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I. INTRODUCTION

The Melvin solution in Einstein-Maxwell gravity
describes a regular and static cylindrically symmetric
solution representing a bundle of magnetic flux lines in
magnetostatic-gravitational equilibrium [1,2]. On the other
hand, it provides a uniform magnetic field in the realm of
general relativity. Next, the considerations pertaining to the
description of a rotating time-dependent magnetic universe
were conceived in [3], while the problem of gravitational
waves traveling through the universe in question was
tackled in Ref. [4].
There was also a great interest in black hole behavior

in the magnetic universe. For the first time, the exact
solution describing a black hole in the Melvin universe was
achieved in [5]. The ultrastatic boost of the Schwarzschild
black hole immersed in an external electromagnetic field
was studied in [6], while a magnetized static black hole
acting as a gravitational lens was examined in Ref. [7].
Detailed studies of ergoregions and thermodynamics of
magnetized black hole solutions were conducted in Ref. [8]
(see also the earlier works connected with black holes in the
magnetized universe, e.g., [9]), while the studies of the
spectral line broadening effect in spacetime of nonrotating
magnetized black hole were elaborated in [10]. The
problem of magnetic fields in the expanding universe
was tackled in [11]. Magnetized black hole solutions were
also established in generalization of Einstein-Maxwell
theory, in heterotic string theory, where a Melvin universe
with nontrivial dilaton and axion fields was founded
[12,13]. On the other hand, a Melvin flux tube universe
can be also realized as the Kaluza-Klein reduction from a
flat higher spacetime with nontrivial identifications. Such a
solution generating technique which allows to embed the
dilaton C-metric in the dilaton magnetic universe was
presented [14], whereas the case of a pair creation of the
extremal black hole and Kaluza-Klein monopoles was
examined in [15]. A Melvin type solution was also studied
in gravity theories minimally coupled to any nonlinear

electromagnetic theory, including Born-Infeld electrody-
namics [16].
A new Melvin-like solution with a Liouville-type poten-

tial was given in Ref. [17], whereas an electrically charged
dilaton black hole in a magnetic field was considered in
[18]. The generalization of the aforementioned problems in
higher dimensional gravity was given in [19], where
magnetized static and rotating black holes in arbitrary
dimensions and magnetized black rings in five dimensions
were examined. The researches were based on applying a
Harrison transformation to the known black hole and black
ring solutions. On the other hand, the higher dimensional
dilaton gravity case was treated in Ref. [20]. This subject is
also treated in M-theory, where a version of a Melvin
universe was found in type II A and type 0A string
theory [21].
The subject of black hole magnetized solutions was also

treatedbyErnst’s solutiongenerating technique,whereblack
hole solutions in a magnetic universe in Einstein-Maxwell
theory coupled conformally to a scalar field [22], as well as,
axisymmetric stationary black holes with cosmological
constant [23] were considered. These techniques were used
to obtain a C-metric with conformally coupled scalar field in
a magnetic universe [24] and an exact and regular solution
describing a couple of charged spinning black holes in an
external electromagnetic field [25]. Recently, there was
presented a solution of Einstein-Maxwell theory unifying
both magnetic Bertotti-Robinson and Melvin solution as a
single axisymmetric line element [26].
On the other hand, gravitational collapse and emergence

of black holes were paid attention to. The most intriguing
was Wheller’s black hole no-hair conjecture or its math-
ematical formulation, the uniqueness theorem (problem of
classification of domains of outer communication of
suitably regular black hole spacetimes). The first attempts
to classify nonsingular static black hole solutions in
Einstein gravity were undertaken in [27] and some more
results were gained in Refs. [28–34]. The complete
classification of static vacuum and electrovacuum black
hole solutions was finished in [35,36], where the condition
of nondegeneracy of the event horizon was removed as well
as it was proved that all degenerate components of the black
hole event horizon have charges of the same signs.
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As far as stationary axisymmetric black holes are
concerned, the problem turned out to be far more compli-
cated [37] and the complete uniqueness proof was achieved
by Mazur [38] and Bunting [39] (for a review of the
uniqueness of black hole solutions story see [40] and
references therein). In higher dimensional generalization of
gravity theory motivated by the contemporary unifications
schemes such as M/string theories the classification of
higher dimensional charged black holes both with non-
degenerate and degenerate component of the event horizon
was proposed in Ref. [41], while some progress concerning
the nontrivial case of n-dimensional rotating black objects
(black holes, black rings or black lenses) uniqueness
theorem was presented in [42]. On the other hand, the
behavior of matter fields in the spacetime of higher
dimensional black hole was examined in [43].
The desire of constructing a consistent quantum gravity

theory triggered also interests in mathematical aspects of
black holes in the low-energy limit of the string theories
and supergravity [44]. On the other hand, various mod-
ifications of Einstein gravity such as the Gauss-Bonnet
extension were examined from the point of view of black
hole uniqueness theorem. The strictly stationary static
vacuum spacetimes were discussed in [45], while it turned
out that up to the small curvature limit, a static uncharged
or electrically charged Gauss-Bonnet black hole is diffeo-
morphic to the Schwarzschild-Tangherlini or Reissner-
Nordström black hole solution, respectively [46]. On the
other hand, in Chern-Simons modified gravity it was
proved that a static asymptotically flat black hole solution
is unique to be Schwarzschild spacetime [47], while
an electrically charged black hole in the theory in question
is diffeomorphic to the Reissner-Nordström black
hole [48].
Motivated by the aforementioned problems concerning

both magnetized axially symmetric black hole solutions as
well as their classification, we shall consider the problem of
the uniqueness static dilaton magnetized Schwarzschild
black hole. The first attempts to establish the uniqueness of
the static Melvin solution in Einstein-Maxwell gravity was
attributed to Hiscock [49], where the generalization of the
Israel’s theorem was presented. In our research, we prove
that the dilaton Melvin-Schwarzschild black hole solution
is the only asymptotically dilaton Melvin static axisym-
metric black hole solution of Einstein-Maxwell dilaton
equations of motion.
The organization of our paper is as follows. Section I is

devoted to the equations of motion for a static axially
symmetric system with Uð1Þ-gauge Maxwell matter
source, in the low-energy limit of the heterotic string
theory. In Sec. II we provide the uniqueness theorem proof
revealing that the only static axially symmetric solution in
the theory in question with S2-topology of the event
horizon is the Melvin-Schwarzschild dilaton black hole.
In Sec. III we conclude our investigations.

II. EQUATIONS OF MOTION

Our main aim of the paper will be to show the unique-
ness of static axisymetric magnetized black hole, the so-
called dilaton Melvin-Schwarzschild black hole, in dilaton
gravity being the low-energy limit of the heterotic string
theory. In this section we analyze the equation of motion for
the static axisymmetric line element in the theory under
consideration, which action yields

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ð∇φÞ2 − e−2φFαβFαβÞ; ð1Þ

where the strength of the Maxwell gauge field is described
by Fμν ¼ 2∇½μAν�. The resulting equations of motion,
derived from the variational principle, are provided by

Rμν ¼ e−2φ
�
2FμρFν

ρ −
1

2
gμνF2

�
þ 2∇μφ∇νφ; ð2Þ

∇μ∇μφþ 1

2
e−2φF2 ¼ 0; ð3Þ

∇μðe−2φFμνÞ ¼ 0: ð4Þ

A line element appropriate to the static axisymmetric
spacetime can be expressed as

ds2 ¼ −e2ψdt2 þ e−2ψ ½e2γðdρ2 þ dz2Þ þ ρ2dϕ2�; ð5Þ
where the functions ψ and γ depended only on ρ and z
coordinates. In our considerations we assume that the
nonzero components of the Uð1Þ-gauge strength tensor
will be in the form Aμ ¼ ðAt; 0; 0; AϕÞ. Moreover, one
supposes that the gauge field components are also functions
of ρ and z. Consequently, the underlying equations of
motion imply

∇2φ − e−2ψ−2φðA2
t;ρ þ A2

t;zÞ þ
e2ψ−2φ

ρ2
ðA2

ϕ;ρ þ A2
ϕ;zÞ ¼ 0;

ð6Þ

∇2ψ − e−2ψ−2φðA2
t;ρ þ A2

t;zÞ −
e2ψ−2φ

ρ2
ðA2

ϕ;ρ þ A2
ϕ;zÞ ¼ 0;

ð7Þ

∇2At − 2ðψ ;ρ þ φ;ρÞAt;ρ − 2ðψ ;z þ φ;zÞAt;z ¼ 0; ð8Þ

△Aϕ þ 2ðψ ;ρ − φ;ρÞAϕ;ρ þ 2ðψ ;z − φ;zÞAϕ;z ¼ 0; ð9Þ

e−2ψ−2φðA2
t;ρ − A2

t;zÞ þ
1

ρ2
e2ψ−2φðA2

ϕ;ρ − A2
ϕ;zÞ

þ ðφ2
;z − φ2

;ρÞ ¼ ψ2
;ρ − ψ2

;z −
γ;ρ
ρ
; ð10Þ

γ;z
ρ
− 2ψ ;ρψ ;z ¼ −2e−2ψ−2φAt;ρAt;z þ

2

ρ2
e2ψ−2φAϕ;ρAϕ;z

þ 2φ;ρφ;z; ð11Þ
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where∇2 is the Laplacian operator in the ðρ; zÞ coordinates,
namely, ∇2 ¼ ∂2

ρ þ ∂2
z þ 1

ρ ∂ρ and △ ¼ ∂2
ρ þ ∂2

z − 1
ρ ∂ρ.

From Eq. (10) or Eq. (11) one can determine the function
γ if ψ ;φ; At; Aϕ are known. By virtue of this, for our present
purposes it will be sufficient to consider the relations given
by (6)–(9).
To proceed further, one defines the quantities provided

by the following relations:

K ¼ −φ − ψ ; L ¼ ψ − φ: ð12Þ
They enable us to rewrite the above system of partial
differential equations (6)–(9), in the forms as

∇2K þ e2K∇ ~At∇ ~At ¼ 0; ð13Þ
∇2 ~At þ 2∇K∇ ~At ¼ 0; ð14Þ

∇2Lþ e2L∇ ~Aϕ∇ ~Aϕ ¼ 0; ð15Þ

△ ~Aϕ þ 2∇L∇ ~Aϕ ¼ 0; ð16Þ

where we have defined the quantities which imply

~At ¼
Atffiffiffi
2

p ; ~Aϕ ¼ iAϕffiffiffi
2

p : ð17Þ

As a result, we have obtained two pairs of equations
described in terms of ~At; K and the other for ~Aϕ and L. On
the other hand, one notices that Eq. (14) allows us to
specify a pseudopotential η which yields

ηρ ¼ ρe2K ~At;z; ηz ¼ −ρe2K ~At;ρ; ð18Þ

while the relation (16) leads to the following pseudopo-
tential χ:

χρ ¼ −
e2L ~Aϕ;z

ρ
; χz ¼

e2L ~Aϕ;ρ

ρ
: ð19Þ

Our main aim is to rewrite the system of Eqs. (13)–(16) in
the forms similar to the Ernst ones. In order to do this, we
introduce two complex scalars, determined by

ϵ1 ¼ ρeK þ iη; ð20Þ

ϵ2 ¼ eL þ iχ: ð21Þ

The complex scalar allows us to arrange Eqs. (13) and (14)
and also (15) and (16) in the following two complex
relations:

ðϵ̄1 þ ϵ1Þ∇2ϵ1 ¼ 2∇ϵ1∇ϵ1; ð22Þ

ðϵ̄2 þ ϵ2Þ∇2ϵ2 ¼ 2∇ϵ2∇ϵ2; ð23Þ

where a bar denotes complex conjugation.

The received relations (22) and (23) enable us to
combine in a convenient and a symmetric fashion the
two equations governing φ;ψ and the adequate compo-
nents of the Uð1Þ-gauge field. Each of the discussed
relations constitutes a sigma model.

A. Boundary conditions

In this subsection we pay attention to the relevant
boundary conditions in the case under consideration. As
was pointed out, the dilaton Melvin-Schwarzschild black
hole [20] obtained by the implementation of a Harrison
transformation to the known black hole solution, asymp-
totically approaches the so-called dilaton Melvin solution
given in Ref. [14]. In order to provide some continuity with
the known results concerning stationary axisymmetric as
well as Einstein-Maxwell Melvin black hole uniqueness
theorems, we introduce in two-dimensional manifold the
spheroidal coordinates provided by

ρ2 ¼ ðλ2 − c2Þð1 − μ2Þ; z ¼ λμ; ð24Þ

where μ ¼ cos θ is chosen in such a way that the black hole
event horizon boundary is situated at a constant value of
λ ¼ c. On the other hand, two rotation axis segments which
distinguish the south and the north segments of the event
horizon are described by the respective limit μ ¼ �1. We
obtain the line element in the form as

dρ2 þ dz2 ¼ ðλ2 − μ2c2Þ
�

dλ2

λ2 − c2
þ dμ2

1 − μ2

�
: ð25Þ

We also introduce the quantities which yield

X ¼ e−2ψρ2; e−2ψþ2γ ¼ eh

X
; ð26Þ

where h is a function of ðρ; zÞ-coordinates. Introducing
such coordinates we assume that the black hole event
horizon has topology of the S2 sphere.
In what follows one will examine the domain of outer

communication hhDii as a rectangle. Namely, one gets

∂Dð1Þ ¼ fμ ¼ 1; λ ¼ c;…; Rg;
∂Dð2Þ ¼ fλ ¼ c; μ ¼ 1;…;−1g;
∂Dð3Þ ¼ fμ ¼ −1; λ ¼ c;…; Rg;
∂Dð4Þ ¼ fλ ¼ R; μ ¼ −1;…; 1g: ð27Þ

The relevant boundary conditions may be cast as follows.
At infinity, we insist that X; Aϕ; At are well-behaved
functions and the solution in question asymptotically
tends to the Melvin-dilaton one. It implies the following
behaviors:
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1

ρ2
X ¼

�
1þ 1

2
B2ρ2

�
−2
ð1þOðλ−1ÞÞ; ð28Þ

Aϕ ¼ Bρ2

2ð1þ B2ρ2

2
Þ
ð1þOðλ−1ÞÞ; ð29Þ

At ¼ Oðλ−1Þ; φ ¼ Oðλ−1Þ; ð30Þ

where now ρ stands for the asymptotical cylindrical
coordinate given by ρ2 → λ2ð1 − μ2Þ. On the black hole
event horizon, where λ → c, the quantities in question
behave regularly (see, e.g., [37,38,40]). Namely, they yield

X ¼ Oð1 − μ2Þ; 1

X
∂μX ¼ −

2μ

1 − μ2
þOð1Þ; ð31Þ

∂λAϕ ¼ Oð1 − μ2Þ; ∂μAϕ ¼ Oð1Þ; ð32Þ

∂λAt ¼ Oð1Þ; ∂μAt ¼ Oð1Þ; φ ¼ Oð1Þ: ð33Þ

On the other hand, on the symmetry axis as μ → �1, we
obtain

X ¼ Oð1Þ; 1

X
¼ Oð1Þ; ð34Þ

Aϕ ¼ Oð1Þ; ∂λAϕ ¼ Oð1Þ; ∂λφ ¼ Oð1Þ; ð35Þ

At ¼ Oð1Þ; ∂λAt ¼ Oð1Þ; φ ¼ Oð1Þ: ð36Þ

III. UNIQUENESS OF BLACK HOLE SOLUTIONS

In order to proceed to the uniqueness proof, we recall
that [50,51] Ernst’s equations can be included in the single
matrix equation. The matrix equation written out in terms
of the adequate elements represents a relation which
constitutes various combinations of the aforementioned
equations. In the case under consideration the matrix
equation can be expressed as

∂ρ½P−1
ðiÞ∂ρPðiÞ� þ ∂z½P−1

ðiÞ∂zPðiÞ� ¼ 0; ð37Þ

where the subscript ðiÞ in the Pmatrix refers respectively to
~At; ~Aϕ gauge fields. The explicit form of the matrices is
given by

PðtÞ ¼
1

ρeK

�
1 η

η ρ2e2Kþη2

�
; PðϕÞ ¼

1

eL

�
1 χ

χ e2Lþχ2

�
:

ð38Þ
By simple calculations one can check that the above matrix
equations when written out explicitly in terms of its
elements constitute four relations, all of them are various
combinations of Eqs. (22) and (23) as well as their complex

conjugations. It can be noticed that when B is any constant
invertible matrix, then BPB−1 represents also the solution
of the matrix equation in question. In principle, choosing
different forms of the matrix B one is able to derive all the
transformations which are applicable to the system of
Ernst’s equations.
In order to prove a uniqueness theorem we shall follow

the line described in Refs. [38,52]. To begin with, one
should assume enough differentiability for the matrices
components in a domain of outer communication hhDii of
the two-dimensional manifold M with boundary ∂D. Let
PðiÞ1 and PðiÞ2 be two different solutions of the equa-
tion (37), respectively for the cases of ~A0 and ~Aϕ compo-
nents of the Uð1Þ-gauge field. The difference of the above
relations can be written as

∇ðP−1
ðiÞ1ð∇QðiÞÞPðiÞ2Þ ¼ 0; ð39Þ

whereQðiÞ ¼ PðiÞ1P−1
ðiÞ2 and i ¼ t;ϕ. Multiplying the above

relations byQ†
ðiÞ and taking the trace, we get the expression

which implies

∇2qðiÞ ¼ Tr½ð∇Q†
ðiÞÞP−1

ðiÞ1ð∇QðiÞÞPðiÞ2�; ð40Þ

where we have denoted by qðiÞ ¼ TrQðiÞ. Having in mind
hermicity and positive definiteness of the matrices PðiÞ1 and
PðiÞ2, we can postulate the following form of the above
matrices:

PðtÞ ¼ MM†; PðϕÞ ¼ NN†: ð41Þ

It can be revealed that the explicit forms of the matrices M
and N are provided by

M ¼ 1ffiffiffi
ρ

p
e
K
2

�
1 0

η ρeK

�
; Nα ¼

1

e
L
2

�
1 0

χ eL

�
: ð42Þ

Relation (41) enables one to rewrite Eq. (40) in the form
which yields

∇2qðiÞ ¼ TrðJ †
ðiÞJ ðiÞÞ; ð43Þ

whereJ ðtÞ ¼ M−1
1 ð∇QðAÞÞM2 andJ ðϕÞ ¼ N−1

1 ð∇QðBÞÞN2.
Then, it can be readily found that qðiÞ implies the following:

qðtÞ ¼ 2þ 1

ρ2eK1þK2
½ðη1 − η2Þ2 þ ρ2ðeK1 − eK2Þ2�; ð44Þ

qðϕÞ ¼ 2þ 1

eL1þL2
½ðχ1 − χ2Þ2 þ ðeL1 − eL2Þ2�: ð45Þ

Byvirtue of the Stoke’s theoremone can readily integrate the
relation (43)over thechosendomainofouter communication
hhDii. Consequently, one arrives at
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Z
∂hhDii

∇mqðiÞdSm ¼
Z
∂hhDii

dλ

ffiffiffiffiffiffiffi
hλλ
hμμ

s
∂μqðiÞjμ¼const þ

Z
∂hhDii

dμ

ffiffiffiffiffiffiffi
hμμ
hλλ

s
∂λqðiÞjλ¼const

¼
Z
hhDii

TrðJ †
ðiÞJ ðiÞÞdV: ð46Þ

The main task is to verify if the behavior of the left-hand
side of the above equation on all parts of the considered
boundary of the two-dimensional manifold hhDii. In order
to perform this task let us rewrite qðiÞ in the more adequate
forms

qðtÞ¼ðΔηÞ2 ρffiffiffiffiffiffi
X1

p ρffiffiffiffiffiffi
X2

p eΣφþ
ffiffiffiffiffiffi
X1

p
ρ

ρffiffiffiffiffiffi
X2

p eΔφþ
ffiffiffiffiffiffi
X2

p
ρ

ρffiffiffiffiffiffi
X1

p e−Δφ;

ð47Þ

qðϕÞ ¼ ðΔχÞ2
ffiffiffiffiffiffi
X1

p
ρ

ffiffiffiffiffiffi
X2

p
ρ

e−Σφ þ
ffiffiffiffiffiffi
X2

p
ρ

ρffiffiffiffiffiffi
X1

p eΔφ

þ
ffiffiffiffiffiffi
X1

p
ρ

ρffiffiffiffiffiffi
X2

p e−Δφ; ð48Þ

where we put for Δf ¼ f2 − f1 and Σf ¼ f1 þ f2.
On the black hole event horizon, X; AðtÞ; AðϕÞ and φ are

well-behaved functions with Oð1Þ-asymptotic. Moreover,
ρ≃Oð ffiffiffiffiffiffiffiffiffiffi

λ − c
p Þ as λ → c. The same type of behavior one

has for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hμμ=hλλ

p ≃Oð ffiffiffiffiffiffiffiffiffiffi
λ − c

p Þ. Then, one can conclude
that ∇mqðiÞ vanishes on the black hole event horizon.
On the symmetry axis, when μ� 1, all the quantities

under consideration are Oð1Þ and ρ tends to Oð ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p Þ,
as μ → 1. On the other hand, when μ → −1, we have
that ρ≃Oð ffiffiffiffiffiffiffiffiffiffiffi

1þ μ
p Þ. The square root has the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hλλ=hμμ
p ≃Oð ffiffiffiffiffiffiffiffiffiffiffi

1þ μ
p Þ, when μ → −1 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hλλ=hμμ
p ≃Oð ffiffiffiffiffiffiffiffiffiffiffi

1 − μ
p Þ, when μ → 1. Just having in mind

the relations (47) and (48) enables us to find that qðiÞ remain
finite on the axis, implying that ∇mqðiÞ ¼ 0, for μ� 1.
It remains to take into account the contribution for

the integration along ∂Dð4Þ, when λ ¼ R → ∞. In the
aforementioned limit one obtains the following relations
for qi:

qðtÞ ≃ ðΔηj∞Þ2
4

B2
1B

2
2λ

2ð1 − μ2Þð1þOðλ−1ÞÞ

þ
�
B2
2

B2
1

þ B2
1

B2
2

�
Oð1Þ; ð49Þ

qðϕÞ ≃ ðΔχj∞Þ2
λ2ð1 − μ2ÞðB2

1 þ B2
2Þ
�
1 −

2

ðB2
1 þ B2

2Þλ2ð1 − μ2Þ
�

þ
�
B2
1

B2
2

þ B2
2

B2
1

�
Oð1Þ: ð50Þ

To proceed further, we calculate η and χ and take the limit
in question. It can be verified that the resulting expressions
are provided by

ηjλ→∞ ≃ −
ffiffiffi
2

p

B4ð1 − μ2Þ μ
2Oðλ−2Þ þ fðμÞ; ð51Þ

χjλ→∞≃ −
iffiffiffi
2

p B

�
μ −

ð1 − μ2Þ32
μ

�
λþ const; ð52Þ

where fðμÞ is a complicated polynomial in μ-coordinate. It
is irrelevant for us because we have the partial derivative
with respect to the λ-coordinate, ∂λqðiÞ, in calculation of the
term for r → ∞. In view of the above relations (49)–(52),
we conclude that qðtÞ and qðϕÞ tend to a constant value, as
λ → ∞. Then, by virtue of the above, one can deduce thatZ

hhDii
TrðJ †

ðiÞJ ðiÞÞ ¼ 0; ð53Þ

which in turn implies that, PðiÞ1 ¼ PðiÞ2 at all points of the
region hhDii of the two-dimensional manifold M. Just
when one considers two black hole solutions characterized

by ðXð1Þ; A
ð1Þ
ðtÞ ; A

ð1Þ
ðϕÞ;φð1ÞÞ and ðXð2Þ; A

ð2Þ
ðtÞ ; A

ð2Þ
ðϕÞ;φð2ÞÞ of

Einstein-Maxwell-dilaton equations of motion with a
regular domain of outer communication hhDii, being
subject to the same boundary and regularity conditions,
they are equal. This envisages the uniqueness of the dilaton
Melvin-Schwarzschild black hole solution
In summary, the direct consequence of our research can

be formulated as follows.
Theorem.—Let us examine a two-dimensional manifold

M equipped with a local coordinate system ðρ; zÞ. Suppose
further that the domain of outer communication hhDii is a
region in the manifold in question with boundary ∂D. Let
PðiÞ be Hermitian, positive definite two-dimensional matri-
ces with unit determinants, respectively for i ¼ ~At; ~Aϕ

components of the Maxwell Uð1Þ-gauge field. Moreover,
let on the boundary of the domain of outer communication
matrices PðiÞ1 and PðiÞ2 satisfy equation ∇mqðiÞ ¼ 0, where
qðiÞ are given by the relations (44) and (45). Then, PðiÞ1 ¼
PðiÞ2 in all domains of outer communication hhDii pro-
vided that for at least one point d ∈ hhDii the following is
satisfied:

PðiÞ1ðdÞ ¼ PðiÞ2ðdÞ:

UNIQUENESS OF DILATON MELVIN-SCHWARZSCHILD … PHYSICAL REVIEW D 93, 044008 (2016)

044008-5



Because of the fact that the remaining metric functions are
uniquely determined by the Ernst’s potentials, they have to
be identical. This concludes the proof of the uniqueness of
the dilaton Melvin-Schwarzschild black hole. Namely, all
the solutions of dilaton gravity with the same boundary
conditions as the Melvin universe are the only static,
spherically symmetric black holes in dilaton gravity with
nonvanishing At; Aϕ components of the Uð1Þ Maxwell
gauge field.

IV. CONCLUSIONS

In our paper we have discussed the uniqueness of static
axially symmetric black hole spacetime in dilaton gravity
being the low-energy limit of the heterotic string theory. It
has been shown that the underlying equations of motion
can be cast in the Ernst’s like system of complex relations

which can be written in the form of the matrix equation.
Choosing the domain of outer communication hhDii as
rectangle and using the adequate boundary conditions, we
found that the two solutions of the matrix equation, subject
to the same boundary and regularity conditions, are equal in
hhDii. It enables us to conclude that the dilaton Melvin-
Schwarzschild black hole which asymptotically tends to the
dilaton Melvin magnetic universe solution, is the only
axisymmetric static, S2-topology black hole in dilaton
gravity with nonzero A0 and Aϕ components of the
Uð1Þ-gauge field.
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