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We studyquasinormalmodes of blackholes inLovelock gravity.We formulate theWKBmethod adapted to
Lovelock gravity for the calculation of quasinormal frequencies (QNFs). As a demonstration, we calculate
variousQNFs of Lovelock black holes in seven and eight dimensions.We find that theQNFs show remarkable
features depending on the coefficients of the Lovelock terms, the species of perturbations, and spacetime
dimensions. In the case of the scalar field, when we increase the coefficient of the third order Lovelock term,
the real part ofQNFs increases, but the decay rate becomes small irrespective of themass of the black hole. For
small black holes, the decay rate ceases to depend on the Gauss-Bonnet term. In the case of tensor type
perturbations of themetric field, the tendency of the real part ofQNFs is opposite to that of the scalar field. The
QNFs of vector type perturbations of the metric show no particular behavior. The behavior of QNFs of the
scalar type perturbations of the metric field is similar to the vector type. However, available data are rather
sparse, which indicates that the WKB method is not applicable to many models for this sector.
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I. INTRODUCTION

According to the large extra-dimension scenario, there
exists a chance for higher dimensional black holes to be
created at the LHC [1,2]. Hence, the higher dimensional
black holes have been intensively investigated. It should be
noted that the Einstein theory of gravity is not the most
general one in higher dimensions. In four dimensions, the
Einstein gravity can be deduced by assuming the general
coordinate covariance and the absence of higher derivative
terms larger than the second order in the Lagrangian. In
higher dimensions, however, the same assumptions lead to
Lovelock theory of gravity [3]. In addition to this math-
ematical motivation, we have a physical motivation to
consider Lovelock gravity. In fact, at the energy scale of
black hole production, the Einstein gravity is not reliable
any more. It is widely believed that string theory is valid at
the fundamental scale. Remarkably, string theory can be
consistently formulated only in ten dimensions. As is well
known, string theory reduces to Einstein gravity in the low
energy limit. In string theory, however, there are higher
curvature corrections in addition to the Einstein-Hilbert
term. Thus, it is natural to extend Einstein gravity into those
with higher power of curvature in higher dimensions. It is
Lovelock gravity that belongs to such class of theories. In
Lovelock gravity, it is known that there exist static spheri-
cally symmetric black holes [4–6]. Hence, it is reasonable to
suppose black holes produced at the LHC are of this type.
In five or six dimensions, the Lovelock gravity reduces

to the so-called Gauss-Bonnet gravity which has static and
spherically symmetric black hole solutions [4–6]. The
stability analysis of Gauss-Bonnet black holes under scalar,

vector, and tensor perturbations has been performed [7–9].
It is shown that there exists the scalar mode instability in
five dimensions, the tensor mode instability in six dimen-
sions, and no instability in other dimensions [10]. In more
than six dimensions, however, we need to consider more
general Lovelock gravity. For example, when we consider
ten dimensional black holes, we need to incorporate the
third and fourth order Lovelock terms into the action.
Indeed, when we consider black holes at the LHC, it is
important to consider these higher order Lovelock terms.
The stability of black holes in any order Lovelock gravity
has been studied [11–15]. It turned out that small black
holes are unstable in any dimensions.
In order to understand properties of black holes in

Lovelock gravity, it is important to study quasinormal
modes of black holes. The quasinormal frequencies (QNFs)
of Gauss-Bonnet gravity have already been investigated
[16–18]. Thus, the aim of this paper is to calculate QNFs of
the stable large black holes in Lovelock gravity using the
WKB method [19,20]. The QNFs of Lovelock black holes
have been calculated for the special background [21–23].
Since the metric is analytically known for such cases, there
is no difficulty in using the WKB-method for obtaining
QNFs. In general, however, a problem arises because the
metric of the black hole is only implicitly given by an
algebraic equation. Hence, the primary aim of this paper is
to give a general formalism to calculate QNFs of black
holes in Lovelock gravity. The other purpose of this paper
is to calculate QNFs of Lovelock black holes in seven and
eight dimensions and reveal effects of higher order
Lovelock terms on QNFs.
The organization of the paper is as follows. In Sec. II, we

introduce Lovelock gravity and Lovelock black holes. In
Sec. III, we review the perturbation theory of Lovelock
black holes. In Sec. IV, we explain the WKB method for
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obtaining QNFs. There, we propose a novel method
adapted to Lovelock gravity for calculating QNFs. Then,
we present numerical results and extract many interesting
features from the results. The final section is devoted to the
conclusion.

II. BLACK HOLES IN LOVELOCK GRAVITY

In this section, we briefly review Lovelock gravity in
higher dimensions [3] and derive static black hole solutions
determined by an algebraic equation.
Lovelock gravity is characterized by the general coor-

dinate covariance and the absence of terms with higher than
the second order derivatives in the equations of motion. The
Lagrangian satisfying these properties can be constructed
from mth Lovelock terms LðmÞ defined by the product of
Riemann tensors

LðmÞ ≡ δλ1σ1���λmσmρ1κ1���ρmκmR
ρ1κ1

λ1σ1 � � �Rρmκm
λmσm; ð1Þ

where we used the totally antisymmetric Kronecker delta

δ
λ1���λp
ρ1���ρp ≡

�����������

δλ1κ1 δλ2κ1 � � � δ
λp
κ1

δλ1κ2 δλ2κ2 � � � δ
λp
κ2

..

. ..
. . .

. ..
.

δλ1κp δλ2κp � � � δ
λp
κp

�����������
: ð2Þ

In D-dimensions, Lagrangian density LD is written by

LD ≡ −2Λþ
Xk
m¼1

am
m · 2mþ1

LðmÞ; ð3Þ

where Λ is a cosmological constant, am represents the
coupling constants of Lovelock gravity and k is a parameter
defined by

k≡
�
D − 1

2

�
: ð4Þ

This Lagrangian is called the Lovelock Lagrangian. We can
set a1 ¼ 1 without losing generality. The action obviously
has the general coordinate invariance. It is also straightfor-
ward to see the absence of higher derivative terms larger
than the second order derivatives. Performing the variation
with respect to the metric, we obtain the Lovelock tensor
GD ν
μ defined as

GD ν
μ ¼Λδνμ−

Xk
m¼1

am
m ·2mþ1

δνλ1σ1���λmσmμρ1κ1���ρmκmR
ρ1κ1

λ1σ1 � � �Rρmκm
λmσm;

ð5Þ

where we used the Bianchi identity to eliminate the terms
with derivative of the Riemann tensor. This tensor is equal

to the Einstein tensor in D ¼ 4 and the Einstein-Gauss-
Bonnet tensor in D ¼ 5, 6. Thus, Lovelock theory can be
regarded as a natural generalization of Einstein theory.
It is known that there exist static black hole solutions in

Lovelock gravity [4–6]. To obtain the solutions, we put an
ansatz

ds2¼gμνdxμdxν¼−fðrÞdt2þ 1

fðrÞdr
2þr2γijdxidxj; ð6Þ

where γij is the metric of the sphere in n≡D − 2
dimensions. Using this ansatz, we can calculate the
Lovelock tensor which must be zero in vacuum. It is
convenient to define a new variable ψðrÞ as

ψðrÞ ¼ 1 − fðrÞ
r2

: ð7Þ

Then, we can integrate equations of motion and obtain

PðψÞ ¼ M
rnþ1

; ð8Þ

where the polynomial PðψÞ is defined as

PðψÞ¼
8<
:
ψ − 2Λ

nðnþ1Þ ðk¼ 1Þ;
P

k
q¼2

�
aq
Q

2q−2
p¼1

ðn−pÞ
q ψq

�
þψ − 2Λ

nðnþ1Þ ðk≥ 2Þ:

ð9Þ

Here, M is related to ADM mass of black hole as follows:

M≡ Γðnþ1
2
Þ

2π
nþ1
2

MADM: ð10Þ

In this paper, we will focus on the asymptotically flat
spacetime. To realize the asymptotically flat spacetime, we
set Λ ¼ 0 and am > 0 for all m. Thus, PðψÞ becomes a
monotonically increasing function of ψ with zero at ψ ¼ 0.
Since ψ ¼ 0 is achieved at r ¼ ∞, we can realize asymp-
totically flat spacetime with this setup. It should be stressed
that Eq. (8) implicitly define ψðrÞ, namely, the metric
function fðrÞ. In other words, we cannot obtain the metric
in an analytic form in general.

III. MASTER EQUATIONS

In the previous section, we have presented black hole
solutions in Lovelock gravity. Now, we consider a scalar
field on this spacetime and linear metric perturbations
around this background spacetime. We show that there
exists a master equation in any case.
The master equation is an equation for the master

variable by which all other components of the metric
can be derived. In the case of the scalar field, the master
equation is nothing but the Klein-Gordon equation. In the
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case of metric perturbations, one can also obtain the master
equations. The explicit relation between the master variable
and the other metric components can be found in [13].
Once we obtain the master equations which are sepa-

rable, we can analyze the stability of black holes and
calculate QNFs of black holes. Since we are considering
static background, the time-dependence of the fields can be
separated by the factor

e−iωt: ð11Þ

Moreover, due to the spherical symmetry, angular depend-
ence of the master variable can be separated by using
harmonics on the sphere. Thus, the master equation can be
reduced to the Schrödinger type equation for the radial
direction as

d2ΦðxÞ
dx2

þ ½ω2 − VðxÞ�ΦðxÞ ¼ 0; ð12Þ

where we have defined the tortoise coordinate x as follows:

dx
dr

¼ 1

fðrÞ ; ð13Þ

For quasinormal mode analysis, the shape of the effec-
tive potential VðxÞ is our main objective. In the rest of this
section, we write down the various effective potentials we
will use in this paper.

A. Effective potential of scalar field

As we mentioned, the master equation of a scalar field is
the Klein-Gordon equation. The Klein-Gordon equation
with the mass μ in curved spacetime reads

½∇μ∇μ − μ2�ϕðt; r;ΩÞ ¼ 0; ð14Þ

where Ω represents the coordinates in a n-dimensional
sphere. The spectrum of spherical harmonics YL on a
n-dimensional sphere is given by

ΔYLðΩÞ ¼ −LðLþ n − 1ÞYLðΩÞ; ð15Þ

with an integer L ≥ 0. After separating variables, we obtain
the following equation

d2ΦðxÞ
dx2

þ
�
ω2 − fðrÞ

�
μ2 þ fðrÞ nðn − 2Þ

4r2
þ f0ðrÞ n

2r

þ LðLþ n − 1Þ
r2

��
ΦðxÞ ¼ 0: ð16Þ

Here, a prime represents a differentiation with respect to the
radial coordinate r. Therefore, in this case we get the
effective potential as follows:

VðrÞ ¼ fðrÞ
�
μ2 þ fðrÞ nðn − 2Þ

4r2
þ f0ðrÞ n

2r

þ LðLþ n − 1Þ
r2

�
: ð17Þ

B. Effective potential of metric perturbations

The metric perturbations in Lovelock gravity was fully
analyzed in [13]. There, the metric perturbations are
classified into tensor, vector, and scalar types according
to the symmetry on the sphere. Then, the master equations
for metric perturbations of tensor-, vector-, and scalar-type
have been derived. In this article, we simply use the
effective potentials obtained in [13]. In the following,
we use the functions TðrÞ and XðrÞ defined by

TðrÞ≡ rn−1∂ψPðψÞ; ð18Þ

XðrÞ≡ −2nfðrÞ þ 2LðLþ n − 1Þ þ nrf0ðrÞ
r

ffiffiffiffiffiffiffiffiffiffi
T 0ðrÞp : ð19Þ

For the absence of the ghost, we need to assume T 0ðrÞ > 0

for ∀r > 0. We call it the T 0-condition.

1. Tensor-type perturbations

The master equation for tensor type perturbations can be
written as

VtðrÞ ¼ fðrÞ
�

1

r
ffiffiffiffiffiffiffiffiffiffi
T 0ðrÞp ðfðrÞðr

ffiffiffiffiffiffiffiffiffiffi
T 0ðrÞ

p
Þ0Þ0

þ LðLþ n − 1Þ
ðn − 2Þ

1

r
ðlnT 0ðrÞÞ0

�
: ð20Þ

It is known that there exists the instability of small black
holes under tensor perturbations in even dimensions.

2. Vector-type perturbations

The master equation for vector perturbations reads

VvðrÞ ¼ fðrÞ
�
r

ffiffiffiffiffiffiffiffiffiffi
T 0ðrÞ

p �
fðrÞ

�
1

r
ffiffiffiffiffiffiffiffiffiffi
T 0ðrÞp �0�0

þ
�
LðLþ n − 1Þ − 1

n − 1
− 1

�
T 0ðrÞ
rTðrÞ

�
: ð21Þ

There exists no instability in this sector.

3. Scalar-type perturbations

Finally, the master equation for scalar perturbations takes
the following form
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VsðrÞ ¼ fðrÞ
�
2
LðLþ n − 1Þ

n
ðXðrÞTðrÞrÞ0
XðrÞTðrÞr2

−
1

XðrÞ ðfðrÞX
0ðrÞÞ0 þ 2fðrÞ

�
X0ðrÞ
XðrÞ

�
2

−
1

TðrÞ ðfðrÞT
0ðrÞÞ0 þ 2fðrÞ

�
T 0ðrÞ
TðrÞ

�
2

þ 2fðrÞX
0ðrÞT 0ðrÞ
XðrÞTðrÞ

�
: ð22Þ

In this case, it is also known that there exists the instability
of small black holes under scalar perturbations in odd
dimensions.
The Lovelock black holes are unstable in various ways.

The instability of black holes caused by the ghost is
characterized by the violation of the T 0-condition. As we
mentioned, there are other types of instability under tensor
and scalar type perturbations. The instability comes from the
negative region of the effective potential. For this class of
black holes, we cannot use the WKB method because this
method can be applicable to the positive definite effective
potential with single peak. In this paper, we calculate the
QNFs of stable black holes by excluding the cases with the
negative regions or with the multipeaks in the potential.

IV. QUASINORMAL MODES IN
LOVELOCK GRAVITY

In this section, we present a novel method for the
calculation of quasinormal modes in Lovelock gravity.
Quasinormal modes are fundamental vibration modes
around a black hole. These modes are obtained by solving
the master equation under the appropriate boundary con-
dition. The general formalism of calculating QNFs by using
WKB-approximation has been proposed by Schutz and
Will [19] and subsequently developed by many people
[20,24,25]. Here, we summarize the main points of the
WKB-method for QNFs.
In general, we can divide the region into two regions.

The region I (−∞ < x < x0) is the one ranging from top of
the effective potential x0 to the horizon of the black hole.
The region II (x0 < x < ∞) is the one ranging from top of
the potential x0 to the far outside of the black hole, i.e.,
infinity. The wave traveling to the potential is called an
ingoing wave and the wave traveling from the potential is
called an outgoing wave. In each region, the solutions of
the master equation can be expressed as�

ΦI ¼ Zin
I Φ

in
I þ Zout

I Φout
I ;

ΦII ¼ Zin
IIΦ

in
II þ Zout

II Φ
out
II ;

ð23Þ

where Φin and Φout represent ingoing and outgoing wave,
respectively. The boundary condition for obtaining quasi-
normal modes is that there are no ingoing waves:

Zin
I ¼ Zin

II ¼ 0: ð24Þ

Since there are two conditions, only discrete complex
eigenvalues are allowed.
In the Nth-order WKB-method, we approximate the

function QðxÞ defined by

QðxÞ≡ ω2 − VðxÞ ð25Þ

in terms of 2Nth-order Taylor expansion around the
maximum of the potential as follows;

dQðxÞ
dx

����
x¼x0

¼Qð1Þ
0 ¼ 0 and QðxÞ≃X2N

p¼0

1

p!
QðpÞ

0 ðx−x0Þp:

ð26Þ

Expressing the wave function using WKB-approximation,
we can calculate the scattering matrix. Thus, we can get the
formula for QNFs as

ω≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þ

ffiffiffiffiffiffiffiffi
Vð2Þ
0

2

s �
ntone þ

1

2
þ
XN−1

p¼0

Ωp

�vuuut ; ð27Þ

where VðpÞ
0 is the pth order derivative of the potential

VðpÞ
0 ≡ dpVðxÞ

dxp

����
x¼x0

; ð28Þ

and the first and the second of Ωp are given by

Ω1 ¼ −30
�
ntone þ

1

2

�
2

β1
2 þ 6β2

�
ntone þ

1

2

�
2

− 7=2β12 þ 3=2β2; ð29Þ

Ω2 ¼
�
ntone þ

1

2

�
3

ð−2820β14 þ 1800β1
2β2

− 280β1β3 − 68β2
2 þ 20β4Þ

þ
�
ntone þ

1

2

�
ð−1155β14 þ 918β1

2β2

− 190β1β3 − 67β2
2 þ 25β4Þ: ð30Þ

Here, βpðp ≥ 1Þ is defined as

βp ≡ Vðpþ2Þ
0

ðpþ 2Þ!
�

1

2Vð2Þ
0

�p
4
þ1

ð31Þ

The parameter, ntone, is called tone number of quasinormal
modes. This method is often called the Nth-order-WKB-
approximation. This time, we used the 3rd-order WKB
method. So we need Ω1 and Ω2. It is known that in the case
of ntone < L this approximation is good. So we focused on
the case ntone ¼ 0 in this paper.
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A. WKB method adapted to Lovelock gravity

Let us calculate QNFs of the fields in Lovelock gravity
semianalytically by using the WKB method. To use the
WKB method, we need to know the potential function and
hence the metric function fðrÞ. That is, we need to solve the
kth order algebraic equation (8) for ψðrÞ in terms of r.
Unfortunately, it is impossible to solve the algebraic
equation analytically for arbitrary dimensions. Thus, we
need to invent a novel method adapted to Lovelock gravity.
To circumvent this difficulty, we take the following

strategy. Instead of solving Eq. (8), we change the variable
from r to ψ using the relation

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
M
PðψÞ

nþ1

s
: ð32Þ

Thus,we are able to get the analytic representation offðψÞ as

f ¼ 1 − r2ψ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffi
M
PðψÞ

nþ1
2

s
ψ : ð33Þ

So, if we use this formulation, we will be able to calculate
QNFs of the static and spherically symmetric black holes in
Lovelock gravity.
Now, we check the range of ψ . We are considering the

static spherically symmetric black hole solutions with the
asymptotically flat region. When r goes to ∞, fðrÞ should
be 1 because of asymptotic flatness. Therefore, in the limit
r → ∞, we have

ψ → 0: ð34Þ
When r approaches the horizon, fðrÞ must vanish. Hence,
in this limit, we obtain�

PðψÞ
M

�
2

¼ ψnþ1: ð35Þ

There will be the unique real solution ψh of this equation
because we know PðψÞ is the monotonic increasing
function of ψ . To summarize, we obtained the relation
between r and ψ as follow:�

r∶ horizon ↔ ∞
ψ∶ ψh ↔ 0

: ð36Þ

In this region of ψ , we must find ψ0 which satisfy the
equation,

Vð1Þ
0 ¼ 0: ð37Þ

Once we find it, we can use the WKB method and calculate
QNFs of Lovelock black holes.
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FIG. 1. An example of good potentials.
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FIG. 2. Examples of bad potentials.
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B. Numerical results

In this subsection, we calculate the QNFs of Lovelock
black holes in seven and eight dimensions using the WKB
method adapted to Lovelock gravity.
From now on, we rewrite the parameters as

Aq ≡
8<
:

1 ðq ¼ 1Þ;
aq
Q

2q−2
p¼1

ðn−pÞ
q ðq ≥ 2Þ:

ð38Þ

We calculated the QNFs for various values of Aqðq ≥ 2Þ
using the third order WKB method. Note that we fixed the
Λ parameter to zero and considered a massless scalar field
(μ ¼ 0). We calculated QNFs only for the cases like in
Fig. 1. Namely, the potential is positive definite in the range
0 < ψ < ψh and has a single peak. For some parameters,

the effective potential has multipeaks or the negative region
(Fig. 2). We excluded these and the cases with ghost
instability from the calculation.
In Figs. 3–6, we plotted the various QNFs of various fields

in Lovelock black holes in seven and eight dimensions.
In Fig. 3, we plotted QNFs of the scalar field for the

massesM ¼ 10, 100, 1000 in seven and eight dimensions.
In the case of the scalar field, we took the lowest angular
parameter L ¼ 0. In each panel, we plotted a curve by
changing the coefficient A2 from 0 to 1.5 with the interval
of 0.05 for a fixed A3. Then, we repeated this by changing
A3 from 0 to 1.0 with the interval 0.1. The color of lines in
the figures tells us the value of A3. The most red color
corresponds to the A3 ¼ 0, and the most blue color
corresponds to the A3 ¼ 1.0. The edge of the curve (the

FIG. 3. The quasinormal mode diagram of scalar field L ¼ 0.
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point indicated by the arrow in the case of the red curve)
corresponds to A2 ¼ 0, and the other edge of the same
curve corresponds to A2 ¼ 1.5. So the QNFs of Einstein
gravity in seven and eight dimensions corresponds to the
edge of the most red curve indicated by the arrow. In the
case of the scalar field, the imaginary part of QNFs seems
to converge to a value as we decrease the mass. In other
words, the Gauss-Bonnet term ceases to be relevant. This
trend can be seen clearly in eight dimensions rather than
seven dimensions. It is also interesting to observe that the
pattern is rotating in clockwise.

In Fig. 4, we plotted QNFs of the tensor type perturbations
of the metric field for the masses M ¼ 50, 100, 1000 in
seven and eight dimensions. We have chosen L ¼ 2 in the
case of tensor type perturbations, which gives the positive
definite effective potential with single peak. In each panel, as
in the case of the scalar field, we plotted a curve by changing
the coefficient A2 from 0 to 1.5 with the interval of 0.05 for a
fixedA3. Then,we repeated this by changingA3 from0 to 1.0
with the interval 0.1. Themeaning of the arrow is the same as
the case of the scalar field. In the case of the tensor type of
metric perturbations,we can see there appears a turning point

FIG. 4. The quasinormal mode diagram of tensor perturbation in tensor field L ¼ 2.
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in the curve. In this case, initially, the blue curves are always
above the red ones irrespective of themass of black holes. As
we decrease the mass, the red curve becomes above the blue
one for some Gauss-Bonnet parameters.
In Fig. 5, we plotted QNFs of the vector type perturba-

tions of metric field for the masses M ¼ 10, 100, 1000 in
seven and eight dimensions. We have chosen L ¼ 10 in the
case of vector type perturbations, which gives the positive
definite effective potential with single peak. In each panel,
as in the case of the scalar field, we plotted a curve by
changing the coefficient A2 from 0 to 1.5 with the interval
of 0.05 for a fixed A3. Then, we again repeated this by

changing A3 from 0 to 1.0 with the interval 0.1. The
meaning of the arrow is the same as the previous cases. In
the case of vector type perturbations, there are no special
features, which might be related to the fact that there is no
instability in this sector. However, in this case, the red
curves are always above the blue curves.
In Fig. 6, we plotted QNFs of the scalar type perturba-

tions of the metric field for the massesM ¼ 10, 100, 1000
in seven and eight dimensions. We have chosen L ¼ 10 in
the case of scalar type perturbations, which gives the
positive definite effective potential with single peak. For
the masses M ¼ 100, 1000, as in the case of the scalar

FIG. 5. The quasinormal mode diagram of vector perturbation in tensor field L ¼ 10.
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field, we plotted a curve by changing the coefficient A2

with the interval of 0.05 for a fixed A3. Then, we repeated
this by changing A3 from 0 to 1.0 with the interval 0.1.
However, for the masses M ¼ 10, we repeated this by
changing A3 from 0 to 0.3 with the interval 0.1 in seven
dimensions and from 0 to 0.2 with the same interval in eight
dimensions. The meaning of the arrow is the same as the
previous one. In the Fig. 6, in the case of D ¼ 7, 8,
M ¼ 10, we have only sparse plots. In the case of the scalar
type of metric perturbations as well as the vector type
perturbations, the trend is opposite to the tensor type of
metric perturbations. That is, the Gauss-Bonnet term
decreases the absolute value of the imaginary part of QNFs.

Admittedly, the WKB method is not appropriate for a
small black hole for which we know there exists the
instability. We need other methods for these calculations.

V. CONCLUSION

We have studied quasinormal modes of black holes in
Lovelock gravity in seven and eight dimensions. Since
Lovelock black holes are defined by an algebraic equation,
we needed to modify the WKBmethod. Thus, we proposed
a novel WKB method adapted to Lovelock gravity for the
calculation of QNFs.
As a demonstration, we calculated various QNFs of

Lovelock black holes in seven and eight dimensions.

FIG. 6. The quasinormal mode diagram of scalar perturbation in tensor field L ¼ 10.
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We found remarkable features of QNFs of Lovelock
gravity which depend on the coefficients of the
Lovelock terms, the species of perturbations, and dimen-
sions of the spacetime. In the case of the scalar field, when
we increase the coefficients of the third order Lovelock
term the real part of QNFs increase, but the decay rate
becomes small irrespective of the mass of the black hole.
For small black holes, the decay rate ceases to depend on
the Gauss-Bonnet term. This tendency can be seen clearly
in eight dimensions than in seven dimensions. The
dependence on the Gauss-Bonnet coefficient changes
for small black holes. Indeed, there appears a turning
point in each curve as the mass becomes small. In the case
of tensor type perturbations of the metric field, the
tendency of the real part of QNFs is opposite to the
scalar field. The QNFs of vector type perturbations of
the metric field show no particular behavior. The behavior

of QNFs of the scalar type perturbations of the metric field
is similar to the vector type. However, available data are
rather sparse, which indicates that the WKB method is not
applicable to many models for this sector.
The features we found in this work are intriguing and

worth verifying by using other methods. In particular, for
calculating QNFs for small black holes, we need to solve
partial differential equations numerically using the time-
domain method. We leave this work for future study.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific
Research (C) No. 25400251 and MEXT Grant-in-Aid for
Scientific Research on Innovative Areas No. 26104708 and
MEXT Grant-in-Aid for Scientific Research on Innovative
Areas “Cosmic Acceleration” (No. 15H05895).

[1] S. B. Giddings and S. D. Thomas, High-energy colliders as
black hole factories: The end of short distance physics,
Phys. Rev. D 65, 056010 (2002).

[2] S. B. Giddings and M. L. Mangano, Astrophysical impli-
cations of hypothetical stable TeV-scale black holes, Phys.
Rev. D 78, 035009 (2008).

[3] D. Lovelock, The Einstein tensor and its generalizations, J.
Math. Phys. (N.Y.) 12, 498 (1971).

[4] D. G. Boulware and S. Deser, String Generated Gravity
Models, Phys. Rev. Lett. 55, 2656 (1985).

[5] J. T. Wheeler, Symmetric solutions to the maximally Gauss-
Bonnet extended Einstein equations, Nucl. Phys. B273, 732
(1986).

[6] C. Charmousis, Higher order gravity theories and their black
hole solutions, Lect. Notes Phys. 769, 299 (2009).

[7] G. Dotti and R. J. Gleiser, Gravitational instability of
Einstein-Gauss-Bonnet black holes under tensor mode
perturbations, Classical Quantum Gravity 22, L1 (2005).

[8] G. Dotti and R. J. Gleiser, Linear stability of Einstein-
Gauss-Bonnet static spacetimes. Part I. Tensor perturba-
tions, Phys. Rev. D 72, 044018 (2005).

[9] R. J. Gleiser and G. Dotti, Linear stability of Einstein-
Gauss-Bonnet static spacetimes. Part II: Vector and scalar
perturbations, Phys. Rev. D 72, 124002 (2005).

[10] M. Beroiz, G. Dotti, and R. J. Gleiser, Gravitational insta-
bility of static spherically symmetric Einstein-Gauss-Bonnet
black holes in five and six dimensions, Phys. Rev. D 76,
024012 (2007).

[11] T. Takahashi and J. Soda, Stability of Lovelock black holes
under tensor perturbations, Phys. Rev. D 79, 104025 (2009).

[12] T. Takahashi and J. Soda, Instability of small Lovelock black
holes in even-dimensions, Phys. Rev. D 80, 104021 (2009).

[13] T. Takahashi and J. Soda, Master equations for gravitational
perturbations of static Lovelock black holes in higher
dimensions, Prog. Theor. Phys. 124, 911 (2010).

[14] T. Takahashi and J. Soda, Catastrophic instability of
small Lovelock black holes, Prog. Theor. Phys. 124, 711
(2010).

[15] T. Takahashi and J. Soda, Pathologies in Lovelock AdS
black branes and AdS=CFT, Classical Quantum Gravity 29,
035008 (2012).

[16] R. A. Konoplya and A. Zhidenko, (In)stability of
D-dimensional black holes in Gauss-Bonnet theory, Phys.
Rev. D 77, 104004 (2008).

[17] J. Chen and Y. Wang, Quasinormal modes of scalar field in
five-dimensional Lovelock black hole spacetime, Chin.
Phys. B 19, 060401 (2010).

[18] B. Chen, Z. Y. Fan, P. Li, and W. Ye, Quasinormal modes of
Gauss-Bonnet black holes at large D, J. High Energy Phys.
01 (2016) 085.

[19] B. F. Schutz and C. M. Will, Black hole normal modes:
A semianalytic approach, Astrophys. J. 291, L33 (1985).

[20] R. A. Konoplya and A. Zhidenko, Quasinormal modes of
black holes: From astrophysics to string theory, Rev. Mod.
Phys. 83, 793 (2011).

[21] C. B. Prasobh and V. C. Kuriakose, Scalar filed evolution
and area spectrum for Lovelock-AdS black holes, Gen.
Relativ. Gravit. 45, 2441 (2013).

[22] C. B. Prasobh and V. C. Kuriakose, Quasinormal modes of
Lovelock black holes, Eur. Phys. J. C 74, 3136 (2014).

[23] K. Lin, J. de Oliveira, and E. Abdalla, Holographic phase
transition and quasinormal modes in Lovelock gravity,
Phys. Rev. D 90, 124071 (2014).

[24] S. Iyer and C. M. Will, Black hole normal modes: AWKB
approach. 1. Foundations and application of a higher order
WKB analysis of potential barrier scattering, Phys. Rev. D
35, 3621 (1987).

[25] S. Iyer, Black hole normal modes: A WKB approach. 2.
Schwarzschild black holes, Phys. Rev. D 35, 3632
(1987).

DAISKE YOSHIDA and JIRO SODA PHYSICAL REVIEW D 93, 044024 (2016)

044024-10

http://dx.doi.org/10.1103/PhysRevD.65.056010
http://dx.doi.org/10.1103/PhysRevD.78.035009
http://dx.doi.org/10.1103/PhysRevD.78.035009
http://dx.doi.org/10.1063/1.1665613
http://dx.doi.org/10.1063/1.1665613
http://dx.doi.org/10.1103/PhysRevLett.55.2656
http://dx.doi.org/10.1016/0550-3213(86)90388-3
http://dx.doi.org/10.1016/0550-3213(86)90388-3
http://dx.doi.org/10.1007/978-3-540-88460-6
http://dx.doi.org/10.1088/0264-9381/22/1/L01
http://dx.doi.org/10.1103/PhysRevD.72.044018
http://dx.doi.org/10.1103/PhysRevD.72.124002
http://dx.doi.org/10.1103/PhysRevD.76.024012
http://dx.doi.org/10.1103/PhysRevD.76.024012
http://dx.doi.org/10.1103/PhysRevD.79.104025
http://dx.doi.org/10.1103/PhysRevD.80.104021
http://dx.doi.org/10.1143/PTP.124.911
http://dx.doi.org/10.1143/PTP.124.711
http://dx.doi.org/10.1143/PTP.124.711
http://dx.doi.org/10.1088/0264-9381/29/3/035008
http://dx.doi.org/10.1088/0264-9381/29/3/035008
http://dx.doi.org/10.1103/PhysRevD.77.104004
http://dx.doi.org/10.1103/PhysRevD.77.104004
http://dx.doi.org/10.1088/1674-1056/19/6/060401
http://dx.doi.org/10.1088/1674-1056/19/6/060401
http://dx.doi.org/10.1007/JHEP01(2016)085
http://dx.doi.org/10.1007/JHEP01(2016)085
http://dx.doi.org/10.1086/184453
http://dx.doi.org/10.1103/RevModPhys.83.793
http://dx.doi.org/10.1103/RevModPhys.83.793
http://dx.doi.org/10.1007/s10714-013-1595-9
http://dx.doi.org/10.1007/s10714-013-1595-9
http://dx.doi.org/10.1140/epjc/s10052-014-3136-4
http://dx.doi.org/10.1103/PhysRevD.90.124071
http://dx.doi.org/10.1103/PhysRevD.35.3621
http://dx.doi.org/10.1103/PhysRevD.35.3621
http://dx.doi.org/10.1103/PhysRevD.35.3632
http://dx.doi.org/10.1103/PhysRevD.35.3632

