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Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-
based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of
short gamma-ray bursts, infrared/optical transients powered by r-process nucleosynthesis in neutron-rich
material ejected by the merger, and radio emission from the interaction of that ejecta with the interstellar
medium. Simulations of these mergers with fully general relativistic codes are critical to understand the
merger and postmerger gravitational wave signals and their neutrinos and electromagnetic counterparts.
In this paper, we employ the Spectral Einstein Code to simulate the merger of low mass neutron star
binaries (two 1.2M  neutron stars) for a set of three nuclear-theory-based, finite temperature equations of
state. We show that the frequency peaks of the postmerger gravitational wave signal are in good agreement
with predictions obtained from recent simulations using a simpler treatment of gravity. We find, however,
that only the fundamental mode of the remnant is excited for long periods of time: emission at the
secondary peaks is damped on a millisecond time scale in the simulated binaries. For such low mass
systems, the remnant is a massive neutron star which, depending on the equation of state, is either
permanently stable or long lived (i.e. rapid uniform rotation is sufficient to prevent its collapse). We observe
strong excitations of / = 2, m = 2 modes, both in the massive neutron star and in the form of hot, shocked
tidal arms in the surrounding accretion torus. We estimate the neutrino emission of the remnant using a
neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport
scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations
with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity,

disk composition, and outflow properties between the neutrino leakage and transport schemes.

DOI: 10.1103/PhysRevD.93.044019

I. INTRODUCTION

Compact binary mergers, including binary neutron stars
(BNS), binary black holes, and neutron star-black hole
(NS-BH) mergers are the primary targets of ground-based
gravitational wave detectors such as Advanced LIGO [1],
Advanced VIRGO [2], and KAGRA [3]. In the presence of
at least one neutron star, the merger may also be accom-
panied by bright electromagnetic emission, whose detec-
tion can provide valuable complementary information on
the properties of the source, help characterize the merger
environment, and provide better localization than available
from the gravitational wave signal alone (see e.g. [4] for a
review). Two of the most promising such counterparts are
short gamma-ray bursts [5-8] and radioactively powered
transients originating from r-process nucleosynthesis in the
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neutron-rich matter ejected by the merger [9—13]. The latter
would most likely peak in the infrared about a week after
merger [13—15]. It could also result in the production of
many of the heavy elements (A Z 90) whose origin remains
poorly understood today [11,16,17]. Finally, the ejecta
could power long duration radio emission as it interacts
with the interstellar medium.

Numerical simulations of these mergers play an impor-
tant role in the efforts to model the gravitational wave
signal, predict the properties of its electromagnetic counter-
parts, and estimate the production of various elements. In
this work, we focus on the outcome of BNS mergers. The
simulation of BNS mergers with general relativistic hydro-
dynamics codes has now been possible for about 15 years
[18]. Nevertheless, and despite continuous improvements,
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current codes have not yet reached the accuracy required to
model the gravitational wave signal at the level required to
extract as much information as possible from upcoming
experiments (see e.g. [19]). Additionally, most codes do not
take into account all of the physics relevant to the evolution
of the postmerger remnant, including at least a hot nuclear-
theory-based equation of state, a neutrino transport scheme
accounting for neutrino-matter and neutrino-neutrino inter-
actions [20,21], and the evolution of the magnetic fields
with a high enough resolution to resolve the growth of
magnetohydrodynamics (MHD) instabilities [22,23].
Many recent simulations have taken steps toward an
improved treatment of all relevant physics, and a better
coverage of the available parameter space of BNS con-
figurations. Fully general relativistic simulations of the
merger of two 1.35M ; neutron stars with an approximate
neutrino transport scheme, but no magnetic fields [20],
have shown that neutrino-matter interactions can lead to the
ejection of material with a broad distribution of temperature
and composition, leading to the production of elements
with abundances compatible with solar system observations
[17]. The study of a similar merger at an unprecedented
resolution with ideal MHD but using a simpler equation of
state and no neutrinos [22] demonstrated multiple mech-
anisms for the growth of magnetic field in global simu-
lations of mergers—although, even at the highest resolution
currently achieved, the amplification of the magnetic field
in the shear region between the two merging neutron stars is
not resolved [23], and the unresolved growth of magnetic
field in that region could be very significant [23,24]. Lower
resolution simulations including resistive MHD have
shown that deviations from ideal MHD have a relatively
modest effect on the evolution of the postmerger remnant
[25]. With or without resistivity, Dionysopoulou et al. [25]
also find low-density, magnetically dominated outflow
regions which may lead to the formation of a relativistic
jet. The combined effect of ideal MHD with a subgrid
model for the growth of the magnetic field, and a simple
neutrino cooling scheme has also been investigated [26,27].
These results suggest that the growth of strong magnetic
field could influence the mass and properties of the out-
flows, and the dynamics of the postmerger remnant.
Large parameter space studies without microphysics
[28-33] have also greatly improved our understanding of
the general properties of the postmerger remnant. If the
postmerger remnant collapses to a black hole, the relevant
time scale for that collapse can be estimated from the total
mass of the binary. Order of magnitude estimates are
available for the mass ejection from the merger, and we
are beginning to understand the main features of the
postmerger gravitational wave signal. More exotic merger
scenarios, leading to more extreme mass ejection, merger
results, and orbital evolution have also been investigated,
including eccentric binaries [34,35], and binaries with
rapidly rotating neutron stars [36-40]. Finally, a large
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number of simulations have also been performed using
approximate treatments of gravity, producing useful pre-
dictions for the properties of the postmerger gravitational
wave signal [41,42], as well as the long-term evolution of
the postmerger remnant [43—47]. All of these, and many
more earlier results, provide us with a growing under-
standing of the behavior of neutron star mergers (see also
[48-50] for reviews of earlier results), but certainly do not
yet draw a complete picture.

In this paper, we focus on an often neglected portion of
the parameter space in general relativistic simulations:
neutron star binaries at the very low end of the expected
mass distribution [51]. We consider two 1.2M, neutron
stars, and evolve them using the Spectral Einstein Code
(SpEC) [52], a set of three different hot, nuclear-theory-
based equations of state, and either a neutrino cooling
scheme or a gray two-moment neutrino transport scheme
capable of properly taking into account neutrino-matter
interactions [21]. A similar system has been evolved using
ideal MHD and a simpler equation of state (leading, in
particular, to an unrealistically large neutron star radius) in
[24], with the aim to study the growth of magnetic field,
and with similar equations of state but approximate gravity
and no neutrinos in [53]. Nuclear-theory-based equations of
state and a neutrino cooling scheme have also recently been
used for higher mass systems in [26,27], providing us with
a useful point of comparison for many of the qualitative
features observed in our simulations. The postmerger
gravitational wave signal can also be compared to numeri-
cal results using nuclear-theory-based equations of state but
an approximate treatment of gravity [41,42].

We describe our numerical methods in Sec. II, and initial
conditions in Sec. III. Our simulations allow us to address a
number of important questions. First, in Sec. IV, we study
the postmerger gravitational wave signal of low mass BNS
systems with hot nuclear-theory-based equations of state.
This allows us to compare our results with predictions
coming from simulations using a more approximate treat-
ment of gravity. Those simulations found clearly marked
peaks in the gravitational wave signal at frequencies easily
connected with the neutron star equation of state [41,42].
We can also compare our results to differing predictions
coming from general relativistic simulations using simpler
equations of state and more massive neutron stars [31,32].
The postmerger signal is expected to depend on the
equation of state of the neutron star, and its qualitative
properties vary with the total mass of the system. Thus, our
results using general relativistic simulations, nuclear-
theory-based equations of state, and low mass neutron
stars usefully complement existing studies in general
relativity [29,31,32] and approximate gravity [42].

Second, in Sec. V, we study the qualitative features of the
remnant: its density, temperature, composition, rotation
profile, and the excitation of the [ = 2, m = 2 mode in
the postmerger neutron star and the accretion torus.
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We compare our results with simulations of higher mass
systems using a similar level of physical detail [27].

Third, in Sec. VI, we analyze neutrino emission, and for
the simulation in which a transport scheme is used, directly
assess the impact of using the simpler neutrino cooling
method, determine the changes in composition due to
neutrino-matter interactions, and estimate how these
changes affect the properties of the outflows (Sec. VII).
This is the first time that such a comparison is possible in
binary neutron star mergers (we already performed a
similar study on the accretion disk formed in a NS-BH
merger [21]). This provides us with better insights into the
limits of the simple cooling scheme. We can also qualita-
tively compare our results with the small set of existing
neutron star merger simulations using a similar neutrino
transport scheme [20].

II. NUMERICAL METHODS

A. Evolution equations

We evolve Einstein’s equations and the general relativ-
istic (GR) equations of ideal hydrodynamics using the
SpEC code [52]. The SpEC code evolves those equations
on two separate grids: a pseudospectral grid for Einstein’s
equations, written in the generalized harmonic formulation
[54], and a finite volume grid for the general relativistic
equations of hydrodynamics, written in conservative form.
The latter makes use of an approximate Riemann solver
(HLL [55]) and high-order shock capturing methods (fifth-
order WENO scheme [56,57]), resulting in a second-order
accurate evolution scheme. For the time evolution, we use a
third-order Runge-Kutta algorithm. Finally, after each time
step, the two grids communicate the required source terms,
using a third-order accurate spatial interpolation scheme.
Those source terms are the metric and its derivatives (from
the pseudospectral grid to the finite volume grid) and the
stress-energy tensor of the fluid (from the finite volume grid
to the pseudospectral grid). In our current scheme, the
radiation stress-energy tensor does not self consistently
feed back onto the evolution of Einstein’s equations. Direct
measurements of the energy in the neutrino sector show that
the radiation energy density is everywhere negligible as far
as gravitational interactions are concerned. The neutrino
stress-energy tensor is, however, fully coupled to the
general relativistic equations of hydrodynamics. More
details about these numerical methods can be found
in [58,59].

While the GR hydrodynamics in SpEC was largely
developed for the evolution of NS-BH mergers, most of
the algorithm carries over to the evolution of binary neutron
star mergers. The main differences are in the choice of
the evolution gauge, and in the grid structure (Sec. I B). In
the generalized harmonic formalism, the evolution of the
coordinates follows the wave equation
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where g, is the spacetime metric, and H,(x) an arbitrary
function. Before merger, we make the choice

(1) = H, (21, 0)exp - i) o)

with 7 = {/d3/M, d, being the initial separation, and M
the total mass of the binary at infinite separation. Here, x’.
are the comoving spatial coordinates (which follow the
rotation and inspiral of the binary) and H,(x%.,0) are
the value of H, at the initial time, chosen so that
d,a(xl,t) = 9,4 (x.,t) = 0. The lapse a and shift § are
obtained from the standard 3 + 1 decomposition of the
metric,

Gup = —0>dt* + vij(dx' + pldr)(dx) + pldr),  (3)

where y;; is the 3-metric on a slice of constant 7. After a
transient on the time scale 7z, the gauge settles into the
“harmonic gauge” H, = 0 (see [60] for a discussion of the
uses of that gauge). During merger, we instead transition to
the “damped harmonic” gauge condition [61],

i = fog(L) [ Lr -] @

a a a

where y is the determinant of the 3-metric y;;. We do this
according to

H, (1) = HP™ {1 —exp (Lfl”’)zﬂ (5)

Tm

with fpy being the time at which we turn on the damped
harmonic gauge, discussed in Sec. II B, and z,, = 100M.

We choose H, based on what we found most efficient in
NS-BH mergers, in terms of the resolution required to reach
a given accuracy. There, we find that the harmonic gauge is
a better choice for the evolution of neutron stars during
inspiral. The damped harmonic gauge, on the other hand, is
favored for the evolution of black holes and for very
dynamical spacetimes. For the collapse of a merger
remnant into a black hole, different gauge choices are
necessary (see an upcoming paper by R. Haas et al.).
However, we do not have to take this into consideration
here, since the low mass systems that we study do not
collapse to a black hole within the duration of the
simulation.

B. Grid setup

Before the two neutron stars enter into contact, the
pseudospectral grid on which we evolve Einstein’s equa-
tions takes advantage of the approximate spherical sym-
metry in the neighborhood of each star, and in the far-field
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FIG. 1.

Equatorial cut of the pseudospectral grid just before the
two neutron stars get into contact. The color scale shows the
baryon density (logarithmic scale).

region. The evolved spatial slice is decomposed into two
small balls around the center of each neutron star, sets of
spherical shells around each star and in the far-field region,
and distorted cubes to connect the three spherically
symmetric regions. The grid decomposition used in
our simulations is pictured in Fig. 1. The inner ball is
expanded into Zernike polynomials [62,63], the shells into
Chebyshev polynomials (in radius) and spherical harmon-
ics (in angle), and the distorted cubes in Chebyshev
polynomials. The grid follows the centers of the neutron
stars, defined as the center of mass of the matter in the
x < 0 and x > 0 half planes, through a simple rotation and
scaling of the grid coordinates.

We maintain this grid decomposition for the evolution of
Einstein’s equations up to the point at which the maximum
density on the grid increases beyond the low-level oscil-
lations observed during the inspiral. This rise in the density
signifies the transition from two well-separated neutron star
cores to a single, more massive object. At that point, we
switch to a grid which is fully centered on the coordinate
center of mass of the system. This grid, pictured in Fig. 2, is
made of a ball at the origin of the coordinate system,
surrounded by 59 spherical shells extending to the outer
edge of the computational domain. Both before and after
merger, the outer boundary is located at 40d,,, with d, being
the initial separation of the binary. For the configurations
considered here, the outer boundary is thus at a coordinate
radius of 400M—435M ~ (1400-1530) km.

Both before and after merger, the resolution on the
pseudospectral grid is chosen adaptively, in order to reach a
target accuracy estimated from the convergence of the
spectral expansion of the solution [59,64]. As in NS-BH
mergers, our standard choice is to request a relative error of

'Here and in the rest of the paper, the center of mass is defined
in the coordinates of the simulation, and is clearly a gauge-
dependent quantity. It is, however, a convenient quantity to use to
define the map between the grid and physical coordinates and
keep the neutron stars approximately fixed on the grid.

PHYSICAL REVIEW D 93, 044019 (2016)

=—
————

=
=

{
i

FIG. 2. Equatorial cut of the pseudospectral grid just after the
change to a grid centered on the postmerger neutron star remnant.
The color scale shows the baryon density (logarithmic scale).

10~ in most of the computational domain, with a smooth
transition to 10> close to the center of each of the neutron
stars before the neutron stars get into contact (see [59,64]
for more detail on how this is computed in practice). Larger
and lower truncation errors can be imposed for convergence
tests, chosen in order to converge faster than the expected
second-order convergence of the finite volume code.

The finite volume grid on which we evolve the general
relativistic equations of hydrodynamics is very simple.
Before the two neutron stars get into contact, it is composed
of two cubes, each with 962 x 48 cells each and centered on
one neutron star. The lower number of cells in the vertical
dimension is due to the assumption of equatorial symmetry
before merger. The initial extent of the boxes is listed for
each simulation in Table I—it is chosen to cover a little
more than the original size of the neutron star. In the
coordinate system comoving with the neutron star centers,
the neutron stars expand as the binary inspirals. To avoid
losing matter to the outer boundary of the finite volume
grid, we expand the grid by 4.5% every time the flux of
matter across the outer boundary exceeds 0.015M s~!.

TABLE I. Initial conditions and grid settings for the binary
neutron star mergers studied here. “EoS” is the equation of state
of the neutron star matter, RII\JEMO the radius of a neutron star of
gravitational mass Mygs = 1.2M o, Mi‘zM@ the baryonic mass of
the same neutron star, K;ZMO the tidal coupling constant (see text
and e.g. [65]), * d, the initial coordinate separation, Ax’F?)O the
initial coordinate grid spacing on the finite volume grid, and
Axpy ¥ the grid spacing in the finite volume grid used after the
formation of a supermassive neutron star.

EoS  RaMe myMe kMoo g Axiz0  AxmorEer
LS220 12.8 km 1309 271 352km 252m 306 m
LS220 12.8 km 1309 271 352km 198m 234 m
DD2  132km 1295 307 366km 277m 322m
SFHo 120km 1303 164 383 km 249m 276 m

“The authors thank Jan Steinhoff for providing the values of «,
for these equations of state.
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As the inspiral lasts less than 10 ms, this implies a mass loss
well below 107*M, before merger.

As the two neutron stars approach each other, the two
finite volume boxes eventually get into contact. During
merger, we follow the forming massive neutron star remnant,
the tidal tails, the accretion disk, and any ejected material. We
switch to a finite volume grid centered on the forming
remnant with two to three levels of refinement. Each level
has, at our standard resolution, 2002 x 100 cells, with the
finest grid spacing listed in Table I and each coarser level
increasing the grid spacing by a factor of 2. The lower
number of cells in the vertical direction now reflects the fact
that the remnant is less extended in that direction, and thus
that we do not need the finest grid to extend as far vertically as
horizontally. During merger, we no longer assume equatorial
symmetry. This numerical resolution, although insufficient
to capture the evolution of magnetic fields [22,23], has been
shown to be sufficient to obtain reasonable accuracy in
purely hydrodynamic simulations [27]. We estimate the
errors by performing a simulation with 2562 x 128 cells
ateach refinement level during merger (1222 x 61 during the
inspiral). These error estimates will be discussed along the
relevant results in the remainder of this paper.

For these first simulations of neutron star mergers with
microphysics and a neutrino leakage scheme in SpEC, we
only use two levels of refinement during merger. This is far
from ideal, as it allows us to follow material only up to
slightly more than 100 km from the central remnant (50 km
in the vertical direction). The reason for this choice is simply
to keep the simulations computationally affordable. With
two levels of refinement, the mergers use about 500 cores for
16-20 days, or about 200,000 CPU hours. Although not
particularly large compared to some of the most advanced
general relativistic magnetohydrodynamics simulations per-
formed to date [22,23,27], this reaches the limits of our
computational resources. An important part of this work is to
demonstrate the ability of the SpEC code to perform BNS
mergers with microphysics, and to run efficiently on a larger
number of cores than used in previous studies (we typically
use ~50-100 cores for NS-BH mergers). With our relatively
small finite volume grid, we can follow the formation of the
postmerger neutron star remnant. We can also extract the
characteristics of the remnant and of the surrounding
accretion disk, observe the gravitational wave signal,2 and
study neutrino effects. The mass of the outflows, on the other
hand, is very approximate.

For the simulation using neutrino transport, we are
however more interested in the properties of the outflows.
And the composition of the ejected matter varies as it
moves away from the disk, due to neutrino absorption.
Accordingly, for that simulation, we choose to use a third
level of refinement (i.e. we make the grid twice as large).

*The pseudospectral grid on which we evolve Einstein’s
equation extends to much larger distances.
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C. Neutrino treatment

Most simulations presented here are performed using a
leakage scheme to capture the cooling and composition
evolution of the postmerger remnant due to neutrino
emission. Our leakage scheme is described in more detail
in [66,67], and is based on previous work in Newtonian
theory [68,69] and core-collapse supernovae [70].
Effectively, it is a prescription for the energy and number
of neutrinos leaving a given point of the remnant as a
function of the local properties of the fluid and the optical
depth between that point and the outer boundary of the
computational domain (computed as in [26]). The leakage
scheme computes two rates of emission: a free-emission
rate, which only depends on the local properties of the fluid
and is valid in the optically thin regime, and an approxi-
mate, steady state diffusion rate which depends on the
optical depth and is accurate within an order of magnitude
in the optically thick regime. In regions of moderate optical
depth, an interpolation formula between those two emission
rates is used by the leakage scheme. For the emission and
absorption rates, we use the values derived by Rosswog and
Liebendorfer [68] for the charged-current reactions (which
only affect electron neutrinos and antineutrinos),

pte ontur,. (6)
n+et < p+i, (7)
electron/positron pair creation and annihilation,
et +e < v+7, (8)
and plasmon decay,
y < v+ 9)

We also use the rates of Burrows ef al. [71] for nucleon-
nucleon bremsstrahlung

N+N<o N+N+v+b. (10)

Finally, we use the rates of Rosswog and Liebendorfer [68]
for the scattering of neutrinos on protons, neutrons and
heavy nuclei.

To determine the errors in the leakage scheme and obtain
more accurate information about neutrino effects, we also
perform a single simulation using a more advanced
neutrino transport method. We use the moment formalism,
in which the energy-integrated (gray) energy density and
momentum density of neutrinos is evolved on the grid
[72,73]. An analytical closure (M1) is then used to compute
the neutrino pressure tensor and close the system of
equations. The details of our M1 algorithm can be found
in [21]. Beyond providing more accurate results and
information about the spatial distribution of neutrinos,
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the transport scheme also allows us to take into account the
absorption of neutrinos and antineutrinos in low-density
regions, which strongly affects the composition of the fluid,
and particularly of the disk and ejecta. These effects were
shown to be significant in black hole-neutron star mergers
[21]. By explicitly comparing leakage and transport results,
we show here that using a transport scheme is also critical
for extracting the composition of the ejecta of binary
neutron star mergers. So far, only a few simulations have
used a similar transport scheme for neutron star mergers
[17,20]. The transport scheme used in [17,20] could,
however, differ significantly from our algorithm in optically
thick regions. Indeed, it relies partially on rates from the
leakage scheme to compute the evolution of the component
of the neutrino stress-energy tensor which is not trapped by
the fluid. We instead evolve both the trapped and non-
trapped components of the neutrino stress-energy tensor
together within the moment formalism (but rely on the
leakage scheme to estimate the average energy of neutrinos
in optically thin regions [21]).

For both neutrino schemes, we consider three separate
neutrino species: the electron neutrinos v,, electron anti-
neutrinos 7,, and a third species regrouping all heavy-
lepton neutrinos and antineutrinos (v, ¥, v, ;), which we
denote v,. Grouping all heavy-lepton neutrinos and anti-
neutrinos in one species is justified in our simulations
because the temperatures reached in BNS mergers are low
enough to suppress the formation of the corresponding
heavy leptons. Thus, we do not have to take into account
the charged-current reactions with muon and tau leptons
which would require us to differentiate between the four
species regrouped in v,.

Finally, we note that the computation of the average
energy of the neutrinos differs from what was presented in
our previous simulations [21,66,67]. This is due to the
discovery of an error in the computation of the average
energy of neutrinos coming from optically thick regions in
our leakage code, and in the GR1D code upon which it is
based. This error leads to an overestimate of the neutrino
energies. The postmerger remnants in black hole-neutron
star and binary neutron star systems are, however, in a
quasiequilibrium state in which the neutrino luminosities
and the electron fraction of the fluid are adapting to the
evolving condition in the remnant on a time scale shorter
than the dynamical time scale of the remnant. Hence, we
find that correcting this error in the neutrino energies does
not significantly affect the evolution of the electron
fraction, the neutrino luminosities, or the dynamics of
the remnant. Instead, it causes a slight modification of the
quasiequilibrium state of the remnant. The error does not
even significantly affect the absorption rate. It does not
even noticeably affect the absorption rate of neutrinos in
optically thin regions when coupling our neutrino leakage
and transport schemes, because the computation of the
neutrino temperature used to determine the absorption rate
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in the transport scheme was previously corrected in
optically thick regions to match known test results in
spherical symmetry (as described in [21]). This error in
the neutrino energies was discovered after the completion
of the simulations presented here. We have performed
significant portions of the simulations anew (~3 ms) to
verify that, as stated, our results are not significantly
modified by the use of an improved estimate of the neutrino
energies. The neutrino energies quoted in this work use the
improved estimate of the neutrino spectrum in optically
thick regions, and are typically ~50% lower than before
corrections. Updated estimates of the neutrino energies in
the systems considered in previous publications using the
SpEC code [21,66,67] will be provided separately.

III. INITIAL CONDITIONS
AND EQUATIONS OF STATE

We obtain quasiequilibrium initial conditions for neutron
star binaries by solving the constraints in Einstein’s
equations using the spectral elliptic solver Spells [74].
The algorithm used to generate initial data for BNS is
similar to that previously developed for NS-BH binaries
[75], and spinning neutron star binaries [40], and will be
discussed in more detail in an upcoming paper by Haas
et al. We consider three different physical configurations.
Their main properties are listed in Table I. In each case, the
two neutron stars have equal gravitational masses in
isolation, Mys = 1.2M, chosen to probe the low end
of the expected mass distribution function of neutron stars
in compact binaries [51]. The neutron stars are initially
nonspinning, and on low eccentricity orbits: our initial data
solver generates binaries with eccentricities of a few
percent. Lower eccentricities can be achieved through an
iterative procedure requiring the evolution of the system for
two to three orbits in each iteration [76]. However, this
procedure would not perform well at the small initial
separations considered here.

We consider three different, tabulated, temperature
dependent nuclear-theory-based equations of state (see
[70] for a description of the tabulated equations of state)
[77]. These equations of state are SFHo [78], DD2 [79], and
LS220 [80]. All three were initially constructed with the
objective to satisfy the known theoretical and experimental
constraints from nuclear physics, although the LS220
equation of state is now incompatible with some recent
results [81]. All three equations of state can support neutron
stars with Mg = 2M 5, as required by astronomical obser-
vations [82,83]. The mass-radius relationships for these
equations of state are provided on Fig. 3 for cold,
neutrinoless B-equilibrium neutron stars. The radii seen
on Fig. 3 for 1.2M neutron stars are within the range
deemed most likely by studies incorporating information
about both nuclear physics and astrophysical observations
of neutron stars in quiescent x-ray binaries [84,85]. A
different analysis of the same astrophysical data however
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FIG. 3. Mass-radius relationships for the three equations of

state considered here, for cold neutron stars in neutrinoless f
equilibrium. Horizontal dashed lines are provided at the initial
mass of the individual neutron stars (1.2M ;) and total mass of the
binaries (2.4M ) considered here.

predicts significantly more compact neutron stars [86], and
the physical compactness of neutron stars remains an
important open question today. Before merger, the binaries
considered here go through 2.5 (LS220), 3 (DD2) and
4.5 (SFHo) orbits.

The stiffest equation of state, DD2, has a maximum mass
above 2.4M  even for cold, nonrotating neutron stars. The
merger of two 1.2M neutron stars will thus result in a
stable remnant. For the other two equations of state, the
merger remnant will eventually collapse into a black hole.
We see that a massive neutron star remnant does, however,
survive for at least 10 ms after the merger. Note that the
maximum baryon mass of a cold, uniformly rotating
neutron star (as determined from mass-shedding sequences
generated by the code of Cook et al. [87,88]) is 2.83M , for
the LS220 equation of state, 2.86M , for the SFHo equation
of state, and 3.45M, for the DD2 equation of state. The
total baryon masses of the systems under consideration are
2.62M , (LS220), 2.61M, (SFHo), and 2.59M (DD2).
Hence, for the LS220 and SFHo equations of state, the
relevant time scale for the remnant to collapse to a black
hole is the pulsar spin-down time scale, which is much
longer than the time scales relevant to the study of BNS
mergers or of the immediate postmerger remnant evolution
(see also [89] for a more detailed discussion of the fate of
the postmerger remnant in BNS systems).

IV. GRAVITATIONAL WAVES

We extract the gravitational wave signal from the
simulations following the method presented by Boyle
and Mroué [90]: the gravitational waves are extracted on
coordinate spheres at 24 radii equally spaced in »~! within

PHYSICAL REVIEW D 93, 044019 (2016)

3 T T T T T T T T T T T
— SFHo
--- LS220

22

Re[h,,(0)]x107 [100 Mpc]

_ 1 . 1 . 1 . 1 . 1 . 1
3 -1 0 1 2 3 4

FIG. 4. Dominant (2,2) mode of the gravitational wave strain
for all three configurations, at 100 Mpc from the source. The
simulation with the stiffest equation of state (DD2) shows the
fastest inspiral. As opposed to other figures in this paper, we show
the waveforms extrapolated to infinity, which explains the short
length of the postmerger waveform.

the range [140,1325] km. We then extrapolate the signal to
infinity by fitting the finite-radius data with a second-order
polynomial in r~'. For the extrapolation, we use finite
radius values at the same retarded time (as defined in [90]),
to account for the finite propagation speed of gravitational
waves. The extrapolation error can be estimated by com-
paring fits of different polynomial order to the finite
radius data.

A. Inspiral and tidal effects

The purpose of this work is to study the merger and
postmerger dynamics of neutron star binaries. The simu-
lations performed here are generally too short to perform
detailed studies of the gravitational waveform during
inspiral. We focus more on the postmerger signal in the
next section. Qualitatively, however, we see that the late
inspiral proceeds as expected. Figure 4 shows the dominant
mode of the gravitational wave signal, approximately
matched in time and phase at the beginning of the
LS220 simulation. We see that neutron stars with larger
radii (LS220 and DD?2) inspiral faster than neutron stars
with small radii (SDHo), and merge at a lower frequency.
The first effect is due to stronger tidal dissipation for
neutron stars of larger radii. Tides cause a phase difference
in the gravitational wave signal proportional to the tidal
coupling constant k, (see Table I), which is strongly
correlated with the radius of the neutron star. The tidal
coupling constant is, for an equal mass binary, k, =
ky/(8C¥s) with Cns = GMys/(Rnsc?) being the com-
pactness of an isolated neutron star and &, the dimension-
less Love number. The second effect is due to the fact that
the merger frequency depends on the size of the individual
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TABLE II. Frequency of the two strongest peaks in the
spectrum of the postmerger gravitational wave signal, f,, and
f1. The predictions from [42] for the dominant peaks, obtained
from simulations using an approximate treatment of gravity, are
li]s;ted as fit S and f5,. The prediction from [65] for f, is

peak’
f peak*
fit fit fit B
EoS fO fl peak spiral 2-0 peak

SFHo 2.96 kHz 2.1 kHz 3.03 kHz 2.1 kHz 1.7 kHz 2.66 kHz
L5220 2.56 kHz 1.8 kHz 2.59 kHz 1.9 kHz 1.4 kHz 2.27 kHz
DD2 2.35 kHz 1.7 kHz 2.39 kHz 1.8 kHz 1.2 kHz 2.18 kHz

neutron stars, with more compact neutron stars merging at
higher frequencies.

B. Postmerger gravitational wave signal

The postmerger signal provides more useful information.
Previous studies have shown that the gravitational wave
spectrum of the postmerger remnant of a neutron star binary
shows clear peaks at frequencies dependent on the equation
of state of the neutron star [29,31,32,36,41,53,91-96]. The
strongest of those peaks (fpea) occurs at the frequency of
the fundamental quadrupole mode of the remnant.
Recently, Bauswein and Stergioulas [42] have associated
the two largest potential secondary peaks with rotating
spiral structures in the remnant (fg), and a coupling
between the fundamental quadrupole mode and quasiradial
oscillations in the remnant (f,_,). They also provide a
fitting formula for the location of those peaks, based on
simulations using an approximate treatment of gravity.
These simulations assume that the metric is conformally
flat, an assumption which can accommodate exactly non-
spinning, isolated black holes and neutron stars, but not
spinning compact objects or binary systems. In recent
simulation of BNS mergers for 1.35M , neutron stars, with
a general relativistic code and nuclear-theory-based equa-
tions of state, Palenzuela et al. [27] find deviations of
~0.1-0.3 kHz from the fits for f e, and f i provided in
[42]. A minor peak is sometimes also found close to the
predicted location of f,_j, but other features of similar
amplitudes are also found at other frequencies.

The spectra of the (2,2) mode of the gravitational wave
signals observed in our simulations are shown in Fig. 5. For
all equations of state, emission at the fundamental mode is
clearly visible. A number of secondary peaks are also
observed. The postmerger signals are weak when com-
pared, for example, to the design sensitivity of the
Advanced LIGO detector: a very close event is required
in order to detect the postmerger signal [97]. In Table II, the
frequencies of the fundamental and strongest secondary
peaks are compared with theoretical predictions. For the
fundamental mode we use the fitting formula recommended
by Bauswein et al. [53],
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FIG. 5. Power spectrum of the merger and postmerger gravi-
tational wave signal for optimally oriented mergers at a distance
of 100 Mpc, multiplied by f'/2. For reference, we also plot the
design sensitivity of advanced LIGO (zero-detuned high power
detector strain noise spectrum, dashed blue curve) [98]. Note the
clear dominant peaks at (2.3-3) kHz. All spectra are Fourier
transforms of the dominant (2,2) mode of the merger waveform in
the time interval [fpe, —2 mS, e + 6 ms], with a tapering
window of width 0.8 ms used at the beginning and end of the
interval.

24

peak = (0.2823R 6 + 6.284) |2 {fpea < 2.64 kHZ]
24

= (<0A667Ry ¢ +8.713) /5= [fpeus > 264 ki,

with R, ¢ being the radius of a neutron star of mass Myg =
1.6M , (in kilometers), f . given in kHz, and we assume a
total mass of 2.4M . Here, we used the proportionality

relation fpea o \/ Mot/ Rinax 53], with M., being the total
mass of the binary at infinite separation, and R ,,, the radius
of a neutron star at the maximum mass M, allowed for
this equation of state. We find disagreements of only
~(30-70) Hz between the numerical results and the fitting
formula, which would translate to systematic errors of
~(100-200) m in the radius of a 1.6M, neutron star. We
should also note that the merger of two 1.2M ; neutron stars
with the LS220 equation of state was studied with an
approximate treatment of gravity in [53]. The dominant
frequency of the postmerger signal was 2.55 kHz in that
study. We find an extremely close value for that dominant
frequency, 2.56 kHz.

For the secondary peak, we compare our results to the
linear fits to fyiry and f5_o provided in Fig. 4 of Bauswein
and Stergoulias [42]. Bauswein and Stergoulias predict that
the spiral mode should be the dominant secondary mode for
mergers in which a stable or long-lived hypermassive
neutron star is formed. This is in good agreement with
our results as the first subdominant peak observed in our
spectra agrees well with the frequency of f .. The SFHo
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equation of state waveform also shows a peak close to f5_
and the LS220 equation of state waveform has some extra
power at f,_g. For the DD2 equation of state waveform, the
predicted location of the f,_, peak is too close to the
merger frequency for any clear feature to be observed. We
should note, however, that the predictions provided in [42]
for f i and f5_ are not as powerful as the unique fitting
formula provided for f ... This is because a different linear
relation between the frequency of the mode and the
compactness of the star has to be determined for each
choice of neutron star masses. A universal relation between
the secondary peak of the postmerger waveform and the
neutron star compactness has been proposed by Takami
et al. [31,32]. This universal relation would predict that the
secondary peak is at ~1.6 kHz for the LS220 and DD2
equations of state and at ~1.7 kHz for the SFHo equation
of state. The SFHo has its third strongest peak at that
frequency, and that peak is not much weaker than the
secondary peak. The other two equations of state show a
difference of (100-200) Hz between the theoretical pre-
dictions and the location of the secondary peak, which
would translate into (0.5-1.0) km errors in the determi-
nation of the neutron star radius. Using the universal
formula from [31,32] to infer the compactness of the
neutron stars considered in this paper would thus lead to
significant errors in the determination of neutron star radii.
Similar differences were observed by Bauswein and
Stergoulias [42] for low mass binaries. Like Takami et al.
[31,32] (but as opposed to Bauswein and Stergoulias [42]),
our code is fully general relativistic. The observed
differences are thus not due to the treatment of gravity.
A more likely explanation is the use of a lower mass system
combined with the use of nuclear-theory-based equations
of state. The choice of equation of state may also explain
why Takami et al. [31] find significant differences between
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the frequency of the fundamental mode and géak, while we

do not. The largest differences in [31] were observed for the
simple I = 2 polytrope, while more realistic equations of
state performed better. The general relativistic simulations
of Palenzuela et al. [27], performed for higher mass
systems, found ~10% disagreement between the numerical
results and géak, a larger difference than in our simulations,
but one that would still allow the recovery of the neutron
star radius with systematic errors < 0.5 km. It is quite
likely that the fitted frequency fgéak is not universal, but
nonetheless practically applicable to realistic neutron star
equations of state.

More insight can be gained in those postmerger features
by considering a spectrogram of the gravitational wave
signal, shown in Fig. 6. The quantity plotted there is

5 — 1 )eift
Oy (1)

where we choose for the window function W the exact
Blackman window,

7938 9240 i
W) = {5608 ~ 18608 (”(1 +E>>
1430 t
a1+ 12
+18608COS< ”( +At)> (12)

for |t| < At, and W(r) = 0 otherwise. The choice of the
window size At is a tradeoff between high time resolution
(small Az) and high spectral resolution (large Atr). For
Fig. 6, we use At = 6 ms, which causes a noticeable
smoothing of the spectrogram in time but is necessary to
start resolving the secondary peaks of emission.
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FIG. 6. Spectrograms of the gravitational wave signal for the simulations using the SFHo (left), LS220 (middle) and DD2 (right)
equations of state, for an optimally oriented binary at 100 Mpc. The dashed horizontal black curves show the location of the peaks
predicted in [42]. The time is calculated as the difference between the center of the window function used to compute the spectrogram
(see text) and the peak of the gravitational wave amplitude. The dominant peak is clearly visible at (2.3-3) kHz. Secondary peaks in the
(1.3-2.1) kHz range are poorly resolved, and quickly damped. The strong emission at frequencies f < 1.3 kHz is the merger signal

itself.
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In the spectrograms, the fundamental peak is clearly
visible, and strongest for the softest equation of state
(SFHo). It is only mildly damped over the short duration
of the simulations, but varies in frequency as the structure
of the remnant evolves. This shift can be as large as 200 Hz
in the case of the DD2 equation of state, and mostly occurs
in the first ~5 ms after merger. Figure 6 also clearly shows
that the gravitational wave emission at the secondary peaks
is extremely short lived, with a decay time scale of
~1-3 ms. The emission at the secondary peak is both
weaker and shorter lived for the softest equation of state
(SFHo). For low mass systems, we thus see that only the
fundamental mode remains significantly excited in the
postmerger remnant. Gravitational wave emission at lower
frequencies is largely coincident with the merger itself, and
the secondary peaks are naturally broad in spectral space as
the signal decays over only a few oscillation periods. For
the low mass systems studied here, there is thus a
significant difference between the strong, long-lived peak
corresponding to the fundamental mode, and the weak,
broad and short-lived peaks at lower frequencies, which
would naturally make the latter difficult to observe or
disentangle from detector noise.

The interpretation of the emission of gravitational waves
at frequency f i as the result of rotating spiral structures
within the core of the remnant is partially supported by
visualizations of the rest mass density in the equatorial
plane (see Fig. 8). Right after merger, when the emission at
Spiral 18 the strongest, the LS220 and DD2 simulations
show clear spiral arms, including in high-density regions.
In the SFHo simulation, the spiral arms are significantly
weaker. Later on, 3 ms after merger, lower density spiral
structures remain visible in the LS220 and DD2 simula-
tions, and are stronger in the latter simulation. Again, this is
in agreement with the observed difference in the damping
time scale of the emission at fg, observed in the
spectrograms (Fig. 6). Finally, 10 ms after merger, extended
spiral structures remain visible, but they are confined to
low-density regions and are unlikely to significantly
contribute to gravitational wave emission. Our results thus
appear consistent with the interpretation of f .y proposed
by Bauswein and Stergoulias [42].

An alternative universal relation, this time between the
strongest peak of the postmerger gravitational wave signal
and the tidal coupling constant k,, has been proposed by
Bernuzzi et al. [65]. Bernuzzi et al. [65] predict

14 0.00167xk,

B =4341——————= kHz. 13
peak 1+ 0.00656x, (13)
We compare f7., to our results in Table IL f2., is

systematically (0.2-0.3) kHz below the peak frequency
measured in our simulations. The magnitude of the error is
comparable to the scatter observed within the simulations
presented in Bernuzzi et al. [65]. It is unclear whether the
systematic underestimate of the peak frequency comes
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FIG. 7. Dominant (2,2) mode of the gravitational wave strain
for the LS220 waveform at the standard and high resolution, at
100 Mpc from the source. We find excellent agreement even in
the postmerger signal.

from our use of a hot nuclear-theory-based equation of
state, the application of (13) to a low mass system, or the
intrinsic scatter around (13). Bernuzzi et al. use piecewise
polytropic equations of state with a I"-law thermal compo-
nent for the pressure, and f’ geak is only fitted to mergers with

total mass within the interval [2.45M,2.9M], so that
comparison with our results requires extrapolation of their
fitting formula to lower mass systems.

Comparing the standard and high-resolution simulations
for the LS220 equation of state does not reveal any
significant resolution dependence in the spectrum of the
gravitational wave signal. Figure 5 shows mild differences
in the shape of the secondary peaks, which are however
also observed when changing the exact interval over which
we perform the Fourier transform, and excellent agreement
in the location and amplitude of the primary peak. Even in
the time domain, the low-resolution and high-resolution
waveforms appear to only differ by a small time shift (see
Fig. 7). We note that for both Figs. 6 and 7, we use
waveforms extracted at finite radius (r ~ 130M) to have
access to a longer postmerger signal. However, Fig. 6
shows that only a few milliseconds of postmerger signal are
actually necessary to study the secondary peaks in the
postmerger spectrum, since the gravitational wave emission
at those frequencies decays on a very short time scale.

V. MERGER AND POSTMERGER REMNANT

We now consider the qualitative properties of the merger
and postmerger remnants. Figure 8 shows a snapshot of the
density profile in the equatorial plane of the binary 0.5 ms,
3 and 10 ms after the peak of the gravitational wave
amplitude for all three equations of state, which we define
as the time of merger. Initially, the properties of the system
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FIG. 8. Density in the equatorial plane of the postmerger remnant at three characteristic times: 0.5 ms after the peak of the gravitational
wave emission (top), 3 ms after the peak (middle), and 10 ms after the peak (bottom). We show results for the SFHo (left), LS220
(center) and DD2 (right) equations of state. In each of those plots, we show density contours at (1,3,5,7,9) x 104 g cm™3 (solid blue
lines). Here and in subsequent figures, the coordinates are those of the simulation, as evolved in the generalized harmonic formulation of

Einstein’s equations.

are largely determined by the compactness of the premerger
neutron stars. With the SFHo equation of state, i.e. for the
most compact neutron stars, a compact core forms rapidly.
For the other equations of state (LS220 and DD2), more
strongly developed tidal features appear at merger. 0.5 ms
after merger, we still observe two well-defined cores whose
size and tidal distortion directly correlates to the premerger
size of the individual neutron stars.

After 3 ms, the cores start to merge. The less compact
neutron stars (LS220 and DD2) produce clearly defined,
high-density tidal tails. Finally, 10 ms after merger, the
properties of the remnant are dominated by the high-density
behavior of the equation of state. For high neutron star
masses, the L.S220 equation of state is nearly as compact as
the SFHo equation of state—and neither of them is able to
support a stable, nonrotating, cold 2.4M ,, neutron star. The
L.S220 and SFHo equations of state now have similarly
compact cores, with central density rising slowly as the
neutron star evolves. Since both postmerger remnants have
baryon masses well below the maximum mass of a
uniformly rotating cold neutron star (at the mass-shedding
limit), we expect the postmerger neutron star to survive for
much longer than the duration of the simulation. Collapse
to a black hole should occur on the time scale necessary for
the postmerger neutron star to lose angular momentum

through magnetically driven spin-down. On the other hand,
the DD2 equation of state forms a massive neutron star
which will remain stable even in the nonrotating limit. We
see that the postmerger neutron star evolves only slowly at
late times (see Fig. 9). All three configurations remain far

— SFHo
10 — LS220
— DD2

peak [ms]

FIG. 9. Maximum value of the baryon density on the grid as a
function of time for all three equations of state. ;¢ is the time at
which the amplitude of the gravitational wave signal is maximal.
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FIG. 10. Density and velocity in the equatorial plane for the
simulation with the LS220 equation of state, 10 ms after merger.
The excited quadrupole mode is still clearly visible at that time.

from axisymmetry. Strong spiral waves are driven in the
forming accretion disk, and a rapidly rotating bar mode
remains present in the postmerger neutron star (see Fig. 10).
Figure 9 also shows that for all three configurations, the
peak of the gravitational wave emission is coincident with
the core bounce of the merging neutron stars, i.e. the time at
which the two cores touch. The core bounce causes a sharp
increase in the density and pressure of the cores, as well as
strong shocks, shears, and heating at the interface between
the merging neutron stars.

The excitation of the postmerger remnant, shown in
Fig. 10, is consistent with the fundamental quadrupole
mode, both in terms of the density and velocity patterns,
and in terms of the measured gravitational wave frequency.
Because of this excitation, the spatial variation of the
instantaneous orbital angular velocity, defined in the
coordinates of the simulation and with respect to the center
of mass of the original binary, is fairly complex. We show
the instantaneous orbital frequency of the fluid in Fig. 11.
Although on average the rotation frequency is higher at
smaller radii, we observe regions in which dQ/dr > 0.
There are thus regions of the postmerger neutron star which
may not be subject to the axisymmetric magnetorotational
instability (MRI) [99], at least shortly after merger.
However, all regions with densities py < 10" gem™
follow a typical disk profile for the orbital frequency,

SFHo

LS220

40

FIG. 11.
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and should see rapid growth of the magnetic field. The
typical time scale for the growth of the axisymmetric MRI
is Tvrr ~ 4/(3Q) ~ 1 ms [99]. Magnetic field should thus
grow significantly in the disk over even the short time scale
of our simulation. So far, simulations have only been able
to resolve the growth of the MRI in lower density regions
(10" g/cm?) [22], and indeed find rapid growth of the
magnetic field at early times due to a combination of
magnetic instabilities and winding of the magnetic field.
We should also note that the angular velocity in the remnant
varies significantly when comparing a vertical slice
along the direction of the bar mode in the remnant (as
in Fig. 11) with a slice orthogonal to that direction (see,
e.g., the azimuthal dependence of the velocity on Fig. 10).
Figure 11 may give the impression that the bar mode is
rotating at frequencies much lower than the expected
fpeax/2. In fact, we can check that the pattern speed of
the bar mode is consistent with f., /2. In the LS220
simulation, we measure a rotation of the bar of ~45°
over the last 0.1 ms of evolution, or a frequency
Soar ~ 1.25 KHz ~ f 0 /2. We also find that the orbital
frequency in the core of the postmerger neutron star is
higher than the mass-shedding limit for a uniformly
rotating neutron star of the same baryon mass.
Considering that the total baryon mass of the system is
below the maximum mass of a cold, uniformly rotating
neutron star (at the mass-shedding limit), this suggests that
rotational support is initially sufficient to prevent the
collapse of the remnant to a black hole. This should be
true even if the differential rotation is rapidly erased by
angular momentum transport within the remnant.

The properties of the postmerger remnant are strongly
affected by the presence of a nonlinear / = 2 perturbation.
Visible shock fronts remain in the disk at the end of the
simulation, while a clear bar mode is observed in the
postmerger neutron star. In Figs. 12—13, we plot the density,
temperature, composition and entropy of the fluid in the
equatorial plane and in a meridional slice along the major
axis of the bar observed in the postmerger neutron star. For
all three simulations, the neutron star remains neutron rich
and, although hotter than the disk in terms of absolute
temperature, with 7 ~ (15-25) MeV, remains entirely
supported by nuclear forces and rotation [89]. The entropy

DD2
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log[forb] [ kH Z]
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Instantaneous orbital frequency of the fluid, in the coordinates of the simulation and 10 ms after merrger, in a slice orthogonal

to the orbital plane and along the major axis of the bar in the postmerger neutron star. The black lines are density contours at

po = (10'2,10'3,10') g/cm’.
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FIG. 12. Hydrodynamic variables (in the equatorial plane) 10 ms after the peak of the gravitational wave signal. From top to bottom,
we show the density, temperature, and electron fraction for the four simulations considered in this paper—from left to right, SFHo,
LS220 with neutrino leakage, LS220 with neutrino transport, and DD2.
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FIG. 13. Hydrodynamic variables 10 ms after the peak of the gravitational wave signal in a slice along the major axis of the remnant
and orthogonal to the equatorial plane. From top to bottom, we show the density, entropy per baryon, temperature, and electron fraction
for the four simulations considered in this paper—from left to right, SFHo, LS220 with neutrino leakage, L.S220 with neutrino transport,
and DD2.
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per baryon in the neutron star is only S ~ 1kg. The neutron
star is thus colder than the 30-50 MeV temperatures
observed in higher mass systems [29], presumably due
to the fact that lower mass stars are less compact, and thus
that shock heating of the neutron star during the merger is
not as important of an effect in the low mass systems
considered here. This interpretation is partially confirmed
by the fact that the softer equation of state (SFHo) has a
core temperature significantly above the stiffer equations of
state (DD2 and LS220). All three simulations however
show significant heating at the interface between the bar
and the disk, with 7'~ (30-40) MeV. At the lower den-
sities observed in that region, the thermal pressure now
becomes important.

The maximum density in the accretion disk remains
high, pgis = 10'> gcm™. The shock front associated with
the [ = 2 perturbation of the disk heats the disk, causing
temperatures of (8-10) MeV right at the shock.
Accordingly, the disk is thick, with a scale height H ~ R,
and thermally supported, with P(po,T,Y,)>P(py,0,Y,):
for p=10"2gem™3, P(py,T,Y,) ~2P(py,0,Y,) for
T = 2 MeV, and most of the disk is much hotter than that.

We test the postmerger stars and disks for axisymmetric
convective instability using the relativistic Solberg-
Hoiland-Ledoux condition ([100] generalized to include
Y, gradient terms). This condition assumes an axisym-
metric, stationary background, which is only approximately
present, so we use density-weighted azimuthal average
profiles. Consider the LS220 case, which is evolved both in
leakage and M1. Concentrating on the region near the
equator, where the radial condition is most important, we
find that the star and disk are stable everywhere except for a
small region around cylindrical radius of 55 km, where the
angular momentum gradient is Rayleigh unstable, an
indication that matter at this distance has not yet achieved
equilibrium. The star and bulk of the disk are convectively
stable even though the Y, gradient is unstable through
much of the star. This effect is counteracted by the much
larger stabilizing shear and entropy gradient terms.

We can compare our results with recent simulations
using nuclear-theory-based equations of state at similar
compactness and higher mass [26], similar radii and higher
mass [20,27], and simulations approximating the thermal
dependence of the equation of state by a I law for a wide
range of systems of higher mass [29], and a single system
with a large neutron star of similar mass [101]. The
temperature of the remnant and tidal features are closest
to those found by Neilsen et al. [26], confirming the
correlation of those features with the compactness of the
neutron star. More compact neutron stars generally show
stronger shock heating in the postmerger neutron star,
stronger excitation of the bar mode in the core, and weaker
[ = 2 features in the disk. The first two are due to smaller
neutron stars merging at closer separation and thus higher
velocities, causing a more violent merger event. The third is
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presumably due to stronger tidal effects in less compact
stars. The main features of the merger in our simulations are
in fact remarkably similar to those observed in [26,27],
especially when one takes into account the expected
dependence of the results on the compactness of the star.
The agreement between our results and [26,27] is reassur-
ing considering the use of similar equations of state and a
mostly identical neutrino leakage scheme.

This agreement does not, however, preclude systematic
errors due to the limited physics included in the simula-
tions. One such limitation is the use of a leakage scheme to
treat neutrino cooling, and the absence of any treatment of
neutrino absorption. We can test the effect of these
assumptions by using a neutrino transport scheme. To do
this, we evolved the merger with the LS220 equation of
state using our M1 transport scheme, which evolves the
energy density and momentum density of the neutrinos
[21]. Figures 12 and 13 show that the qualitative evolution
of the neutron star remnant is largely unaffected by the
treatment of the neutrinos. This is not at all surprising,
given that at the large densities existing within the neutron
star, the neutrinos are trapped and in equilibrium with the
fluid (see also Sec. VI). As already observed in the disks
resulting from NS-BH mergers [21], the inclusion of
neutrino transport causes a smoothing of the temperature
profile. This is particularly visible in the equatorial plane at
the bar-disk interface. Neutrino absorption also naturally
causes cold low-density regions in the disk to be heated:
most of the disk is ~1 MeV hotter when using neutrino
transport. The mild smoothing of the temperature profile,
heating of the outer disk, and shocked tidal arms can also be
observed in the one-dimensional density and temperature
profiles presented on Fig. 14.

These are fairly minor effects, with some impact on the
neutrino luminosity and neutrino-matter interactions (see
Sec. VI), but not on the hydrodynamic properties of the
postmerger remnant. The treatment of the neutrinos really

Leakage!
— M1

1ok L 0
-60 -40 -20 0 20 40 60 -60 -40 -20 O 20 40 60
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FIG. 14. Density (left) and temperature (right) profiles in the
equatorial plane along the major axis of the merger remnant. We
show results for the merger using the LS220 equation of state and
the neutrino transport (solid lines) or neutrino leakage (dashed
line) scheme. The two simulations are very similar, with a slightly
smoother temperature profile and hotter outer disk when using
neutrino transport. The hot shocked tidal arms are clearly visible
around 40 km from the center in both plots.

044019-14



LOW MASS BINARY NEUTRON STAR MERGERS: ...

TABLE III. Neutrino luminosities and rms energy of the
neutrinos according to the leakage scheme, 10 ms after merger.
The v, values are for all heavy-lepton neutrinos and antineutrinos
combined.

EoS L, Ly, L, \/(63) \/(6,%) \/<€3>

Units 103 ergs™! MeV

SFHo 1.9 3.0 22 14 21 29
LS220 1.2 2.1 1.2 13 20 26
DD2 1.6 22 0.9 13 20 24

begins to matter when one considers the composition
of the disk, as measured by its electron fraction Y, =
n,/(n, + n,), with n, and n, being the number density of
protons and neutrons respectively. In leakage simulations
the neutrino emission, and thus the composition of the disk,
is set only by the local properties of the fluid and an
estimated neutrino optical depth. The transport scheme, on
the other hand, takes into account the irradiation of cold
regions of the disk by the hot neutrino-emitting regions.
Most of the neutrino emission occurs either at the core-disk
interface or at the tidal shocks in the disk, and the
composition of the disk is largely set by the relative
position of a fluid element with respect to these two
defining features. We see in Sec. VI that the disk is mostly
irradiated by electron antineutrinos. Accordingly, the
regions immediately adjacent to the neutrino-emitting
regions, i.e. just next to the hot shock front in the disk
or the surface of the postmerger neutron star, are forced
towards a very low electron fraction Y, ~ 0.05-0.1. Farther
away from those emitting regions, we get ¥, ~ 0.15-0.2.
The leakage scheme, which does not take into account the
absorption of electron antineutrinos in the disk, predicts an
electron fraction Y, ~ 0.2-0.3 in most of the high-density
regions of the disk, with smaller Y, in the corona and at low
radii. There is thus a very significant difference in the
composition of the disk between leakage and transport
simulations, due to the fact that the composition of most of
the disk is strongly affected by neutrino absorption. This
can be contrasted with the remnant of NSBH mergers,
where only the low-density corona is significantly affected
by neutrino absorption [21].

We also note that neutrino absorption in the transport
simulation causes the shocked regions in the tidal arms of
the disk to be about 0.5 MeV hotter than predicted by the
leakage scheme (see Fig. 14). The shock front is energized
by neutrinos emitted in the inner disk or in the core.

Despite these effects, our simulations indicate that
neutrino leakage is a reasonable approximation as long
as the exact composition of the fluid is not required, i.e.
except when attempting to make predictions for r-process
nucleosynthesis in the dynamical ejecta and disk winds,
and for the associated radioactively powered electromag-
netic signal.
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Finally, we note that for all the variables discussed in this
section, the low- and high-resolution simulations with the
LS220 equation of state give results well below the
differences between simulations using different equations
of state. We thus expect the results to be only mildly
affected by the numerical error in the simulations.

VI. NEUTRINO EMISSION

When studying the neutrino emission in simulations
using the leakage scheme, we can consider only the total
energy and number of emitted neutrinos, as well as the
predicted location of emission. We list the luminosity and
average energy of neutrinos in all three simulations in
Table III, and provide the time dependence of the total
luminosity in Fig. 15. For the average energy, we compute
the energy-weighted root-mean-square energy, which is the
important quantity when estimating the energy deposited in
optically thin regions through neutrino absorption. For a
black body spectrum, as assumed here, it is a factor of ~1.5
larger than the number-weighted average energy of the
neutrinos. We find results similar to simulations of higher
mass neutron star mergers using leakage schemes [26,27]
and leakage-transport hybrid [20] schemes. The electron
antineutrinos have the highest luminosity, with L; ~
(2-3) x 103 ergs™! about 10 ms after merger. They
dominate the electron neutrinos by a factor of 1.4-2.

To understand the geometry of the neutrino radiation, it
is useful to determine which regions of the remnant are
optically thick to neutrinos, and which are not. To do so, we
show on Fig. 16 the location of the surface of optical depth
7~ 1 for all species of neutrinos, as computed by the
leakage scheme. The remnant neutron star is naturally
optically thick to all neutrinos. For the electron neutrinos
and antineutrinos, this is also the case for most of the inner

TABLEIV. Properties of the outflows measured within the first
10 ms following the merger. The three simulations using the
LS220 equation of state are the leakage simulation at our standard
resolution (LS220-L0), the leakage simulation at high resolution
(LS220-L1), and the simulation using the two-moment transport
scheme (LS220-M1). Mgjee, is the amount of mass which is
flagged as unbound (hu, < —1) when leaving the computational
grid, (S) and (Y,) are density-weighted averages of the entropy
and electron fraction, and M, is the mass of unbound material
escaping through the upper and lower boundaries of the computa-
tional domain.

Name Mejecta <S> < Ye > Mpolar/Mejecta
Units 10#M,  kgbaryon™

SFHo 5 10 0.11 0.13
LS220-L0 2 12 0.11 0.01
LS220-L1 13 10 0.10 0.07
LS220-M1 5 21 0.20 0.56
DD2 13 11 0.11 0.20
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FIG. 15. Total neutrino luminosity for the three simulations

using the leakage scheme and the LS220, SFHo, and DD2
equations of state (solid curves) as well as the simulation using
the LS220 equation of state and neutrino transport (dashed
red curve).
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FIG. 16. Density (color scale) and location of the surfaces of
optical depth 7 ~ 1 for v, (solid black line), 7, (dashed red line),
and v, (dot-dashed black line) at the end of the simulation using
the LS220 equation of state and a neutrino transport scheme.

disk, up to or even further than the location of the shocked
tidal arms.

The electron neutrinos and antineutrinos are emitted
from different regions of the remnant (see also [26]): as will
be made clearer when considering the results of the
simulation using neutrino transport, most electron neutri-
nos come from the polar regions of the core of the remnant,
but most electron antineutrinos are emitted in the hot
shocked regions of the disk. This is largely due to the fact
that these shocked regions are surrounded by material
which has low optical depth to 7,, but is optically thick to v,
(see Fig. 16). The heavy lepton neutrinos, whose emissivity
is more sensitive to the temperature of the fluid, are mostly
emitted in the hottest regions of the core. Accordingly, the
luminosity in 7, scales with the temperature of the shocked
regions of the disk while the luminosity in v, and heavy-
lepton neutrinos scales with the temperature of their
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respective neutrinosphere in the core (i.e. the region of
optical depth of order unity, which is closer to the surface
for v, than for the heavy-lepton neutrinos). For all species,
the highest luminosity is naturally reached in the case of the
most compact neutron stars (the SFHo equation of state),
given the stronger heating of the remnant occurring in that
case. The LS220 equation of state, which forms a relatively
cold core (see e.g. Fig. 13), shows a particularly large
difference between the emission of electron antineutrinos
and electron neutrinos.

The average energy of the electron antineutrinos is set by
the equilibrium spectrum in the shocked regions of the disk,
since they are emitted there and then largely free-stream
away from the disk. The average energy of the other species
is set by the temperature of the core at the point at which the
neutrinos decouple from the fluid, which occurs at higher
density (and temperature) for the heavy-lepton neutrinos
than for the electron neutrinos.

At the high luminosities observed here, we expect
neutrino absorption in low-density regions to be important
to the evolution of the composition of the disk and of the
outflows. The geometrical properties of the neutrino dis-
tribution and the impact of the neutrinos on the evolution of
the system may not be suitably captured by the leakage
scheme. We estimate the impact of the use of the approxi-
mate leakage scheme by considering the results of the
simulation using the neutrino transport scheme. In that
simulation, we evolve the neutrino energy and momentum
density on our numerical grid, and take into account
neutrino absorption and scattering in low-density regions.

Figures 17-18 show the energy density E, of electron
neutrinos and antineutrinos on the surface of matter density
po = 10" g/cm?, together with the neutrino transport
velocity v}, = aFi/E, — f', i.e. the velocity such that in

log (E,,) [erg cm™3]

29.5
-29.0

-28.5

IZS.O

FIG. 17. Energy density (color scale) and normalized flux
aF!/E,— " (black arrows) of the electron neutrinos on the
density isosurface with p, = 10!' g/cm?. The region of brightest
v, emission, at the center of the plot, coincides with the polar
region of the neutron star remnant.
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FIG. 18. Energy density (color scale) and normalized flux
aF!/E, — " (black arrows) of the electron antineutrinos on the
density isosurface with py = 10'! g/cm?. The regions of bright-
est U, emission (dark blue) are in the hot, shocked tidal arms.

the absence of source terms d,(\/gE, ) + 8;(y/9E, v} ) =0,
and the energy density £, is simply transported through the
grid at velocity v/ ,. Here, F, is the neutrino momentum
density. We confirm that most of the emission of 7, comes
from the tidal arms in the disk (dark blue regions in
Fig. 18), while most v, escaping the system are emitted in
the polar regions of the massive neutron star remnant
(center of Fig. 17). We note, however, that even in the polar
regions the electron neutrinos are outnumbered by the
electron antineutrinos. Emission from the tidal arms is
significantly beamed, due to fluid velocities v ~ 0.3c. The
emission coming from the polar regions has a wider
opening angle.

Figures 19-21 offer a different view of the same
variables, through slices orthogonal to the equatorial plane
and parallel to the major axis of the bar in the remnant. The
differences between the electron neutrinos, the electron
antineutrinos, and the heavy-lepton neutrinos are clearly
visible. From the small fluxes seen in Fig. 19, we can see
that the electron neutrinos are trapped not only in the

-60 -40 -20 0 20 40 60

FIG. 19. Energy density and normalized flux aF’/E, — ' of

the electron neutrinos in the same vertical slice as in Fig. 13. The
vertical stripes with higher neutrino energy in the polar regions
are an artifact of the M1 closure.
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FIG. 20. Energy density and normalized flux aF}/E, — ' of
the electron antineutrinos in the same vertical slice as in Fig. 13.
The vertical stripes with higher neutrino energy in the polar
regions are an artifact of the M1 closure.

postmerger neutron star, but also in most of the disk—up to
the second, weaker tidal shock at r ~ 55 km (also visible on
Fig. 13). Electron neutrinos mostly escape through the
polar regions. Most of the electron neutrinos emitted by the
hot central neutron star toward the disk will be absorbed in
the disk, due to disk optical depth 7 > 1 (see Fig. 16). The
optical depth of the fluid to electron antineutrinos is
smaller. Only the regions inside of the first tidal shock
in the disk are optically thick, as visible from the large
radial fluxes observed at radii 2 40 km in Fig. 20 (but not
in Fig. 19). Electron antineutrinos emitted from the shocked
regions at r ~ 40 km are nearly free-streaming through the
outer disk. Nearly all heavy-lepton neutrinos are emitted in
the hot regions of the core, and are free-streaming in most
of the disk. Finally, we note that the core of the remnant is
more neutron rich than the equilibrium value at the
temperature of the core (Yg! ~0.11-0.12 at the center of
the remnant, where we observe Y, ~ 0.05-0.1). This results
in a negative equilibrium electron neutrino chemical
potential, and leads to a suppression of the electron
neutrino density compared to the electron antineutrino
density in the core. This is opposite to the situation found
in the cores of protoneutron stars in a core-collapse
supernova (see e.g. [102]).

Figures 19 and 20 also show a known limitation of the
M1 transport scheme: its inability to handle crossing beams
(see e.g. the code tests presented in [21]). Artificial shock
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FIG. 21. Energy density and normalized flux aFi/E, — ' of
the heavy-lepton neutrinos in the same vertical slice as in Fig. 13.
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FIG. 22. Expected equilibrium electron fraction of the fluid Yi
if the composition was set solely by neutrino absorption. The
white region has Y3" > 0.4.

fronts develop in the neutrino evolution in the regions in
which neutrinos from the disk and from the core converge.
There, neutrinos coming from different directions start to
propagate in their average direction of motion instead of
crossing each others. This reduces the opening angle of
electron neutrinos and antineutrinos leaving through the
polar regions, and could plausibly affect the composition of
matter outflows in those regions.

From these observations, we can understand better the
differences between the leakage and transport results
discussed in Sec. V. In the postmerger neutron star and
in the inner parts of the disk, neutrinos are either in
equilibrium with the dense matter or slowly diffusing
through it without much of an effect on its composition
over the short time scales considered here. Accordingly,
transport and leakage results are very similar. In the outer
disk and in the polar regions, low-density material is
strongly irradiated by neutrinos. If neutrino irradiation
was the only driver of composition evolution (i.e. excluding
neutrino emissions and the advection of trapped neutrinos),
we would expect the fluid to have composition (assuming
absorption cross sections proportional to €2)

(e, )E,,
<€ve >Eue + <€D€>E17

Y~

, (14)

a quantity plotted in Fig. 22 for our simulation. Otherwise,
the effect of absorption is at least to push the composition
closer to Y than what one would expect when neglecting
absorption.

The impact of neutrino absorption can be observed by
comparing Fig. 22, which shows the electron fraction
towards which the fluid is driven by neutrino absorption,
and Fig. 13, which shows the actual electron fraction in the
simulations (with both the leakage and the transport
scheme). We see that in the disk and right outside of the
innermost shocked region, neutrino absorption drives Y,
down (electron antineutrinos strongly dominate electron
neutrinos). The closer to the shocked region a fluid element
is, the more neutron rich it becomes. In the polar regions,
on the other hand, there remain enough electron neutrinos
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FIG. 23. Neutrino luminosities for the simulations using the
LS220 equation of state and the neutrino leakage scheme (solid
curves), or the neutrino transport scheme (dashed curves). We
show the luminosity in electron neutrinos (black), electron
antineutrinos (red), and all heavy-lepton neutrinos and antineu-
trinos combined (green).

to drive the composition to a higher Y, at least close to the
surface where the irradiation is the strongest. Finally,
outside of the weaker shock at r~55km (seen on
Fig. 13), where the electron neutrinos decouple from the
disk, the effect of neutrino absorption is also to raise Y,.

Finally, we note that there are significant differences
between the leakage and transport simulations even in
terms of the total neutrino luminosity in each species.
Figure 23 shows the total luminosity as a function of time
for each species for the L.S220 simulation, either with
neutrino leakage or with neutrino transport. We observe
differences of as much as a factor of two. The electron
neutrino luminosity, which was already particularly low for
the LS220 equation of state when using the leakage scheme
(see Table III), is a factor of four smaller than the electron
antineutrino luminosity when using the transport scheme.
This can be explained by the fact that a large fraction of the
neutrinos, which the leakage scheme predicts are escaping
from the core, is emitted in the direction of the accretion
disk. The disk is optically thick to electron neutrinos, and
when using the transport scheme those neutrinos are
reabsorbed in the disk. Our leakage scheme does not
account for this effect, because it allows neutrinos to move
along the path of smallest optical depth (in this case, along
the polar axis), instead of following null geodesics when
free-streaming.

We also note that, even though the electron antineutrino
luminosity appears to agree well in the leakage and trans-
port simulations, this is a mere coincidence. There are
indeed two potential sources of disagreement between the
leakage and transport results. The first is the error in the
estimates of the leakage scheme for given physical
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conditions in the postmerger remnant. The second is that
the physical properties of the postmerger remnant them-
selves evolve differently in the leakage and transport
simulations. One important such difference is that the disk
is hotter in the simulation using neutrino transport, due to
neutrino absorption. So the predicted emission rate of 7, is
larger in the transport simulation. But the leakage scheme
neglects neutrino absorption, which causes it to overpredict
the total luminosity of 7, (albeit not by as much as for v,).
In this specific case, the two effects appear to largely cancel
each other. But one can check that they are not negligible
by using the leakage scheme to predict the neutrino
luminosity at a given time in the simulation using a
transport scheme. The resulting o, luminosity is a factor
of two larger than when using the transport scheme.

In conclusion, it appears that using a neutrino transport
scheme is necessary for reliable predictions regarding the
composition of the outflows, the composition of the disk, or
the neutrino luminosity. The latter is particularly important
in the postmerger evolution of BNS mergers because of the
complex geometry of neutrino emission, and the impact of
neutrino absorption on the evolution of the temperature and
composition of the disk.

VII. OUTFLOWS

As discussed in Sec. II, the simulations performed here
use too small a numerical grid to accurately measure the
mass of unbound material leaving the system. For refer-
ence, however, we provide in Table IV the main properties
of the material which satisfies the approximate unbound
condition hu, < —1 as it crosses the outer boundary of our
grid, with u# being the 4-velocity of the fluid. The quantity
hu, is conserved along a fluid line if 0, is a Killing vector
(see e.g. [103]), which we assume to be approximately true
far from the remnant and after merger. In Table IV and the
rest of this section, all averages refer to density-weighted
averages, i.e.

[ poy/=gu'xdv
(X —Wv (15)

with g being the determinant of g,, and dV the flat-space
volume element. We note that for the total mass ejected the
low- and high-resolution simulations with the LS220
equation of state give very different results. The difference
is due to variations in the small amount of mass which is
ejected at the time of merger. This is the only quantity in
our simulations for which the two resolutions disagree, and
a clear indicator that the mass of the dynamical ejecta is
unreliable.

The other notable result is that in all leakage simulations
the ejected material has very similar properties: average
specific entropy (s) ~ 10k baryon™!, average electron
fraction (Y,) ~ 0.1, matter ejection occurring mostly close
to the equatorial plane, and no outflows at late times in the
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FIG. 24. Rate at which material flagged as unbound leaves the
computational grid in the simulation using the LS220 equation of
state and the neutrino leakage scheme. We also show the flow of
unbound material at the same location in the simulation using the
transport scheme. Note that due to neutrino absorptions at larger
distances (the transport simulation uses a larger numerical grid),
the true mass outflows in the simulation using a transport scheme
are higher at late times, with M ~0.04M o) s~!. The oscillations in
the outflow rates are largely due to the use of a rectangular outer
boundary and the asymmetry of the outflows.

simulations. By comparison, the transport simulation ejects
material with a higher electron fraction, twice the average
entropy, and shows the ejection of material in the polar
regions at late times in the evolution (see Fig. 24). This
neutrino-driven wind has M ~ 0.04Ms~'. If maintained
for 50-100 ms, it could be the dominant source of ejecta in
the merger (see also [104]). The wind is generally more
proton rich and hotter than the earlier dynamical ejecta,
with (Y,) ~0.25 and (s) ~35kgbaryon~!'. In the Ml
simulation, we find (Y,) ~0.18 and (s) ~ 18k baryon™!
for the dynamical ejecta (material ejected in the first ~2 ms
following the merger).

The composition and entropy of the ejecta are important
for two main reasons. The first is that neutron-rich material
undergoes strong r-process nucleosynthesis, producing
mostly heavy elements with number of nucleons
A > 120, while less neutron-rich material produces a larger
fraction of lower mass elements with 50 < A < 100 [17].
The late-time wind observed here has an electron fraction
which is at the limit between the two regimes. Lippuner and
Roberts [15] predict that, for the entropy seen in our
simulations, the limiting composition is Y, ~ 0.23. This
suggests the production of a broad range of elements in the
neutrino-driven wind, in agreement with what has been
observed in higher mass neutron star mergers [17], and in
the evolution of postmerger accretion disks [45]. The
second consequence is that the heavy elements produced
in neutron-rich material, particularly the lanthanides, have
very high photon opacities. Their presence causes the
electromagnetic transients powered by r-process nucleo-
synthesis to peak on a time scale of a week instead of a few
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days, and in the infrared instead of the optical [14]. If there
existed a lanthanide-free region in the outflows, emission
from that region could power an earlier, optical signal
[105]. However, the conditions observed in our simulations
do not favor such a scenario.

Finally, the strong wind generated in our simulation
with neutrino transport also causes significant baryon
loading of the polar regions, with a measured wind of M~
0.04M s~ during the last 5 ms of the simulation. This
could hamper the production of short gamma-ray bursts, at
least until the collapse of the postmerger neutron star to a
black hole, which will not happen for the DD2 equation of
state since the postmerger neutron star is stable in that case.

VIII. CONCLUSIONS

We present a first set of simulations of neutron star
mergers using the SpEC code, nuclear-theory-based equa-
tions of state, and either a simple neutrino cooling
prescription (leakage) or a two-moment grey neutrino
transport scheme. For this first study, we focus on equal
mass neutron stars with Myg = 1.2M, at the low end of
the expected range of neutron star masses. So far, only a
few studies with fully general relativistic codes have
included the effects of neutrinos with leakage [26,27] or
transport schemes [20]. All have focused solely on equal
mass systems with Myg = 1.35M . These simulations
allow us to study the properties of the postmerger gravi-
tational waveform for BNS mergers with realistic equations
of state, the qualitative properties of the postmerger
remnant, the effects of neutrinos on the postmerger evo-
lution, and the impact of the choice of neutrino treatment on
the results of the simulations.

The postmerger gravitational wave signal is known to be
dominated by strong peaks at frequencies dependent on the
neutron star equation of state, although there is some
disagreement on the interpretation of the peaks and
predicted emission frequency. The strongest postmerger
peak, which is associated with the fundamental [ = 2
excitation of the postmerger neutron star, largely dominates
the postmerger signal in our simulations. We find that the
location of that peak is in good agreement (to better than
~100 Hz) with the predictions of Bauswein et al. [53],
which were based on a large number of simulations using
an approximate treatment of gravity. Other general rela-
tivistic simulations have recently found large deviations
from those predictions [31], but for choices of equation of
state incompatible with the expected properties of neutron
stars. General relativistic simulations with nuclear-theory-
based equations of state of higher mass neutron star
mergers [27] found agreement at the 10% level
([200-300] Hz differences) with the fitting formula pro-
vided by Bauswein et al. [53]. Although the accuracy of
that fitting formula remains an open question, our simu-
lations tend to confirm that they perform well for nuclear-
theory-based equations of state.
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We are less optimistic when it comes to the determi-
nation of the secondary peaks of the postmerger signal in
low mass systems. Although we do observe peaks at
frequencies close to those recently predicted by
Bauswein and Stergoulias [42], and corroborated by the
simulations of Palenzuela et al. [27], we find that their
emission is limited to a very short time period of
~(1-3) ms, which causes the peaks to be very broad in
frequency space. Their detectability when mixed with
realistic detector noise may be debatable.

The properties of the postmerger remnant appear to
follow the trends observed at higher mass when considering
low-compactness neutron stars. The postmerger neutron
star is not as strongly heated as in higher mass, more
compact systems, but strong / = 2 modes survive for the
entire duration of the simulation, up to 10 ms past merger.
When treating the neutrinos through the simple leakage
scheme, we find good agreement in the basic properties of
the remnant (density, temperature, and composition) and
the observed neutrino luminosity with recent results for
higher mass systems with a similar level of physical
realism [26,27].

We also note that the neutron star remnants observed in our
simulations are differentially rotating, and that the surround-
ing disks have rotation profiles close to equilibrium. The
postmerger disk is unstable to the axisymmetric magneto-
rotational instability, while the neutron star remnant has a
complex rotation profile in which parts of the neutron star
have an angular frequency profile satisfying dQ/dr > 0.
These regions are stable to the magnetorotational instability,
at least in the first 10 ms following the merger.

The inclusion of a more realistic neutrino transport
method significantly modifies the composition of the disk
and outflows. Neutrino energy deposition also powers
sustained outflows with moderate electron fraction (on
average (Y,) ~0.25) up to the end of the simulations.
These outflows are expected to produce a wide range of
elements through r-process nucleosynthesis, as their prop-
erties are right at the limit between neutron-rich material
producing mostly heavy elements (A > 120), and less
neutron-rich material producing lower mass elements.
Finally, absorption of electron neutrinos and antineutrinos
in the optically thick disk causes heating in the disk. It also
leads to a disagreement in the predicted neutrino luminosity
between the leakage scheme, which does not account for
absorption, and the transport scheme. None of these
differences significantly affects the hydrodynamic of the
remnant, but the differences show the importance of
neutrino transport when assessing the mass, composition,
and geometry of the outflows, the resulting properties of
radioactively powered electromagnetic transients, and the
result of r-process nucleosynthesis in the outflows. The fact
that neutron star mergers can produce a wide range of
elements when neutrino transport is taken into account has
been discussed in more detail by postprocessing the results
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of a higher mass neutron star merger simulation [17,20],
and of simulations of postmerger accretion disk models
[45]. Our present simulations confirm these results in low
mass neutron star mergers. Additionally, they explicitly
show the difference between simulations using a simple
leakage scheme, and simulations using neutrino transport.

The results presented here are limited by a number of
important assumptions in our simulations. The first is the
study of equal mass binaries. Indeed, we know that unequal
and equal mass BNS mergers show significant differences.
In particular, unequal mass mergers eject a larger amount of
material [28]. The second is the fact that we ignore
magnetic fields. Over the short time scales considered
here, magnetohydrodynamics effects are not expected to
affect the evolution of neutron star remnant, but could drive
additional outflows from the disk [22,27]. Over longer time
scales, magnetic fields would be critical to the spin
evolution of the remnant neutron star, angular momentum
transport, heating in the disk, and possibly the formation of
relativistic jets and magnetically driven outflows. Finally,
the relatively small numerical grid on which we evolve the
equations of general relativistic hydrodynamics limits our
ability to measure the mass and properties of the outflows
accurately. We expect to address these issues in the future.
However, we do not expect these assumptions to signifi-
cantly affect the main results of this work, i.e. the properties
of the postmerger gravitational wave signal and the
importance of the neutrino-matter interactions in the first
10 ms following the merger.
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