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General criteria for the existence of conformally flat Riemannian solutions in three-dimensional
Poincaré gauge theory without matter are formulated. Using these criteria, we show that the Oliva-Tempo-
Troncoso black hole, a solution of the Bergshoeff-Hohm-Townsend gravity, is also an exact vacuum
solution of the Poincaré gauge theory. The related conserved charges, calculated from the Hamiltonian
boundary term, are shown to satisfy the first law of black hole thermodynamics. The form of the boundary
term is verified by using the covariant Hamiltonian approach.
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I. INTRODUCTION

The use of three-dimensional gravitational models in the
Poincaré gauge theory (PGT), the first properly formulated
gauge theory of gravity [1–4], started in the early 1990s,
when Mielke and Baekler formulated a topological model
of three-dimensional gravity with torsion [5]. Studies of
different aspects of the model made a significant contri-
bution to a proper understanding of the influence of torsion
on the gravitational dynamics; for a recent review, see
Blagojević and Hehl [4], chapter 17. But, as time went on, it
eventually became clear that transition to the level of
quadratic PGT Lagrangians is needed, as the existence
of propagating torsion modes offers a more realistic insight
into the dynamical role of torsion; for more details, see
Helayël-Neto et al. [6], Blagojević and Cvetković [7].
It is well known that classical solutions are an important

tool for exploring dynamical content of gravitational
theories, including the quadratic PGT [4]. Looking at what
has been done in three dimensions, one should note that the
model can accommodate exact torsion waves [8] and a
Vaidya-like solution with torsion [9]. Quite interestingly,
the methods used to construct Siklos waves in [8] are
recently generalized to four dimensions [10].
In order to properly understand the complex dynamical

structure of PGT, powerful Lagrangian and Hamiltonian
formalisms have been developed; see Obukhov [3], Chen
et al. [11], and Refs. [2,4]. This machinery is very useful
not only for genuine PGT problems, characterized by a
nonvanishing torsion, but also in studying torsion-free
solutions of PGT. On the other hand, quite recently [9]
we noticed that the issue of conserved charges of the Oliva-
Tempo-Troncoso (OTT) black hole [12], a solution of the
Bergshoeff-Hohm-Townsend (BHT) massive gravity [13]
for the special choice of parameters, is not completely
settled in the literature, see [14–16]. Such a situation
motivated us to reconsider the OTT black hole as a

Riemannian (torsion-free) solution of PGT, and try to find
the conserved charges, energy and angular momentum,
relying on the full power of the constrained Hamiltonian
formalism. The analysis is based on deriving the
Hamiltonian boundary term, the values of which correctly
reproduce the conserved charges.
The paper is organized as follows. In Sec. II, we use the

PGT field equations to study dynamical properties of
Riemannian solutions. In particular, we show that (i) for
a specific condition on the coupling constants, Riemannian
solutions of PGT are conformally flat, and (ii) any con-
formally flat solution of the BHT gravity is also a solution
of PGT. The results are used in Sec. III to prove that the
static OTT black hole is a solution of PGT. In Sec. IV, we
introduce a set of asymptotic conditions naturally associ-
ated to this black hole, and use the constrained Hamiltonian
formalism to construct the improved canonical generator ~G,
acting on the related phase space [17]. The form of the
boundary term in ~G is shown to be directly related to the
OTT asymptotic conditions, and the conserved charges,
defined as the values of ~G, are proved to be fully
compatible with the first law of black hole thermodynam-
ics. In Sec. V, the same approach is used to analyze the
rotating OTT black hole, and in Sec. VI, we summarize our
results and verify the form of the boundary term by
comparing it to the generalized covariant formula proposed
by So [18]. Appendices contain some technical details.
Our conventions are the same as in Ref. [9]: the latin

indices ði; j; k;…Þ refer to the local Lorentz frame, the
greek indices ðμ; ν; ρ;…Þ refer to the coordinate frame, bi

is the orthonormal triad (coframe 1-form), ωij is the
Lorentz connection (1-form), the respective field strengths
are the torsion Ti ¼ dbi þ ωi

m∧bm and the curvature Rij ¼
dωij þ ωi

k∧ωkj (2-forms), the frame hi dual to bj is
defined by hi⌋bj ¼ δji, the signature of the metric is
ðþ;−;−Þ, the totally antisymmetric symbol εijk is normal-
ized to ε012 ¼ 1, the Lie dual of the antisymmetric form Xij

is Xi ≔ −εijkXjk=2, the Hodge dual of the form α is ⋆α, and
the exterior product of forms is implicit.
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II. CONFORMALLY FLAT RIEMANNIAN
SOLUTIONS IN PGT

The OTT black hole is a vacuum solution of the BHT
gravity with a unique AdS ground state [12,14]. Here,
based on our earlier experience [8,9], we wish to interpret it
as a Riemannian solution of PGT in vacuum. By doing so,
we will be able to use the full power of the constrained
Hamiltonian formalism to clarify the asymptotic structure
and find the conserved charges for both the static and the
rotating OTT black hole.
The possibility to interpret the OTT black hole as a

Riemannian solution of PGT (a solution with vanishing
torsion) is not just a coincidence, it is based on a deep
dynamical relation between the PGT sector of Riemannian
solutions and the BHT gravity. The content of this relation
is expressed by a theorem stating that any conformally flat
solution of the BHT gravity is also a Riemannian solution
of PGT. This is, in particular, true for the OTT black holes.
In three dimensions, the Weyl curvature identically van-
ishes, and the Cotton 2-form Ci is used to characterize
conformal properties of spacetime [19]. It is defined by
Ci ≔ ∇Li ¼ dLi þ ωi

mLm where Lm ≔ Ricm − 1
4
Rbm is

the Schouten 1-form. A spacetime is conformally flat
when Ci ¼ 0.
To prove the above theorem, we note that the BHT

gravity action,

IBHT ¼ a0

Z
d3x

ffiffiffi
g

p �
R − λþ 1

m2
K

�
;

K ≔ RicijRicij −
3

8
R2;

leads to the field equations [20],

Gij − ληij −
1

2m2
Kij ¼ 0;

Kij ¼ Kηij − 2LikGk
j − 2ð∇mCinÞεmn

j; ð2:1Þ
where Gij ¼ Ricij − Rηij=2 is the Einstein tensor, Cij ¼
hj⌋⋆Ci is the Cotton and Lij ¼ hj⌋Li the Schouten tensor.
This compact form of the BHT field equations significantly
simplifies the analysis of conformally flat solutions.
The Lagrangian dynamics of PGT is expressed in terms

of its basic field variables, the triad bi and the Lorentz
connection ωij (1-forms), the related field strengths are the
torsion Ti ≔ dbi þ ωi

mbm and the curvature Rij ≔ dωij þ
ωi

mω
mj (2-forms), and the spacetime continuum is

described by a Riemann-Cartan geometry. The gravita-
tional Lagrangian LG ¼ LGðbi; Tj; RmnÞ (3-form) is at
most quadratic in the field strengths:

LG ¼ −⋆ða0Rþ 2Λ0Þ þ Ti⋆ða1ð1ÞTi þ a2ð2ÞTi þ a3ð3ÞTiÞ

þ 1

2
Rij⋆ðb4ð4ÞRij þ b5ð5ÞRij þ b6ð6ÞRijÞ;

where ðnÞTi and ðnÞRij are irreducible components of the
respective field strengths, and a0 is normalized by
a0 ¼ =16πG; for details, see Ref. [7]. Since we are here
interested only in Riemannian solutions of PGT, the torsion
can be effectively set to vanish, whereas the curvature
becomes Riemannian; in three dimensions, it has only two
nonvanishing irreducible components,

ð6ÞRij ¼ 1

6
Rbibj; ð4ÞRij ¼ Rij − ð6ÞRij;

whereas the third one vanishes, ð5ÞRij ¼ 0. The Riemannian
reduction of the general field equations takes the form
derived in Appendix A of Ref. [9]:

ð1STÞEi ¼ 0;

ð2NDÞ∇Hij ¼ 0; ð2:2aÞ

where

Ei ¼ hi⌋LG −
1

2
ðhi⌋RmnÞHmn;

Hij ¼ −2a0εijmbm þ b4 þ 2b6
6

Rεijkbk − 2b4εijmLm:

ð2:2bÞ

Let us now note a simple property of (2ND): the
vanishing of the second term in Hij implies that the
Cotton 2-form Cm ¼ ∇Lm vanishes. More precisely,
(T1) A Riemannian solution of PGT is conformally flat

if and only if b4 þ 2b6 ¼ 0.
Next, to examine the content of (1ST), it is convenient to
express it in the tensorial form:

a0Ricij þ 2Λ0ηij þ b4LimGm
j ¼ 0:

In combination with its trace, a0Rþ 6Λ0 þ b4K ¼ 0, it can
be transformed to

a0Gij − Λ0ηij − b4
1

2
ðKηij − 2LimGm

jÞ ¼ 0: ð2:3Þ

A direct comparison shows that Eq. (2.3) coincides with
the BHT field equation (2.1) for Cin ¼ 0, provided one
makes the following identification of parameters:

Λ0 ¼ a0λ; b4 ¼ a0=m2: ð2:4Þ

This leads to the main result of this section:
(T2) Any conformally flat solution of the BHT gravity

is also a Riemannian solution of PGT with
b4 þ 2b6 ¼ 0, and vice versa.

An interesting interpretation of the identifications (2.4) is
found by using the BHT condition λ ¼ −m2 that ensures
the existence of the unique maximally symmetric
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background. For m2 ¼ 1=2l2, the identifications (2.4) are
transformed into

Λ0 ¼ −a0=2l2; b4 ¼ 2a0l2: ð2:5Þ

Theorems (T1) and (T2) allow us to study conformally
flat solutions of the BHT massive gravity relying on the
powerful Hamiltonan methods developed in the context of
PGT [2,4,11]. In particular, we will use these methods to
study boundary terms, conserved charges, and central
charges of the OTT black hole. Recently, it was shown
by Barnich et al. [21] that BHT gravity admits black hole
solutions that can be deformed into dynamical “black
flowers,” a new class of solutions that are no longer
spherically symmetric. Since black flowers are conformally
flat, they are also solutions of PGT.
Although PGT is used here as a convenient framework for

studying conformally flat solutions of the BHT gravity, it is
worth mentioning some general dynamical aspects of PGT,
expressed through its unitarity properties. In three dimen-
sions, the requirement of unitary propagation of torsion
modes leads to certain conditions on the coupling constants,
the form of which is given in Eqs. (17) of Ref. [6]. The
content of these equations leads to the following conclusions:
(a) the conditionb4 þ 2b6 ¼ 0 implies that the spin-0þmode
does not propagate and (b) for a suitable choice of the
remaining coupling constants, the propagation of the spin-
0−, spin-1 or spin-2 modes is unitary.

III. STATIC OTT BLACK HOLE

Now, we turn our attention to the static OTT spacetime,
described by the metric [12]

ds2 ¼ N2dt2 −
dr2

N2
− r2dφ2; N2 ≔ −μþ brþ r2

l2
;

ð3:1Þ
where μ and b are real parameters. The roots of equation
N2 ¼ 0 are

r� ¼ 1

2
ð−bl2 � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μþ b2l2

q
Þ:

The OTT metric defines a static AdS black hole when
l2 > 0 and at least rþ is real and positive; for b ¼ 0 it
reduces to the BTZ black hole [22].
In order to have a suitable geometric description of the

OTT black hole in the framework of PGT, we introduce the
triad field (1-form),

b0 ≔ Ndt; b1 ≔
dr
N

; b2 ≔ rdφ; ð3:2aÞ

so that ds2 ¼ ηijbi ⊗ bj, with η ¼ diagðþ1;−1;−1Þ, and
the corresponding Riemannian connection (1-form),

ω01 ¼ −N0b0; ω02 ¼ 0; ω12 ¼ N
r
b2; ð3:2bÞ

where N0 ≔ ∂rN. The geometric structure introduced in
Eqs. (3.2) can now be used to calculate first the curvature
2-form Rij and then the Schouten 1-form:

L0 ¼ 1

2l2
b0; L1 ¼ 1

2l2
b1; L2 ¼

�
1

2l2
þ b
2r

�
b2:

ð3:3Þ

An explicit calculation yields Ci ¼ ∇Li ¼ 0, and theorem
(T2) from Sec. II implies that the static OTT black hole is
an exact Riemannian solution of PGT in vacuum.
It is interesting to compare these general arguments

with direct calculations based on the PGT field equa-
tions (2.2). As shown in [9], the result takes the form of
three conditions on the four Lagrangian parameters
ða0; b4; b6;ΛÞ:

b4 − 2a0l2 ¼ 0; a0 þ 2l2Λ0 ¼ 0; b4 þ 2b6 ¼ 0:

ð3:4Þ

The meaning of these conditions is now quite clear: the
third one follows from the conformal flatness of the static
OTT black hole, and the first two coincide with the
relations (2.5).

IV. ASYMPTOTIC STRUCTURE OF THE
STATIC BLACK HOLE

In this section, we use the canonical approach to analyze
the asymptotic structure naturally associated to the static
OTT black hole. In particular, we wish to calculate the
conserved charges and verify their compatibility with the
first law of black hole thermodynamics.

A. Asymptotic conditions

The asymptotic state associated to the triad (3.2a) is
determined by the asymptotic formula

N ¼ r
l
þ bl

2
−

l
2r

�
μþ b2l2

4

�
þO2;

and a similar formula for 1=N. In order to produce a
suitable set of the asymptotic states, we act on this
particular state by the transformations belonging to the
AdS group SOð2; 2Þ, as described in Ref. [7]. The family of
triads obtained in this way has the AdS asymptotic behavior
given by biμ ¼ b̄iμ þ Bi

μ, where

b̄iμ ≔

0
B@

r
l 0 0

0 l
r 0

0 0 r

1
CA; Bi

μ ≔

0
B@

O0 O3 O0

O1 O2 O1

O0 O3 O0

1
CA: ð4:1Þ
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Here, b̄iμ refers to an AdS background (b ¼ μ ¼ 0). Note
that the presence of the OTT parameter b makes the
asymptotic decrease of Bi

μ slower then in the BTZ case.
The subset of the local Poincaré transformations that
respect these conditions is determined by the parameters
ðξμ; εij ¼ −εijkθkÞ, such that

δ0biμ ≔ εijkθjbkμ − ð∂μξ
ρÞbiρ − ξρ∂ρbiμ ¼ Bi

μ:

As a consequence, the asymptotic parameters of local
translations and Lorentz rotations are found to be

ξt

l
¼ T þ l4

2r2
∂2
t T þO3; ξr ¼ −lr∂tT þO0;

ξφ ¼ S −
l2

2r2
∂2
φSþO3; ð4:2aÞ

θ0 ¼ −
l2

r
∂t∂φT þO2; θ1 ¼ ∂φT þO1;

θ2 ¼ l3

r
∂2
t T þO2: ð4:2bÞ

The functions T and S are such that ∂�T∓ ¼ 0, with
x� ≔ t=l� φ, and T� ≔ T � S. Thus, in spite of a relaxed
asymptotic behavior of Bi

μ as compared to the BTZ black
hole, the values of the corresponding asymptotic parame-
ters are essentially the same [23].
Similar procedure leads to the asymptotic conditions for

the connection. Introducing the Lie dual connection ωi by
ωij ¼ −εijkωk, one finds ωi

μ ¼ ω̄i
μ þ Ωi

μ, where

ω̄i
μ ¼

0
B@
0 0 − r

l

0 0 0

− r
l2 0 0

1
CA; Ωi

μ ≔

0
B@
O0 O3 O0

O1 O2 O1

O0 O3 O0

1
CA: ð4:3Þ

The asymptotic behavior of the connection does not
impose any new restriction on the asymptotic Poincaré
parameters (4.2).
For an easier comparison with the literature, we display

here the deviation of the metric from its background value:

Gμν ≔ gμν − ḡμν ¼

0
B@

O−1 O2 O−1

O2 O3 O2

O−1 O2 O−1

1
CA:

Using the composition law of the asymptotic Poincaré
parameters (4.2) to leading order, the commutator algebra
of the asymptotic symmetry is found to have the form of
two independent Virasoro algebras,

i½l�
m;l�

n � ¼ ðm − nÞl�
mþn; ð4:4Þ

where l�
n ¼ −δ0ðT� ¼ e�inx�Þ. The respective central

charges c� will be determined by the canonical methods.
The condition Ti ¼ 0 leads to further asymptotic require-

ments (Appendix A).

B. Canonical generator and conserved charges

The standard construction of the canonical generator for
the quadratic PGT makes use of the existence and classi-
fication of all constraints in the theory. The construction
can be significantly simplified by going over to the first-
order Lagrangian (3-form)

LG ¼ Tiτi þ
1

2
Rijρij − Vðb; τ; ρÞ;

see Refs. [11,24]. Here, τm and ρij are independent
dynamical variables, the covariant field momenta conjugate
to bi and ωij, and the potential V ensures the on-shell
relations τi ¼ Ti, ρij ¼ Rij, which transform LG into the
standard quadratic form.
The first-order formulation of LG simplifies the con-

struction of the canonical generator G, the form of which
can be found in Ref. [7], Eq. (5.7). SinceG acts on the basic
dynamical variables via the Poisson bracket operation, it
must be a differentiable functional. To examine the
differentiability of G, one starts from the form of its
variation [8,9]:

δG ¼ −
Z
Σ
d2xðδG1 þ δG2Þ;

δG1 ¼ εtαβξμðbiμ∂αδτiβ þ ωi
μ∂αδρiβ

þ τiμ∂αδbiβ þ ρiμ∂αδωiβÞ þR;

δG2 ¼ εtαβθi∂αδρiβ þR: ð4:5aÞ

Here, Σ is the spatial section of spacetime, the variation is
performed in the set of adopted asymptotic states,R stands
for regular (differentiable) terms, and we use ρi and ωi, the
Lie duals of ρmn ¼ Hmn and ωmn, to simplify the formulas.
Using the adopted asymptotic conditions, one finds

δG2 ¼ R, which implies

δG ¼ −
Z
Σ
d2xεtαβξμðbiμ∂αδτiβ þ ωi

μ∂αδρiβ

þ τiμ∂αδbiβ þ ρiμ∂αδωiβÞ þR: ð4:5bÞ

Thus, in general, δG ≠ R and G is not differentiable. The
problem can be corrected by going over to the improved
generator ~G ≔ Gþ Γ, where the boundary term Γ is
constructed so that δ ~G ¼ R [17]. After making a partial
integration in δG, one finds that Γ is defined by the
variational equation,
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δΓ ¼
Z
∂Σ

ξμðbiμδτi þ ωi
μδρi þ τiμδbi þ ρiμδωiÞ; ð4:6Þ

where ∂Σ is the boundary of Σ located at infinity, para-
metrized by the coordinate φ. Now, restricting our attention
to the Riemannian sector with τi ¼ 0, we obtain

δΓ ¼
Z
∂Σ

ξμðωi
μδρi þ ρiμδωiÞ ¼

Z
2π

0

ðξtδE þ ξφδJ Þdφ;

ð4:7aÞ

where (after returning to ωij and Hij)

δE ≔
1

2
ðωij

tδHijφ þHij
tδωijφÞ; ð4:7bÞ

δJ ≔
1

2
ðωij

φδHijφ þHij
φδωijφÞ: ð4:7cÞ

In what follows, one should take into account that the form
(2.2b) of Hmn is simplified after using the restrictions (3.4)
on the Lagrangian parameters:

Hij ¼ −2a0εijkbk − 4a0l2εijkLk:

Once we find the solutions for E and J , the boundary
term takes the form

ΓðξÞ ¼
Z

2π

0

ðξtE þ ξφJ Þdφ: ð4:8Þ

In general, Eqs. (4.7) refer to the fields and their variations
belonging to the entire set of asymptotic states, defined by
Eqs. (4.1) and (4.3). However, it is instructive to consider
first a simpler situation, in which the fields and their
variations refer just to a single asymptotic state, the static
OTT configuration (3.2). In that case, Eq. (4.7b) takes the
form

δE ¼ ω01
tδH01φ þH12

tδω12φ

¼ 2a0l2

�
r
l2

þ 1

2
b

�
δb − 4a0NδN

¼ 2a0δ

�
μþ 1

4
l2b2

�
; ð4:9Þ

which is easily integrated to obtain E. In fact, the procedure
just described is sufficient to calculate the values of the
conserved charges, but only for this particular
configuration.
In the next step, we wish to find a solution for E on the

whole set of asymptotic states. Using the special result (4.9)
as a guide, we find

E ¼ E0 −
1

4
ðΔωij

tΔHijφ þ ΔHijtΔωij
φÞ;

E0 ≔
1

2
ðωij

tΔHijφ þHijtΔωij
φÞ; ð4:10aÞ

where ΔX ≔ X − X̄ is the difference between any field X
and its boundary value X̄. In a similar manner, Eq. (4.7c)
leads to

J ¼ 1

2
ωij

φHijφ ¼ J 0 −
1

2
ΔHijφΔωij

φ;

J 0 ≔
1

2
ðωij

φΔHijφ þHijφΔωij
φÞ; ð4:10bÞ

where the first equality follows directly from (4.7c), and the
second one from H̄ijφω̄

ij
φ ¼ 0. With these results for E and

J , the boundary term (4.8) is seen to be a finite phase-space
functional that satisfies the variational equation (4.7a)
(Appendix B).
The values of the improved generators for time trans-

lations (ξ ¼ ∂t) and spatial rotations (ξ ¼ ∂φ) are given by
the corresponding boundary terms, which define the con-
served charges of the system, the energy and the angular
momentum, respectively:

E ¼
Z

2π

0

dφE; J ¼
Z

2π

0

dφJ : ð4:11Þ

Calculated on the static OTT configuration, these expres-
sions take the values

E ¼ 1

4G

�
μþ 1

4
b2l2

�
; J ¼ 0: ð4:12Þ

The expressions (4.10) for E and J are obtained by
relying on the set of asymptotic configurations (4.1) and
(4.3) that contain the static OTT black hole geometry. It is
interesting to compare the boundary term (4.8) to the
covariant approach of Chen et al. [11]. Looking at the
Riemannian reduction of their formula (239) and choosing
the upper or lower term in each curly bracket separately,
one finds that none of the resulting expressions can
reproduce our result. To make the argument more clear,
consider, for instance, the term E0 in (4.10a) that corre-
sponds to choosing all the upper terms in (239); the
corresponding expression for the energy would be different
from (4.12): E0 ¼ 1

4G ðμþ 1
2
b2l2Þ. How do we know that

this result is not correct? The answer can be found by
noting that the boundary term Γ½ξ� has a twofold role: (i) its
values define the conserved charges, and (ii) its form
ensures the improved generator ~G ¼ Gþ Γ to be a differ-
entiable functional on the phase space associated with the
chosen boundary conditions. Since E0 does not satisfy the
variational equation (4.7b), replacing E by E0 would
destroy the differentiability of the new canonical generator
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~G½E → E0�. The way out of this situation can be found in
the work of So [18], who proposed a generalized boundary
term by introducing “mixed” choices involving a linear
combinations of upper and lower term in (239); see
footnote “u” in [11]. As discussed in Sec. VI, our boundary
term (4.8) is appropriately described by a particular mixed
form. The need for using a mixed boundary term stems
directly from the slower asymptotic decrease of the OTT
dynamical variables as compared to the BTZ case (see
Sec. IVA), or equivalently, from the presence of the br term
in the OTT metric (3.1).

C. Asymptotic symmetry

The results obtained so far allow us to precisely describe
the OTT asymptotic symmetry by the Poisson bracket
algebra of the improved canonical generators. Following
the procedure described in [8,9], one finds that this algebra,
expressed in terms of the Fourier modes L�

n of ~G, is
given by a centrally extended form of the commutator
algebra (4.4),

i½L�
m; L�

n � ¼ ðm − nÞLmþn þ
c�

12
m3δm;−n; ð4:13Þ

where c� are classical central charges,

c� ¼ c; c ¼ 3l
G

: ð4:14Þ

D. Black hole entropy

As an additional, theoretical test of the validity of our
canonical expression for the OTT energy (4.12)1, we
propose to verify its exact agreement with the first law
of black hole thermodynamics; the same strategy was
used, for instance, by Giribet and Leston [15], and by
Maeda [25].
The black hole entropy can be calculated from the Cardy

formula [26]

S ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
h−c−

6

r
þ 2π

ffiffiffiffiffiffiffiffiffiffiffi
hþcþ

6

r
;

where h� ¼ ðlE� JÞ=2. For the static OTT black hole,
this formula yields

S ¼ 2πl

ffiffiffiffi
E
G

r
: ð4:15Þ

Then, using the expression for the Hawking temperature,

T ¼ 1

4π
∂rN2jr¼rþ ¼ 1

πl

ffiffiffiffiffiffiffi
GE

p
; ð4:16Þ

one can directly verify the first law of the black hole
thermodynamics:

δE ¼ TδS: ð4:17Þ

Since the entropy vanishes for E ¼ 0, the state with E ¼ 0
can be naturally regarded as the ground state of the OTT
family of black holes [14].

V. ROTATING OTT BLACK HOLE

In order to verify to what extent the canonical expres-
sions (4.10) for the boundary terms of the static OTT black
hole are general, we now use the same approach to study
the rotating OTT black hole.

A. Geometric aspects

The rotating OTT black hole is defined by the
metric [14,15]

ds2 ¼ N2dt2 − F−2dr2 − r2ðdφþ NφdtÞ2; ð5:1aÞ

where

F ¼ H
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

l2
þ b

2
Hð1þ ηÞ þ b2l2

16
ð1 − ηÞ2 − μη

s
;

N ¼ AF; A ¼ 1þ bl2

4H
ð1 − ηÞ;

Nφ ¼ l
2r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
ðμ − bHÞ;

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −

μl2

2
ð1 − ηÞ − b2l4

16
ð1 − ηÞ2

r
: ð5:1bÞ

The roots of N ¼ 0 are

r� ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r �
−
bl
2

ffiffiffi
η

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ b2l2

4

r �
:

The metric (5.1) depends on three free parameters, μ, b
and η. For η ¼ 1, it represents the static OTT black
hole, and for b ¼ 0, it reduces to the rotating BTZ
black hole with parameters ðm; jÞ, such that 4Gm ≔ μ and
4Gj ≔ μl

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
.

Choosing the triad field as

b0¼Ndt; b1¼F−1dr; b2 ¼ rðdφþNφdtÞ; ð5:2aÞ

the Riemannian connection takes the form

ω01¼−αb0þβb2; ω02¼ βb1; ω12¼−βb0þ γb2;

ð5:2bÞ

where α ≔ FN0=N, β ≔ rFN0
φ=2N and γ ¼ F=r. These

objects define the Riemannian geometry of the rotating
OTT black hole in the context of PGT.

M. BLAGOJEVIĆ and B. CVETKOVIĆ PHYSICAL REVIEW D 93, 044018 (2016)

044018-6



Now, based on theorem (T2) from Sec. II, we know that
the rotating OTT black hole, being an exact solution of the
BHT gravity, is also a solution of PGT provided its Cotton
tensor vanishes. Technically, the proof that Cij ¼ 0 is not
quite simple due to the complicated structure of the metric
functions N, F and Nφ. However, relying on the standard
computer algebra systems, one easily finds that Cij indeed
vanishes.

B. Asymptotic conditions and conserved charges

A direct inspection of the rotating black hole geometry
(5.2) shows that it belongs to the same class of asymptotic
states as described by Eqs. (4.1) and (4.3). Hence, the
results for (i) the boundary term (4.8) and (ii) the classical
central charges (4.14) remain valid also in the rotating black
hole case.
Applying formulas (4.10) to the rotating OTT geometry

(5.2) yields the following conserved charges:

E ¼ 1

4G

�
μþ 1

4
b2l2

�
; ð5:3aÞ

J ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
E: ð5:3bÞ

For η ¼ 1 the angular momentum vanishes, whereas for
b ¼ 0 we have the BTZ black hole with E ¼ m and J ¼ j;
its energy is twice as big as in GR.

C. The first law of black hole thermodynamics

The entropy for the rotating OTT black hole can be
calculated in the same manner as for the static one. Using
the above expressions for E, J, and the central charges
c� ¼ 3l=G, the Cardy formula yields

S ¼ 2πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηÞE

2G

r
: ð5:4Þ

The Hawking temperature and the angular velocity at the
outer horizon are

T ¼ 1

4π

∂rN2

A

����
r¼rþ

¼ 1

πl

ffiffiffiffiffiffiffiffiffiffiffi
2η2

1þ η

s ffiffiffiffiffiffiffi
GE

p
;

Ωþ ¼ Nφjr¼rþ ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

1þ η

s
: ð5:5Þ

Then, the first law of black hole thermodynamics is
automatically satisfied:

TδS ¼ δE −ΩþδJ: ð5:6Þ

VI. DISCUSSION AND CONCLUSIONS

The OTT black hole energy was calculated already in the
original paper [12], based on the Deser-Tekin approach
[27]. Since the Deser-Tekin formula (37) in [12] does not
contain the asymptotic terms produced by the parameter b,
the resulting energy EDT ¼ μ=4G does not depend
on b. This result is evidently not compatible with the first
law of black hole thermodynamics. Then, Giribet et al. [14]
found certain arguments, based on interpreting b as a ‘hair’
parameter, to transform EDT into E ¼ ðμþ l2b2=4Þ=ð4GÞ,
the expression that is fully compatible with the first
law [25].
In the next paper, Giribet and Leston [15] tried to find

more convincing arguments to derive the above form of E.
Their approach was based on the work of Hohm and Tonni
[28], who developed a generalized Brown-York approach
to the generic form of the BHT gravity. By restricting their
considerations to the special value of m2, where the OTT
black hole is admitted as an exact solution, the authors of
[15] succeeded to derive the above result for E, but only for
the rotating black hole, where certain ambiguity in the
derivation disappears. By improving the construction,
Kwon et al. [16] obtained the conserved charges for both
the static and the rotating OTT black hole. Our expressions
(5.3) for the conserved charges confirm their final results,
given in Eq. (44).
In the approach initiated by Regge and Teitelboim [17],

the gravitational conserved charges and the improved
canonical generators are closely related to each other.
An important progress in understanding essential aspects
of this relation has been achieved in the first-order
approach, which allows one to find a covariant boundary
term and identify its value as a conserved charge; for an
early version of the formalism, see Nester [24], and for a
comprehensive exposition of this approach, see Chen et al.
[11]. The covariant approach has been widely used in four-
dimensional gauge theories of gravity with a great success
[4,11]. Moreover, it was also confirmed on a set of selected
three-dimensional solutions [29]. Now, in order to properly
understand our results in the context of this approach, we
start from a particular choice of the covariant boundary
expression (integrand) defined by the upper line in
Eq. (234) of [11]:

BulðξÞ≔ ðξ⌋biÞΔτiþΔbiðξ⌋τiÞþðξ⌋ωiÞΔρiþΔωiðξ⌋ρiÞ:
ð6:1Þ

Here, ΔX ¼ X − X̄ is a difference between a field X and its
boundary value X̄, and ξ is asymptotically a Killing vector
field. The lower line is obtained by replacing the variables
ðbi; τi;ωi; ρiÞ with their boundary values. One can verify
that formula (6.1), taken in the Riemannian limit, is not
compatible with our result (4.8). This is, in fact, true for all
sixteen versions of BðξÞ, obtained from Eq. (234) of [11] by
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choosing either the upper or lower term in each of the four
curly brackets separately. However, the situation is changed
by generalizing the construction of BðξÞ in a way proposed
by So [18]. According to his prescription, the original
Hamiltonian boundary term BðξÞ is modified by replacing
each curly bracket by a linear combination of its upper and
lower term. Applying this prescription to Eq. (234) of [11],
one finds that its Riemannian reduction takes the form

~Bðξ; c3; c4Þ ≔ ξ⌋½c3ωi þ ð1 − c3Þω̄i�∧Δρi
þ Δωi∧ξ⌋½c4ρi þ ð1 − c4Þρ̄i�; ð6:2Þ

where c3 and c4 are real parameters. For the particular
choice ðc3; c4Þ ¼ ð1=2; 1=2Þ, we have

~Bðξ; 1=2; 1=2Þ ≔ ξ⌋

�
ωi −

1

2
Δωi

�
∧Δρi

þ Δωi∧ξ⌋
�
ρi −

1

2
Δρi

�
: ð6:3Þ

A comparison with Eqs. (4.10) shows that the boundary
term

R
∂Σ ~Bðξ; 1=2; 1=2Þ exactly coincides with our expres-

sion ΓðξÞ, Eq. (4.8).
Clearly, the result (6.3) represents only a Riemannian

reduction of a more general So-like formula for the
boundary term. With an obvious extension of notation,
this more general formula can be represented in the form

BðξÞ ¼ Bðξ; c1; c2; 1=2; 1=2Þ: ð6:4Þ

Additional information on the general structure of B can be
found in Ref. [28], where the conserved charges of several
three-dimensional solutions were calculated. However, the
results are not sufficiently sensitive to clearly recognize the
general structure of a “good” expression for the boundary
term in PGT, in three dimensions. Further work in this
direction is needed.
In conclusion, we summarize our results as follows:

(a) First, we found general criteria that allow us to study
conformally flat Riemannian spacetime configurations
as solutions of PGT. These criteria are used to show
that the OTT black hole, a solution of the BHT gravity,
is a Riemannian solution of PGT.

(b) Then, we constructed a natural set of the asymptotic
conditions and calculated the conserved charges of the
OTT black hole as the values of the Hamiltonian
boundary term. The expressions for the conserved
charges coincide with those found by of Kwon et al.
[24] in the generalized Brown-York approach.

(c) Finally, the obtained results are verified by showing
that: (i) the conserved charges are exactly compatible
with the first law of black hole thermodynamics, and
(ii) our boundary term is in agreement with the
generalized covariant formula proposed by So [18].

On the other hand, the OTT black hole appears to be
an interesting physical example for the generalized
covariant formula.
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APPENDIX A: USEFUL ASYMPTOTIC
RELATIONS

In the Riemannian sector of PGT, the condition Ti ¼ 0,
calculated on the asymptotic configurations (4.1) and (4.3),
leads to an additional set of asymptotic requirements:

r2

l2
B1

r − lΩ2
t ¼ O1; B1

r −
l2

r2
Ω0

φ ¼ O1;

r2

l
Ω1

r þ Ω2
φ ¼ O1;

r2

l2
Ω1

r þΩ0
t ¼ O1;

B0
φ

l
þΩ2

φ þ B2
t þ lΩ0

t ¼ O1: ðA1Þ

Then, relying on the asymptotic form of the Schouten
tensor Lij,

L00 ¼
1

2l2
−

1

rl

�
B0

t þ
r2

l2
B1

r

�
þO2;

L11 ¼ −
1

2l2
þO2;

L22 ¼ −
1

2l2
þ 1

rl

�
r2

l2
B1

r þ
1

l
B2

φ

�
þO2;

L02 ¼ −
1

l2r
B0

φ þ
r
l2

Ω1
r þO2;

one obtains the asymptotic relations

ΔHijt ¼ −4a0Ωijφ þO
�
Ωijφ

r

�
;

ΔHijφ ¼ −4a0l2Ωijt þO
�
Ωijt

r

�
: ðA2Þ

APPENDIX B: CONSISTENCY OF
THE BOUNDARY TERM

In this appendix, we prove the consistency of the
Hamiltonian boundary term (4.8) by showing that it is a
finite expression that satisfies thevariational equations (4.7a).
Using the expressions (4.10) for E and J , as well as the
results of Appendix A, we have
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E ¼ 4a0
r
l

�
Ω0

φ −
r2

l2
B1

r

�
þO0 ¼ O0; ðB1aÞ

J ¼ 2a0ωi
φbiφ þ 4a0l2Lijω

i
φbjφ

¼ −4a0r
�
B0

φ

l
þ Ω2

φ

�
− 4a0lr2L02 þO0;

¼ −4a0r
�
Ω2

φ þ
r2

l
Ω1

r

�
þO0 ¼ O0; ðB1bÞ

which completes the proof of finiteness.

In a similar manner,

δE ¼ 1

2
ðωij

tδHijφ þ δωijφHij
tÞ

þ 1

4
ðΔHijφδω

ij
t − Δωij

tδHijφ − ΔHijtδω
ij
φ

þ Δωij
φδHijtÞ;

¼ 1

2
ðωij

tδHijφ þ δωijφHij
tÞ þO1; ðB2Þ

whereas the proof for δJ is trivial. Thus, the variational
equation (4.7a) is satisfied.
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