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Real world quantum systems are open to perpetual influence from the wider environment. Quantum
gravitational fluctuations provide a most fundamental source of the environmental influence through their
universal interactions with all forms of energy and matter causing decoherence. This may have subtle
implications on precision laboratory experiments and astronomical observations and could limit the
ultimate capacities for quantum technologies prone to decoherence. To establish the essential physical
mechanism of decoherence under weak spacetime fluctuations, we carry out a sequence of analytical steps
utilizing the Dirac constraint quantization and gauge invariant influence functional techniques resulting in a
general master equation of a compact form that describes an open quantum gravitational system with
arbitrary bosonic fields. An initial application of the theory is illustrated by the implied quantum
gravitational dissipation of light as well as (non)relativistic massive or massless scalar particles. Related
effects could eventually lead to important physical consequences including those on a cosmological scale
and for a large number of correlated particles.

DOI: 10.1103/PhysRevD.93.044027

I. INTRODUCTION

Theories of gravitational decoherence have become
increasingly important in the study of quantum systems,
as gravitation can never be turned off. The ever more
accurate quantum measurements may, therefore, be holding
out the prospects of probing new physics normally attached
to Planck-scale physics and quantum cosmology [1,2].
Decoherence plays a central role in quantum-to-classical
transition, a main question in the foundation of quantum
mechanics, through unavoidable entanglements between
the quantum system and the environment, leading to the
loss of coherence between the system’s superposition states
and, hence, the appearance of a classical mixture [3,4].
Gravitationally induced decoherence could, therefore, set a
limit for precision measurements and astronomical obser-
vations providing a strong motivation to investigate its full
nature and detailed mechanisms [5–10].
The issue of decoherence due to gravity has been

investigated in terms of two different classes of models.
First, intrinsic or fundamental decoherence [11] suggests a
new process intrinsic to all quantum systems, whereby
decoherence occurs through spontaneous wave function
collapse, typically involving modifications of Schrödinger’s
equation [12,13]. In particular, it has been proposed
that gravity can be the cause of this wave function collapse
[14–19]. Second, environmentally induced decoherence
refers to the influence of the environment on a quantum
system through their interaction, leading to the destruction of
superposition states. There have been a number of approaches
to environmental gravitational decoherence in the recent

literature, with various sources of decoherence, including
semiclassical metric fluctuations [9,10,20,21], quantized
Newtonian gravity [22], gravitational time dilation [23] and
thermal spacetime foam [24].Decoherence due to low-energy
gravity has also been studied in [25–27]. While these two
classes of decoherence are fundamentally different, it is
interesting to seek justifications for some of the prescriptions
of intrinsic decoherence from gravitational decoherence on
phenomenological grounds [28].
Quantum fluctuation phenomena such as the Lamb shift,

Casimir effect, and spontaneous emission have been crucial
in the development and interpretation of QED and the
quantum theory as a whole [3,4,29]. Decoherence due to
electromagnetic fluctuations as a potential new quantum
vacuum effect has long attracted attention with pioneering
analysis reported in [30]. Theoretically, spacetime fluctua-
tions must also exist due to the quantization of the metric
field [31,32], though details may vary with presently
uncertain theories of quantum gravity. In the linearized
approximation of gravity, one hopes to draw valuable
analogy with QED despite differences in certain details.
For example, gravitational vacuum could not be easily
modified for testing as with the electromagnetic vacuum
using small plates suggested in [30].
Metric fluctuations can be passively induced by the

quantum fluctuations of matter fields, with a significant
amount of work already done [33]. Treating spacetime itself
as a noisy environment involves active metric fluctuations
originating from the quantum nature of the true gravitational
degrees of freedom [34], which we will investigate through
gravitational decoherence. Here we focus on the active
quantum environmental metric fluctuations without using
semiclassical stochastic approximations.
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Through previous works, substantial increase of under-
standing and demonstration of a broad range of possible
important and novel gravitational effects have been
achieved. To advance forward, however, a conceptually
clear and mathematically tractable theoretical description is
in order, providing at one’s disposal a framework and tools
readily adapted to the analysis of gravitational decoherence
in such fields as quantum computing, dynamics, informa-
tion, gravity, metrology, and optics. The required theory
should be able to model known forms of matter and
arbitrary number of particles yet free from particular
reference frames, so that such restrictions to varied degrees
experienced by previous approaches may be circumvented.
For expected weak gravitational decoherence, these
requirements could be achieved using a Lorentz and gauge
invariant quantum field theoretical description.
In this paper we set out to construct ab initio a generic

gravitational master equation with minimal assumptions.
Environmental gravitational decoherence preserving gauge
invariance is addressed using Dirac quantization [35] and
an influence functional technique in the framework of open
quantum systems [21,23,25,36]. The resulting master
equation is reported for general bosonic fields. We con-
clude with remarks and interpretations of this master
equation and illustrate its application in the quantum
dissipations of photons and scalar particles, in relativistic
and nonrelativistic regimes.
Unless otherwise noted, we adopt units with unity speed

of lightc ¼ 1preservingother constants includingNewton’s
G, Planck’s ℏ, and Boltzmann’s kB. Commutators,
anticommutators, and Poisson brackets are denoted by
½·; ·�; f·; ·g, and f·; ·gP, respectively. Spacetime and spatial
coordinates are labeled by greek and latin letters starting
from0 (for time) and 1, respectively. Summing over repeated
coordinate and polarization indices is implied. Spacetime
coordinates (xμ) are sometimes denoted by (x, t) or simply
(x). In terms of the background Minkowski metric ημν ¼
diagð−1; 1; 1; 1Þ used to shift indices, and metric perturba-
tion hμν, the spacetime metric follows from standard
linearized gravity notation as gμν ¼ ημν þ hμν.

II. QUANTIZATION OF LINEARIZED GRAVITY
WITH MATTER

Let us start from the total Lorentz invariant Lagrangian
density L ¼ Lg þ Lφ in terms of Lg ¼ R=κ with κ ¼
16πG and quadratic scalar curvature R for linearized
gravity and Lφ depending on a (multiple-component)
bosonic field φ and up to linear terms in the metric
perturbation hμν. Denoting differentiation with a comma,
the metric perturbation undergoes the gauge transformation
hμν → hμν þ ξμ;ν þ ξν;μ derived from the coordinate trans-
formation xμ → xμ − ξμ with any small ξμ ¼ ðξ; ξiÞ.
To formulate a gauge- and, hence, coordinate-

ndependent description of quantum gravitational

decoherence, we invoke Dirac’s theory [35] of constrained
Hamiltonian systems and their quantization. The gauge
invariant description of free gravitons in vacuum using the
particle representation has been obtained in [37]. Here,
gauge invariant interactions with matter fields will be
further incorporated so as to account for their gravitational
decoherence. By virtue of a set of primary constraints, the
canonical variables of the metric are given by hij and their

conjugate momenta pij ¼ ∂Lg=∂ _hij, with an overdot
denoting the time derivative. The remaining h0μ become
Lagrangian multipliers n ¼ −h00=2 and ni ¼ h0i. The
corresponding first class Hamiltonian and momentum
constraints are given, respectively, by Cg ¼ ðhii;jj − hij;ijÞ=
κ, Cig ¼ −2pij;j. They enter into the extended Hamiltonian

for linearized gravity Hg ¼
R
Hgd3x with density

Hg ¼ pij
_hij − Lg. The linearized Einstein tensor Gμν can

be expressed as

G00 ¼ −
κ

2
Cg; G0i ¼ −

κ

2
Cig;

Gij ¼ κ½ _pij − fpij; HggP�: ð1Þ
In canonical general relativity, the Hamiltonian Hφ ¼R
Hφd3x of the field φ with conjugate momentum ϖ has

the density of the ADM form [38] Hφ ¼ NCφðφ;ϖ; gklÞ þ
NiCiφðφ;ϖ; gklÞ where N is the lapse function, and Ni is the
shift vector with functions Cφ and Ciφ independent of the
derivatives of gkl as the matter part of the Hamiltonian and
momentum constraints, respectively.
To proceed, Hφ is linearized by using N ¼ 1þ n,

Ni ¼ ni, and gij ¼ ηij þ hij and keeping up to linear order
of n, ni, and hij. This yields Hφ ¼ HS þHI where HS ¼
Cφjh¼0 gives the Minkowski Hamiltonian HS ¼

R
HSd3x

describing the reduced system and the interaction
Hamiltonian density

HI ¼ −
1

2
hμνTμν ð2Þ

for gravitational couplings of this system, involving the
Minkowski stress-energy tensor

T00 ¼ Cφjh¼0; T0i ¼ −Ciφjh¼0;

Tij ¼ −2∂Cφ=∂gijjh¼0
: ð3Þ

Importantly, the gauge invariance of the interaction
Hamiltonian HI ¼

R
HId3x follows from the conservation

law ∂μTμν ¼ 0 also required by the linearized Einstein
equation.
Subsequently, gauge transformations of canonical

variables of the gravity-matter system are equivalent to
canonical transformations generated by the smeared con-
straint C ¼ R ðξC þ ξiCiÞd3x using the total Hamiltonian
and momentum constraints
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C ¼ Cg þ Cφ; Ci ¼ Cig þ Ciφ ð4Þ

entering the total Hamiltonian H ¼ Hg þHφ. Using (1)
and (3) we see that, respectively, the (00) and (0i)
components of the linearized Einstein equation

Gμν ¼
κ

2
Tμν ð5Þ

are equivalent to C ¼ 0 and Ci ¼ 0 with the remaining
satisfied by the canonical field equations for hij and pij.
On Dirac quantization in the Heisenberg picture, fields

hij, φ, and their momenta become operators satisfying the
corresponding canonical commutation relations. They
evolve according to the Heisenberg equations

_hij ¼ −
i
ℏ
½hij; H�; _pij ¼ −

i
ℏ
½pij; H�; ð6Þ

_φ ¼ −
i
ℏ
½φ; H�; _ϖ ¼ −

i
ℏ
½ϖ; H� ð7Þ

using the operator form of H. The operator forms of
constraints C and Ci with consistent factor ordering become
quantum generators of gauge transformation requiring
physical states jψi to be gauge invariant by satisfying

Cjψi ¼ 0; Cijψi ¼ 0: ð8Þ

The equations in (6) can be shown to be fully equivalent
to the (ij) components of (5) as quantized operator
equations. Moreover, let us consider only gauge invariant
states jψi satisfying (8) and use them to evaluate
matrix elements of operators. In this sense, the quantum
evolution of the total system is determined by the matter
Heisenberg equations (7) and the quantized Einstein
equation (5).
Because of gauge redundances, supplementary relations,

which may be called quantum gauge conditions, can be
applied to field operators to isolate dynamical degrees of
freedom. Different from the usual gauge fixing by setting
constraints to zero classically already, however, we reserve
the freedom to change gauge that can be generated by the
constraint operators. To this end, we apply the operator
Lorenz condition h̄μν;ν ¼ 0, with an overbar denoting trace
reversion. The quantum Einstein equation then reduces
from the form of (5) to

hμν;αα ¼ −κT̄μν: ð9Þ

The solution to the above naturally separates into
hμν ¼ uμν þ γμν in terms of the retarded potential

uμνðx; tÞ ¼
κ

4π

Z
d3x0

T̄μνðx0; t − jx − x0jÞ
jx − x0j ð10Þ

augmented by any boundary terms, and γμν satisfying the
homogeneous part of (9). It is then cast into a transverse-
traceless (TT) form γμν ¼ γTTμν with a Lorenz-preserving
coordinate transformation. Clearly, γij carries the dynami-
cal degrees of freedom of gravity satisfying the operator
wave equation γij;00 − γij;kk ¼ 0.
Using (10), the orthogonality of the TT decomposition

[39], and the densities

U ¼ −
κ

8π

Z
d3x0

Tμνðx; tÞT̄μνðx0; t − jx − x0jÞ
jx − x0j ð11Þ

and

W ¼ −
1

2
γijτij; ð12Þ

we can split HI ¼ U þW, where U ¼ R
Ud3x arises from

self-gravity and W ¼ R
Wd3x in terms of the TT stress

tensor τij ¼ TTT
ij which describes the actual environmental

coupling with the gravitational wave field γij. The operator
wave equation for γij is solved by

γijðxÞ ¼
Z

d3k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κℏ

2ð2πÞ3k

s
gλke

λ
ijðkÞeikx þ H:c:; ð13Þ

where kx ¼ k · x − ωt with ω ¼ k ¼ jkj, eλijðkÞ are
basis TT tensors relative to k with two polarizations
λ ¼ 1, 2, and H.c. signifies the Hermitian conjugate.
They are normalized with eλijðkÞeλklðkÞ ¼ 2PijklðkÞ using
the TT projector Pijkl ¼ ðPikPjl þ PilPjk − PijPklÞ=2 in
terms of the transverse projector Pij. The canonical

commutation relations for gravity then require ½gλk; gλ
0†
k0 � ¼

δλλ0δ
3ðk; k0Þ; ½gλ†k ; gλ

0†
k0 � ¼ ½gλk; gλ

0
k0 � ¼ 0, which after some

calculations allows the normal-ordered gravitational
Hamiltonian to take the canonical form:

Hg ¼
Z

d3kℏkgλ†k g
λ
k: ð14Þ

Consequently, the properties of gravitons are analogous to
photons, with gλ†k and gλk as creation and annihilation
operators for gravitons. The gauge invariance of graviton
states such as jψi ¼ gλ†k j0i follows from that of the TT
metric perturbation, implying γij commutes with C and Ci,
thereby (8) is satisfied.

III. DERIVATION OF THE GENERAL
GRAVITATIONAL MASTER EQUATION

Interactions with the gravitational environment will lead
to nonunitary dynamics of the reduced matter system that
can be treated as an open quantum system described by a
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total Hamiltonian of the form H ¼ HS þHI þHB. Such
an open quantum gravitational system emerges unambig-
uously from the present matter-gravity Hamiltonian
H ¼ Hφ þHg through Hφ ¼ HS þHI derived earlier
and now completed with the bath Hamiltonian HB ¼ Hg
specified in (14). That H is gauge invariant follows from
the gauge invariant constructions of HS, HI , and HB. By
tracing out the environment degrees of freedom from the
total density matrix ϱ, we obtain the equation of motion for
the reduced density matrix ρ. For this purpose, it is useful to
switch over to the interaction picture where HI generates
the time evolution of quantum states. We then turn to the
Liouville–von Neumann equation describing the total
evolution

_ϱðtÞ ¼
Z

d3xℒHI
ðxÞϱðtÞ ð15Þ

using the Liouville superoperator notation so that ℒAB ¼
−ði=ℏÞ½A; B� for operators A and B.
At an initial time conveniently set to t ¼ 0, the total

system takes a separable form ϱð0Þ ¼ ρð0Þ ⊗ ρB where ρB
describes the gravitational thermal bath assumed to be
unaffected by its weak coupling to matter, though matter
dynamically develops entanglements with gravity. Based
on (11) and (12), the iterative solution of (15), after
applying a partial trace trB over the bath, is given by

ρðtÞ ¼ T τ

�
exp

�Z
t

0

d4x0ℒUðx0Þ
�

× trB

�
T γ exp

�Z
t

0

d4x0ℒWðx0Þ
�
ϱð0Þ

��
ð16Þ

using time ordering T ¼ T γT τ for the graviton field γij
and TT stress tensor τij, respectively, as the two sets
commute. The second factor of (16) is evaluated using

T γ exp

�Z
t

0

d4x0ℒWðx0Þ
�

¼ exp

�
1

2

Z
t

0

d4x0
Z

t

0

d4x00½ℒWðx0Þ;ℒWðx00Þ�Hðt0 − t00Þ�

× exp

�Z
t

0

d4xℒWðx0Þ
�

ð17Þ

with the Heaviside function HðtÞ.
In analogy with the QED theory with a linear field

dependence of the interaction Hamiltonian, here the gravi-
tational bath state is also assumed to be Gaussian [40].
In particular, it is physically reasonable to assume the
gravitational environment to be in thermal equilibrium
having a Planck distribution NðωÞ ¼ 1=ðeℏω=kBT − 1Þ of
gravitons with frequency ω at temperature T.
Using the ensemble average over bath h·iB, the influence

functional can then be written as a cumulant expansion [36]

for (17) which vanishes after the second order [41] such
that

trB

�
exp

�Z
t

0

d4x0ℒWðx0Þ
�
ρð0Þ

�

¼ exp

�
1

2

Z
t

0

d4x0
Z

t

0

d4x00hℒWðx0ÞℒWðx00ÞiB
�
ρð0Þ:

ð18Þ
Substituting the expansion of (18) into (16), and using the
dissipation DðxÞ and noise N ðxÞ kernels satisfying

½γijðxÞ; γklðx0Þ� ¼ 2iκℏPijklDðx − x0Þ;
hfγijðxÞ; γklðx0ÞgiB ¼ 2κℏPijklN ðx − x0Þ;

we see that, after a lengthy calculation, the reduced density
matrix takes the form ρðtÞ ¼ T τeiΦρð0Þ, using the gravi-
tational influence phase functional Φ so that

iΦρ ¼
Z

t

0

d4xℒUðxÞρ −
κ

4ℏ

Z
t

0

d4x0
Z

t

0

d4x00

× fiDðx0 − x00Þ½τijðx0Þ; fτijðx00Þ; ρg�
þN ðx0 − x00Þ½τijðx0Þ; ½τijðx00Þ; ρ��g: ð19Þ

Using the integrals τijðk; tÞ ¼
R
d3xτijðx; tÞe−ik·x and

~τijðk; tÞ ¼
R
t
0 dt

0τijðk; t0Þe−ikðt−t0Þ, we obtain with some
more algebra the following exact nonlocal relation that
the time derivative of the above ρðtÞ satisfies:

_ρðtÞ ¼ −
i
ℏ
½U; ρðtÞ�

−
8πG
ℏ

Z
d3k

2ð2πÞ3k f½τ
†
ijðk; tÞ; ~τijðk; tÞρðtÞ�

þ NðkÞ½τ†ijðk; tÞ; ½~τijðk; tÞ; ρðtÞ�� þ H:c:g; ð20Þ

which is the sought master equation for a matter system
subject to weak spacetime fluctuations described by
linearized general relativity.
The consistency with gravitational gauge invariance is

ensured by the use of gauge invariant operators and states in
(20). The first term of this equation is due to the passive self-
gravity of matter and retains unitary quantum nature. The
second term of (20) has nonunitary characteristics and,
therefore, can induce decoherence and dissipation. In turn,
this dissipator consists of the vacuum contribution indepen-
dent of temperature due to zero-point spacetime fluctua-
tions. The other term, proportional to the Planck distribution
NðkÞ of environmental gravitons, is the thermal contribution
to quantum gravitational decoherence and dissipation.
The present formalism is applicable for general bosonic

fields since their gravitational interactions do not involve
derivatives of the metric. An extended description to
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accommodate fermions without this simplifying restriction
is a subject for future work. As with standard open quantum
systems [36], the reduced matter system is understood in
the sense of effective quantum field theory up to a UV
cutoff scale Ω due to its physical preparation and phe-
nomenological constraints [36]. This cutoff need not
violate Lorentz invariance as it is defined relative to the
center of mass of the system. Such a system is said to be in
a dressed state [42] with particle modes above the Ω scale
contributing to nondissipative renormalization of physical
parameters through vacuum polarizations. Therefore, the
vacuum contribution of the master equation (20) is subject
to cutoff Ω.
While some authors argue that Ω may well turn out to be

zero, diminishing completely decoherence due to vacuum
fluctuations [43], other authors consider the cutoff value to
depend on the specific environment [44]. For gravitational
decoherence, without the availability of full quantum
gravity theory, we tentatively adopt a phenomenological
approach that Ω should not exceed the available energy
scale of the reduced matter system. This is consistent with
the Compton cutoff for nonrelativitic particles [21,27,36].
Furthermore, for relativistic and massless particles, the
cutoff should not exceed the maximum energy of their
source.
For a bound matter system, additional approximations

may be applied to (20), e.g., Born, Markov, and rotating
wave approximations in the optical limits, given justified
time scales. We defer these investigations though they
could bear significant physical consequences. For
an unbound system such as free particles, the master
equation (20) describes their quantum Brownian motion
and the resulting decoherence and dissipation due to
spacetime fluctuations.

IV. DISCUSSIONS

Formulating a gravitational master equation has been a
subject of some substantial investigations. See, e.g.,
[25,27,45] and many related references therein. For envi-
ronmentally induced decoherence, simple forms of matter
such as scalar fields or point masses coupled to gauge-fixed
gravitational fields, with applications in the nonrelativistic
regimes, have been commonly used in these previous
works. In contrast, Eq. (20) is free from these restrictions.
The master equation in [26] based on a scalar field,
incorporates both vacuum and thermal gravitational fluc-
tuations and can, in principle, be applied to relativistic
domains as with Eq. (20). However, the gravitational fields
considered there are gauge fixed and account only for
graviton effects. Our approach encompasses the full
decomposition of gravity including consistently self-
gravity associated with general bosonic fields. It provides
a general theory beyond other influence functional models
such as [21,24] based on simplified stochastic noise models
with Markovian assumptions.

The versatility of Eq. (20) allows one to probe a range of
gravitational fluctuation scenarios including those due to
vacuum fluctuations, subject to a cutoff Ω discussed above,
as suggested by a number of authors including [26,27]. As
an illustrative example, let us consider light from an
incoherent source like a star emitting photons up to a
maximum frequency ω�, which will be regarded as the
maximum cutoff. Though (20) is amenable to indefinite
particle numbers, for simplicity, let us treat the light system
to consist of one-photon states jk; λi with λ ¼ 1, 2 and
wave vector k for k ≤ k� relative to the light source. The
matrix elements of the normal-ordered TT Maxwell stress
tensor are calculated to be

hk1;λjτijðk;tÞjk2;σi¼−ℏδ3ðk2−k1−kÞ
×PijklðkÞ

ffiffiffiffiffiffiffiffiffi
k1k2

p
Eλσ
kl ðk1;k2Þeiðk1−k2Þt;

where Eλσ
ij ðk; k0Þ ¼ eλi ðkÞeσj ðk0Þ þ ϵλλ0ϵσσ0eλ

0
i ðkÞeσ0j ðk0Þ

using the polarization vectors eλi ðkÞ normalized with
eλi ðkÞeλjðkÞ ¼ PijðkÞ. In this simple example, let us neglect
self-gravity and take zero temperature. Using photon states
with incoherent polarizations so that hk; λjρðtÞjk; σi ¼
ρðk; tÞδλσ=2, we obtain the decoupled diagonal part of
(20) as follows:

_ρðk; tÞ ¼ −8πGℏ
Z

d3k0kk0Hðk� − k0Þ
2ð2πÞ3jk0 − kj Pijklðk0 − kÞ

× ðEλσ
ij E

λσ
kl Þðk; k0Þ

�
sin χt
χ

ρðk; tÞ − sin χ0t
χ0

ρðk0; tÞ
�
;

ð21Þ

where χ ¼ jk0 − kj þ k0 − k, χ0 ¼ jk0 − kj − k0 þ k. The
conservation of total probability

R
d3kHðk�−kÞρðk;tÞ¼1

is clearly preserved owing to the symmetry between k and
k0 in the integrand of (21).
It is instructive to observe how the initial profile of

ρðk; tÞ affects its dissipation rate over the initial period of
0 < t < 1=k�. First we note that for a flat spectrum with
constant ρðk; 0Þ, we see immediately ð_ρ=ρÞðk; 0Þ ≈ 0,
which is to be expected as it represents a completely
dissipated state in vacuum at zero temperature. We then
consider a narrow band spectrum that peaks around the
maximum momentum k�. As an order-of-magnitude esti-
mate, we find after evaluating (21) that the corresponding
initial dissipation rate with the speed of light c restored is
given by

−ð_ρ=ρÞðk�; 0Þ≲ t2Pω
3� ð22Þ

in terms of the Planck time tP and photon frequency
ω� ¼ ck�. A similar estimate for a massive scalar satisfying
the dispersion relation ω2 ¼ c2ðk2 þ μ2Þ with a mass
parameter μ ≥ 0 yields
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−ð_ρ=ρÞðk�; 0Þ≲ c3t2Pk
4�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2� þ μ2
p ; ð23Þ

showing a quartic momentum dependence of the initial
quantum gravitational dissipation for a nonrelativistic
particle tending to a cubic dependence as in (22), when
it becomes relativistic or indeed massless.
As a relatively simple application of the master

equation (20), the potential size of effects in (22) and
(23) is unsurprisingly small on typical laboratory scales.
Since the possible dressing of states due to gravitational
quantum vacuum could partially or fully suppress vacuum
dissipation, inequalities (22) and (23) serve as a possible
upper bound that may guide future work. Nonetheless, their
origins in quantum gravity are significant. Similar quantum

effects are known to be collectively amplified with a large
number of correlated and identical particles [46], which
may lead to observational implications of the quantum
gravitational dissipation of starlight. Further development
of this work may be relevant for addressing the emergence
of the classical behavior of spacetime and the origin of the
initial perturbations in cosmology [2] and in relativistic
astrophysics [47].
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