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We present a method for solving the first-order Einstein field equations in a post-Newtonian (PN)
expansion. Our calculations generalize the work of Bini and Damour and subsequently Kavanagh et al. to
consider eccentric orbits on a Schwarzschild background. We derive expressions for the retarded metric
perturbation at the location of the particle for all l-modes. We find that, despite first appearances, the
Regge-Wheeler gauge metric perturbation is C0 at the particle for all l. As a first use of our solutions, we
compute the gauge-invariant quantity hUi through 4PN while simultaneously expanding in eccentricity
through e10. By anticipating the e → 1 singular behavior at each PN order, we greatly improve the accuracy
of our results for large e. We use hUi to find 4PN contributions to the effective one body potential Q̂
through e10 and at linear order in the mass ratio.
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I. INTRODUCTION

Recent years have seen a large amount of research in the
regime of overlap between two complementary approaches
to the general relativistic two body problem: gravitational
self-force (GSF) and post-Newtonian (PN) theory. GSF
calculations are made within the context of black hole
perturbation theory, an expansion in the mass ratio q≡
μ=M of the two bodies, which is valid for all speeds. PN
theory, on the other hand, is an expansion in small
velocities (or equivalently, large separations), but is valid
for any q. In the area of parameter space where the two
theories overlap, they can check each other and also be used
to compute previously unknown parameters.
Much of the recent GSF/PN work has been performed

with the eventual goal of detecting gravitational waves.
With Advanced LIGO [1] now performing science runs, the
need for accurate waveforms is immediate. One very
effective framework for producing such waveforms is
the effective one body (EOB) model [2]. Careful GSF
calculations, when performed in the PN regime, can then be
used to provide information on the PN behavior of EOB
potentials.
This calibration is possible only because gauge-invariant

quantities can be computed separately using the GSF and
PN theory. The first such invariant was the “redshift
invariant” ut, originally suggested by Detweiler [3], who
then computed ut numerically with a GSF code and
compared it to its PN value through third PN order [4].
Subsequently, a number of papers used numerical tech-
niques to compute ut to ever higher precision, and fit out
previously unknown PN parameters at ever higher order
[5–9]. Work by Shah et al. [7], in particular, opened a new

avenue to obtaining high-order PN parameters in the linear-
in-q limit. Rather than solve the first-order field equations
through numerical integration, they employed the function
expansion method of Mano, Suzuki and Takasugi (MST)
[10,11]. Combining MST with computer algebra software
like Mathematica, one can solve the field equations to
hundreds or even thousands of digits when considering
large radii orbits.
In addition to ut, other local, circular orbit gauge

invariants have been calculated. Barack and Sago [12]
computed the shift to the innermost stable circular orbit
due to the GSF (which subsequently was used by Akcay
et al. to inform EOB in Ref. [13]). Then, inspired by work
of Harte [14], Dolan et al. [15] computed the so-called
“spin-invariant” ψ , which measures the GSF effect on
geodetic spin precession. Subsequently (as suggested in
Ref. [16]), Dolan et al. [17] computed higher-order “tidal
invariants,” followed by Nolan et al. [18] computing
“octupolar invariants.”
All of those calculations were restricted to circular orbits,

which are much simpler computationally than eccentric
orbits. There are a number of reasons why. First, because
circular orbits possess only one harmonic for each lm
mode, the field equations at that mode reduce from a set of
1þ 1 partial differential equations to ordinary differential
equations. When considering eccentric orbits, one must
either solve the 1þ 1 equations directly in the time domain
as an initial value problem, or stay in the frequency domain,
wherein the number of harmonics goes from only one to a
countably infinite set (although in practice, of course, this is
truncated based on some accuracy criterion). Additionally,
finding the particular solution in the frequency domain is
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no longer a simple matching, but rather requires an
integration over one period of the source’s libration.
Despite these difficulties, gauge invariants have been

computed for eccentric orbits as well. As suggested first by
Damour [19], Barack et al. [20] computed the GSF effect
on the precession rate of slightly eccentric orbits around a
Schwarzschild black hole. Then, Barack and Sago [21]
generalized Detweiler’s ut to generic bound orbits on a
Schwarzschild background by proper time averaging it over
the perturbed orbit to form hUi. In that same work, they
computed the periapsis advance of eccentric orbits, another
gauge invariant. The work in both Refs. [20] and [21]
employed a time domain code in the strong field regime.
Since then, hUi has been thoroughly examined in the
weaker field by Akcay et al. [22] using a frequency domain
code and direct analytic PN calculations through 3PN. In
addition, van de Meent and Shah have computed hUi for
equatorial orbits on a Kerr background [23] for the first
time. Along with providing checks between PN and GSF,
these calculations have served as important internal con-
sistency checks for GSF, wherein hUi has been found in
Lorenz, radiation, and Regge-Wheeler gauges.
To add to the numerical approaches merging PN and

GSF, there has been ongoing analytic work. Indeed, the
combined use of black hole perturbation theory and PN
theory has an extensive history largely inspired by the
original MST papers [10,11]. Sago, Nakano, Hikida, Fujita
(and many others) [24–31] have used PN expansions to
compute fluxes, waveforms and the GSF for a variety of
orbits on both Schwarzschild and Kerr backgrounds. More
recently, in a series of papers Bini and Damour [16,32–34]
have used these methods to analytically find local gauge
invariants. They used MST to compute ut, ψ , as well as
tidal invariants in the linear-in-q limit, with a focus on EOB
calibration. Since then, Kavanagh et al. [35] have built
upon the Bini and Damour approach and computed ut, ψ ,
and the tidal invariants, to 21.5PN, the current state of
the art.
In this work we present a method for computing

GSF quantities sourced by eccentric orbits around a
Schwarzschild black hole through use of an analytic PN
expansion. Our method extends the circular orbit work of
[32,35] by performing an expansion in small eccentricity at
each PN order. Our calculations are performed in Regge-
Wheeler [36] gauge for all l ≥ 2 and make use of Zerilli’s
[37] analytic solutions for l ¼ 0, 1 (although with a slight
gauge transformation to the monopole). We collectively
refer to this as Regge-Wheeler-Zerilli (RWZ) gauge. We
obtain expressions for the retarded metric perturbation and
its first derivatives for l modes as a function of the
particle’s position. Significantly, in our final expressions,
we identify poles in the small-e expansion. After factoring
out singular-in-e terms at each PN order, we greatly
improve the accuracy of our results for large eccentricities.
As a use of our solutions, we compute hUi, confirming the

numeric 4PN predictions of Ref. [23] and provide new PN
parameters for 4PN coefficients through e10. We note
similar concurrent work [38] of Bini et al. [39], who
worked to 6.5PN and e2.
The paper is arranged as follows. In Sec. II we give an

overview of eccentric orbits on a Schwarzschild background
and our frequency domainmethod for solving the first-order
field equations sourced by such orbits. In Sec. III we
demonstrate our method for finding analytic expressions
for the retarded metric perturbation in a double PN/small-
eccentricity expansion. Section IV discusses the details of
the gauge invariant we compute. Section V gives results for
both the metric perturbation itself and hUi, showing the
merits of our resummation of the small-e series. We finish
with a brief discussion in Sec. VI. Our Appendix provides
details on our low-order modes and hUiwritten in a slightly
different form, for comparison purposes.
Throughout, we use the ð−;þ;þ;þÞ metric signature

and set c ¼ G ¼ 1 (although we briefly use η ¼ c−1 for PN
power counting). Lowercase greek indices run over
Schwarzschild coordinates, t, r, θ, φ. We make use of
the Martel and Poisson [40] M2 × S2 decomposition.
Following their notation, lowercase latin indices indicate
t or r while uppercase latin indices are either θ or φ.

II. INHOMOGENEOUS SOLUTIONS TO THE
FIRST-ORDER FIELD EQUATIONS

IN RWZ GAUGE

In this section we cover our method for solving the
RWZ-gauge first-order field equations in the frequency
domain, taking the source to be a point particle in eccentric
orbit. With the exception of a brief discussion of the
singular structure of RWZ gauge at the end of this section,
we follow closely the more detailed presentation of
Ref. [41]. We will work in Schwarzschild coordinates
where the metric takes the standard form,

ds2 ¼ −fdt2 þ f−1dr2 þ r2dθ2 þ r2sin2θdφ2; ð2:1Þ

with f ≡ 1 − 2M=r.

A. Bound orbits on a Schwarzschild background

Let a small body, or particle, of mass μ orbit a static black
hole of mass M, assuming q≡ μ=M ≪ 1. We parametrize
the particle’s background geodesic by proper time τ,
writing xαpðτÞ ¼ ½tpðτÞ; rpðτÞ; π=2;φpðτÞ�. Here and sub-
sequently we use the subscript p to indicate a quantity
evaluated on the worldline. Note that by choosing
θp ¼ π=2 we have confined the particle to the equatorial
plane with no loss of generality. Differentiating xp yields
the four-velocity

uα ¼
�
E
fp

; ur; 0;
L
r2p

�
; ð2:2Þ
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where we have defined the two constants of motion, the
specific energy E and specific angular momentum L. The
constraint uαuα ¼ −1 implies the following relation,

_r2pðtÞ¼f2p−
f2p
E2

U2
p; U2ðr;L2Þ≡f

�
1þL2

r2

�
; ð2:3Þ

where a dot indicates a coordinate time derivative.
Any geodesic on a Schwarzschild background can be

parametrized using E and L. For bound, eccentric motion,
however, it is convenient to instead use the (dimensionless)
semilatus rectum p and the eccentricity e (see [42,43]).
These two pairs of parameters are related by

E2 ¼ ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ ; L2 ¼ p2M2

p − 3 − e2
: ð2:4Þ

Bound orbits satisfy the inequality p > 6þ 2e [42].
Using the p, e parametrization, the radial position of the

particle is given as a function of Darwin’s [44] relativistic
anomaly χ,

rpðχÞ ¼
pM

1þ e cos χ
: ð2:5Þ

As χ runs from 0 → 2π, the particle travels one radial
libration, starting at periapsis. The quantities τp, tp, and φp

are found by solving first-order differential equations in χ,

dtp
dχ

¼ p2M
ðp − 2 − 2e cos χÞð1þ e cos χÞ2

×

� ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

�
1=2

;

dφp

dχ
¼

�
p

p − 6 − 2e cos χ

�
1=2

;

dτp
dχ

¼ Mp3=2

ð1þ e cos χÞ2
�

p − 3 − e2

p − 6 − 2e cos χ

�
1=2

: ð2:6Þ

There is an analytic solution for φp,

φpðχÞ ¼
�

4p
p − 6 − 2e

�
1=2

F

�
χ

2

���� − 4e
p − 6 − 2e

�
; ð2:7Þ

where FðxjmÞ is the incomplete elliptic integral of the first
kind [45]. Note that there also exists a more extensive
semianalytic solution for tp [46], though we do not provide
it here.
Eccentric orbits have two fundamental frequencies. The

libration between periapsis and apoapsis is described by

Ωr ≡ 2π

Tr
; Tr ≡

Z
2π

0

�
dtp
dχ

�
dχ: ð2:8Þ

Meanwhile, the average rate of azimuthal advance over one
radial period is

Ωφ ≡ φpð2πÞ
Tr

¼ 4

Tr

�
p

p − 6 − 2e

�
1=2

K
�
−

4e
p − 6 − 2e

�
;

ð2:9Þ

with KðmÞ being the complete elliptic integral of the first
kind [45]. The two frequenciesΩr and Ωφ are only equal in
the Newtonian limit.

B. Solutions to the time domain master equation

In RWZ gauge the field equations for the metric
perturbation amplitudes can be reduced to a single wave
equation for each lm mode. The equation is satisfied by a
parity-dependent master function from which the metric
perturbation amplitudes can be readily recovered. When
lþm is odd, we use the Cunningham-Price-Moncrief
(CPM) function, Ψo

lm, and when lþm is even, we use the
Zerilli-Moncrief (ZM) function, Ψe

lm. In the remainder of
this subsection we will use Ψlm with no superscript to refer
to either the ZM or CPM variable. In each case the master
equation has the form

�
−

∂2

∂t2 þ
∂2

∂r2� − VlðrÞ
�
Ψlmðt; rÞ ¼ Slmðt; rÞ; ð2:10Þ

where both the potential Vl and the source term Slm are
parity dependent. The variable r� ¼ rþ2M logðr=2M−1Þ
is the standard tortoise coordinate. The source term Slm is
of the form

Slm ¼ GlmðtÞδ½r − rpðtÞ� þ FlmðtÞδ0½r − rpðtÞ�; ð2:11Þ

where the coefficients Glm are Flm are smooth functions.
While it is certainly possible to solve Eq. (2.10) directly in
the time domain, at present we are interested in a frequency
domain approach. As such, we decompose both Ψlm and
Slm in Fourier series as

Ψlmðt; rÞ ¼
X∞
n¼−∞

XlmnðrÞe−iωt;

Slmðt; rÞ ¼
X∞
n¼−∞

ZlmnðrÞe−iωt: ð2:12Þ

In these expressions, the frequency ω≡ ωmn ¼ mΩφþ
nΩr, which follows from the biperiodic source. Note that
we use the notation Xlmn ≡ Xlmωmn

. The Fourier series
coefficients are found as usual by
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XlmnðrÞ ¼
1

Tr

Z
Tr

0

dtΨlmðt; rÞeiωt;

ZlmnðrÞ ¼
1

Tr

Z
Tr

0

dtSlmðt; rÞeiωt: ð2:13Þ

Combining Eqs. (2.10) and (2.12) yields the frequency
domain master equation,

�
d2

dr2�
þ ω2 − VlðrÞ

�
XlmnðrÞ ¼ ZlmnðrÞ: ð2:14Þ

This equation has two causal homogeneous solutions. At
spatial infinity the “up” solution X̂þ

lmn trends to eiωr� . As
r� → −∞ at the horizon, the “in” solution X̂−

lmn trends
to e−iωr� . Here we use a hat to emphasize that these are
un-normalized homogeneous solutions.
With a causal pair of linearly independent solutions, one

would normally find the particular solution to Eq. (2.14)
through the method of variation of parameters. However, in
this case, the singular source (2.11) leads to a Gibbs
phenomenon which spoils the exponential convergence
when forming Ψlm in Eq. (2.12). It is now standard to use
the method of extended homogeneous solutions [41,47] to
obtain exponential convergence of Ψlm and all its deriv-
atives at all locations, including the particle’s. The method
is covered extensively elsewhere, and so we simply recount
the procedure here.
We start by performing a convolution integral between

the homogeneous solutions and the frequency domain
source, which yields normalization coefficients,

C�
lmn ¼

1

Wlmn

Z
rmax

rmin

dr
X̂∓
lmnðrÞZlmnðrÞ

fðrÞ ; ð2:15Þ

where Wlmn is the (constant in r) Wronskian

Wlmn ¼ fðrÞ
�
X̂−
lmn

dX̂þ
lmn

dr
− X̂þ

lmn
dX̂−

lmn

dr

�
: ð2:16Þ

Note that the integral (2.15) is formally over all r, but we
write it here as limited to the libration range
rmin ≤ r ≤ rmax, since outside that region Zlmn ¼ 0. We
next form the frequency domain extended homogeneous
solutions,

X�
lmnðrÞ≡ C�

lmnX̂
�
lmnðrÞ; r > 2M; ð2:17Þ

and subsequently define the time domain extended homo-
geneous solutions,

Ψ�
lmðt; rÞ≡

X
n

X�
lmnðrÞe−iωt; r > 2M: ð2:18Þ

The time domain extended homogeneous solutions are
formed from a set of smooth functions and therefore the

sum (2.18) is exponentially convergent for all r > 2M, and
all t. Finally, the particular solution to Eq. (2.10) is of the
weak form

Ψlmðt; rÞ ¼ Ψþ
lmðt; rÞθ½r − rpðtÞ� þΨ−

lmðt; rÞθ½rpðtÞ − r�;
ð2:19Þ

where θ is the Heaviside distribution.

C. Metric perturbation reconstruction

The even-parity metric perturbation amplitudes are
reconstructed from the ZMmaster function via the relations

Klm;�ðt; rÞ ¼ f∂rΨ
e;�
lm þ AΨe;�

lm ;

hlm;�
rr ðt; rÞ ¼ Λ

f2

�
λþ 1

r
Ψe;�

lm − Klm;�
�
þ r
f
∂rKlm;�;

hlm;�
tr ðt; rÞ ¼ r∂t∂rΨ

e;�
lm þ rB∂tΨ

e;�
lm ;

hlm;�
tt ðt; rÞ ¼ f2hlm;�

rr ; ð2:20Þ

where ΛðrÞ≡ λþ 3M=r, λ≡ ðlþ 2Þðl − 1Þ=2, and

AðrÞ≡ 1

rΛ

�
λðλþ 1Þ þ 3M

r

�
λþ 2M

r

��
;

BðrÞ≡ 1

rfΛ

�
λ

�
1 −

3M
r

�
−
3M2

r2

�
: ð2:21Þ

The odd-parity metric perturbation amplitudes are recon-
structed from the CPM variable,

hlm;�
t ðt; rÞ ¼ f

2
∂rðrΨo;�

lm Þ; hlm;�
r ðt; rÞ ¼ r

2f
∂tΨ

o;�
lm :

ð2:22Þ

In these expressions we have included � superscripts to
indicate that metric perturbation amplitudes can be recon-
structed on either the left or right side of the particle.
At last, the retarded metric perturbation (which we write

as pμν) can be synthesized by multiplying by spherical
harmonics and summing over lm modes. Our particular
harmonic decomposition is due to Martel and Poisson [40].
The spherical harmonics used below (even-parity scalar
Ylm and odd-parity vector Xlm

B ), along with the two-sphere
metric (ΩAB), can be found in that reference. Lowercase
latin indices run over t and r while uppercase latin indices
run over θ and φ. To emphasize a point about the singular
nature of RWZ gauge, we perform the sum over spherical
harmonics in two stages. First, we form the lm contribution
to each metric perturbation component (see Ref. [41]),
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plm
ab ðxμÞ ¼ ½hlm;þ

ab ðt; rÞθðzÞ
þ hlm;−

ab ðt; rÞθð−zÞ þ hlm;S
ab ðtÞδðzÞ�Ylmðθ;φÞ;

plm
aB ðxμÞ ¼ ½hlm;þ

a ðt; rÞθðzÞ
þ hlm;−

a ðt; rÞθð−zÞ�Xlm
B ðθ;φÞ;

plm
ABðxμÞ ¼ ½Klm;þðt; rÞθðzÞ

þ Klm;−ðt; rÞθð−zÞ�r2ΩABYlmðθ;φÞ: ð2:23Þ

These expressions are written as weak solutions in terms
of the Heaviside and Dirac distributions θ and δ, which
depend on z≡ r − rpðtÞ. Note that in general the Martel-
Poisson decomposition also includes scalar amplitudes jlma ,
Glm, and hlm2 , but these are set to zero in RWZ gauge.
The expressions in Eq. (2.23) suggest that the RWZ

gauge retarded metric perturbation is not only discontinu-
ous at the location of the particle, but actually proportional
to the Dirac delta function for certain components.
Moreover, this singularity is spread over a two-sphere of
radius r ¼ rpðtÞ. However, we find that, at least at the
particle’s location, this is in fact not true. Indeed, setting
θ ¼ θpðtÞ ¼ π=2, φ ¼ φpðtÞ and summing the expressions
(2.23) over m exactly cancels out the delta functions, and
the remaining amplitudes are actually continuous at r ¼ rp
for all l ≥ 2. Thus, we write

pl
abðxμpÞ ¼

X
m

hlm;�
ab ðtp; rpÞYlmðπ=2;φpÞ;

pl
aBðxμpÞ ¼

X
m

hlm;�
a ðtp; rpÞXlm

B ðπ=2;φpÞ;

pl
ABðxμpÞ ¼ r2pΩAB

X
m

Klm;�ðtp; rpÞYlmðπ=2;φpÞ; ð2:24Þ

and a single-valued rhs becomes a check on all calculations.
The full retarded metric perturbation is then a simple sum
over all l,

pabðxμpÞ ¼
X∞
l¼0

pl
abðxμpÞ;

paBðxμpÞ ¼
X∞
l¼0

pl
aBðxμpÞ;

pABðxμpÞ ¼
X∞
l¼0

pl
ABðxμpÞ: ð2:25Þ

Zerilli’s analytic l ¼ 0, 1 solutions are given in
Appendix A.

III. POST-NEWTONIAN SOLUTIONS

We now present our method for finding the retarded
metric perturbation induced by a particle in eccentric
motion about a Schwarzschild black hole. We combine

the formalism of the previous section with PN expansions
of all relevant quantities. Our final results, given in Sec. V,
include expansions to 4PN (that is, four terms beyond
leading order). At each PN order we expand to 10th order in
eccentricity. For the purposes of pedagogy and space,
however, in this section we keep only two PN orders
and (where necessary) two terms in the small-e expansion.
Our final solutions will give the metric perturbation at the
location of the particle for each l-mode, as in Eq. (2.24).
Note that the presentation from Sec. III B onward is only
relevant to modes l ≥ 2.

A. Post-Newtonian expansions of orbit quantities

1. Position-independent orbit quantities

We take as our PN expansion parameter the inverse of the
dimensionless semilatus rectum p. Assuming it to be small,
we expand dtp=dχ from Eq. (2.6). Inserting the resulting
expansion in Eq. (2.8) we integrate order by order and find

Ωr ¼
1

M

�
1 − e2

p

�
3=2

�
1 − 3

1 − e2

p
þOðp−2Þ

�
: ð3:1Þ

Expanding Eq. (2.9) in the same limit gives

Ωφ ¼ 1

M

�
1 − e2

p

�
3=2

�
1þ 3

e2

p
þOðp−2Þ

�
: ð3:2Þ

As expected Ωr ¼ Ωφ at Newtonian order. We now
introduce the dimensionless gauge-invariant PN para-
meter y,

y≡ ðMΩφÞ2=3: ð3:3Þ

Combining Eqs. (3.2) and (3.3) we find a PN expansion
for y in terms of p. We invert the expansion to get p in
terms of y:

p ¼ 1 − e2

y
þ 2e2 þOðy1Þ: ð3:4Þ

This allows us to obtain expansions for both Ωr and Ωφ in
powers of y,

Ωr ¼
y3=2

M

�
1 −

3

1 − e2
yþOðy2Þ

�
; Ωφ ¼ y3=2

M
: ð3:5Þ

Note that the Ωφ expression is exact due to the definition of
y. With the above expressions, we are able to find PN
expansions of all orbit quantities in terms of y. The specific
energy and angular momentum follow from Eq. (2.4),
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E ¼ 1 −
y
2
þ 3þ 5e2

8 − 8e2
y2 þOðy3Þ;

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
My−1=2 þ 3Mð1þ e2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p y1=2 þOðy3=2Þ:

ð3:6Þ

Later, we will also need the radial period as measured in
coordinate time [Eq. (2.8)] and proper time (found by
integrating dτp=dχ from 0 − 2π). They are, respectively,

Tr ¼
2πM

y3=2

�
1þ 3

1 − e2
yþOðy2Þ

�
;

T r ¼
2πM

y3=2

�
1þ 3þ 3e2

2 − 2e2
yþOðy2Þ

�
: ð3:7Þ

2. Position-dependent orbit quantities

We now expand quantities that vary along the worldline
as functions of the relativistic anomaly χ. We start with the
radial position rp, first expanding in the PN parameter y,
and then at each PN order we expand in eccentricity e. The
resulting double expansion (here keeping only the first two
nonzero orders in each y and e) is

rpðχÞ ¼ M½1 − e cos χ þOðe2Þ�y−1 þM½2e2
− 2e3 cos χ þOðe4Þ�y0 þOðy1Þ: ð3:8Þ

Next, consider the φpðtÞmotion, which can be decomposed
into two parts as [47]

φpðtÞ ¼ Ωφtþ ΔφðtÞ: ð3:9Þ

The first term represents the mean azimuthal advance,
while the second term is periodic in Tr. In our expansions
we avoid ever using Ωφt explicitly, and work only with the
Δφ. This is convenient because terms involving Ωφt can
lead to linear-in-χ terms. For example, notice that after
leading order in y, eimΩφt is not strictly oscillatory,

eimΩφt ¼ ½eimχ − 2im sinðχÞeimχeþOðe2Þ�y0
þ ½3imχeimχ þ 3mð2mχ − iÞ sinðχÞeimχe

þOðe2Þ�yþOðy2Þ: ð3:10Þ

On the other hand, einΩrt is oscillatory for all PN orders,

einΩrt ¼ ½einχ − 2in sinðχÞeinχeþOðe2Þ�y0
þ ½3in sinðχÞeinχeþOðe2Þ�yþOðy2Þ: ð3:11Þ

This qualitative difference between the fundamental
frequencies can be traced back to the fact that Ωφ is a
“rotation-type” frequency describing average accumulation
of phase whileΩr is a “libration-type” frequency describing
periodic motion in r. SinceΔφ is periodic in Tr we find that
its expansion is free of linear-in-χ terms,

ΔφðχÞ ¼ ½2e sin χ þOðe2Þ�y0
þ ½4e sin χ þOðe2Þ�yþOðy2Þ: ð3:12Þ

Lastly, because they will be useful later, we also note the
expansions

e−imΔφðχÞ ¼ ½1 − 2ime sin χ þOðe2Þ�y0 þ ½−4ime sin χ þOðe2Þ�yþOðy2Þ;
dtp
dχ

¼ M½1 − 2e cos χ þOðe2Þ�y−3=2 þM½3 − 3e cos χ þOðe2Þ�y−1=2 þOðy1=2Þ;
dτp
dχ

¼ M½1 − 2e cos χ þOðe2Þ�y−3=2 þM

�
3

2
− 2e cos χ þOðe2Þ

�
y−1=2 þOðy1=2Þ: ð3:13Þ

B. Frequency domain homogeneous solutions

We now derive expressions for the un-normalized
frequency domain master function evaluated at the par-
ticle’s location. We start with homogeneous solutions to
the odd-parity master equation of the form derived in
Refs. [32,35]. These solutions are written as a double
expansion in small frequency and large r using the
dimensionless expansion parameters

X1 ≡M
r
; X 2 ≡ ðωrÞ2; ð3:14Þ

which are assumed to be the same order of magnitude. Note
that we choose the symbols X1 and X2 rather than the
standard X1 and X2 to avoid confusion with the frequency
domain master function. Written in terms of these variables,
the l ¼ 2 homogeneous solutions to the odd-parity master
equation are

X̂o;þ
2 ¼ X2

1η
4 þ 1

6
X2

1ð10X1 þ X2Þη6 þOðη8Þ;

X̂o;−
2 ¼ 1

X3
1

η−6 −
X2

14X3
1

η−4 þOðη−2Þ; ð3:15Þ
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with þ indicating the infinity-side (up) solution, and − the
horizon-side (in) solution. We use η ¼ c−1 to keep track of
the PN order. The even-parity solutions are computed from
the Chandrasekhar-Detweiler transformation [48]

X̂e
l ¼

�ðl− 1Þlðlþ 1Þðlþ 2Þ
24

þ 3ð1− 2X1ÞX2
1

ðl− 1Þðlþ 2Þþ 6X1

�
X̂o
l

þMð1− 2X1Þ
2

dX̂o
l

dr
; ð3:16Þ

which is true to all PN orders. We compute r derivatives
with the relation

d
dr

¼ X1

M

� ffiffiffiffiffiffi
X2

p d
d

ffiffiffiffiffiffi
X2

p − X1

d
dX1

�
: ð3:17Þ

Then, the even-parity l ¼ 2 homogeneous solutions are

X̂e;þ
2 ¼ X2

1η
4 þ

�
2X3

1

3
þ X2

1X2

6

�
η6 þOðη8Þ;

X̂e;−
2 ¼ 1

X3
1

η−6 þ
�

3

2X2
1

−
X2

14X3
1

�
η−4 þOðη−2Þ: ð3:18Þ

For the remainder of this presentation we focus on the
specific example of infinity side, odd parity. The even-
parity and horizon-side calculations, as well as those for the
r-derivatives of the master function, follow from an
equivalent procedure.
We are interested in evaluating the homogeneous sol-

utions at the location of the particle. Plugging in Eq. (3.14)
with r ¼ rpðtÞ we find

X̂o;þ
2 ¼ M2

r2p
η4 þM2ð10M þ ω2r3pÞ

6r3p
η6 þOðη8Þ: ð3:19Þ

In this expression ω and rp are valid to all PN orders. To
make further progress, we now expand ω and rp in both the
PN parameter y and the eccentricity e. The double
expansion of ω (again keeping only the first two nonzero
orders in y and e) is

ω ¼ ωmn ¼
ðmþ nÞ

M
y3=2

þ
�
−
3n
M

−
3ne2

M
þOðe3Þ

�
y5=2 þOðy7=2Þ:

ð3:20Þ

Inserting this, along with the PN expression for rp from
Eq. (3.8) into Eq. (3.19) we find (dropping η in favor of y
for counting PN orders)

X̂o;þ
2mn ¼ ½1þ 2e cosχ þOðe2Þ�y2

þ
�
1

6
ðm2 þ 2nmþ n2 þ 10Þ þ 5e cos χþOðe2Þ

�
y3

þOðy4Þ: ð3:21Þ

This expression, while a function of χ, which tracks the
particle, is still just a homogeneous solution to the
frequency domain master equation. Note that Eq. (3.21)
is specific to l ¼ 2, but is valid for m ¼ �1 and any n
(though we will see that a finite e expansion limits the
number of relevant harmonics n).

C. Frequency domain extended homogeneous solutions

Our next step is to find normalization coefficients so that
we can form the frequency domain extended homogeneous
solutions, as in Eq. (2.17). In Eq. (2.15) we wrote an
expression for C�

lmn that depends on a generic source
bounded between rmin and rmax. We now specify to the
form given in Eq. (2.11). It can be shown [41] that such a
source, when combined with Eq. (2.13), leads to a
normalization integral of the form

C�
lmn ¼

1

WlmnTr

Z
Tr

0

�
1

fp
X̂∓
lmnGlm þ

�
2M
r2pf2p

X̂∓
lmn

−
1

fp

dX̂∓
lmn

dr

�
Flm

�
eiωtdt; ð3:22Þ

The terms Glm and Flm arise from taking spherical
harmonic projections of the point particle’s stress energy
tensor, and as such, each carries a factor of e−imφpðtÞ. Noting
Eq. (3.9), it is useful to remove the e−imΩφt contribution
from Glm and Flm by defining [49]

ḠlmðtÞ≡GlmðtÞeimΩφt; F̄lmðtÞ≡FlmðtÞeimΩφt; ð3:23Þ

which are Tr-periodic. The e−imΩφt term cancels with a
compensating term in the eiωt of Eq. (3.22). Thus, changing
the integration variable to χ, we are left with

C�
lmn ¼

1

WlmnTr

Z
2π

0

�
1

fp
X̂∓
lmnḠlm þ

�
2M
r2pf2p

X̂∓
lmn

−
1

fp

dX̂∓
lmn

dr

�
F̄lm

�
einΩrt

dtp
dχ

dχ; ð3:24Þ

and all terms in the integrand are now 2π-periodic (when
considered as functions of χ).
Generally, we compute the integral (3.24) numerically. In

the PN/small-eccentricity regime, however, we are able to
perform the integral analytically l by l. In previous sub-
sections, we have already computed PN expansions of X̂∓

lmn,
rp,dtp=dχ, and einΩrt. Thefp terms follownaturally from the
rp expansion. What remains is the expansion of Ḡlm

and F̄lm.

ANALYTIC SELF-FORCE CALCULATIONS IN THE … PHYSICAL REVIEW D 93, 044010 (2016)

044010-7



In the odd-parity sector we have

Go
lm ¼ 32πμLfp

ðl − 1Þlðlþ 1Þðlþ 2ÞE2r5p
fLEr2p _rpXlm;�

φφ − fp½5Mr2p þ 7ML2 þ ð2E2 − 1Þr3p − 2L2rp�Xlm;�
φ g;

Fo
lm ¼ 32πμLf3pðr2p þ L2Þ

ðl − 1Þlðlþ 1Þðlþ 2ÞE2r3p
Xlm;�
φ : ð3:25Þ

The terms Xlm;�
φ and Xlm;�

φφ are complex conjugates of odd-parity vector and tensor spherical harmonics, evaluated on the
worldline. See Ref. [41] for details. We now insert the various expansions we have already computed, as usual only keeping
two terms in each y and e. The resulting 2π-periodic expressions are

Ḡo
lm ¼ 16πμ

M
∂θYlmðπ=2; 0Þ

ðl − 1Þlðlþ 1Þðlþ 2Þ f2½−1 − 2ðcos χ − im sin χÞeþOðe2Þ�y3=2

þ ½1þ 4ð2 cos χ þ im sin χÞeþOðe2Þ�y5=2 þOðy7=2Þg;

F̄o
lm ¼ 16πμ

∂θYlmðπ=2; 0Þ
ðl − 1Þlðlþ 1Þðlþ 2Þ f2½1þ ðcos χ − 2im sin χÞeþOðe2Þ�y1=2

− ½5þ ð13 cos χ − 2im sin χÞeþOðe2Þ�y3=2 þOðy5=2Þg: ð3:26Þ

Having expanded all the relevant quantities, we are now in a position to perform the integral (3.24) analytically order by
order. The integral itself is straightforward; we encounter nothing more than complex exponentials. The resulting
normalization coefficient is

Co;þ
2mn ¼ μ∂θY2mðπ=2; 0Þ sinðnπÞ

�
16

15

�
1

n
þ ðn − 2mÞ

n2 − 1
eþOðe2Þ

�
y−3=2

þ 4

105

�
−
ð3m2 þ 6mnþ 3n2 þ 14Þ

n
þ ð6m3 þ 3m2n −mð12n2 þ 77Þ − 9n3 þ 49nÞ

n2 − 1
eþOðe2Þ

�
y−1=2

þOðy1=2Þ
	
: ð3:27Þ

Note that there are several terms in this expression which appear at first glance to diverge for integer values of n, but all
values are finite in the limit. With the normalization coefficients in hand, the frequency domain extended homogeneous
solutions are just the product of X̂�

lmn and C�
lmn as shown in Eq. (2.17),

Xo;þ
2mn ¼ μ∂θY2mðπ=2; 0Þ sinðπnÞ

�
16

15

�
1

n
þ
�
n − 2m
n2 − 1

þ 2

n
cos χ

�
eþOðe2Þ

�
y1=2

þ 4

105

�
5m2 þ 10mnþ 5n2 þ 98

3n
−
�
2ð3m2 þ 6mnþ 3n2 − 56Þ

n
cos χ

þ 10m3 þ 33m2nþ 36mn2 þ 511mþ 13n3 − 287n
3ðn2 − 1Þ

�
eþOðe2Þ

�
y3=2 þOðy5=2Þ

	
: ð3:28Þ

D. Radially periodic, time domain extended
homogeneous solutions

We are now in a position to return to the time domain by
summing over harmonics n, as in Eq. (2.18). Since we have
performed the e-expansion to a finite order, the sum (2.18)
actually truncates. We find that if we compute the fre-
quency domain extended homogeneous solutions with
eccentricity contributions up to eN , then the only nonzero
terms in Eq. (2.18) are in the range −N ≤ n ≤ N.

Another wrinkle comes into play at this stage. The full
time domain extended homogeneous solutions are formed
from a sum involving e−iωt ¼ e−iðmΩφþnΩrÞt. As discussed
in Sec. III A, however, the factor e−imΩφt is not purely
oscillatory when expanded in y and e. It is therefore more
useful to form the quantity

Ψ̄�
lmðt; rÞ≡Ψ�

lmðt; rÞeimΩφt ¼
X
n

X�
lmnðrÞe−inΩrt: ð3:29Þ
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Contrary toΨ�
lm, Ψ̄

�
lm is purely periodic in χ, with no linear

terms. This leads one to ask: do we not need that e−imΩφt

term? Surprisingly, the answer is no, at least when
computing local quantities. The reason is that whenever
we want to compute anything physically relevant, like the
GSF, we have to multiply by spherical harmonics and sum
over the lm modes. The spherical harmonics carry an
exactly compensating term eimΩφt which cancels this
piece out.
We have been considering the example of odd-parity,

l ¼ 2 expanded to include two powers of y and e. We can
form Ψ̄o;�

2m by summing over n ¼ −1, 0, 1, and so we find

Ψ̄o;þ
2m ¼μπ∂θY2mðπ=2;0Þ

�
16

15
½1þðcosχ−2imsinχÞe

þOðe2Þ�y1=2þ 4

315
½98þ5m2þðð15m2þ62Þcosχ

− imð10m2þ547ÞsinχÞeþOðe2Þ�y3=2þOðy5=2Þ
	
:

ð3:30Þ

Note that we need only perform the calculation once for
each l mode. Therefore, this expression is valid for all
−2 ≤ m ≤ 2 (although in this case we are only interested in
m ¼ �1, of course).

E. Metric perturbation reconstruction

We now wish to use the master function to reconstruct
the retarded metric perturbation at the location of the
particle. We first form the metric perturbation amplitudes,
and then sum over spherical harmonics to form the full
metric perturbation. Expressions for the metric perturbation
amplitudes are given earlier in Eqs. (2.20) and (2.22).
However, as with the master function, we wish to form
“barred” versions of the metric perturbation amplitudes,
which are periodic in Tr, e.g. h̄lmtt ¼ hlmtt eimΩφt. Note that
since the full master function contains an extra factor of
e−imΩφt, time derivatives ofΨlm pick up counterterms when
written in terms of Ψ̄lm. The adjusted reconstruction
expressions are, for even parity,

K̄lm;�ðχÞ ¼ fp∂rΨ̄
e;�
lm ðχÞ þ ApΨ̄

e;�
lm ðχÞ;

h̄lm;�
rr ðχÞ ¼ Λp

f2p

�
λþ 1

rp
Ψ̄e;�

lm ðχÞ − K̄lm;�ðχÞ
�

þ rp
fp

∂rK̄lm;�ðχÞ;

h̄lm;�
tr ðχÞ ¼ rp½∂t∂rΨ̄

e;�
lm ðχÞ − imΩφ∂rΨ̄

e;�
lm ðχÞ�

þ rpBp½∂tΨ̄
e;�
lm ðχÞ − imΩφΨ̄

e;�
lm ðχÞ�;

h̄lm;�
tt ðχÞ ¼ f2ph̄

lm;�
rr ðχÞ; ð3:31Þ

and for odd parity,

h̄lm;�
t ðχÞ ¼ fp

2
½Ψ̄o;�

lm ðχÞ þ rp∂rΨ̄
o;�
lm ðχÞ�;

h̄lm;�
r ðχÞ ¼ rp

2fp
½∂tΨ̄

o;�
lm ðχÞ − imΩφΨ̄

o;�
lm ðχÞ�: ð3:32Þ

Note the subscriptp on all r-dependent quantities indicating
evaluation at r ¼ rpðχÞ. Be aware that the functional-χ
notation that we use is shorthand for, e.g. Ψ̄e;�

lm ðχÞ ¼
Ψ̄e;�

lm ½tpðχÞ; rpðχÞ�. Therefore, it is not true that
∂tΨ̄

e;�
lm ðχÞ ¼ ∂χΨ̄

e;�
lm ðχÞðdtp=dχÞ−1. To the contrary, all t

and r derivatives of Ψ̄e=o;�
lm must be computed explicitly. The

r derivatives follow from forming the frequency domain
extended homogeneous solutions ∂rX

e=o;�
lmn , while t deriv-

atives are formed by taking the t derivative of Eq. (3.29).
Next, we form the metric perturbation components for

each lm mode, as shown in Eq. (2.23). Now though, with
the “barred” form of the metric perturbation amplitudes, we
must multiply by the “barred” form of the various spherical
harmonics, e.g. Ȳlm ¼ Ylm½π=2;φpðtÞ�e−imΩφt. This is not
to be confused with complex conjugation, which we
indicate with an asterisk (�). As expected, this does not
change quantities evaluated on the worldline. For example

plm
tt ðχÞ ¼ hlmtt Ylm ¼ h̄lmtt eimΩφte−imΩφtȲlm ¼ h̄lmtt Ȳlm:

ð3:33Þ
Thus, the metric perturbation components for each lm
mode can be formed on either side of the particle through
the expressions

plm;�
ab ðχÞ ¼ h̄lm;�

ab ðχÞȲlm;�ðχÞ;
plm;�
aB ðχÞ ¼ h̄lm;�

a ðχÞX̄lm;�
B ðχÞ;

plm;�
AB ðχÞ ¼ r2pΩABK̄lm;�ðχÞȲlm;�ðχÞ: ð3:34Þ

Returning to our ongoing example, we can form the odd-
parity, ðl; mÞ ¼ ð2; 1Þ contribution to the t, φ and r, φ
metric perturbation components. Note that the t, θ and r, θ
components vanish. Using our expression from Eq. (3.30)
in Eqs. (3.32) and (3.34) we find

p21;þ
tφ ¼ μ½−1 − e cos χ þOðe2Þ�y1=2

þ μ

�
−
47

84
þ
�
5

12
cos χ þ 5i

28
sin χ

�
eþOðe2Þ

�
y3=2

þOðy5=2Þ;
p21;þ
rφ ¼ μ½−iþ ðsin χ − 2i cos χÞeþOðe2Þ�y

þ μ

�
−
271i
84

þ
�
71

42
sin χ −

177i
28

cos χ

�
e

þOðe2Þ
�
y2 þOðy3Þ: ð3:35Þ

Finally, we sum over m-modes. In practice we do this by
taking twice the real part of each nonzero m-mode and
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adding to the m ¼ 0 mode. As mentioned in Sec. II, while
RWZ gauge is known to have discontinuous metric
perturbation amplitudes for each lm mode, we find that
these discontinuities cancel out after summing over m-
modes. In fact, using the expressions in Ref. [41], we find
that the Dirac delta behavior of the metric perturbation
amplitudes also cancels out, so that the RWZ gauge is C0

for all l ≥ 2. For the specific example of l ¼ 2, we find the
t, φ and r, φ components of the metric perturbation to be

p2
tφ ¼ μ

�
ð−2 − 2e cos χ þOðe2ÞÞy1=2

þ
�
−
47

42
þ 5

6
e cos χ þOðe2Þ

�
y3=2 þOðy5=2Þ

�
;

p2
rφ ¼ μ

�
ð2e sin χ þOðe2ÞÞyþ

�
71

21
e sin χ þOðe2Þ

�
y2

þOðy3Þ
�
: ð3:36Þ

F. Large-l expressions

In the previous subsections, we used the example of l ¼
2 and odd parity to show how we construct retarded
solutions to each metric perturbation component for that
specific l-mode. Our example only showed an expansion
through 1PN. In reality, for such a low-order expansion, we
need not specify an explicit l value. In fact, through 2PN
we can write down solutions for arbitrary l ≥ 2. For the
purposes of this work, wherein we expand to 4PN, we
calculated explicit solutions for all modes l ≤ 3. For all

higher modes we use generic-l expressions. These expres-
sions follow from a nearly identical calculation to the
specific-l case. In fact, it is only the homogeneous
solutions that are different. We give an abbreviated over-
view of the procedure.
In the odd parity, through 1PN the homogeneous

solutions are of the form [32,35]

X̂o;þ
l ¼ ðη2X1Þl

�
1þ

�
X2

4l − 2
þ X1ðl − 1Þðlþ 3Þ

lþ 1

�
η2

þOðη4Þ
�
;

X̂o;−
l ¼ ðη2X1Þ−l−1

�
1þ

�
4 − l2

l
X1 −

X2

4lþ 6

�
η2

þOðη4Þ
�
: ð3:37Þ

Note that when l ¼ 2, these reduce to the expressions in
Eq. (3.15). We take these expressions, evaluate them along
the particle’s worldline, then normalize them by performing
the integral (3.24). For the even parity, the procedure is
equivalent, after using Eq. (3.16) to form the homogeneous
solutions. Critically, during the entire calculation we keep
the leading term [either ðη2X1Þl or ðη2X1Þ−l−1] factored
out of the PN expansion. This term eventually cancels out
once the frequency domain extended homogeneous sol-
utions are formed. Following the procedure through, we
find that the infinity-side odd-parity master function is

Ψ̄o;þ
lm ¼ 16πμ∂θY2mðπ=2; 0Þ

ðl − 1Þlðlþ 1Þð2lþ 1Þ
�
2½1þ ðcos χ − 2im sin χÞeþOðe2Þ�y1=2

þ 1

lðlþ 1Þðlþ 2Þð2l − 1Þð2lþ 3Þ ½5ð2m
2 þ 5Þl2 þ 2ð5m2 þ 13Þlþ 12l5 þ 32l4 þ 19l3 − 24

þ ð3ðð10m2 þ 19Þl2 þ 2ð5m2 þ 13Þlþ 4l5 þ 4l4 − 7l3 − 16Þ cos χ

− 2imð2ð5m2 þ 18Þl2 þ ð10m2 þ 17Þlþ 28l5 þ 96l4 þ 87l3 − 24Þ sin χÞeþOðe2Þ�y3=2 þOðy5=2Þ
	
: ð3:38Þ

Again, this reduces to the specific expression given in Eq. (3.30) when l ¼ 2. We use the master function expressions to
form the metric perturbation contributions for each lm mode. In order to perform the m sum for generic l, we make use of
the procedure of Nakano et al. [25] in Appendix F. Our final expressions for pl

μν are again a double expansion in y and e.
The generic-l equivalents of Eq. (3.36) are

pl
tφ ¼ μ

�
½−2 − 2e cos χ þOðe2Þ�y1=2

þ
�
−
3ð2l4 þ 4l3 þ 7l2 þ 5l − 8Þ
2lðlþ 1Þð2l − 1Þð2lþ 3Þ þ 14l4 þ 28l3 − 43l2 − 57lþ 48

2lðlþ 1Þð2l − 1Þð2lþ 3Þ e cos χ þOðe2Þ
�
y3=2 þOðy5=2Þ

	
;

pl
rφ ¼ μ

�
½2e sin χ þOðe2Þ�yþ

�
11l4 þ 22l3 þ 20l2 þ 9l − 24

lðlþ 1Þð2l − 1Þð2lþ 3Þ e sin χ þOðe2Þ
�
y2 þOðy3Þ

	
: ð3:39Þ
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As before, we find the metric perturbation to be single
valued for each l. Taking into account three different cases:
low-order modes (Appendix A), specific-l values (in our
case l ¼ 2, 3), and generic-l for all the rest, the full
retarded metric perturbation is formed from a simple sum
over l,

pμν ¼
X
l

pl
μν: ð3:40Þ

G. Resummation of the small eccentricity expansions

For our work here, we used Mathematica to expand all
quantities in the small-e limit, keeping powers up to e10. As
eccentricity order increases, the task of simplifying large
expressions requires substantial computational resources.
Indeed, finding the generic-l even-parity normalization
coefficient (our most taxing calculation) took some 10 days
and 20 GB of memory. Nonetheless, the virtue of this
approach is that we need only perform that calculation once
at each l. Still, with such computational overhead, the
question remains: can this approach be useful when
considering high-eccentricity orbits? Inspired by recent
work of Forseth et al. [50] (see also Ref. [51]), we have
sought to “resum” our final results at each PN order so as to
capture the e → 1 behavior. (We note also that it is likely
possible, and perhaps simpler, to achieve the same result by
expanding in p−1 instead of y [52,53].) As an example,
consider the 0PN expression for p2

tφ, shown here with all 10
powers of eccentricity,

p2
tφ ¼ −μ

�
2þ 2e cos χ þ e2 þ e3 cos χ þ 3

4
e4

þ 3

4
e5 cos χ þ 5

8
e6 þ 5

8
e7 cos χ þ 35

64
e8

þ 35

64
e9 cos χ þ 63

128
e10 þOðe11Þ

�
y1=2 þOðy3=2Þ:

ð3:41Þ

It is a relatively simple task to guess that this series is
probably the small-e expansion of

p2
tφ ¼ −

2μð1þ e cos χÞ
ð1 − e2Þ1=2 y1=2 þOðy3=2Þ: ð3:42Þ

A similar analysis of our generic-l solutions provided
closed-form expressions for all the 0PN and 1PN retarded
metric perturbation components.
Beyond 1PN, finding closed-form solutions becomes

harder. Examining the PN literature on eccentric orbits (see,
e.g., Eq. (356) of Blanchet [54]), it is clear that starting at
2PN the e → 1 singular behavior becomes more subtle than
some simple inverse factor of 1 − e2. And yet, as a first
approximation, factoring out the appropriate leading power

of 1 − e2 at each PN order [each order comes with an
additional factor of ð1 − e2Þ−1], yields dramatically
improved convergence for high eccentricities.
We note, of course, that our inability to find closed-

form expressions beyond 1PN does not imply their
nonexistence. Indeed, from standard PN calculations,
the metric of two bodies in eccentric motion is known
through 3PN with arbitrary mass ratios. See Ref. [22] and
references therein where the metric is given in standard
harmonic coordinates. Here we simply present the results
we were able to deduce by resumming our small-
eccentricity expansion, and without making use of known
results from other research.

IV. THE GENERALIZED REDSHIFT INVARIANT

Before continuing to our results, we introduce the
specific gauge invariant that we will compute. We first
briefly cover some GSF background and then give the exact
expression we use in our calculations.

A. Abbreviated background on gravitational
self-force invariants

When working at zeroth order in the mass ratio q, the
particle moves on a geodesic of the background spacetime
gμν, as we have assumed up to this point. Once we allow the
particle to have a small, but finite mass μ, the motion is no
longer geodesic in gμν, but it is geodesic in the effective
spacetime gμν ¼ gμν þ pR

μν. Here pR
μν is the regular part of

the metric perturbation, due to Detweiler and Whiting [55].
The regular metric perturbation comes from removing the
particle’s own singular field pS

μν from the retarded metric
perturbation pμν. An appropriate gradient of pR

μν provides
the GSF; see e.g. [43,56].
When computing local gauge invariants, it is convenient

to “turn off” the dissipation due to the GSF and look at
effects due solely to the conservative GSF. This is done by
forming pR;cons

μν ¼ ðpR;ret
μν þ pR;adv

μν Þ=2. Here pR;ret
μν is the

regular metric perturbation computed with retarded boun-
dary conditions, while pR;adv

μν is computed with advanced
boundary conditions. All gauge-invariant GSF quantities
mentioned in the introduction are defined with respect to
the conservative effective spacetime gconsμν ¼ gμν þ pR;cons

μν .
However, when computing an orbit average, the dissipative
contribution to gconsμν averages to zero, and so we can
compute such quantities directly from gμν.

B. Practical details of the hUi calculation
We are now ready to calculate the so-called “generalized

redshift invariant.” This quantity is an eccentric orbit
extension of Detweiler’s [4] original invariant ut. The
generalization hUi is due to Barack and Sago [21], and
is the orbit average of ut with respect to proper time τ.
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Critically, this average is taken on the GSF-perturbed orbit.
In the language introduced above, the average is performed
along the geodesic motion in the effective spacetime gμν.
When mapping between the background metric gμν and the
effective metric gμν, we take Ωi to be fixed. This implies
that Tr has the same value in the two spacetimes, but the τ
radial period T r does not. Thus, we write the orbit average
of ut with respect to proper time as

hUi≡ huti ¼ Tr

T r þ δT r
; ð4:1Þ

where δT r is an OðqÞ shift in T r due to the conservative
GSF. (Note that here we use Tr and T r to indicate
background quantities, a notation which differs from [22].)
Before continuing we wish to emphasize a point stressed

in Refs. [21,22]. It is not enough to simply compute a
gauge-invariant quantity like hUi. Rather, one must find a
functional way to relate that quantity to the particular orbit
being considered. A natural gauge-invariant characteriza-
tion of perturbed orbits is the two fundamental frequencies,
Ωr and Ωφ (recall that δΩr ¼ δΩφ ¼ 0 due to frequency
fixing). If one can parametrize a GSF-perturbed orbit with
observable frequencies, then the nontrivial gauge invariant
hUi can be taken as a function of those two parameters. In
this way, it is possible for those working in different gauges
(such as those used in PN literature) to compare results in a
meaningful way.
We now expand hUi into a background part, and a part

due to the GSF,

hUiðΩiÞ ¼ hUi0ðΩiÞ þ qhUigsfðΩiÞ; hUi0 ¼
Tr

T r
;

ð4:2Þ

where Ωi ≡ fΩr;Ωφg. When Ωi are taken to be fixed,
Akcay et al. [22] show that the OðqÞ shift in hUi can be
reduced to

qhUigsf ¼ −
hUi0
T r

δT r ¼
Tr

T 2
r
hHRi; ð4:3Þ

a simplification over the original Barack and Sago expres-
sion. Here we follow the notation of Refs. [21,57] and
introduce

HR ≡ 1

2
pR
μνuμuν ¼

1

2
pμνuμuν −HS; ð4:4Þ

where HS is due to the singular field pS
μν.

The calculation of the singular field is a subtle task. Its
removal is most often performed with mode-sum regulari-
zation [58], wherein singular terms are subtracted l by l
(though other techniques exist; see Ref. [59] for an over-
view). Barack and Sago first computed the leading-order

regularization parameter for HS when they introduced hUi.
Since then, higher-order regularization parameters (improv-
ing convergence rates for cases when the l sum must be
truncated) have been computed by Heffernan et al. [57].
But, for our purposes, where we know all l, we only need
the leading-order term,

HS ¼
X
l

H½0� ≡
X
l

2μ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2p

q K
�

L2

L2 þ r2p

�
: ð4:5Þ

The H½0� regularization parameter notation follows
Ref. [57]; the subscript [0] indicates that H½0� multiplies
zero powers of l. Combining Eq. (4.5) with (4.4) gives

hHRi ¼
X
l

�
1

2
hpl

μνuμuνi − hH½0�i
�
: ð4:6Þ

For our present calculation, it is a simple task to use our
expansions for rp and L and obtain a PN expansion for
H½0�. Both pl

μνuμuν and H½0� are then averaged over one
τ-period with the use of the PN expansion for dτp=dχ
from Eq. (2.6), thus forming hpl

μνuμuνi and hH½0�i, and
forming all that we need for a practical calculation
of hUigsf .
Lastly, we note that Akcay et al. [22] adjust for the

nonasymptotic flatness of the Lorenz gauge monopole by
adding a correction term to Eq. (4.3). In Appendix A we
show that the original RWZ monopole [37] is also not
asymptotically flat, but we are able to correct that with a
slight gauge transformation, and so we use Eq. (4.3) exactly
as is. However, we note that the radiative modes of RWZ
gauge are not asymptotically flat [60–62]. This is curious,
because Barack and Sago established the gauge invariance
of hUigsf for a certain class of gauges which respect the
periodicity of the orbit and are well behaved at spatial
infinity. Still, we have empirical evidence from several
calculations (including this one) that RWZ gauge falls into
the class of gauges for which hUigsf is invariant. The
question remains, why must we correct the nonasymptotic
flatness of the monopole, but not other modes? At this point
the answer is not clear.

V. RESULTS

Following the procedure described above, we have used
Mathematica to compute the metric perturbation along with
its first t and r derivatives through 4PN while keeping
powers in eccentricity up to e10. Our PN order required us
to compute solutions to the modes l ¼ 2 and l ¼ 3
explicitly, while all higher l modes are described by a
general-l expression.
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For each specific-l, as well as the generic-l case, we
performed the calculation for both even and odd parities,
on both sides of the particle. After summing over m-
modes we noticed the surprising result that RWZ gauge
is in fact C0 for each l, despite being discontinuous with
delta functions at the lm level. We subsequently con-
firmed that this was true to all PN orders using the
expressions in Ref. [41].
We show the convergence of one of the metric pertur-

bation components with PN order in Fig. 1. We used a
numerical code developed for recent work [50] to compute
the l ¼ 2 contribution to the metric perturbation compo-
nent t, φ at three different eccentricities. We then subtracted
successive PN terms derived analytically for this work and
computed the relative error. In the left column we see that
even for a moderately low eccentricity of e ¼ 0.2 the PN
convergence stalls at 2PN due to the small-e expansion. At
e ¼ 0.6 the convergence stalls after the subtraction of only
the 0PN term. In the right column we see that factoring out
the e → 1 singular behavior greatly improves the conver-
gence. Note that at e ¼ 0.6 the convergence still appears to
stall around 3PN. In order to probe such eccentricities at the
4PN level, we will evidently need more than 10 powers of
e, or perhaps a more precise capturing of the e → 1 singular
behavior for 2PN and beyond.

We now provide our results for the invariant hUigsf ,
computed using the procedure described in Sec. IV. The
specific expression is given below in Eq. (5.1) (γ is the
Euler-Mascheroni constant). We performed the regulari-
zation in two ways so as to check our removal of the
singular field. First, we fit out the constant-with-l term
by taking the large-l limit of our generic-l expressions.
That fit-out regularization parameter exactly agreed with
the proper time average of H½0� when expanded in y and
e. Using Mathematica we are able to take the l sum all
the way to infinity, and thus have no error due to
truncation.
We have compared our expression to the published

3PN values of Akcay et al. [22], which were computed
by starting in standard harmonic coordinates. That
reference also provides numerical data for hUigsf,
computed in Lorenz gauge, which we compare to in
Fig. 2. The recent RWZ gauge work by Bini et al. [39]
provides an analytic 4PN, Oðe2Þ value of hUigsf ,
which we agree with as well. Lastly, van de Meent
and Shah [23], who work in radiation gauge, provide
numerical predictions for 4PN terms through e6 and we
agree with all of their values within the provided
error bars.

FIG. 1. The effect of resumming the small-e expansion at each PN order as seen by comparing to numerical data, all computed at
p ¼ 1000. We see that especially as eccentricity increases, our resummation greatly improves convergence. Also, note the consistency
of our convergence throughout the orbit. Our results are no less effective at periapsis than apoapsis. The dips in the residuals are from
zero crossings, and not meaningful. See the discussion in the text for more details.
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hUigsf ¼−y−
2ð1− 2e2Þ
1− e2

y2þ 1

ð1− e2Þ2
�
−5þ 16e2 −

85e4

8
−
9e6

16
−
17e8

128
−
7e10

256
þOðe12Þ

�
y3

þ 1

ð1− e2Þ3
�
−
121

3
þ 41π2

32
þ 36e2þ e4

�
−
453

8
−
123π2

256

�
þ e6

�
251

8
−
41π2

256

�
þ e8

�
909

128
−
369π2

4096

�

þ e10
�
217

64
−
123π2

2048

�
þOðe12Þ

�
y4þ 1

ð1− e2Þ4
�
−
64

5
−
488e2

15
þ 242e4

15
þ 122e6

15
þ 71e8

20
þ 523e10

240
þOðe12Þ

�
y5 logy

þ 1

ð1− e2Þ4
�
−
1157

15
−
128γ

5
þ 677π2

512
−
256

5
log2þ e2

�
13102

45
−
976γ

15
þ 2239π2

3072
þ 496

3
log2−

1458

5
log3

�

þ e4
�
−
7679

90
þ 484γ

15
−
21941π2

6144
−
20724

5
log2þ 5103

2
log3

�
þ e6

�
21859

120
þ 244γ

15
þ 13505π2

12288
þ 157564

5
log2

−
1586061

160
log3−

1953125

288
log5

�
þ e8

�
−
1937767

23040
þ 71γ

10
þ 13129π2

65536
−
13131809

90
log2−

1355697

1280
log3

þ 48828125

768
log5

�
þ e10

�
−
3734707

115200
þ 523γ

120
þ 31055π2

393216
þ 14107079851

27000
log2þ 202776271479

1024000
log3

−
59986328125

221184
log5−

678223072849

9216000
log7

�
þOðe12Þ

�
y5þOðy6Þ: ð5:1Þ

We note that (with an eye to the discussion in
Sec. IV), our parametrization (5.1) is somewhat lacking.
Since y is derived from Ωφ, it is gauge invariant,
but e, however, is not. When considering eccentric
orbits, it is customary to give results in terms of y and
λ≡ 3y=k, where k≡Ωφ=Ωr − 1 is a measure of
periapsis advance. It is a straightforward, if tedious, task
to transform our results to λ, but in the process we lose the
physical intuition that e provides. In practice it is more
convenient to convert from λ to e for the purposes of
comparison. In Appendix B, we do provide hUigsf as a
function of p and e, though for easy comparison with
GSF codes.

In addition to comparing with other calculations of hUigsf ,
our result is useful for EOB comparison and calibration.
Notably, recent 4PN EOB results have introduced terms
through e6 in the nongeodesic “Q̂ potential.” See
Eq. (8.1c) of Damour et al. [63]. The full Q̂ can be separated
into terms linear-in-ν (with ν being the symmetricmass ratio),
which are accessible through our GSF calculation, and terms
which areOðν2Þ and beyond,whichwould require at least the
second-order GSF to compute. Thus, we write Q̂ðu;p0

rÞ¼
νqðu;p0

rÞþOðν2Þ. (Thedetails of theEOBnotation used here
and throughout the rest of this section can be found in
Ref. [63].) Our expression for qðu; p0

rÞ, through e10 [equiv-
alently ðn0 · p0Þ10] is

FIG. 2. Comparison of our PN expressions with numerical data from Table II of Akcay et al. [22]. Dots are numerical values and lines
are our analytic calculations. The top row is log10 of the absolute value of the full hUigsf . Successive rows show residuals after
subtracting each term in the PN series. The consistency of our agreement out to e ¼ 0.4 is only possible because of our resummation of
the small-e expansion. Unevenness of the final residuals for p ¼ 100 is likely a numerical artifact.

HOPPER, KAVANAGH, and OTTEWILL PHYSICAL REVIEW D 93, 044010 (2016)

044010-14



qðu; p0
rÞ ¼ 8u2ðn0 · p0Þ4 þ

�
−
5308

15
þ 496256

45
log 2 −

33048

5
log 3

�
u3ðn0 · p0Þ4 þ

�
−
827

3
−
2358912

25
log 2

þ 1399437

50
log 3þ 390625

18
log 5

�
u2ðn0 · p0Þ6 þ

�
−
35772

175
þ 21668992

45
log 2þ 6591861

350
log 3

−
27734375

126
log 5

�
uðn0 · p0Þ8 þ

�
−
231782

1575
−
408889317632

212625
log 2 −

22187736351

28000
log 3þ 7835546875

7776
log 5

þ 96889010407

324000
log 7

�
ðn0 · p0Þ10 þO½u−1ðn0 · p0Þ12�: ð5:2Þ

We derived Eq. (5.2) using the procedure described in Le
Tiec’s recent work [64]. Using Eq. (5.27) from that
reference, we were able to transcribe our 4PN, e4 con-
tribution to hUigsf to the u3ðn0 · p0Þ4 contribution to q,
confirming the same term in Eq. (8.1c) of Ref. [63]. We
then followed the prescription of Le Tiec to derive tran-
scription equations equivalent to his (5.27) for e6, e8, and
e10. With these, we confirmed the u2ðn0 · p0Þ6 coefficient
(the e6 term) of q, given in Ref. [63]. The last two terms in
Eq. (5.2) are previously unknown coefficients, correspond-
ing to e8 and e10 at 4PN.

VI. CONCLUSIONS AND OUTLOOK

We have presented a method for solving the first-order
field equations in a PN/small-eccentricity expansion when
the source is a point particle in bound motion on a
Schwarzschild background. In this work we have kept
terms through 4PN and e10, but our method will extend
naturally to higher orders. Important to the effectiveness of
our results was the resumming of the e-series at each PN
order. Our method lends itself to many further calculations
of eccentric orbit invariants. Since we already have com-
puted derivatives of the metric perturbation (though they
were not used in computing hUi here), a natural next step is
to compute an eccentric orbit generalization of the spin-
invariant ψ [15].
Moving beyond Schwarzschild to Kerr is a more

challenging task. The analytic merger of PN theory with
black hole perturbation theory on Kerr has a long history
(e.g., [28,31]), though the focus has typically been on
fluxes and nonlocal dissipative GSF. The reason is largely
due to the challenge of reconstructing the radiation-gauge
metric perturbation from the Teukolsky variable. Recent
work by Pound et al. [65] has helped to clarify the
subtleties of the process, and it may now be possible to
extend our method to compute the Kerr metric perturbation,
although the task is formidable.
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APPENDIX A: LOW-ORDER MODES

In this appendix we give Zerilli’s [37] analytic solutions
to the l ¼ 0, 1 equations. We find that we must shift the
monopole, as is done in Lorenz gauge [66], in order to find
an asymptotically flat solution. It is straightforward to take
the expressions given here and expand them at the particle’s
location in a PN series using the expressions in Sec. III A.

1. Monopole

In the monopole case l ¼ m ¼ 0 and only h00tt , h00tr , h00rr ,
and K00 are defined. Zerilli chooses to set h00tr ¼ K00 ¼ 0.
The remaining nonzero solutions are

h00tt ¼ 4
ffiffiffi
π

p
μ

�
E
r
−

f
Efprp

ð2E2 −U2
pÞ
�
θ½r − rpðtÞ�;

h00rr ¼ 4
ffiffiffi
π

p
μE

f2r
θ½r − rpðtÞ�: ðA1Þ

Recall the distinction between quantities with a subscript p,
such as fp which is a function of the particle location rp,
and those without subscripts, like f which is a function of
the Schwarzschild coordinate r. We seek asymptotically
flat solutions which fall off at least as 1=r. The amplitude
h00rr satisfies this, but as in Lorenz gauge h00tt does not. We
therefore look for a gauge transformation to remove the
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term

−4
ffiffiffi
π

p
μf

2E2 −U2
p

Efprp
θ½r − rpðtÞ�: ðA2Þ

The push equations for the three nonzero amplitudes are
[40]

Δh00tt ¼ −2∂tξ
00
t þ f

2M
r2

ξ00r ;

Δh00tr ¼ −f∂rðf−1ξ00t Þ − ∂tξ
00
r ;

Δh00rr ¼ −2∂rξ
00
r −

2M
fr2

ξ00r : ðA3Þ

From this we see that we can take ξ00r ¼ 0 and demand that
ξ00t satisfy

Δh00tt ¼ −2∂tξ
00
t ¼ 4

ffiffiffi
π

p
μf

2E2 −U2
p

Efprp
: ðA4Þ

Note that the Zerilli solution is zero on the horizon side of
the particle, but this push will add a nonzero term there. As
far as pushing h00tt goes, we can get away with simply
specifying the time derivative of ξ00t . However, a gauge
transformation involving ξ00t will also affect h00tr . Looking at
the h00tr push, we will need −f∂rðf−1ξ00t Þ, i.e.

Δh00tr ¼ −f∂rðf−1ξ00t Þ ¼ 2
ffiffiffi
π

p
μ

E
f∂r

�Z
t

0

2E2 −U2
p

fprp
dt0

�
¼ 0:

ðA5Þ

So this choice of gauge transformation actually leaves h00tr
unchanged. Then, multiplying by Y00, in our asymptotically
flat gauge the nonzero monopole solutions are

p00
tt ðxμÞ ¼ 2μ

E
r
θ½r − rpðtÞ� þ 2μf

2E2 −U2
p

Efprp
θ½rpðtÞ − r�;

p00
rr ðxμÞ ¼

2μE
f2r

θ½r − rpðtÞ�: ðA6Þ

2. Odd-parity dipole

When ðl; mÞ ¼ ð1; 0Þ the odd-parity amplitude h102 is not
defined and we have residual gauge freedom. Zerilli used
this freedom to set h10r ¼ 0. The only nonzero remaining
amplitude is

h10t ¼ 4μL

ffiffiffi
π

3

r �
1

r
θ½r − rpðtÞ� þ

r2

r3p
θ½rpðtÞ − r�

�
: ðA7Þ

This amplitude decays as r−1 at large radii and as such is
asymptotically flat. Multiplying by X10

φ gives the only
nonzero metric perturbation component,

p10
tφðxμÞ ¼ −2μLsin2θ

�
1

r
θ½r − rpðtÞ� þ

r2

r3p
θ½rpðtÞ − r�

�
:

ðA8Þ

We note that (as brought to our attention by Leor Barack),
this dipole solution is in fact singular at the horizon (when
viewed in horizon-regular, ingoing Eddington-Finkelstein
coordinates). While this does not affect our first-order-in-q
calculation, any second-order GSF analysis will require a
horizon-regular solution.

3. Even-parity dipole

When ðl; mÞ ¼ ð1; 1Þ the even-parity amplitude G11 is
not defined. Zerilli sets K11 ¼ 0 (in addition to the usual
j11t ¼ j11r ¼ 0). The remaining nonzero even-parity dipole
amplitudes are

h11tt ¼ −2μ
ffiffiffiffiffiffi
2π

3

r
rfp
f

�
Erp
r3

þ 6L2M þ 6Mr2p − 3L2rp þ ð2E2 − 3Þr3p
Er5p

−
6iL_rp
r3p

�
e−iφpðtÞθ½r − rpðtÞ�;

h11tr ¼ −
2

ffiffiffiffiffiffi
6π

p
μ

rf2rp
ðiLf2p − Erp _rpÞe−iφpðtÞθ½r − rpðtÞ�;

h11rr ¼ −
2

ffiffiffiffiffiffi
6π

p
μErpfp

r2f3
e−iφpðtÞθ½r − rpðtÞ�: ðA9Þ

We observe that h11tt is not asymptotically flat, while the other two amplitudes are. However, the even-parity dipole is the so-
called “pure gauge”mode. It is a straightforward calculation to form its contribution to hUi, and we find that it vanishes in a
pointwise sense.
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APPENDIX B: THE GENERALIZED REDSHIFT INVARIANT AS AN EXPANSION IN p−1

hUigsf ¼ −ð1 − e2Þp−1 þ ð−2þ 4e2 − 2e4Þp−2 þ
�
−5þ 7e2 þ e4

4
−
5e6

2
þ 15e8

64
þ 3e10

64
þOðe12Þ

�
p−3

þ
�
−
121

3
þ 41π2

32
þ e2

�
−
5

3
−
41π2

32

�
þ e4

�
705

8
−
123π2

256

�
þ e6

�
−
475

12
þ 41π2

128

�

þ e8
�
−
1171

384
þ 287π2

4096

�
þ e10

�
−
115

128
þ 123π2

4096

�
þOðe12Þ

�
p−4

þ
�
64

5
þ 296e2

15
−
146e4

3
þ 8e6 þ 55e8

12
þ 329e10

240
þOðe12Þ

�
p−5 logp

þ
�
−
1157

15
−
128γ

5
þ 677π2

512
−
256

5
log 2þ e2

�
−
11141

45
−
592γ

15
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