik; F ¼ kQ

2Ω2
k

: ð26Þ

The function FðηÞ is of adiabatic order one. In the
adiabatic limit (F → 0), Eq. (16) does satisfy the exact
Wronskian (13) and thus represents the adiabatic vacuum.
Equation (26) also implies that the WKB ansatz is not an
exact solution [due to the presence of FðηÞ] of the field
equation during the (nonadiabatic) expansion which is the
desired condition for particle creation [15]. Thus FðηÞ is a
measure of nonadiabaticity of the cosmological evolution.
In Eq. (7), the creation and annihilation operators carry this
nonadiabaticity and so as the Bogolubov coefficients in
Eqs. (18) and (19). Thus jβkj2 is expected to depend on
FðηÞ as particle creation can be considered as a quantum
consequence of this nonadiabaticity. Putting Eqs. (18) and
(19) in Eqs. (11) and (12), a system of coupled linear first
order differential equations is obtained for αkðηÞ and βkðηÞ:

_αk ¼ −Fβke2þ; _βk ¼ Fαke2−: ð27Þ

Equation (27) implies the usual absence of massless
particles in conformally flat spacetimes. Further, fermions
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at rest will also not be produced. Similar results were found
in [43] using Newman-Penrose formalism. To determine
jβkj2 and the resulting Tμν, we define three real and
independent variables sk, uk and τk (following [17]), in
terms of the two complex variables αk and βk as

sk ¼ jβkj2; uk ¼ αkβ
�
ke

2
− þ α�kβke

2þ;

τk ¼ iðαkβ�ke2− − α�kβke
2þÞ: ð28Þ

For these variables one gets a system of three linear first
order differential equations:

_sk ¼ Fuk; ð29Þ

_uk ¼ 2Fð1 − 2skÞ − 2Ωkτk; ð30Þ

_τk ¼ 2Ωkuk; ð31Þ

with initial conditions sk ¼ uk ¼ τk ¼ 0 at suitably chosen
time η ¼ η0 as discussed earlier. Equations (29)–(31) are
the key equations of this formalism. Note that, if one
can derive hIk and hIIk analytically from the field equations,
then jβkj2 directly follows from Eq. (24). Alternatively,
one can solve the set of equations (29)–(31) numerically
(or analytically whenever possible).

A. Energy-momentum tensor

The energy-momentum tensor for the Dirac field in
curved spacetime is given by

Tμν ¼
i
2
½ψ̄γðμ∇νÞψ − ð∇ðμψ̄ÞγνÞψ �: ð32Þ

The independent components of Tμν, the energy density T0
0

and pressure density Ti
i are

T0
0 ¼ −

i
2a

ðψ̄γ0 _ψ − _̄ψγ0ψÞ; ð33Þ

Ti
i ¼

i
2a

ðψ̄γiψ 0 − ψ̄ 0γiψÞ; ð34Þ

where (0) denotes derivative with respect to xi. Using
Eqs. (7)–(9), the vacuum expectation value of the above
quantities can be written as

hT0
0i≡ ρ ¼ 1

ð2πaÞ3
Z

d3kρk; ð35Þ

hTi
ii≡ p ¼ 1

ð2πaÞ3
Z

d3kpk; ð36Þ

where the energy density ρk and the pressure density pk, for
each mode, are given respectively as

ρk ¼
i
a
ðhIk _hI�k þ hIIk _hII�k − hI�k _hIk − hII�k

_hIIk Þ; ð37Þ

pk ¼
2k
3a

ðhIkhII�k þ hI�k h
II
k Þ: ð38Þ

Using Eqs. (18), (19), (20) and (28), we get from Eqs. (37)
and (38)

ρk ¼ −
2Ωk

a
ð1 − 2skÞ; ð39Þ

pk ¼
2k
3a

�
k
Ωk

ð1 − 2skÞ þ
ma
Ωk

uk

�
: ð40Þ

The vacuum energy (i.e. in absence of any gravitationally
created particles when sk ¼ uk ¼ τk ¼ 0) matches with the
standard result. We discuss below how to remove the
divergences in Tμν by subtracting the leading order terms
from the adiabatic expansion of sk; uk; τk.

B. Renormalization

One can expand the solutions of the system of Eqs. (29)–
(31) in an asymptotic series in powers of Ω−1

k in the large
momenta limit (Ωk → ∞). This is essentially the same as
the adiabatic expansion that is valid in the quasiclassical
region where j _Ωkj ≪ Ω2

k. The adiabatic expansions of

sk; uk; τk give (Appendix B), τk ¼ τð1Þk þ τð3Þk þ…,

uk ¼ uð2Þk þ uð4Þk þ… and sk ¼ sð2Þk þ sð4Þk þ…, where the
superscripts inside the brackets indicate the adiabatic order.
Equations (29)–(31) lead to the following recursion rela-

tions among sðrÞk ; uðrÞk and τðrÞk :

uðrÞk ¼ _τðr−1Þk

2Ωk
; ð41Þ

sðrÞk ¼
Z

FuðrÞk dt; ð42Þ

τðrþ1Þ
k ¼ −

4FsðrÞk þ _uðrÞk

2Ωk
; ð43Þ

with r ¼ 2; 4;… and τð1Þk ¼ F
Ωk
. It is straightforward to solve

these equations analytically to arbitrary order. Further, as
k → ∞ and if derivatives of aðηÞ to any order are nonzero,
we have

sðrÞk ∼ k−ðrþ2Þ; uðrÞk ∼ k−ðrþ1Þ; τðrÞk ∼ k−ðrþ1Þ:

ð44Þ

The leading order terms imply the well-known logarithmic
UV divergences of the total energy and pressure density.
Note that there is no quadratic divergence that appears for
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scalar fields [1]. Further, as k → ∞, the leading term in
particle number density sk decays as k−4 irrespective of the
functional form of the scale factor. To remove the infinities,
we need to subtract leading terms up to necessary order
from the expansion of sk, uk and τk. Note that the total
particle number density of specific mass with summed over
momenta is given by

Nm ¼ 1

ð2πaÞ3
Z

d3ksk; ð45Þ

and is finite unlike the energy and pressure densities. The
renormalized total energy and momentum density (after
subtracting the vacuum contribution i.e. the quartic diver-
gence) are given by

ρRen ¼
2

π2a4

Z
dkk2Ωkðsk − sð2Þk − sð4Þk Þ; ð46Þ

pRen ¼
1

3π2a4

Z
dk

k3

Ωk
½−2kðsk − sð2Þk − sð4Þk Þ

þmaðuk − uð2Þk − uð4Þk Þ�: ð47Þ

Note that, in the specific case of FLRW background, it is
enough to subtract only up to second adiabatic order.
However, in more generic spacetimes the fourth order
adiabatic terms may give rise to proper UV divergences
[24] and therefore the standard approach of regularization
considers the fourth order adiabatic terms as potentially
divergent [1,6].

C. Conformal anomaly

The trace of the energy momentum tensor (32),
Tμ
μ ¼ mψ̄ψ , vanishes for massless fields. However, the

renormalization procedure renders the quantum counterpart
of Tμ

μ finite. This phenomenon is known as the conformal
anomaly. The vacuum expectation value of the trace of
stress tensor is

hTμ
μi ¼ 1

ð2πaÞ3
Z

d3khTμ
μik ð48Þ

with

hTμ
μik ¼ −2mðjhIkj2 − jhIIk j2Þ ð49Þ

¼ −2m
�
ma
Ωk

ð1 − 2skÞ −
k
Ωk

uk

�
ð50Þ

using Eqs. (18), (19), (20) and (28). Alternatively, Eq. (50)
follows from the identity hTμ

μik ¼ ρk þ 3pk too. In the limit
m → 0, subtracting the vacuum contribution and terms up
to fourth adiabatic order, the resulting renormalized trace
anomaly is given by

hTμ
μiRen ¼ lim

m→0

2m
ð2πaÞ3

Z
d3k

�
2ma
Ωk

ðsk − sð2Þk − sð4Þk Þ

þ k
Ωk

ðuk − uð2Þk − uð4Þk Þ
�

ð51Þ

¼ − lim
m→0

2m
ð2πaÞ3

Z
d3k

�
2ma
Ωk

sð4Þk þ k
Ωk

uð4Þk

�
ð52Þ

as only the fourth order term in the expansions of skðηÞ and
ukðηÞ survives in the m → 0 limit. Using explicit expres-

sions of sð4Þk and uð4Þk (Appendix B) in Eq. (52), we get2

hTμ
μiRen ¼ −

11_a4 − 29a _a2äþ 12a2 _a a
…þ9a2ä2 − 3a3a

…

240π2a8
:

ð53Þ

Note that the conformal anomaly can be expressed in terms
of the curvature invariants as [1,6]

hTμ
μiRen ¼

1

ð4πÞ2 ðACαβγδCαβγδ þ BGþ C□RÞ; ð54Þ

where Cαβγδ is the Weyl tensor, R is the Ricci scalar and G
is the Gauss-Bonnet invariant, given by G ¼ −2ðRαβRαβ −
R2=3Þ with Rαβ being the Ricci tensor. For conformally
flat spacetimes, the Weyl tensor vanishes identically.
Equating Eq. (54) with Eq. (53), we get B ¼ 11=360
and C ¼ −1=30, which agrees with the known results
[1,6]. Similarly one can check that the axial anomaly
vanishes as expected [42].

D. Conservation of stress tensor

The renormalized energy momentum tensor constructed
here is manifestly a conserved quantity. This can be
checked explicitly. It is easy to see that the conservation
condition

hTiν
;νi ¼ 0; i ¼ 1; 2; 3 ð55Þ

is satisfied identically and the remaining component of the
stress tensor conservation equation,

hT0ν
;ν i ¼ h _T00i þ 5

_a
a
hT00i þ 3

_a
a
hTiii; ð56Þ

vanishes identically by virtue of Eqs. (46), (47) and (29).

2Here we correct an overall sign mistake made in [42].
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III. APPLICATION TO DE SITTER AND
RADIATION DOMINATED UNIVERSE

Below we apply the formalism described above to two
specific examples: de Sitter spacetime and radiation domi-
nated universe.

A. de Sitter universe

The de Sitter universe is characterized by the scale factor
aðtÞ ¼ eHt where H is the Hubble constant. In terms of
conformal time we have aðηÞ ¼ −1=Hη;−∞ < η < 0.
Solutions to Eq. (14) and (15), in a de Sitter universe that
has the correct asymptotic behavior, are given by [40]

hIðzÞ ¼ i
ffiffiffiffiffi
πz

p
2

eπμ=2Hð1Þ
νþ ðzÞ; ð57Þ

hIIðzÞ ¼
ffiffiffiffiffi
πz

p
2

eπμ=2Hð1Þ
ν− ðzÞ; ð58Þ

where z ¼ −kη, μ ¼ m=H, ν� ¼ � 1
2
− iμ and Hð1Þ

ν� ðzÞ are
the Hankel functions of the first kind.3 Equations (57) and
(58) essentially represent the well-known Bunch-Davies
vacuum state [44]. Note that this is a state of infinite
adiabatic order; however, it can be obtained by the zeroth
order adiabatic matching as the zeroth order WKB approxi-
mation becomes exact in the limit η → −∞ where the
matching is done.

1. Particle creation

The number density of particles created during the de
Sitter expansion, from Eq. (24), is given by

jβdSk ðηÞj2 ¼ πz
4
eπμjf1Hð1Þ

ν− ðzÞ − if2H
ð1Þ
νþ ðzÞj2; ð59Þ

where f1 and f2 are given by Eq. (17). Note that form → 0,

the identity Hð1Þ
−ν ¼ eiνπHð1Þ

ν implies massless particles are
not created which is expected and provides a nice cross-
check for Eq. (59).
Then the total particle number density of specific mass

m, summed over all modes, is given by

Nμ ¼
1

ð2πaÞ3
Z

∞

0

d3kjβdSk ðηÞj2: ð60Þ

Changing the integrating variable from k to z ¼ −kη
leads to

Nμ ¼
H3

2π2

Z
∞

0

dzz2jβdSðzÞj2: ð61Þ

Equation (61) matches exactly with results reported in [39].
Figure 1 shows that the integrand in Eq. (61) peaks near
z ∼ μ (which follows from generic properties of Hankel
functions) and decays rapidly for large z (which is expected
as the integrand varies as 1=z2 with z → ∞). Further the
peak value saturates to ∼10−2. Thus one can easily perform
the integration numerically (with a cutoff at, say, z ¼ 10 m)
and the result is shown in Fig. 2 which matches with [40].
Note that Fig. 1 can be looked at in two different ways—
either by fixing η and looking at various values of k or by
fixing k and looking at different η where the plots need to
be read from right to left.
One can also derive jβdSk ðηÞj2 or skðηÞ by solving

(however numerically) the set of equations (29)–(31) as
follows. By changing the variables from η to z ¼ −kη, one
obtains for de Sitter expansion:

s0ðzÞ ¼ −
μ

2ðz2 þ μ2Þ uðzÞ; ð62Þ

u0ðzÞ ¼ μ

z2 þ μ2
ð1 − 2sðzÞÞ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ μ2

p
z

τðzÞ; ð63Þ
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0.000
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0.004

0.006

0.008

FIG. 1. Variation of the integrand in Eq. (61) (for Nμ) vs z for
masses μ ¼ 0.5 (continuous curve), μ ¼ 1 (dotted curve), μ ¼ 2
(small dashes) and μ ¼ 3 (large dashes) with H ¼ 1.
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FIG. 2. Total particle number density (Nμ) vs mass (μ) after
summed over modes (for 0 < z < 10 m, H ¼ 1 or μ ¼ m).

3The asymptotic expression of the Hankel function of the first

kind is given by Hð1Þ
ν ðzÞ ∼

ffiffiffiffi
2
πz

q
exp ½iðz − νπ

2
− π

4
Þ�.
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τ0ðzÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ μ2

p
z

uðzÞ; ð64Þ

with the boundary conditions sð∞Þ ¼ uð∞Þ ¼ τð∞Þ ¼ 0
and prime denotes derivative with respect to z. Solving the
set of equations (62)–(64) leads to exactly the same particle
number density as given by Eq. (59) and Fig. 1. This cross-
check also verifies the applicability of Eqs. (29)–(31) in
cases where an analytic expression like Eq. (59) is difficult
to find. Figure 2 clearly shows that the total number density
increases linearly with the mass for m ≥ H.

2. Renormalized energy momentum tensor

The energy density after subtracting the vacuum con-
tribution is given by

ρμ ¼
H4

2π2

Z
∞

0

dzz2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ z2

q
jβdSðzÞj2: ð65Þ

The above integral obviously has a logarithmic divergence
and as Fig. 3 suggests, increases approximately as μ2 with
increasing mass as both the location of peaks and peak
values varies almost linearly with mass.
Let us now analyze the effect of renormalization, as

formalized in the previous section, on the divergent
quantities. In de Sitter spacetime, the renormalized energy
momentum tensor corresponding to de Sitter invariant
states can be written in terms of its trace as

hTμνiRen ¼
1

4
gμνhTα

αiRen ð66Þ

¼ 1

4
gμνðhTα

αi − hTα
αidivÞ; ð67Þ

where hTρ
ρidiv is comprised of the divergent quantities in the

trace. Thus we need only to look into the renormalization of
the trace that is given by

hTα
αi ¼ −

2m
ð2πaÞ3

Z
d3kðjhIkðηÞj2 − jhIIk ðηÞj2Þ ð68Þ

¼ −
μH4eπμ

4π

Z
dzz3ðjHð1Þ

νþ ðzÞj2 − jHð1Þ
ν− ðzÞj2Þ: ð69Þ

As we have discussed earlier, this quantity is UV
divergent and one needs to subtract up to the fourth order
terms in the adiabatic expansion to regularize the energy
momentum tensor. The quantity to be subtracted in the case
of de Sitter universe is the following:

hTα
αidiv ¼ −

2m
ð2πaÞ3

Z
d3k

�
ma
Ωk

ð1 − 2ðsð2Þk þ sð4Þk ÞÞ

−
k
Ωk

ðuð2Þk þ uð4Þk Þ
�

ð70Þ

¼ −
μH4

π2

Z
dz

�
μz2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ μ2

p ð1 − 2ðsð2Þ þ sð4ÞÞÞ

−
z3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ μ2
p ðuð2Þ þ uð4ÞÞ

�
; ð71Þ

where the zeroth order term is essentially the vacuum
contribution and sð2ÞðzÞ; sð4ÞðzÞ; uð2ÞðzÞ; uð4ÞðzÞ are given
by (Appendix B)

sð2ÞðzÞ ¼ μ2z2

16ðz2 þ μ2Þ3 ð72Þ

sð4ÞðzÞ ¼ −
μ2z2ð32z4 − 69μ2z2 þ 4μ2Þ

256ðz2 þ μ2Þ3 ð73Þ

uð2ÞðzÞ ¼ mzð2z3 − μ2Þ
4ðz2 þ μ2Þ3 ð74Þ

uð4ÞðzÞ ¼ −μzð48z6 − 186μ2z4 þ 79μ2z2 − 2μ6Þ
32ðz2 þ μ2Þ6 : ð75Þ

Using Eqs. (72)–(75), one can easily perform the integra-
tion in Eq. (71) numerically and subtract the output from
Eq. (69) to find hTρ

ρiRen. Alternatively, one can use an
auxiliary regulator to perform these integrations analyti-
cally as described in [39] and reach the exact same result as
depicted in the following.
Figure 4 shows that the trace after subtracting the vacuum

contribution (computed using a cutoff at z ¼ 30μ), increases
indefinitely (almost as μ2 as we have estimated) with
increasing mass. Thus if massive modes get excited
backreaction becomes significant and the background
geometry breaks down. Remarkably, the renormalization
procedure solves these issue. The fully renormalized hTρ

ρiRen
vs mass plot is given in Fig. 5 and hTα

αiRen → 0 with
increasing mass.

0 5 10 15 20 25 30
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2
+

z2
| β

( z
)2

FIG. 3. Variation of the integrand in Eq. (65) (for Nμ) vs z for
masses μ ¼ 1 (continuous curve), μ ¼ 2 (dotted curve) and μ ¼ 3
(dashed curve)with H ¼ 1.
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The difference between Figs. 5 and 4 clearly demon-
strates the effect of subtracting second and fourth order
adiabatic terms. Note that the exact value of the fourth order
subtraction term in hTρ

ρidiv, which is essentially the trace
anomaly with the opposite sign, is given by

hTα
αið4Þdiv ¼

μH4

π2

Z
∞

0

dzz2
�
2μsð4Þ þ zuð4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ μ2
p �

¼ −
11H4

240π2
;

ð76Þ

and matches exactly with the value of hTα
αiRen as m → 0

(for H ¼ 1) in Fig. 5, as expected.

B. Radiation dominated universe

The radiation dominated expansion of the Universe
is characterized by the cosmological scale factor aðtÞ ¼ffiffiffiffiffiffiffiffi
t=t0

p
. We shall assume that the adiabatic matching is done

at some t ¼ t0 when the magnitude of the scale factor
is unity and 1 < t=t0 < ∞. Thus the conformal time is
η ¼ ffiffiffiffiffiffi

t0t
p

=2 and the scale factor can be written as aðηÞ ¼
η=η0 where η0 ¼ t0=2. Without loss of generality we will

assume t0 ¼ 2, implying η0 ¼ 1 (i.e. η0 to be the unit of
time) and 1 < η < ∞ for later numerical computations.
Solutions to Eqs. (14) and (15), in a radiation dominated
universe that has the correct asymptotic behavior, can be
written in terms of parabolic cylinder functions [41,45].
However, as normalization of cylinder functions is difficult
to achieve, the corresponding analytical investigation can
only be done approximately (see [41] for a detailed analysis
of the asymptotic behavior). Note that the difficulties
arising in the analysis of a radiation dominated universe
essentially stem from absence of the symmetries that, for
example, a de Sitter model enjoy. However, as we men-
tioned earlier, we can bypass the derivation of exact
solutions and directly determine the number density, energy
density and other quantities using Eqs. (29)–(31). Below,
we carry out an approximate analytic and numerical
estimation to determine these quantities of physical interest.

1. Particle creation

The number density of particles created during the
radiation dominated expansion is depicted Figs. 6 and 7
as functions of time and for varying momentum and mass.
Here we derive the particle number density skðηÞ by
numerically solving the set of equations (29)–(31) with

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0
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0.6

0.8

1.0

1.2

FIG. 4. Trace of the stress tensor subtracted by vacuum
contribution vs mass (for 0 < z < 30μ and H ¼ 1).
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FIG. 5. Renormalized trace of the stress tensor vs mass (for
0 < z < 10μ and H ¼ 1).
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FIG. 6. Particle number density vs η for mass m ¼ 1 and
momenta k ¼ 1 (continuous curve), k ¼ 2 (dotted curve) and
k ¼ 3 (dashed curve) with η0 ¼ 1.
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FIG. 7. Particle number density vs η for momentum k ¼ 1 and
masses m ¼ 1 (continuous curve), m ¼ 2 (dotted curve) and
m ¼ 3 (dashed curve) with η0 ¼ 1.
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the boundary conditions skðη0Þ ¼ ukðη0Þ ¼ τkðη0Þ ¼ 0.
In Fig. 6, we have presented the evolution of skðηÞ as a
function of time (with η0 ¼ 1, i.e. the horizontal axis can be
regarded as η=η0 for arbitrary η0) for fixed mass and three
different values of momenta. On the other hand, in Fig. 7,
we have presented the evolution of skðηÞ as a function of
time for fixed momentum and three different values of
masses.
Both Figs. 6 and 7 show that skðηÞ grows very fast

initially and after a mild oscillation quickly stabilizes to a
particular value. These figures also tell us that for larger
values of mass or momentum, particle creation declines
sharply. Note that the oscillatory behavior only diminishes
(as η → ηf) for modes k ≪ maðηfÞ. As the radiation
dominated era ends at a finite time, apparently, the η → ∞
limit is not compatible with the observed cosmological
scenario. However, on physical grounds, we expect that
significant contribution to the energy density of created
particles should come from the modes Ωk ∼ η−10 i.e. the
number of particles in modes such that Ωkη0 > 1 is
exponentially suppressed. Therefore we may assume only
a few massive modes may become significantly excited.
A quantity of interest is the total particle number density in
physical four volume, as given by Eq. (45), of specific mass
m, summed over all modes, leads to

a4Nm ¼ aIm
2π2

; ð77Þ

where Im ¼
Z

∞

0

dkk2skðηÞ; ð78Þ

which becomes constant in time as η evolves.
In Fig. 8, we plot the integrand in Eq. (78) vs the field

modes for large η and different masses in order to estimate
the integral. The integrand peaks near kmax ∼ 2 m, falls off
sharply (as k−2) for approximately k > 10 m and the peak
value remains nearly the same for different masses and is of
the order of 10−2. As the location of the peak increases
almost linearly with mass, one can approximate the area

under the curves for each k with a rectangle whose height
∼10−2 and base is proportional to mass. Thus we have,
approximately, a4Nm ∼m. This relation can also be under-
stood as follows. Equation (77) can be written as

a4Nm ¼ a
2π2

Z
∞

0

dkk2ðsð2Þk þ sð4Þk þ sð6Þk þ…Þ; ð79Þ

¼ 0.00186m
η20

−
0.00023
η4m

þ 0.00078η20
η8m3

−Oðm−5Þ;

ð80Þ

where (see Appendix B)

sð2Þk ðηÞ ¼ m2k2η40
16ðk2η20 þm2η2Þ3 ð81Þ

sð4Þk ðηÞ ¼ 21m4k2η60ðk2η20 − 4m2η2Þ
256ðk2η20 þm2η2Þ6 ð82Þ

sð6Þk ðηÞ

¼ 11m6k2η80ð79k4η40 − 1116m2k2η20η
2 þ 1080m4η4Þ

2048ðk2η20 þm2η2Þ9 :

ð83Þ

Note that, in this case, in the k → ∞ limit, we have

sð2Þk ∼ k−4; sð4Þk ∼ k−8; sð6Þk ∼ k−12: ð84Þ

Equation (80) shows that the particle number density in a
physical volume, for large mass, is proportional to mass
and for specific mass it becomes constant in the adiabatic
limit (for η ≫ η0).

2. Energy density and renormalization

The particle number depends on the method of compu-
tation because of lack of an exact notion of particles [6].
The spectrum of these particles is also found to be not
thermal. Thus, one can gain a better insight by looking at
the local quantities like the comoving energy density and
comparing it with the critical energy density (ρc) of a
FLRW radiation dominated universe [46] given by

a4ρc ¼
3_a2

8πη2p
¼ 3

8πη20η
2
p
; ð85Þ

where we put ηp as the Planck time (which is unity in
natural units) for dimensional consideration.
The energy density of created particles as given by

Eq. (35) (after subtracting the vacuum contribution) is
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FIG. 8. Variation of the integrand in Eq. (78) vs modes for
masses m ¼ 1 (continuous curve), m ¼ 2 (dotted curve), m ¼ 3
(dashed curve), ηf ¼ 100η0 and η0 ¼ 1.
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a4ρ ¼ 2

π2

Z
∞

0

dkk2ΩkðηÞskðηÞ: ð86Þ

Figure 9 shows that both the height and the location of
the peak of the integrand in Eq. (86) increases almost
linearly with mass and thus the integral should vary as m2.
However, the integral will not converge, as for large k,
Ωk ∼ k and sk ∼ k−4. To make it converge, one has to carry
out the regularization procedure that should also take away
the m2 dependence like in the de Sitter case.
However, Fig. 10 shows that the integrand of the

renormalized energy density, as given by Eq. (46), does
not change appreciably from Fig. 9 unlike the de Sitter
case. This implies that the subtraction process did not
work appropriately. The reason is the following. In

sðRÞk ¼ sk − sð2Þk − sð4Þk , numerically determined skðηÞ (pre-
sented in Figs. 6 and 7) has become constant at a very early

time whereas sð2Þk ðηÞ and sð4Þk ðηÞ decrease with increasing η.
At large ηf, the subtraction terms become negligible. We

need to fix ηf at the moment when particle creation freezes
(i.e. near η0) i.e. the regularization is needed at early times
or for large modes as such. However, Figs. 6 and 7 show
that these moments are different for each mode and we
could not fix ηf consistently for numerical subtraction.
Thus, the subtraction scheme does not work consistently
unlike the de Sitter case. However, the subtraction method
works if one can construct a fourth or higher order
adiabatic state.
Note that we can compute analytically the renormalized

energy density to the leading order as follows:

a4ρRen ¼
2

π2

Z
∞

0

dkk2Ωkðsk − sð2Þk − sð4Þk Þ ð87Þ

¼ 2

π2

Z
∞

0

dkk2Ωkðsð6Þk þ sð8Þk þ…Þ ð88Þ

¼ 137η20
4032π2m2η8

þOðm−4η−12Þ: ð89Þ

This gives

ρRen
ρc

¼ 0.0293
η40η

2
p

m2η8
: ð90Þ

For ηp ≤ η0, we have

ρRen
ρc

≤ 0.0293
η60

m2η8
: ð91Þ

Thus renormalized energy density always remains less than
the critical density and the classical background does not
break down as backreaction is negligible.

IV. SUMMARY

We have constructed a simple formalism, within the
framework of adiabatic regularization [7,16,17], to derive
the number density and the renormalized energy momen-
tum tensor of spin 1=2 particles created during the
evolution of the spatially flat FLRW universe. This paper
gives us an alternative to [38] and an appropriate extension
of standard techniques originally introduced for scalar
fields, applicable to fermions in curved space. An appro-
priate WKB ansatz is introduced for the “in” vacuum that
satisfies the normalization and the Wronskian condition in
the adiabatic limit. The nonadiabaticity is incorporated in
the time-dependent Bogolubov coefficients. Stress tensor
components are expressed as simple linear combinations of
three real and independent variables sk; uk; τk which are
defined using the Bogolubov coefficients. It is straightfor-
ward to find the adiabatic expansion of these variables in
inverse powers of momenta. Subtracting terms up to fourth
adiabatic order from the expansion of hTμνi, renorma-
lization is achieved. The renormalized quantities by
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FIG. 9. Variation of the integrand in Eq. (86) vs modes for
masses m ¼ 1 (continuous curve), m ¼ 2 (dotted curve), m ¼ 3
(dashed curve), ηf ¼ 100η0 and η0 ¼ 1.
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FIG. 10. Variation of the renormalized version of the integrand
in Eq. (86) vs modes for masses m ¼ 1 (continuous curve),
m ¼ 2 (dotted curve), m ¼ 3 (dashed curve), ηf ¼ 100η0 and

η0 ¼ 1. Here sðRÞk ðηfÞ ¼ skðηfÞ − sð2Þk ðηfÞ − sð4Þk ðηfÞ.
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construction obey the conservation law. The conformal and
axial anomalies thus found are in exact agreement with
those obtained from other renormalization methods. We
have applied the formalism to two FLRW cosmological
scenarios, namely de Sitter and radiation dominated uni-
verses. In the first case, we have compared the analytic and
numerical results and they match. They also agree with the
known results. In the second case, we have made order of
magnitude estimations for the number and energy densities
to the leading order. In general, renormalization takes care
of the backreaction problem. In the future, we plan to apply
this formalism in other cosmological scenarios of interest
e.g. during an anisotropic collapse [17] or in a warped
cosmological braneworld [47].
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APPENDIX A: WKB SOLUTION

To find the WKB solution to

ḧIk þ ½Ω2
kðηÞ þ iQðηÞ�hIk ¼ 0; ðA1Þ

ḧIIk þ ½Ω2
kðηÞ − iQðηÞ�hIIk ¼ 0; ðA2Þ

let us assume

hIkðηÞ ∼ exp ½
Z

ðXðηÞ þ iYðηÞÞdη� ðA3Þ

where XðηÞ ¼ 1

ℏ

X∞
n¼0

ℏnXnðηÞ; YðηÞ ¼ 1

ℏ

X∞
n¼0

ℏnYnðηÞ:

ðA4Þ
Putting Eq. (A3) in Eq. (A1) and equating the terms of
zeroth order in n we get

X2
0 − Y2

0 þΩ2
k ¼ 0; ðA5Þ

2X0Y0 þQ ¼ 0: ðA6Þ

Similarly, solving for the first order in n leads to

_X0 þ 2X0X1 − 2Y0Y1 ¼ 0; ðA7Þ

_Y0 þ 2X0Y1 − 2Y0X1 ¼ 0: ðA8Þ

Higher order terms can be neglected in the adiabatic
approximation. Solving Eqs. (A5) and (A6) we get

X0 ≈
Q
2Ωk

; Y0 ≈Ωk: ðA9Þ

Similarly, Eqs. (A7) and (A8) give

X1 ≈ −
_Ωk

2Ωk
; Y1 ≈ 0: ðA10Þ

This leads to

hIkðηÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωk þma

2Ωk

s
exp

�
i
Z

Ωkdη

�
: ðA11Þ

Similarly one can solve Eq. (A2). Note that the approx-
imations made above are valid in the adiabatic limit.
Therefore Eq. (16) represents the adiabatic vacuum.

APPENDIX B: sk, uk AND τk OF DIFFERENT
ADIABATIC ORDERS

Terms in adiabatic expansion of sk, uk and τk can be
derived solving Eqs. (29)–(31) in the following way. For
k → ∞, sk, uk, τk and their temporal variations must tend to
zero. Therefore, Eq. (30) for large k implies

0 ∼ 2F − 2Ωkτk; ðB1Þ

which further implies that the leading term in the adiabatic
expansion of τk is of adiabatic order one, i.e.

τð1Þk ∼
F
Ωk

¼ mk _a
2Ω3

k

: ðB2Þ

Putting Eq. (B2) in Eq. (31) we get the leading term in the
adiabatic expansion of uk which is of order 2,

uð2Þk ∼
_τð1Þk

2Ωk
¼ −

3m3ka _a2

4Ω6
k

þmkä
4Ω4

k

: ðB3Þ

Similarly, by putting Eq. (B3) in Eq. (29) we get the leading
term in the adiabatic expansion of sk which is again of
order 2,

sð2Þk ∼
Z

Fuð2Þk dη ¼ m2k2 _a2

16Ω6
k

: ðB4Þ

Now putting Eq. (B4) again back in Eq. (30) we get the next
to leading term in the adiabatic expansion of τk which is of
adiabatic order 3. This iteration leads to the Eqs. (41)–(43)
that give for higher orders:

τð3Þk ¼ 5m3k3 _a3

16Ω9
k

−
15m5ka2 _a3

8Ω9
k

þ 5m3k _a ä
4Ω7

k
−
mka

…

8Ω5
k

; ðB5Þ
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uð4Þk ¼ 35m3k5 _a2ä
32Ω12

k

þ 5m7ka5ä2

8Ω12
k

−
15m7ka5 _a a

…

16Ω12
k

þ 5m3k5aä2

8Ω12
k

−
105m5k3a _a4

32Ω12
k

þ 15m3k5a _a a
…

16Ω12
k

þ 105m7ka3 _a4

16Ω12
k

þ 5m5k3a3ä2

4Ω12
k

þ 15m5k3a3 _a a
…

8Ω12
k

−
mk7a

…

16Ω12
k

−
175m5k3a2 _a2ä

32Ω12
k

−
3m3k3a2a

…

16Ω10
k

−
105m7k _a2ä

16Ω12
k

; ðB6Þ

sð4Þk ¼ m4k4 _a4

16Ω12
k

−
m6k2a2 _a4

4Ω12
k

þ 7m4k2a _a2ä
32Ω10

k

þm2k2ä2

64Ω8
k

−
m2k2 _a a

…

32Ω8
k

: ðB7Þ

Higher order terms can be derived in a similar way.

APPENDIX C: USEFUL GEOMETRIC
QUANTITIES

The following are a few useful formulas for FLRW
geometry. Affine connections:

Γ0
00 ¼ Γ0

ii ¼ Γi
i0 ¼

_a
a
; i ¼ 1; 2; 3: ðC1Þ

Ricci scalar : R ¼ 6
ä
a
; ðC2Þ

RμνRμν ¼ 12

�
_a4

a8
−

_a2ä
a7

þ ä2

a6

�
: ðC3Þ

Gauss-Bonnet scalar : G ¼ 24
a _a2ä − _a4

a8
: ðC4Þ

□R ¼ 6

�
3ä2

a6
−
6_a2ä
a7

þ 4_a a
…

a6
−

a
…

a5

�
; ðC5Þ
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