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Geodesic incompleteness is a problem in both general relativity and string theory. The Weyl-invariant
Standard Model coupled to general relativity (SMþ GR), and a similar treatment of string theory, are
improved theories that are geodesically complete. A notable prediction of this approach is that there must
be antigravity regions of spacetime connected to gravity regions through gravitational singularities such as
those that occur in black holes and cosmological bang/crunch. Antigravity regions introduce apparent
problems of ghosts that raise several questions of physical interpretation. It was shown that unitarity is not
violated, but there may be an instability associated with negative kinetic energies in the antigravity regions.
In this paper we show that the apparent problems can be resolved with the interpretation of the theory from
the perspective of observers strictly in the gravity region. Such observers cannot experience the negative
kinetic energy in antigravity directly, but can only detect in and out signals that interact with the antigravity
region. This is no different from a spacetime black box for which the information about its interior is
encoded in scattering amplitudes for in/out states at its exterior. Through examples we show that negative
kinetic energy in antigravity presents no problems of principles but is an interesting topic for physical
investigations of fundamental significance.
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I. WHY ANTIGRAVITY?

The Lagrangian for the geodesically complete version of
the Standard Model coupled to General Relativity
(SMþ GR) is [1]
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In the first line, LSM contains all the familiar degrees of
freedom in the properly extended conventional Standard
Model, including gauge bosons ðAγ;W;Z;g

μ Þ, quarks and
leptons ðψq;lÞ, right-handed neutrinos νR, dark matter χ,
and their SUð3Þ × SUð2Þ × Uð1Þ gauge-invariant inter-
actions among themselves and with the spin-0 fields
ðH;ϕÞ, where H is an electroweak Higgs doublet, and ϕ
is a singlet. In LSM all fields are minimally coupled to
gravity. The second and third lines describe the kinetic
energy terms and interactions of the scalars among them-
selves. The last term is the unique nonminimal coupling of
conformal scalars to the scalar curvature RðgÞ that is
required by invariance of the full LðxÞ under local rescaling
(Weyl) with an arbitrary local parameter ΩðxÞ:

gμν → Ω−2gμν; ϕ → Ωϕ; H → ΩH;

ψq;l → Ω3=2ψq;l; Aγ;W;Z;g
μ unchanged: ð2Þ

If dark matter χ is a spin-0 field, then lines 2–4 in Eq. (1)
should be modified to treat χ as another conformally
coupled scalar.
This theory has several pleasing features. There are no

dimensionful parameters, so all of those arise from a unique
source, namely the gauge fixing of the Weyl symmetry,
such as ϕðxÞ → ϕ0, where ϕ0 is a dimensionful constant of
the order of the Planck scale. Then the gravitational
constant is ð16πGNÞ−1 ¼ ϕ2

0=12; the electroweak scale is
hjHji ¼ ωϕ0; while dark energy and masses for quarks,
leptons, gauge bosons, neutrinos and dark matter arise from
interactions with the scalars ðϕ; HÞ. The hierarchy of mass
scales is put in by hand through a hierarchy of dimension-
less parameters. A deeper theory is needed to explain this
hierarchy, but in the present effective theory it is at least
possible to maintain it under renormalization, since dimen-
sionless constants receive only logarithmic quantum cor-
rections (no need for low-energy supersymmetry for the
purpose of “naturalness”). To preserve the local scale
symmetry in the quantum theory, one must adopt a
Weyl-invariant renormalization scheme in which ϕ is the
only renormalization scale, and consequently dimension-
less constants receive only Weyl-invariant logarithmic
renormalizations of the form ln ðH=ϕÞ, etc. With such a
renormalization scheme the scale anomaly of all matter
cancels against the scale anomaly of ϕ [2], thus not spoiling
the local symmetry. Then the unbroken Weyl symmetry in
the renormalized theory plays a central role in explaining
the smallness of dark energy as shown in Ref. [3]. This also
suggests a definite relation between the electroweak vac-
uum and dark energy, both of which fill the entire Universe.
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The scalar ϕ is compensated by the Weyl symmetry, so ϕ
is not a true additional physical degree of freedom but, as a
conformally coupled scalar, participates in an important
structure of the Weyl symmetry that has further physical
consequences involving antigravity spacetime regions in
cosmology and black holes as discussed in the following
sections. The structure of interest, that leads to the central
discussion in the rest of this paper, is the relative minus sign
in ðϕ2 − 2H†HÞR and in the scalar kinetic terms in (1).
These signs are compulsory and play an important role in
the geodesic completeness of the theory. With the given
sign patterns,H has the correct sign for its kinetic term, but
ϕ has the wrong sign. If ϕ had the same sign of kinetic
energy as H, then the conformal coupling to R would
become purely negative, which would lead to a negative
gravitational constant. So, to generate a positive gravita-
tional constant, ϕ must come with the opposite sign to H.
This makes ϕ a ghost, but this is harmless, since the Weyl
symmetry can remove this ghost by a gauge fixing.
This scheme has a straightforward generalization to

supersymmetry/supergravity and grand unification, but
all scalars ~s must be conformally coupled, ðϕ2 − ~s2ÞR,
although some generalization is permitted as long as the
geodesically complete feature (related to signs) is main-
tained [1]. Furthermore, we point out that in all super-
gravity theories, the curvature term has the form
ð1 − Kðφi; φ̄iÞ=3ÞR, where K is the Kähler potential and
1 represents the Einstein-Hilbert term [4]. This is again of
the form ðjϕj2 − j~sj2ÞR with complex ðϕ; ~sÞ, where a
complex version of ϕ has been gauge-fixed to 1 in a
Weyl-invariant formulation of supergravity [5] (see also
Ref. [6]). Finally, we emphasize that the same relative
minus sign occurs also in a Weyl-invariant reformulation of
low-energy string theory (ST) but with a different inter-
pretation of s related to the dilaton [7]. Hence, the structure
ðϕ2 − ~s2ÞR is ubiquitous, but was overlooked because it
was commonly assumed that the gravitational constant, or
an effective structure that replaces it, could not or should
not become negative.
At the outset of this approach in 2008 [8], the immediate

question was whether the dynamics would allow (ϕ2 − s2)
to remain always positive. It was eventually determined by
Bars, Chen, Steinhardt and Turok, in a series of papers
during 2010–2012 (summary in Ref. [9]), that the solutions
of the field equations that do not switch sign for this
quantity are nongeneric and of measure zero in the phase
space of initial conditions for the fields ðϕ; sÞ. So, accord-
ing to the dynamics, it is untenable to insist on a limited
patch jϕj > j~sj of field space. By contrast, it was found that
the theory becomes geodesically complete when all field
configurations are included, thus solving generally the
basic problem of geodesic incompleteness.
The other side of the coin is that solving geodesic

incompleteness comes with the prediction that there
would be antigravity sectors in the theory, since the

effective gravitational constant that is proportional to
ðϕ2ðxÞ − s2ðxÞÞ−1 would dynamically become negative
in some spacetime regions. In view of the pleasing features
of the theory outlined in the second paragraph above, these
antigravity sectors must then be taken seriously, and the
corresponding new physics must be understood. In our
investigations so far, we discovered that the antigravity
sectors are geodesically connected to our own gravity
sector at gravitational singularities, like the big bang/crunch
or black holes, which occur precisely at the same spacetime
points where ðϕ2ðxÞ − s2ðxÞÞ vanishes or goes to infinity.
The related dynamical string tension [7]

Tðϕ; sÞ ∼ ðϕþ sÞ21þ
ffiffiffiffiffi
d−1

p
d−2 ðϕ − sÞ21−

ffiffiffiffiffi
d−1

p
d−2 ð3Þ

goes to zero or infinity simultaneously. So we need to figure
out the physical effects that can be observed in our Universe
due to the presence of antigravity sectors behind cosmo-
logical [10] and black hole singularities [11]. After over-
coming several conceptual as well as technical challenges,
we have been able to discuss some new physics problems
and have developed new cosmological scenarios that
involve an antigravity period in the history of the
Universe [12,13]. A remaining conceptual puzzle is an
apparent possible instability in the antigravity sector that is
addressed and resolved in the remainder of this paper. Our
conclusion is that there are no fundamental problems but
only interesting physics of crucial significance.

II. GEODESIC COMPLETENESS IN THE
EINSTEIN OR STRING FRAMES

The classical or quantum analysis of this theory is best
conducted in a Weyl gauge we called the “γ gauge”
[1,7,10], which amounts to det ð−gÞ ¼ 1. This allows
Signðϕ2 − s2Þ to be determined by the dynamics. Note
that the sign is gauge invariant, so if the sign switches
dynamically in one gauge, it has to also switch in all
gauges. If one wishes to use the traditional “Einstein
gauge” (E) or the “string gauge” (s), one can err by
choosing an illegitimate gauge that corresponds to a geo-
desically incomplete patch, such as

Eþ gauge∶
1

12
ðϕ2

Eþ− s2EþÞ¼
þ1

16πGN
;

sþ gauge∶
d−2

8ðd−1Þðϕ
2
sþ−s2sþÞ¼

þ1

2κ2d
e−2Φ; Φ¼ dilaton:

ð4Þ

The E or s subscripts on the fields indicate the gauge-fixed
form of the corresponding field. If this were all, then there
would be nothing new, and the Weyl symmetry could be
regarded as “fake” [14]. However, the fact is that conven-
tional general relativity and string theory are geodesically
incomplete because the gauge choices just shown are valid
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only in the field patch in which jϕj > jsj. The dynamics
contradict the assumption of gauge fixing to only the
positive patch. In the negative regions, one may choose
again the Einstein or string gauge, but now with a
negative gravitational constant, 1

12
ðϕ2

E− − s2E−Þ ¼ −1
16πGN

,

or d−2
8ðd−1Þ ðϕ2

s− − s2s−Þ ¼ −1
2κ2d

e−2Φ. In those spacetime regions,

gravity is repulsive (antigravity).
The same situation arises in string theory. In the world-

sheet formulation of string theory, the string tension is
promoted to a background field Tðϕ; sÞ by connecting it
directly to the features of the Weyl-invariant low-energy
string theory [7]. Then the string tension Tðϕ; sÞ switches
sign together with the corresponding gravitational constant
[7]. Thus, the Weyl-symmetric (SMþ GR) and ST predict
that, in the Einstein or string gauges, one should expect a
sudden sign switch of the effective Planck mass 1

12
ðϕ2 − s2Þ

at certain spacetime points that typically correspond to
singularities (e.g. big bang, black holes) encountered in the
Einstein or string frames.
One may choose better Weyl gauges (e.g. “γ gauge,”

choose det ð−gÞ → 1, or “c gauge,” choose ϕ → constant)
that cover globally all the positive and negative patches.
Then the sign switch of the effective Planck mass
1
12
ðϕ2 − s2Þ is smooth rather than abrupt.
However, if one wishes to work in the more familiar

Einstein or string frames, to recover the geodesically
complete theory one must allow for the gravitational
constant to switch sign at singularities, and connect
solutions for fields across gravity/antigravity patches. In
the� Einstein gauges shown above, the last term in Eq. (1)
becomes

ðϕ2
E� − s2E�ÞRðgE�Þ

12
¼ RðgE�Þ

�16πGN
¼ Rð�gE�Þ

16πGN
; ð5Þ

where the � for the gravity/antigravity regions can be
absorbed into a redefinition of the signature of the metric,

ĝEμν ¼ �gE�μν ; ð6Þ

where the continuous ĝEμν is the geometry in the union of the
gravity/antigravity patches.
The same � gauge choice is applied to every term in the

SMþ GR action in Eq. (1). Under the replacement gE−μν →
−gE−μν in the antigravity sector, some terms in the action flip
sign and some do not [15]; e.g. FμνFμν does not, but RðgÞ
does, as in Eq. (5). One may be concerned that the sign
switches of the gravitational constant, or the string tension
may lead to problems like unitarity or negative kinetic
energy ghosts. We mention that Ref. [7] has already argued
that there are no unitarity problems due to sign flips in field/
string theories. There remains the question of possible
instability due to negative kinetic energy in the antigravity
region. We show in this paper that its presence is not a
problem of principle for observers in the gravity region and

that those observers can detect interesting physical effects
related to the geodesically connected regions of antigravity.

III. UNITARITY AND ANTIGRAVITY
IN COSMOLOGY

There is a general impression that negative kinetic
energy in field or string theory implies ghosts associated
with negative norm states. It is not generally appreciated
that negative norms (and hence negative probabilities) are
automatically avoided by insisting on a strictly unitary
quantization of the theory. This has been illustrated in the
quantization of the relativistic harmonic oscillator [16] with
a timelike direction that appears with the opposite sign to
the spacelike directions, just like the ϕ field as compared to
the H field in the SMþ GR action in Eq. (1). Similar
situations occur in the antigravity region where some fields
may appear with the wrong sign as described after Eq. (5).
The first duty in quantization should be maintaining sanity
in the meaning of probability, as in Ref. [16], by avoiding a
quantization procedure that introduces negative norm
states. Of course, there exist successful cases, such as
string theory in the “covariant quantization” procedure, that
at first admits negative norms to later kill them by applying
constraints that select the positive norm states. In principle,
the relativistic oscillators in string theory could also be
treated as in Ref. [16] and very likely still recover the same
gauge-invariant physical states without ever introducing
negative norm states in string theory. It would be preferable
to quantize without negative norm states at all from the very
beginning.
When there is not enough gauge symmetry to remove a

degree of freedom that has the wrong sign of kinetic energy,
a unitary quantization procedure like that in Ref. [16]
maintains unitarity. However, the effect of the negative
kinetic energy is to cause an instability (not unlike a
tachyonic mass term, or a bottomless potential, would),
so that there may not be a ground state for that degree of
freedom while it propagates in the antigravity region. This
is the negative kinetic energy issue in the antigravity sector.
Perhaps some complete theory as a whole conspires to have
a ground state even in antigravity. Although this would be
reassuring, it appears that this is not necessary in order to
make sense of the physics as detected by observers in the
gravity sector. Such observers can verify that the same
degree of freedom does have a ground state in the gravity
region, while they can never experience directly the
negative kinetic energy in the antigravity sector. The only
physics questions that make sense for those observers is
what can be learned about the existence of antigravity
through scattering experiments that involve in/out states as
defined in the gravity region. For those questions, the issue
of whether there is a ground state in the antigravity region
does not matter, but unitarity continues to matter.
Therefore, we point out how this works in the case of
cosmology that admits an antigravity region.
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A. WdW equation and unitarity in mini-superspace

The Wheeler de Witt (WdW) equation is the quantum
version of the μ ¼ 0 and ν ¼ 0 component of the Einstein
equation, ðG00 − T00Þψ ¼ 0. This is a constraint applied on
physical states in covariant quantization of general rela-
tivity [17]. The “mini-superspace” consists of only time-
dependent (homogeneous) scalar fields [ϕðx0Þ, sðx0Þ] and
the FRW metric, ds2¼a2ðx0Þð−ðdx0Þ2þγijðx0;~xÞdxidxjÞ,
with γij describing spacial curvature and anisotropies,
while T00 includes the radiation density, ρrðx0Þ=a4ðx0Þ.
From the action in Eq. (1) we can derive a Wheeler de Witt
equation that is invariant under Weyl rescalings ðϕ; s; aÞ →
ðΩϕ;Ωs;Ω−1aÞ with a time-dependent Ωðx0Þ; this allows
us to choose a gauge. To allow (ϕ2 − s2) to have any sign
dynamically, we prefer the γ gauge given by

ðϕ; s; aÞ → ðϕγ; sγ; 1Þ; or aγðx0Þ ¼ 1: ð7Þ

We concentrate here on the simplest FRW geometry in the γ
gauge,

ds2γ ¼ −ðdx0Þ2 þ dr2

1 − Kr2
þ r2dΩ2; ð8Þ

with no anisotropy or inhomogeneities, but with a positive
constant spatial curvature K > 0. This is not realistic, but it
is the easiest case to illustrate the unitarity properties of the
quantum theory that includes antigravity regions (more
degrees of freedom, and negative or zero K would be
treated in a similar manner). The mini-superspace is just
ðϕγ; sγÞ, while the constraint ðT00 − G00Þ ¼ 0 derived from

(1) is − 1
2
_ϕ2
γ þ 1

2
_s2γ þ 1

2
Kð−ϕ2

γ þ s2γÞ þ ρr ¼ 0. This is rec-
ognized as the Hamiltonian for the relativistic harmonic
oscillator, H ¼ 1

2
ð_x2 þ Kx2Þ, with xμðτÞ ¼ ðϕγðτÞ; sγðτÞÞ,

subject to the constraintH þ ρr ¼ 0, where ρr is a constant.
Note that this Hamiltonian contains negative energy for the
(timelike) ϕγ degree of freedom. Recall that we have
already used up the Weyl symmetry, so this degree of
freedom cannot be removed and its negative energy must be
dealt with. The naive quantization of the relativistic
harmonic oscillator would introduce negative norm states
for the ϕγ degree of freedom (as in string theory), so it
appears there may be trouble with unitarity. However, this
is not the case, because this system (and similar cases) can
be quantized by respecting unitarity without ever introduc-
ing negative norms as shown in Ref. [16]. This goes as
follows: the quantum system obeys the constraint equation
ðH þ ρrÞΨ ¼ 0. This is the WdW equation that takes the
form�
1

2
∂2
ϕγ
−
1

2
∂2
sγ þ

K
2
ð−ϕ2

γ þ s2γÞ þ ρr

�
Ψðϕγ; sγÞ ¼ 0: ð9Þ

This is recognized as the Klein-Gordon equation for
the quantized relativistic harmonic oscillator. The

eigenstates and eigenvalues of the independent ϕγ and sγ
oscillators are

1

2
ð−∂2

ϕγ
þ Kϕ2

γÞψnϕðϕγÞ ¼
ffiffiffiffi
K

p �
nϕ þ

1

2

�
ψnϕðϕγÞ;

1

2
ð−∂2

sγ þ Ks2γÞψnsðsγÞ ¼
ffiffiffiffi
K

p �
ns þ

1

2

�
ψnsðsγÞ; ð10Þ

where ðnϕ; nsÞ are positive integers, 0; 1; 2; 3;…, and the
explicit positive norm complete set of off-shell solutions are

Ψnϕnsðϕγ; sγÞ ¼ ψnϕðϕγÞψnsðsγÞ;
ψnϕðϕγÞ ¼ Anϕe

−1
2

ffiffiffi
K

p
ϕ2
γHnϕðϕγÞ;

ψnsðsγÞ ¼ Anse
−1
2

ffiffiffi
K

p
s2γHnsðsγÞ; ð11Þ

where HnðzÞ are the Hermite polynomials and Anϕ ,
Ans are normalization constants. Then the WdW
equation (9) is solved by constraining the eigenvalues,ffiffiffiffi
K

p ð−nϕ þ nsÞ þ ρr ¼ 0. Hence, the complete on-shell
basis that satisfies the constraint is

Ψnðϕγ; sγÞ ¼ AnþrAne−
ffiffi
K

p
2
ðϕ2

γþs2γ ÞHnþrðϕγÞHnðsγÞ; ð12Þ

with n ¼ 0; 1; 2;…, where we define

ns ≡ n; nϕ ≡ nþ r;

and
ρrffiffiffiffi
K

p ≡ r a fixed integer: ð13Þ

If ρrffiffiffi
K

p is not an integer, there is no solution to the constraint;

hence radiation must be quantized for this system to be
nontrivial at the quantum level. The general on-shell
solution of the WdW equation is an arbitrary superposition
of this basis:

Ψðϕγ; sγÞ ¼
X∞
n¼0

cnΨnðϕγ; sγÞ: ð14Þ

The complex coefficients cn are chosen to insure that
Ψðϕγ; sγÞ is normalized.
All quantum states have a positive norm and unitarity is

satisfied. Ψðϕγ; sγÞ is the probability amplitude for where
the system is in the ðϕγ; sγÞ plane. The gravity/antigravity
regions are ϕ2

γ ≶ s2γ . Evidently there is no way of prevent-
ing the generic wave functions from being nonzero in the
antigravity region, so the system generically evolves
through both the gravity and antigravity regions.
We emphasize that the quantization method in Ref. [16]

that we used to maintain unitarity is very different from the
quantization of the relativistic oscillator used in string
theory. In string theory, one defines relativistic creation/
annihilation operators aμ, a†μ and a vacuum state that
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satisfies aμj0i ¼ 0. Then the quantum states at level l are
given by applying l creation operators, a†μ1a

†
μ2 � � �a†μl j0i.

The vacuum state is Lorentz invariant, while the states at
level l form a collection of finite-dimensional irreducible
representations of the Lorentz group. All the states at level l
have positive energy, El ¼

ffiffiffiffi
K

p ðlþ 1Þ. The constraint
H þ ρr ¼ 0 (WdW equation) can be satisfied only for
negative quantized ρr at only one level, l ¼ −1þ jρrj=

ffiffiffiffi
K

p
.

In position space the vacuum state takes the Lorentz-
invariant form ψ0ðxμÞ ∼ e−

ffiffiffi
K

p
x2 ¼ e−

ffiffiffi
K

p ð−ϕ2
γþs2Þ, while

the the states at level l are of the form of a polynomial
of xμ of degree l multiplied by the same exponential
e−
ffiffiffi
K

p
x2 . A subset of the level-l states have negative norm

because finite-dimensional representations are not unitary
representations of the Lorentz group, so this method of
quantization gets into trouble with unitarity. We contrast
this result to ours in Eq. (12), where we have displayed an
infinite, rather than finite, number of states and a Gaussian
factor e−

ffiffiffi
K

p ðϕ2
γþs2Þ that converges in all directions,

rather than the nonconvergent Lorentz-invariant form
e−
ffiffiffi
K

p ð−ϕ2
γþs2Þ. There is no Lorentz-invariant vacuum state.

As shown in Ref. [16], our states in Eq. (12) form an
infinite-dimensional unitary representation of the Lorentz

group for which all the states have positive norm.
Furthermore, those that satisfy the constraint have positive
total energy, H ¼ ρr, as long as ρr is positive. However, as
seen in Eq. (11), there are off-shell states of positive as well
as negative energy. These remarks make it clear that the
price for maintaining unitarity (which is the first duty in
quantization) is the presence of regions of spacetime with
negative kinetic energy, which, in our case, amounts to
regions of antigravity. Our task in this paper is to explain
that negative kinetic energy in the antigravity sector does
not necessarily imply a problem by interpreting the
physical significance of antigravity.

B. Feynman propagator in mini-superspace

The Feynman propagator associated with this WdW
equation is

Gðϕ0; s0;ϕ; sÞ ¼ hϕ0; s0j i
H þ ρr þ iε

jϕ; si: ð15Þ

We can use the complete basis jnϕ; nsi to insert identity in
terms of the eigenstates of the off-shell H ¼ −Hϕ þHs
operator without any constraints on the integers ðnϕ; nsÞ.
Then we compute

Gðϕ0; s0;ϕ; sÞ ¼ i
X

nϕ;ns≥0

hϕ0; s0jnϕ; nsihnϕ; nsjϕ; si
−nϕ þ ns þ ρr þ iε

¼ i
X

nϕ;ns≥0
ψnϕðϕ0Þψnsðs0Þψ�

nϕðϕÞψ�
nsðsÞð−nϕ þ ns þ ρr þ iεÞ−1

¼ i
X

nϕ;ns≥0

Z
∞

0

dτψnϕðϕ0Þψnsðs0Þψ�
nϕðϕÞψ�

nsðsÞð−ieiτð−nϕþnsþρrþiεÞÞ

¼
Z

∞

0

dτeiτðρrþiεÞhϕ0je−iτHϕ jϕihs0jeiτHs jsi

¼
Z

∞

0

dτ

ffiffiffiffi
K

p
eiτðρrþiεÞ

2π sin ð ffiffiffiffi
K

p
τÞ exp

�
−i

ffiffiffiffi
K

p

2 sin ð ffiffiffiffi
K

p
τÞ ½ðx

2 þ x02Þ cos
ffiffiffiffi
K

p
τ − 2x · x0�

�
: ð16Þ

In the last step, we used the propagator hϕ0je−iτHϕ jϕi for the
one-dimensional harmonic oscillator, and then substituted
x2 ¼ −ϕ2 þ s2 and x · x0 ¼ −ϕϕ0 þ ss0. This quantum
computation in the Hamiltonian formalism agrees with
the path integral computation in Ref. [13].
The Feynman propagator is a measure of the probability

that the system that starts in some initial state will be found
in some final state. For observers outside of the antigravity
region, the initial and final states jϕ; si, jϕ0; s0i are both in
the gravity region, jϕj > jsj and jϕ0j > js0j, although during
the propagation from initial to final state the antigravity
region is probed, as seen from the sums over ðnϕ; nsÞwhere
both positive and negative energy states of the off-shell
Hamiltonian H ¼ −Hϕ þHs enter in the calculation.

We see from the last expression in Eq. (16) that
Gðϕ0; s0;ϕ; sÞ is a perfectly reasonable function, indicating
that there are no issues with fundamental principles in this
calculation which involves an intermediate period of
antigravity in the evolution of the Universe.
This was the case of a radiation-dominated spatially

curved spacetime, which is far from being a generic
configuration in the early Universe close to the singularity.
The generic dominant terms in the Einstein frame are the
kinetic energy of the scalar and anisotropy (in the spatial
metric), and the next nonleading term is radiation. The
subdominant terms, including curvature, inhomogeneities,
potential energy, dark energy, etc., are negligible near the
singularity. The dominant generic behavior near the

PHYSICAL INTERPRETION OF ANTIGRAVITY PHYSICAL REVIEW D 93, 044029 (2016)

044029-5



singularity was computed classically in Ref. [10], where it
was discovered that there must be an inescapable excursion
into the antigravity regime before coming back to the
gravity sector, as outlined in the previous paragraph.
Hence, a similar computation to Eq. (16), by using the
dominant terms in the WdW equation [instead of (9)]
should replace our computation here. Unpublished work
along these lines dating back to 2011 [9] indicates that the
physical picture already obtained through classical solu-
tions in Ref. [10] continues to hold in mini-superspace at
the quantum level.
To conclude this section, an important remark is that

unitarity is maintained in the WdW treatment throughout
gravity and antigravity, while the presence of negative
energy during antigravity is not of concern regarding
fundamental principles, as already illustrated in this section
with the simpler computation based on Eq. (9).

IV. NEGATIVE ENERGY IN ANTIGRAVITY
AND OBSERVERS IN GRAVITY

To develop a physical understanding of negative kinetic
energy, we will discuss several toy models that will include
the analog of a background gravitational field that switches
sign between positive and negative kinetic energy. The
physical question is, what do observers in the gravity region
detect about the presence of a negative kinetic energy
sector? Conceptually, this is the analog of a black box being
probed by in/out signals detected at the exterior of the box.
In the field theory or particle examples discussed below,

a simple sign function that is modeled after the “antigravity
loop” in Ref. [10] captures the main effect of antigravity.
This sign function is a simple device to answer questions
that arose repeatedly on unitarity and possible instability
and is not necessarily a solution to the gravitational field
equations of some specific model. Rather, it is used here
only to capture the main effect of an antigravity sector in a
simple and solvable model. In the case of realistic appli-
cations, one would need to use a self-consistent solution of
matter and gravitational equations (as in Ref. [10]), as long
as it captures the main features of antigravity as in the
simplified model background discussed here.

A. Particle with time-dependent kinetic
energy flips

A free particle with a relativistic (or nonrelativistic)
Hamiltonian that switches sign as a function of time
provides an example of a system propagating in a
background gravitational field that switches sign as in
Eq. (6):

H¼ ε

�
jtj−Δ

2

�
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

q
or H¼ ε

�
jtj−Δ

2

�
×
p2

2m
;

ð17Þ

where εðuÞ≡ SignðuÞ. Such a background captures some
of the properties of the antigravity loop of Bars-Steinhardt-
Turok [10]. The particle’s phase space ðx; pÞ can also
represent more generally a typical generalized degree of
freedom in field theory or string field theory.
The momentum p is conserved, since H is independent

of x, but the velocity _x ¼ ∂H=∂p ¼ εðjtj − Δ
2
Þ pffiffiffiffiffiffiffiffiffiffiffi

p2þm2
p

alternates signs as shown in Table I. The Hamiltonian is
time dependent, so it is not conserved. At the t ¼ �Δ=2
kinks, the velocity vanishes if we define εð0Þ ¼ 0. It is
possible to make other models of what happens to the
velocity by replacing the sign function εðzÞwith other time-
dependent kinky or smooth models; for example, if we
replace εðzÞ with ðεðzÞÞ−1, then the velocity at the kinks
changes sign at an infinite value rather than at zero, while
the momentum remains a constant in all cases.
If the initial position before entering antigravity is xiðtiÞ,

we compute the evolution at any time as follows (see
Fig. 1):

t <−
Δ
2
∶xðtÞ ¼ xiðtiÞþ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p ðt− tiÞ;

−
Δ
2
< t <

Δ
2
∶xðtÞ ¼ x

�
−
Δ
2

�
−

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p �
tþΔ

2

�
;

t >
Δ
2
∶xðtÞ ¼ x

�
Δ
2

�
þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þm2
p �

t−
Δ
2

�
; ð18Þ

where xð− Δ
2
Þ ¼ xiðtiÞ þ pffiffiffiffiffiffiffiffiffiffiffi

p2þm2
p ð− Δ

2
− tiÞ, and xðΔ

2
Þ ¼

xiðtiÞ − pffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p ð3Δ=2þ tiÞ. The final position xfðtfÞ, at

FIG. 1. Propagation through antigravity.

TABLE I. Values of the Hamiltonian H and velocity _x,
demonstrating how the sign changes as a function of t.

t: t < − Δ
2

− Δ
2
< t < Δ

2
t > Δ

2

H�:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
_x: _x ¼ pffiffiffiffiffiffiffiffiffiffiffi

p2þm2
p _x ¼ − pffiffiffiffiffiffiffiffiffiffiffi

p2þm2
p _x ¼ pffiffiffiffiffiffiffiffiffiffiffi

p2þm2
p
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a time tf after waiting long enough to exit from antigravity,
tf > Δ=2, is

xfðtfÞ ¼ xiðtiÞ þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p ðtf − ti − 2ΔÞ: ð19Þ

The effect of antigravity during the interval, − Δ
2
< t < Δ

2
, is

the backward excursion between the two kinks shown in
Fig. 1. For observers waiting for the arrival of the particle at
some position xfðtfÞ, we see from Eq. (19) that antigravity
causes a time delay by the amount of 2Δ as compared to the
absence of antigravity. Hence, there is a measurable signal,
namely a time delay, as an observable effect in comparing
the presence and absence of antigravity.
A similar problem is analyzed at the quantum level by

computing the transition amplitude from an initial state
jxi; tii to a final state jxf; tfi, requiring that the final
observation be in the gravity period after passing through
the antigravity period. This is given by

Afi ¼ hxf; tfje− i
ℏHþðtf−Δ

2
Þe− i

ℏH−ðΔ2−−Δ
2
Þe− i

ℏHþð−Δ2 −tiÞjxi; tii
¼ hxf; tfje− i

ℏHðtf−ti−2ΔÞjxi; tii

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2πiℏðtf − ti − 2ΔÞ

r
exp

�
imðxf − xi − 2ΔÞ2
2ℏðtf − ti − 2ΔÞ

�
:

ð20Þ

The last expression is for the case of a nonrelativistic
particle with H� ¼ �H ¼ �p2=2m. The exponentials
involving H� are simplified because H� commute with
each other, allowing the combination of the exponentials
into a single exponential. Thus, the effect of the inter-
mediate antigravity period is to cause only a time delay, just
as in the classical solution above. Note also that there are no
unitarity problems; the evolution operator is unitary, and
norms of states are positive, at all stages.

B. Particle with space-dependent kinetic energy flips

Consider a nonrelativistic particle with a total energy
Hamiltonian that switches sign in different regions of
space, for example

H ¼ ε

�
jxj − Δ

2

�
×

�
p2

2m
þ VðxÞ

�
: ð21Þ

This is another example of a system propagating in a
background gravitational field that switches sign as in
Eq. (6). In this case energy is conserved, since there is no
explicit time dependence in H. Therefore, at generic

energies, E ¼ ðp2

2m þ VðxÞÞ, the particle cannot cross the
boundaries at jxj ¼ Δ

2
, since the Hamiltonian would flip

sign and this would contradict the energy conservation.
Hence, if the particle is in the gravity region, jxj > Δ

2
, it

stays there, and if it is in the antigravity region, jxj < Δ
2
, it

stays there. However, the particle can cross from gravity to
antigravity and back again to gravity at zero energy,
p2

2m þ VðxÞ ¼ 0. This is similar to the geodesics in a black
hole that cross from gravity to antigravity [11].

C. Free massless scalar field with sign-flipping
kinetic energy

Consider a free massless scalar field in flat space with a
time-dependent background field that causes sign flips of
the kinetic energy as a function of time:

S ¼ −
1

2

Z
d4xε

�
jx0j − Δ

2

�
∂μϕðxÞ∂μϕðxÞ: ð22Þ

The factor εðjx0j − Δ
2
Þ can be viewed as a gravitational

background field of the form
ffiffiffiffiffiffi−gp

gμν∂μϕ∂νϕ, with
gμνðxÞ ¼ εðjx0j − Δ

2
Þημν and

ffiffiffiffiffiffi−gp ¼ 1. This sign-flipping
metric should be regarded as an example of a geometry that
spans the union of the gravity and antigravity regions, as in
Eq. (6). We proceed to analyze the time evolution of this
system. Let the on-shell initial field configuration at time
x0i < ð−Δ=2Þ be defined by

ϕið~xi; x0i Þ

¼
Z

d3p

ð2πÞ3=22jpj ðað~pÞe
−ijpjx0iþi~p·~xi þ āð~pÞeijpjx0i−i~p·~xiÞ:

ð23Þ

The general solution for ϕð~x; x0Þ evolved up to a final time
x0f > Δ=2 is then given by [using the method in Eq. (18)]

ϕfð~xf; x0fÞ ¼
Z

d3p

ð2πÞ3=22jpj
�

að~pÞe−ijpjðx0f−x0i−2ΔÞþi~p·~xf

þāð~pÞeijpjðx0f−x0i−2ΔÞ−i~p·~xf
�
:

ð24Þ

This shows that for initial/final observations that are strictly
outside of the antigravity period, the effect of the anti-
gravity period is only a time delay as compared to the
complete absence of antigravity. The time evolution of the
field in the interim period is just like the time evolution of
the particle as shown in Fig. 1. For more details on the
classical evolution of the field in the interim period, see the
case of the massive field in Sec. IV E, and take the zero
mass limit.
An important remark is that the multiparticle Hilbert

space fj~p1; ~p2 � � � ~pnig is the Fock space constructed
from the creation operators applied on the vacuum
defined by að~pÞj0i ¼ 0, namely j~p1; ~p2 � � � ~pni≡
āð~p1Þāð~p2Þ � � � āð~pnÞj0i. This time-independent Fock
space is the complete Hilbert space that can be used during
gravity or antigravity. It is clearly unitary, since it is the
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same Hilbert space that is independent of the existence of
an antigravity period (i.e., the same as theΔ ¼ 0 case). This
shows that there is no unitarity problem due to the presence
of the antigravity period.
However, there is negative kinetic energy during anti-

gravity, seen as follows. The time-dependent Hamiltonian
for this system is

Hðx0Þ ¼
8<
:

þH; for t < − Δ
2

−H; for − Δ
2
< t < Δ

2

þH; for t > Δ
2

; ð25Þ

where H, which is constructed from the quantum creation-
annihilation operators as usual, is time independent. So
there seems to be a possible source of instability due to
negative energy during antigravity. For freely propagating
particles there are no transitions that alter the energy, so no
questions arise; it is only when there are interactions that an
effect may be observed due to transitions created by the
negative energy sector. The effect of interactions, as
observed by detectors in the gravity sector, is analogous
to the case of a time-dependent Hamiltonian as discussed in
simple examples below in Sec. IV D. Hence, the presence
of a sector with negative kinetic energy is not a fundamental
problem in the quantum theory.
Nevertheless, the antigravity sector, with or without

interactions, is the source of interesting physical signals
for the observers in the gravity sectors. For example, in the
absence of additional interactions, consider the quantum
propagator that corresponds to initial/final states in the two
gravity sectors jx0j > Δ=2. The transition amplitude from
an initial state in gravity (x0i < −Δ=2) to a final state in
gravity (x0f > Δ=2), after the field evolves through anti-
gravity, is given by

Afi ¼ hϕfðxfÞje− i
ℏHþðtf−Δ

2
Þe− i

ℏH−ðΔ2−−Δ
2
Þe− i

ℏHþð−Δ2 −tiÞjϕiðxiÞi
¼ hϕfð~xf; x0fÞje−

i
ℏHðtf−ti−2ΔÞjϕið~xi; x0i Þi:

Here, jϕðxÞi is defined as the one-particle state in the
quantum theory which is created by applying the quantum
field ϕ̂ðxÞ on the oscillator vacuum að~pÞj0i ¼ 0,

jϕð~x; x0Þi ¼ ϕ̂ðxÞj0i ¼
Z

d3p
eijpjx0−i~p·~x

ð2πÞ3=22jpj āð~pÞj0i: ð26Þ

Then we obtain

Afi ¼
Z

d3p
eijpjðx

0
f−x

0
i−2ΔÞ−i~p·ð~xf−~xiÞ

ð2πÞ3=22jpj : ð27Þ

This is the propagator for a free massless particle. From this
expression it is clear that the effect of antigravity on the
result for the transition amplitude Afi is only a time delay

by an amount of 2Δ as compared to the same quantity in the
complete absence of antigravity. The same general state-
ment holds true for the transition amplitudes for multi-
particle states. Clearly there is no particle production due to
antigravity in the case of free massless particles. This
will be contrasted with the case of massive particles in
Sec. IV E.
Of course, if there are field interactions, there will be

additional effects, but none of those are a priori problem-
atic from the point of view of fundamental principles.

D. Particle with flipping kinetic energy
while interacting in a potential

To learn more about the effects of antigravity, we now
add an interaction term that does not flip sign during
antigravity. We first investigate the case of a single degree
of freedom whose kinetic energy flips sign during anti-
gravity. This phase space ðx; pÞ should be thought of as a
generalized coordinate associated with any single degree of
freedomwithin local field theory or string field theory (after
integrating out all other degrees of freedom), but in its
simplest form it can be regarded as representing a particle
moving in one dimension.
We discuss a simple model described by the Hamiltonian

H ¼ ε

�
jtj − Δ

2

�
×

p2

2m
þmω2

2
x2: ð28Þ

This is a time-dependent Hamiltonian that has two different
forms, H�, during different periods of time as shown in
Table II. During gravity, jtj > Δ

2
, the Hamiltonian Hþ is the

familiar harmonic oscillator Hamiltonian with a well-
defined quantum state, so all energies are positive. But
during antigravity, − Δ

2
< t < Δ

2
, the HamiltonianH− has no

bottom, so all positive and negative energies are permitted.
Does this pose an instability problem for the entire system?
The answer is that, as in the simpler cases already
illustrated above, there is no such problem from the
perspective of observers in gravity.
A complete basis for a unitary Hilbert space may be

defined to be the positive norm complete Fock
space associated with the usual harmonic oscillator
Hamiltonian Hþ whose energy eigenvalues are strictly
positive. The eigenstates of H− are also positive norm and
define another complete unitary basis. Clearly one com-
plete basis may be expanded in terms of another complete
basis, so the usual Fock space basis is sufficient to analyze
the complete system, including its evolution through
antigravity. This shows that the interacting problem that

TABLE II. Values of the Hamiltonian H as a function of time t.

t: t < − Δ
2

− Δ
2
< t < Δ

2
t > Δ

2

H�: ðp2

2m þ mω2x2
2

Þ ð− p2

2m þ mω2x2
2

Þ ðp2

2m þ mω2x2
2

Þ
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includes antigravity is an ordinary time-dependent problem
in quantum mechanics. There are no unitarity problems,
and the presence of antigravity is analyzed below as a
regular problem of a time-dependent Hamiltonian, without
encountering any fundamental problems of principles.
A technical remark may be useful: this model can be

treated group-theoretically by using the properties of
SLð2; RÞ representations. Note that the three Hermitian
quantum operators [x2; p2; 1

2
ðxpþ pxÞ] form the algebra of

SLð2; RÞ under quantum commutation rules ½x; p� ¼ iℏ.
The Hamiltonian Hþ is proportional to the compact
generator J0 of SLð2; RÞ, while H− is proportional to
one of the noncompact generators J1. The second non-
compact generator J2 appears in the commutator ½Hþ; H−�.
Explicitly,

J0 ≡ 1

2ℏω
Hþ; J1 ≡ 1

2ℏω
H−;

J2 ¼
1

4ℏ
ðxpþ pxÞ: ð29Þ

The ðJ0; J1; J2Þ form the standard Lie algebra of SLð2; RÞ.
Since these J0;1;;2 are Hermitian operators, the correspond-
ing quantum states which are labelled as jj; μi form a
unitary representation of SLð2; RÞ. The quantum number μ
is associated with the eigenvalues of J0 (which are basically
the eigenvalues ofHþ) while jðjþ 1Þ is associated with the
eigenvalues of the Casimir operator C2 that commutes with
all the generators, C2 ≡ J20 − J21 − J22. For the present
construction, keeping track of the orders of operators
ðx; pÞ, one finds that C2 is a constant, C2 ¼ −3=16 ¼
jðjþ 1Þ, which yields two solutions, j ¼ − 3

4
or j ¼ − 1

4
.

Hence, the spectrum of this theory, including the properties
of H�, can be thought of consisting of two infinite-
dimensional irreducible unitary representations of
SLð2; RÞ. For j ¼ − 3

4
or j ¼ − 1

4
, these are positive discrete

series representations. The allowed values of μ are given by
μ ¼ jþ 1þ k, where k ¼ 0; 1; 2;… is an integer. We see
that the two representations taken together correspond to
the spectrum of Hþ, which is the spectrum of the harmonic
oscillator given by En ¼ ωðnþ 1

2
Þ ⇔ 2ωμ, with even

n ¼ 2k corresponding to j ¼ −3=4 and odd n ¼ 2kþ 1
corresponding to j ¼ −1=4. Hence, the basis jj; μi forms a
complete set of eigenstates for the observers in the gravity
sector of the theory.
How about the antigravity sector? Since the correspond-

ing Hamiltonian is H−, a complete set of eigenstates
corresponds to diagonalizing the noncompact generator
J1 instead of the compact generator J0. Either way, the
Casimir operator is the same; hence diagonalizing J1 → q
provides another unitary basis jj; qi for the same unitary
representations of SLð2; RÞ. The spectrum of J1, J1jj; qi ¼
q jj; qi, is continuous q on the real line since this is a
noncompact generator of SLð2; RÞ. This antigravity basis is
also a complete unitary basis for this Hamiltonian that

includes both sectors H�. One basis can be expanded in
terms of the other, jj; qi ¼P∞

μ¼jþ1 jj; μihj; μjj; qi, where
the expansion coefficients hj; μjj; qi ¼ UðjÞ

μ;q are unitary
transformations for each j ¼ − 3

4
or − 1

4
.

Therefore, it does not matter which basis we use to
analyze the quantum properties of this Hamiltonian. Using
the discrete basis jj; μiwhich is more convenient to analyze
the physics in the gravity sector in no way excludes the
antigravity sector from making its effects felt for observers
in the gravity sector.
With this understanding of this simple quantum

system, we now analyze the transition amplitudes Afi
for an initial state jii to propagate to a final state, both
in the gravity sector. We define jii; jfi at the two edges of
the antigravity sector, at times ti ¼ −Δ=2 and tf ¼ Δ=2.
Moving ti; tf to other arbitrary times in the gravity sector is
trivial, since we can write jii ¼ e−iHþð−Δ=2−tiÞji; tii and
jfi ¼ e−iHþðtf−Δ=2Þjf; tfi, and we know how Hþ acts on
any linear combination of harmonic oscillator states jii; jfi.
Hence, we have

Afi ¼ hfje− i
ℏΔH− jii; ð30Þ

where jii; jfi are arbitrary states in the gravity sector. If we
take any two states in the SLð2; RÞ basis jj; μi, this
becomes

Afi ¼ hj; μfje−i Δ2ωJ1 jj; μii: ð31Þ

This is just the matrix representation of a group element of
SLð2; RÞ in a unitary representation labeled by j ¼ − 3

4
or

− 1
4
. It must be the same j for both the initial and final states;

i.e. there is a selection rule, because there can be no
transitions at all from j ¼ − 3

4
to j ¼ − 1

4
or vice versa.

This quantity can be computed by using purely group-
theoretical means, but it is perhaps more instructive to use
the standard harmonic oscillator creation/annihilation
operators to evaluate it. Then we can write

Hþ ¼ ℏω

�
a†aþ 1

2

�
; H− ¼ ℏω

2
ða†2 þ a2Þ: ð32Þ

We have used this form to compute the transition
amplitude

Afi ¼ hfje− i
ℏΔH− jii ¼ hfje−iωΔ2 ða†2þa2Þjii ð33Þ

by taking initial/final states to be the number states or the
coherent states of the harmonic oscillator. To perform the
computation, we use the following identity:

e−i
ωΔ
2
ða†2þa2Þ ¼ e−

i
2
tanh ðωΔÞa†2ðcosh ðωΔÞÞ−ða†aþ1

2
Þ

× e−
i
2
tanh ðωΔÞa2 : ð34Þ
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For initial/final coherent states jzii and jzfi for observers in
gravity, we define the transition amplitude for normalized
states as Aðzf;ziÞ¼ hzfje− i

ℏΔH− jzii=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihzfjzfihzijzii

p
, which

yields

jAðzf; ziÞj2 ¼
e−jzf j

2−jzij2þ
2Reðzi z̄f Þ
cosh ðωΔÞetanh ðωΔÞImðz̄2fe−iωΔþz2i e

iωΔÞ

cosh ðωΔÞ :

ð35Þ

This should be compared to the absence of antigravity
when Δ ¼ 0, namely jAðzf; ziÞj2Δ~0

¼
e−jzf−zij2.

Similarly, for initial/final number eigenstates jni and jmi
of the Hamiltonian Hþ ¼ ðp2

2m þ mω2x2
2

Þ ¼ ℏωða†aþ 1
2
Þ for

observers in gravity, we obtain

Amn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!n!eiωΔðnþmþ1Þ

ðcosh ðωΔÞÞmþnþ1

s Xmin ðm;nÞ

k¼0

ð 1
2i sinh ðωΔÞÞ

mþn
2
−k

k!ðm−k
2
Þ!ðn−k

2
Þ! ;

ð36Þ

where ðm; n; kÞ are all even or all odd. This gives

jAmnj2 ¼

0
B@
�
2F1

�
−½m

2
�;−½n

2
�;
�
1 − ð−1Þm

2

�
; −1
sinh2ðωΔÞ

��
2

× ðm!Þðn!Þð1
2
tanh ðωΔÞÞ2ð½m2 �þ½n

2
�Þ

ð½m
2
�!½n

2
�!Þ2ðcosh ðωΔÞÞ2−ð−1Þm

1
CA;

where 2F1ða; b; c; zÞ is the hypergeometric function, ½m
2
�

means the integer part of m=2, and ðm; nÞ are both even or
both odd. Special cases are

jA00j2 ¼
1

cosh ðωΔÞ ;

jA2M;0j2 ¼
ð2MÞ!

22MðM!Þ2
ðtanh ðωΔÞÞ2M
cosh ðωΔÞ ;

jA11j2 ¼
1

cosh3ðωΔÞ ;

A2Mþ1;1 ¼
ð2M þ 1Þ!
22MðM!Þ2

ðtanh ðωΔÞÞ2M
cosh3ðωΔÞ : ð37Þ

As compared to the absence of antigravity, Δ ¼ 0, when
there are no transitions, we see that antigravity causes an
observable effect. Clearly, these transition amplitudes are
well behaved, and do not blow up for large Δ. Unitarity is
obeyed: one may verify explicitly that the sum over all
states is 100% probability,

P
mjAmnj2 ¼ 1, for all fixed n,

and similarly
R d2zf

π jAðzf; ziÞj2 ¼ 1 for all fixed zi.

E. Massive scalar field with sign-flipping kinetic energy

This system has some similarities to the interacting
particle above, but it is not quite the same. The action is

S ¼ 1

2

Z
ddx

�
−ε
�
jx0j − Δ

2

�
∂μϕðxÞ∂μϕðxÞ −m2ϕ2ðxÞ

�
:

ð38Þ

As in the case of the massless field in Sec. IV C, the factor
εðjx0j − Δ

2
Þ can be viewed as a gravitational background

field of the form
ffiffiffiffiffiffi−gp

gμν∂μϕ∂νϕ, with gμνðxÞ ¼
εðjx0j − Δ

2
Þημν and

ffiffiffiffiffiffi−gp ¼ 1 that spans the union of the
gravity and antigravity regions, as explained in Eq. (6). The
mass term does not flip sign. Note that, due to the nonzero
mass, this is not a Weyl-invariant action, but we will
investigate it anyway to learn about the properties of such a
system.
In momentum space, using the notation x0 ¼ t, we have

ϕð~x; tÞ ¼
Z

dd−1p

ð2πÞðd−1Þ=2 ϕpðtÞei~p·~x: ð39Þ

We rewrite the action in momentum space as

S ¼ 1

2

Z
dt
Z

dd−1p

2
64 ε
�
jtj − Δ

2

�� _ϕpðtÞ _ϕ−pðtÞ
−~p2ϕpðtÞϕ−pðtÞ

�

−m2ϕpðtÞϕ−pðtÞ

3
75:
ð40Þ

The equation of motion is

∂t

�
ε

�
jtj−Δ

2

�
∂tϕpðtÞ

�
þ
�
ε

�
jtj−Δ

2

�
~p2þm2

�
ϕpðtÞ¼0:

ð41Þ

The solutions in separate regions of time are [similar
to (18)]

t < −
Δ
2
∶ ϕA

pðtÞ ¼
 

Aþ
p e−i

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
ðtþΔ

2
Þ

þA−
pei

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
ðtþΔ

2
Þ

!
;

−
Δ
2
< t <

Δ
2
∶ ϕB

pðtÞ ¼
 

Bþ
p e−i

ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p
ðtþΔ

2
Þ

þB−
pei

ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p
ðtþΔ

2
Þ

!
;

t >
Δ
2
∶ ϕC

pðtÞ ¼
 

Cþ
p e−i

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
ðt−Δ

2
Þ

þC−
pei

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
ðt−Δ

2
Þ

!
: ð42Þ

We need to match the field ϕpðtÞ and its canonical
momentum, εðjtj−Δ

2
Þ∂tϕpðtÞ, at each boundary t¼�Δ=2:
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ϕA
p

�
−
Δ
2

�
¼ ϕB

p

�
−
Δ
2

�
; and _ϕA

p

�
−
Δ
2

�
¼− _ϕB

p

�
−
Δ
2

�
;

ϕC
p

�
þΔ
2

�
¼ ϕB

p

�
þΔ
2

�
; and _ϕC

p

�
þΔ
2

�
¼− _ϕB

p

�
þΔ
2

�
;

ð43Þ

Note the sign flip of _ϕ at t ¼ �Δ=2 although the canonical
momentum does not flip. This gives four equations to relate
C�
p and B�

p to A�
p as follows:

Aþ
p þ A−

p ¼ Bþ
p þ B−

p;

Aþ
p − A−

p ¼ −ðBþ
p − B−

pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 −m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p ;

Cþ
p þ C−

p ¼ Bþ
p e−i

ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p
Δ þ B−

pei
ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p
Δ;

Cþ
p − C−

p ¼ −
�
Bþ
p e−i

ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p
Δ

−B−
pei

ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p
Δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 −m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p : ð44Þ

The solution determines B�
p and C�

p in terms of A�
p :�

Cþ
p

C−
p

�
¼
�
α β�

β α�

��
Aþ
p

A−
p

�
; ð45Þ

�
Bþ
p

B−
p

�
¼

0
BB@

1
2
−

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
2
ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
2
ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p

1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
2
ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p 1
2
−

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

p
2
ffiffiffiffiffiffiffiffiffiffi
~p2−m2

p

1
CCA
�
Aþ
p

A−
p

�
; ð46Þ

where ðα; βÞ are the parameters of a Bogoliubov trans-
formation [an SU(1,1) group transformation]

α ¼ cos
�
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 −m2

q �
þ i

~p2 sin ðΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 −m2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~p2Þ2 −m4
p ;

β ¼ i
m2 sin ðΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 −m2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2Þ2 −m4
p ;

jαj2 − jβj2 ¼ 1: ð47Þ

Assume the incoming state ϕA
pðtÞ has only positive fre-

quency, meaning A−
p ¼ 0. Then we see that [unlike the

massless case in Sec. IV C] negative frequency fluctuations
are produced in the final state ϕC

pðtÞ, since according to
Eq. (45), C−

p ¼ βAþ
p . The corresponding probability ampli-

tude for particle production is

ðC−
p=Aþ

p Þ ¼ β ¼ i
sin ðmΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2=m2 − 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~p2=m2Þ2 − 1
p : ð48Þ

The produced particle-number density (particles per unit
volume) is the integral of jβj2 over all momenta:

nðm;ΔÞ ¼
Z

dd−1pjβj2

¼
Z

dd−1p
sin2
�
mΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~p2=m2Þ − 1

p �
jð~p2=m2Þ2 − 1j ;

¼ md−1Ωd−1

Z
∞

0

xd−2sin2
�
ðmΔÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
jx4 − 1j dx;

ð49Þ

where x2 ¼ ~p2=m2, while Ωd−1 is the volume of the solid
angle in d − 1 dimensions, Ω2 ¼ 2π;Ω3 ¼ 4π, etc. This is
a convergent integral for d < ð5 − εÞ dimensions, hence
nðm;ΔÞ is finite for d ¼ 1, 2, 3, 4 dimensions. We note that
the number density nðm;ΔÞ increases monotonically at
fixedm as Δ increases. The energy density per unit volume
for the produced particles for all momenta is

ρðm;ΔÞ¼
Z

dd−1p
ð2πÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

q
jβj2

¼mdΩd−1

ð2πÞd−1
Z

∞

0

xd−2
ffiffiffiffiffiffiffiffiffiffiffiffi
x2þ1

p
sin2
�
ðmΔÞ

ffiffiffiffiffiffiffiffiffiffiffi
x2−1

p �
jx4−1j dx:

ð50Þ

ρðm;ΔÞ is convergent for d < ð4 − εÞ dimensions and is
logarithmically divergent at d ¼ 4 despite the rapid oscil-
lations at the ultraviolet limit.
Recall that the massive field is not a scale-invariant

model. In the Weyl symmetric limit, m → 0, there is no
particle production at all in any dimension. In the scale-
invariant theory, masses for fields must come from inter-
actions, such as interactions with the Higgs field. In a
cosmological context, the Higgs field is not just a constant,
and therefore in the type of investigation above, the
parameter m should be replaced by the cosmological
behavior of the Higgs field (see Ref. [18] for an example).
This very different behavior in a Weyl-invariant theory
should be the more serious approach for investigating
effectively massive fields to answer the type of questions
discussed in this section.

V. CONFORMALLY EXACT SIGN-FLIPPING
BACKGROUNDS IN STRING THEORY

We consider the world-sheet formulation of the relativ-
istic string, but we make string theory consistent with
target-space Weyl symmetry as suggested in Ref. [7]. This
requires promoting the string tension to a dynamical field,
ð2πα0Þ−1 → TðXμðτ; σÞÞ. The background field TðXÞ,
along with any other additional background fields, must
be restricted to satisfy exact world-sheet conformal sym-
metry at the quantum level. In the world-sheet formalism,
typically the tension appears together with the metric
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gμνðXðτ; σÞÞ or antisymmetric tensor bμνðXðτ; σÞÞ in the
Weyl-invariant combination, Tgμν or Tbμν. The requirement
of exact world-sheet conformal symmetry constrains these
target-space Weyl-invariant combinations. Perturbative
world-sheet conformal symmetry (vanishing beta func-
tions) is captured by the properties of the low-energy
effective string action. From the study of the Weyl-invariant
and geodesically complete formalism of the low-energy
string action [7], we have learned that the tension (closely
connected to the gravitational constant) switches sign
generically near the singularities in the classical solutions
of this theory. If we fix the target-space Weyl symmetry by
choosing the string gauge as in Eq. (4), then in those
generic solutions, the tension becomes TðXμðτ; σÞÞ ¼
�ð2πα0Þ−1 on the two sides of the singularity as it appears
in the string gauge. Those two sides are identified as the
gravity/antigravity sectors of the low-energy theory as
discussed in Sec. II. From the perspective of the world-
sheet string theory, these observations lead to a simple
prescription to capture all these effects in the string
gauge—namely, replace the Weyl-invariant structures
ðTgμν; TbμνÞ with ð�ð2πα0Þ−1G�

μν;�ð2πα0Þ−1B�
μνÞ, where

the capital ðG�
μνðXÞ; B�

μνðXÞÞ are the background fields on
the gravity/antigravity patches that are joined at the
singularities as they appear in the string gauge. We may
absorb the overall � due to the signs of the tension into a
redefinition of the background fields, and as we did for the
Einstein gauge in Eq. (6), define

ðĜμνðXÞ; B̂μνðXÞÞ ¼ ð�G�
μνðXÞ;�B�

μνðXÞÞ ð51Þ

as the full set of background fields in the union of the
gravity/antigravity sectors of the world-sheet string theory.
Of course, ðĜμνðXÞ; B̂μνðXÞÞ are required to satisfy world-
sheet conformal invariance at the quantum level as usual.
What is new is the geodesic completeness of the back-
ground fields ðĜμνðXÞ; B̂μνðXÞÞ, which is achieved by the
sign-flipping tension and the union of the corresponding
gravity/antigravity sectors.

A. String in flat background with tension
that flips sign

A simple example of a conformally exact world-sheet
CFT, that includes a dynamical string tension that
flips signs, is the flat string background ημν modified
only by a time-dependent string tension TðXÞ ¼
1

2πα0 SignðjX0ðτ; σÞj − Δ
2
Þ. This can also be presented in

the string gauge by absorbing the sign of the tension into
a redefined metric

ĜμνðXÞ ¼ ημνSign

�
jX0ðτ; σÞj − Δ

2

�
;

B̂μνðXÞ ¼ 0; ð52Þ

where Δ is a constant. Note the similarity to Eq. (17) or
Secs. IV C and IV E. Thus, the tension is positive when
jX0ðτ; σÞj > Δ

2
and negative when − Δ

2
< X0ðτ; σÞ < Δ

2
. This

is also similar to the cosmological example with an
antigravity loop given in Ref. [7], but we have greatly
simplified it here by keeping only the signs but not the
magnitude of the tension, thus defining a conformally exact
rather than a conformally approximate CFT on the world
sheet. The corresponding world-sheet string model is

S ¼ −
1

4πα0

Z
d2σ

ffiffiffiffiffiffi
−h

p
hab∂aXμ

× ∂bXνημνSign

�
jX0ðτ; σÞj − Δ

2

�
: ð53Þ

We should mention that it is also possible to consider a
model, at least at the classical level, by inserting in
the action (53) the inverse of the Sign function
ðSignðjX0ðτ; σÞj − Δ

2
ÞÞ−1. In this case the tension flips sign

when it is infinite rather than zero. Both of these possibil-
ities occur smoothly rather than suddenly in cosmological
backgrounds in string theory [see Eq. (30) in Ref. [7] or its
generalizations]. Both behaviors are significant from the
perspective of string theory, because perturbative versus
nonperturbative methods would be needed to understand
fully the physics in the vicinity of the gravity/antigravity
transitions. Namely, when the tension at the transition is
large, the string would be close to being pointlike, so the
stringy corrections would be small and perturbative in the
vicinity of the gravity/antigravity transitions; by contrast,
when the tension at the transition is small, the string would
be floppy, so stringy corrections could be significant. In the
latter case, high-spin fields [19] may be an interesting
tool to investigate the gravity/antigravity transition in our
setting.
From the form of the action in Eq. (53), it is evident that

the string action is invariant under reparametrizations of the
world sheet at the classical level. We will use this symmetry
to choose a gauge to perform the classical analysis below.
But eventually, we also need to know if this symmetry is
valid also at the quantum level. The generator of this gauge
symmetry is the stress tensor, so the stress tensor vanishes
as a constraint to impose the gauge invariance. At the
classical level, the stress tensor does vanish as part of the
solution of the classical equations and constraints (see
below). At the quantum level, in “covariant quantization,”
the stress tensor does not vanish on all states but only on the
gauge-invariant physical states. For consistency of covar-
iant quantization, one must verify that the constraints form
a set of first-class constraints that close under quantum
operator products. In our case, the stress tensor derived
from (53) has the form T�� ¼ ðSignÞ × T0

��, where T
0
�� is

the usual world-sheet stress tensor in the flat background
ημν, while the sign factor switches signs at the kinks
jX0ðτ; σÞj ¼ Δ

2
. In the positive (gravity, Sign ¼ þ) region,
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we have symbolically the operator products, T0
�� × T0

��∼
T0
��, where the standard CFT result on the right-hand

side is computed exactly for the flat string. Similarly,
in the negative (antigravity, Sign ¼ −) region, we have
ð−T0

��Þ × ð−T0
��Þ ∼ −ð−T0

��Þ. So the algebra is closed
like the standard CFT locally in the positive and negative
regions away from the kinks. The only regions remaining to
be analyzed are the operator products at the kinks
jX0ðτ; σÞj ¼ Δ

2
(world-sheet analogs of the kinks in

Fig. 1). The operator products involving the Sign factor
nontrivially introduce delta functions and derivatives of
delta functions multiplied by the sign factor or its deriv-
atives that have support only at the kinks. At one con-
traction (order-ℏ effects), the coefficient of the delta
function includes the flat T0

�� or its derivatives evaluated
at the kinks. Since T0

�� or its derivatives are in the list of
first-class constraints (Virasoro operators), this is still a
closed algebra of first-class constraints, all of which vanish
on physical states. At two contractions (order ℏ2 in
quantum effects), there are again some terms that contain
T0
�� or its derivatives, which again are of no concern, since

these still vanish on physical states. However, there are also
additional operators of the form of ð∂X0Þ multiplying
products of the sign function, delta function, or its
derivatives, all evaluated at the kinks. We have analyzed
these complicated distributions and found that they vanish
when integrated with ð∂X0Þ, so they do not seem to
contribute. Similarly, we can drop several similar terms
due to the properties of the distributions. The analysis at the
kinks becomes harder at higher contractions (ℏ3 and
beyond in quantum effects), and we leave this for future
analysis to be reported at a later stage. The main point is
that if there are additional constraints that must be imposed
at the kinks, they will show up in this type of operator
product analysis. So far, we have not found new constraints
up to two contractions in the operator products. Thus, the
algebra of the operator products is basically the standard
algebra of a conformal field theory (CFT) locally in the
positive and negative regions away from the kinks. The
modification of the CFTalgebra at the kinks with terms that
are proportional to Virasoro operators does not change the
validity of the gauge symmetry at the quantum level, since
those terms vanish on physical states anyway. Although we
have not yet found other operator modifications of the
algebra at the kinks, conceptually it is possible that such
terms may arise at higher contractions or in other models
that include gravity/antigravity transitions. When and if
such terms appear, they must be included in an enlarged list
of constraints that should form a closed algebra under
operator products; then this will define the proper quantum
theory.
In this paper, our aim is to first understand the classical

theory of a string described by the action in (53), so we do
not need to be concerned here about the subtleties described
in the previous paragraph. In fact, the classical analysis that

we give below is helpful in further developing the right
approach for the quantum theory. Thus, setting aside
temporarily the possible stringy corrections, we are at first
interested in the classical behavior of strings as they
propagate in the union of the gravity/antigravity regions,
and later try to figure out the possible additional effects due
to interactions at those transitions by using more sophis-
ticated methods, such as string field theory, or others, as
outlined in Sec. VI.

1. General string propagating classically
through antigravity

In this section, we will discuss the properties of the
model in Eq. (53). The main objective is to show that there
are no problems due to the negative tension during
antigravity from the point of view of fundamental princi-
ples, such as unitarity or possible instability due to negative
kinetic energy. The unitarity of this string model was
already established in Ref. [7] more generally for any
time-dependent tension TðX0Þ and more general metric, so
we will not repeat it here. We will concentrate on the effect
of the antigravity period on the propagation of the string
and the corresponding signals that observers in gravity may
detect. As we will demonstrate, as compared to the
complete absence of antigravity, the presence of an anti-
gravity period for a certain amount of time causes only a
time delay in the propagation of an open or closed free
string of any configuration. This may seem surprising
since, at first thought, one may think that string bits would
fly apart under an instability caused by a negative string
tension. In fact, this does not happen, because a negative
tension is simply an overall sign in the action of a free
string, and this does not change the equations of motion and
constraints of a free string during antigravity.
We work in the conformal gauge at the classical level.

There is a remaining reparametrization symmetry that
permits the further choice of the following timelike
gauge:

X0ðτ; σÞ ¼ jHjτ; ð54Þ

where H is the total time-dependent Hamiltonian of the
string, while jHj is time independent. This is similar to
the massless free field in Sec. IV C. In this gauge, the
remaining degrees of freedom satisfy the following equa-
tions of motion and constraints:

ð∂2
τ − ∂2

σÞ~Xðτ; σÞ ¼ 0; H2 ¼ ð∂τ
~X � ∂σ

~XÞ2; ð55Þ

to be solved in each time region A, B, C defined by

A∶ τjHj < −Δ=2; B∶ − Δ=2 < τjHj < Δ=2;

C∶ τjHj > Δ=2: ð56Þ
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Furthermore, the solutions for ~XA;B;Cðτ; σÞ and the canoni-

cal momenta ~PA;B;Cðτ;σÞ¼∂τ
~XA;B;Cðτ;σÞ×SignðjHτj−Δ

2
Þ

should be continuous at the boundaries τjHj ¼ �Δ=2. The
method of solution follows the simple model in Eq. (18) or
the massive field in Sec. IV E.
We will discuss the case of an open string; the closed

string is treated similarly. The general solution in each
region is given in terms of the center of mass ð~q; ~pÞ and
oscillator ð~αn; n ¼ �1;�2;…Þ degrees of freedom. The
general configuration of the string in the positive-tension

region A, at a time τ < −Δ=2, is a general solution ~XAðτ; σÞ
given by

~XAðτ; σÞ ¼ ~q0 þ ~pτ þ
X∞

n¼−∞;≠0

i
n
~αn cos nσe−inτ: ð57Þ

The time-independent parameters ð~q0; ~pÞ and ð~αn; n ¼
�1;�2;…Þ determine the initial configuration of the string
at the time τ ¼ τ0. From the constraint equations, we
compute the time-independent jHj and the remaining
constraint

jHj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ

X∞
n¼1

~α−n · ~αn

s
;

0 ¼ ~p · ~αn þ
1

2

X∞
m¼−∞;≠0

~α−m · ~αnþm; ð58Þ

Thus, the time-dependent Hamiltonian that switches
sign is

HðτÞ ¼ Sign
�
jHjjτj − Δ

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ

X∞
n¼1

~α−n · ~αn

s
: ð59Þ

Assuming the constraints (58) are satisfied at the classical
level by some set of parameters ð~αn; ~pÞ, the momentum,

~PA ¼ ~_XA, in region A is

~PAðτ; σÞ ¼ ~pþ
X∞

n¼−∞;≠0
~αn cos nσe−inτ: ð60Þ

In region B, − Δ
2
< τjHj < Δ

2
, the solution ð~XB; ~PBÞ takes

the same form as above, but with a new set of parameters
ð~qB; ~pB; ~αnBÞ. Note that in this region there is a nontrivial
minus sign in the relation between momentum and velocity,
~PBðτ; σÞ ¼ −∂τ

~XBðτ; σÞ. At the transition time, τ� ≡ − Δ
2jHj,

we must match the position and momentum, therefore
~XAðτ�; σÞ ¼ ~XBðτ�; σÞ and ∂τ

~XAðτ�; σÞ ¼ −∂τ
~XBðτ�; σÞ,

noting the negative sign in the case of velocities.
Because the matching is for every value of σ, we find that
all the parameters ð~qB; ~pB; ~αnBÞ are uniquely determined in

terms of the initial parameters ð~q0; ~p; ~αnÞ in region A. So
the solution in region B is

~XBðτ; σÞ ¼
 

~q0 þ ~pð−τ − Δ
jHjÞ

þP∞
n¼−∞;≠0

i
n ~αn cos nσe

−inð−τ− Δ
jHjÞ

!
; ð61Þ

~PBðτ;σÞ ¼ −~_XBðτ;σÞ ¼ ~pþ
X∞

n¼−∞;≠0
~α−n cosnσe

−inð−τ− Δ
jHjÞ:

ð62Þ
There are no new constraints beyond those that are already
assumed to have been satisfied in region A by the
parameters ð~αn; ~pÞ. Note the structure ð−τ − Δ

jHjÞ that

indicates a backward propagation similar to Fig. 1 as τ
increases beyond τ�.
At the next transition time, τ�� ≡þ Δ

2jHj, we must connect

the solution ð~XB; ~PBÞ above to the solution ð~XC; ~PCÞ in
region C, τ > τ��, which is given in terms of a new set of
parameters ð~qC; ~pC; ~αnCÞ. Using the matching conditions

~XCðτ�; σÞ ¼ ~XBðτ�; σÞ and ~_XCðτ�; σÞ ¼ −~_XBðτ�; σÞ that
include the extra minus sign for velocities (as discussed
above), we find that ð~qC; ~pC; ~αnCÞ are all determined again
uniquely in terms of the initial parameters ð~q0; ~p; ~αnÞ
introduced in region A:

~XCðτ; σÞ ¼
 

~q0 þ ~pðτ − 2 Δ
jHjÞ

þP∞
n¼−∞;≠0

i
n ~αn cos nσe

−inðτ−2 Δ
jHjÞ

!
;

~PCðτ; σÞ ¼ ~pþ
X∞

n¼−∞;≠0
~αn cos nσe

−inðτ−2 Δ
jHjÞ: ð63Þ

Putting it all together, we see that after the antigravity
period, the emergent string experiences only a time delay
2Δ=jHj as compared to the string that propagates in the
complete absence of antigravity. This is the same con-
clusion that was reached for the free particle or the free
massless field.

2. Rotating rod propagating through antigravity

As a concrete example of a string configuration that
satisfies all the constraints, we present the rotating rod
solution that is modified by a tension that flips sign during
antigravity as in Eq. (53). We begin with a straight string
lying along the x̂ axis with its center of mass located

at ~q0, as given by ~X0ðσÞ ¼ ~q0 þ x̂R0 cos σ. Let this string
rotate in the ðx̂; ŷÞ plane and translate in the ẑ direction as
follows:

~XAðτ; σÞ ¼ ~q0 þ ẑpτ þ R0 cos σðx̂ cos τ þ ŷ sin τÞ: ð64Þ
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This satisfies the constraints in Eq. (58), since

∂τ
~X · ∂σ

~X ¼ 0, and gives jHj ¼ ðp2 þ R2
0Þ1=2. Following

the steps above, we compute the matching string configu-
ration during the antigravity period − Δ

2jHj < τ < Δ
2jHj:

~XBðτ; σÞ ¼

0
B@

~q0 þ ẑpð−τ − θÞ

þR0 cos σ

�
x̂ cos ð−τ − θÞ
þŷ sin ð−τ − θÞ

�
1
CA; ð65Þ

where θ ¼ Δðp2 þ R2
0Þ−1=2, noting that this describes a

backward propagation similar to Fig. 1. Finally, the
matching string configuration in the time period τ > Δ

2jHj is

~XCðτ; σÞ ¼
�

~q0 þ ẑpðτ − 2θÞ
þR0 cos σðx̂ cos ðτ − 2θÞ þ ŷ sin ðτ − 2θÞÞ

�
:

ð66Þ

As promised, as compared to the complete absence of
antigravity, the presence of an antigravity period for a
certain amount of time causes only a time delay in the
propagation of a string of any configuration. The string bits
of a freely propagating string do not fly apart during
antigravity when the string tension is negative.

B. 2D black hole including antigravity

Another simple example is the two-dimensional black
hole [20] based on the SLð2; RÞ=R gauged WZW model
[21]. The well-known string background metric in this case
is ds2 ¼ −2ð1 − uvÞ−1dudv, with uv < 1, where ðu; vÞ are
the string coordinates Xμðτ; σÞ in the Kruskal-Szekeres
basis. This space is geodesically incomplete, similar to
the case of the four-dimensional Schwarzschild black
hole [11].
The geodesically complete modification consists of

allowing the string tension to flip sign precisely at the
singularity, namely TðXÞ ¼ ð2πα0Þ−1Signð1 − uvÞ. Then
the new geodesically complete 2D black hole action is

S ¼ 1

2πα0

Z
d2σ

ffiffiffiffiffiffi
−h

p
hab

∂au∂bv
j1 − uvj : ð67Þ

This differs from the old 2D black hole action by the
absolute value sign, and includes the antigravity region
uv > 1 just as in the four-dimensional case [11]. Despite
the extra sign, this model is an exact CFT on the world
sheet, as can be argued in the same way following Eq. (53).
Properties of the new 2D black hole, including the related
dilaton and all orders of quantum corrections in powers of
α0, will be investigated in detail in a separate paper [22].

VI. STRING FIELD THEORY
WITH ANTIGRAVITY

In the neighborhood of the gravity/antigravity transition,
which occurs typically at a gravitational singularity, a
proper understanding of the physics would be incomplete
without the input of quantum gravity that may possibly
contribute large quantum effects. How should we estimate
the effects of quantum gravity?
We first point out that attempting to use an effective low-

energy field theory that includes higher powers of curva-
ture, such as those computed from string theory, is the
wrong approach. Higher powers of curvature capture
approximations to quantum gravity that are valid at
momenta much smaller than the Planck scale; those cannot
be used to investigate the phenomena of interest that are at
the Planck scale close to the singularity. For investigating
the gravity/antigravity transition more closely, we do not
see an alternative to using directly an appropriate theory of
quantum gravity that can incorporate the geodesically
complete spacetime that includes both gravity and anti-
gravity regions. Hence, we first need to define the proper
theory of quantum gravity that is consistent with geodesic
completeness. As far as we know, this notion of quantum
gravity was first considered in Ref. [7].
Assuming that quantum string theory is a suitable

approach to quantum gravity, we outline here how string
field theory may be modified to take into account geodesic
completeness and the presence of an antigravity sector, so
that it can be used as a proper tool to answer the relevant
questions.
Open and closed string field theory (SFT) is a formalism

for computing string-string interactions, including those
that involve stringy gravitons. As in standard field
theory, in principle the SFT formalism is suitable for
both perturbative and nonperturbative computations.
Technically, SFT is hard to compute with, but it has the
advantage of being a self-consistent and conceptually
complete definition of quantum gravity and the interactions
with matter. It is therefore crucial to see how antigravity fits
in SFT, and therefore how the pertinent questions involving
antigravity can be addressed in a self-consistent manner.
In the context of SFT, gravitational and other back-

grounds in which strings propagate are incorporated
through the BRST operator Q that appears in the quadratic
part of the action [20]

Sopen ¼ Tr

�
1

2
AQAþ g

3
A⋆A⋆A

�
: ð68Þ

The complete SFT action must also include closed strings,
Sclosed. The supersymmetric versions of these may also be
considered. Here AðXÞ is the string field, the product ⋆
describes string joining or splitting, and the BRST operator
Q is given by
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Q ¼
Z

dσ
X
�
fc�T��ðXÞ þ b�c�∂c�g; ð69Þ

where ðb�; c�Þ are the Fadeev-Popov ghosts, which is a
device of “covariant quantization,” while T��ðXðσÞÞ is the
stress tensor for left/right-moving strings, associated with
any conformal field theory (CFT) on the world sheet that is
conformally exact at the quantum level.
The gravitational and other backgrounds, including a

dynamical tension that flips signs (i.e. incorporating anti-
gravity) of the type we discussed in the previous sections,
are included in the stress tensor T��ðXÞ. If these back-
grounds are not geodesically complete, we expect that the
SFT theory is incomplete, since even at the classical level
on the world sheet there would be string solutions that
would be incomplete, just like particle geodesics that would
be incomplete. Thus, for a geodesically complete SFT, we
need to make sure that T��ðXÞ belongs to a geodesically
complete world-sheet string model as described in the
previous section. Examples of such string models were
provided in Secs. VA and V B. Similarly, one can construct
many more geodesically complete backgrounds by
allowing the string tension to change sign at singularities
(and perhaps more generally) as long as the CFT con-
ditions, that amount to Q2 ¼ 0, are satisfied.
If the interactions in the SFT action (68) are neglected, we

do not expect dramatic effects due to the presence of
antigravity, since we have seen in the previous section that
the effect is only a time delay as compared to the complete
absence of antigravity [as in Secs. IVA, IV C and VA]. By
including the interactions either perturbatively or nonpertur-
batively, we can explore the effects of antigravity in the
context of the quantum theory. In the previous sections, we
have obtained a glimpse of the phenomena that could happen,
including particle (or string) production (as in Sec. IV E),
excitations of various string states (as in Sec. IVD), andmore
dramatic phenomena that remain to be explored.
From the discussion in the first part of Sec. VA, one may

gather that we are still in the process of addressing some
technicalities in the construction of the BRSToperator Q for
the simplemodel in that section. Sowe are not yet in a position
to perform explicit computations, but we hope we have
provided an outline of how onemay formulate an appropriate
theory to address and answer the relevant questions.
There may be alternative formalisms that could provide

answers more easily than SFT, and of course those should be
explored, but the advantage of SFT for being a conceptually
complete and self-consistent definition of the system, includ-
ing the presence of antigravity as outlined above, is likely to
remain as an important feature of this approach because of the
overall perspective that it provides.

VII. COMMENTS

We have argued that a fundamental theory that could
address the physical phenomena close to gravitational

singularities, either in the form of field theory or string
theory, is unlikely to be complete without incorporating
geodesic completeness. The Weyl symmetric approach to
the standard model coupled to gravity in Eq. (1), and the
similar treatment of string theory [7], generally solves this
problem and naturally requires that antigravity regions of
spacetime appear on the other side of gravitational singu-
larities as integral parts of the spacetime described by a
fundamental theory. There are other views that the notion of
spacetime may not even exist at the extremes close to
singularities. While acknowledging that there may be other
scenarios that are little understood at this time, we believe
that our concrete proposal merits further investigation.
While emphasizing that there are nicer Weyl gauges, we

have shown how gravitational theories and string theories
can be formulated in their traditional Einstein or string
frames to include effects of a Weyl symmetry that renders
them geodesically complete. A prediction of the Weyl
symmetry is to naturally include an antigravity region of
field space and spacetime that is geodesically connected to
the traditional gravity spacetime at gravitational singular-
ities. Precisely at the singularities that appear in the Einstein
or string frames, the gravitational constant or string tension
flips sign suddenly (but smoothly in nicer Weyl gauges). As
shown in Sec. II, this sign can be absorbed into a
redefinition of the metric in the Einstein or string frame,
ĝμν ¼ �g�μν, where ĝμν describes the spacetime in the union
of the gravity and antigravity regions. This definition of the
complete spacetime may then be used to perform compu-
tations in the geodesically complete theory.
The appearance of negative kinetic energy terms for

some degrees of freedom during antigravity was a source of
concern. The arguments presented here show that this was a
false alarm. We argued that unitarity is not an issue either in
gravity or antigravity and that negative energy does not
imply an instability of the theory as seen by observers in the
gravity region (namely, observers like us, analyzing the
Universe). We made this point by studying many simple
examples, and we showed that observers in the gravity
sector can deduce the existence and at least some properties
of antigravity.
We have thus eliminated the initial concerns regarding

unitarity or instability of the complete theory when there is an
antigravity sector with negative kinetic energy. We have also
demonstrated that there are very interesting physical phenom-
ena associated with antigravity that remain to be explored
concerning fundamental physics at the extremities of space-
time. These will have applications in cosmology as in
Refs. [1,7,10,12], and inblackholephysics as inRefs. [11,22].
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