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In this paper we discuss the anatomy of frequency-domain gravitational-wave signals from non-
precessing black-hole coalescences with the goal of constructing accurate phenomenological waveform
models. We first present new numerical-relativity simulations for mass ratios up to 18, including spins.
From a comparison of different post-Newtonian approximants with numerical-relativity data we select the
uncalibrated SEOBNRv2 model as the most appropriate for the purpose of constructing hybrid post-
Newtonian/numerical-relativity waveforms, and we discuss how we prepare time-domain and frequency-
domain hybrid data sets. We then use our data together with results in the literature to calibrate simple
explicit expressions for the final spin and radiated energy. Equipped with our prediction for the final state
we then develop a simple and accurate merger-ringdown model based on modified Lorentzians in the
gravitational-wave amplitude and phase, and we discuss a simple method to represent the low frequency
signal augmenting the TaylorF2 post-Newtonian approximant with terms corresponding to higher orders in
the post-Newtonian expansion. We finally discuss different options for modelling the small intermediate
frequency regime between inspiral and merger ringdown. A complete phenomenological model based on
the present work is presented in a companion paper [S. Khan et al., following paper, Phys. Rev. D 93
044007 (2016)].

DOI: 10.1103/PhysRevD.93.044006

I. INTRODUCTION

Our goal is to develop an accurate and simple description
of the gravitational-wave (GW) signal of a compact binary
coalescence in the form of explicit expressions in the
frequency domain, which are particularly convenient for
GW data analysis. Optimal methods for the detection and
accurate identification of events are based on filtering the
data stream with a template bank of physically correct
waveforms. Extracting the maximal amount of information
from the data thus relies critically on the availability of
accurate waveform models, such as the ones we discuss
here. For small masses, such as for neutron-star binaries,
the post-Newtonian (PN) description [1] is considered
sufficient for searches for GW events in the advanced
detector era [2,3]. However, as the binary mass increases
and the actual merger comes into band, the PN approxi-
mation breaks down, and nonperturbative solutions for the
Einstein equations are required. For the simple case of
nonspinning black holes (BHs), a comparison of different
PN results suggests that such nonperturbative information
is required for the efficient detection of binaries with a total
mass larger than 12 solar masses [3]. In this work we will

treat the case of coalescing BHs, or neutron stars spiralling
into sufficiently heavy BHs such that equation of state
effects can be neglected. The final state of the coalescence,
a single perturbed Kerr BH, can also be treated with linear
perturbation theory. This allows us to compute the complex
frequencies of damped sinusoid spheroidal harmonic “qua-
sinormal”modes, but not their amplitudes or relative phase.
In the present paper we focus on understanding the

anatomy of frequency-domain waveforms and laying the
groundwork for accurate frequency-domain inspiral-
merger-ringdown (IMR) waveform models, including a
discussion of how we combine information from numerical
relativity and perturbative approaches. In a second paper
[4] we describe in detail the construction of a specific
model, “PhenomD,” which we have implemented in the
LIGO Algorithms Library (LAL) [5], the key software
infrastructure for GW data analysis from interferometric
ground based detectors, and we compare with other
waveform models implemented in LAL, in particular
SEOBNRv2 [6]. While the main motivation is to provide
a practical tool for GWastronomy that we hope to be useful
for searches or parameter estimation, we stress that gaining
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a better understanding of waveforms is by itself valuable
for GW physics.
Astrophysical models of compact binary merger event

rates lead to the expectation of a first direct detection of
GWs within the next five years [7,8], as a new generation of
interferometric detectors is approaching design sensitivity
[9–12], expanding the volume of the Universe observable
in the GW window by roughly a factor of 1000 over
previous detectors. This increase is expected to be sufficient
to exhaust the current large uncertainties in event rates,
which are connected to the large uncertainties about the
populations of compact binaries in the Universe. Our lack
of understanding of binary populations calls for being
prepared to cover as much as possible of the physical binary
black hole (BBH) parameter space, and the waveform
model we discuss has been calibrated to the largest region
of the nonprecessing parameter space to date, covering
mass ratios up to 18.
The first successful calculation of the GW signal during

roughly the last orbit, merger and subsequent quasi-
normal-mode (QNM) ringdown from a numerical solution
of the Einstein equations, without perturbative approxima-
tions, dates back only one decade [13]. Since then,
synthesizing models of the complete coalescence waveform
from PN results, numerical relativity (NR) and BH pertur-
bation theory has become a key goal of GW source
modeling. One approach has been to model gravitational
waveforms in the time domain, by calibrating an effective-
one-body (EOB) resummation [14,15] of PN results to NR
simulations [6,16–20]. This approach provides very accu-
rate waveforms but still requires the solution of a system of
ordinary differential equations for each case and is com-
putationally expensive, in particular for applications in
parameter estimation and model selection within a
Bayesian framework. A route to speed up the evaluation
of EOB models by means of reduced-order techniques is
discussed in Refs. [21–23].
Our previous work has followed an alternative approach,

where we have modeled the wave signal with explicit
expressions in the frequency domain. This approach offers
simplicity and evaluation speed; however, previous models
showed relatively poor extrapolation beyond their calibra-
tion region and limited accuracy for parameter estimation.
In this work we redesign our phenomenological approach
based on a more detailed study of the anatomy of wave-
forms in the frequency domain and calibrate the model with
a larger and more accurate set of numerical waveforms up
to a mass ratio of 18. As for previous nonprecessing
phenomenological waveform models [24–27], this work
is restricted to the dominant l ¼ jmj ¼ 2 spherical har-
monic mode, leaving the general aligned spin case, higher
harmonics and precession for future work. From the point
of view of GW data analysis, the model we construct here
can directly replace our previous PhenomB and PhenomC
waveform models with similar computational cost but an

accuracy that for a large part of the parameter space further
improves upon current EOB-NR models. A route toward
extending such models to precession has been described
in Ref. [28].
In the next section, we will discuss our “input” wave-

forms: NR waveforms, inspiral waveforms computed in the
EOB description, and other PN approximants, and how we
construct complete time-domain hybrid waveforms. Our
approach does in fact allow us to model the waveforms in
pieces, e.g., to calibrate the inspiral and merger-ringdown
models separately, without ever constructing a hybrid first.
However, the construction of complete time-domain
hybrids is convenient for comparisons and to develop
our modeling approach without artificial restrictions due
to the length of available waveforms. At the hybridization
stage we will compare the agreement of different PN
approximants with our numerical data and choose to
hybridize with “uncalibrated” SEOBNRv2 waveforms,
i.e., where we have removed all NR calibrations.
In Sec. III we will refocus from the inspiral to the

modelling of the final state and present fits for the final spin
and radiated energy as functions of mass ratio and spin.
These fits will provide crucial information regarding the
modelling of the ringdown. With the final state information
and a complete time-domain hybrid in hand, we will turn to
the study of the anatomy of waveforms in the Fourier
domain which will motivate our plan for construction of a
waveform model, presented in Sec. IV. We conclude with a
summary in Sec. V.

II. INPUT WAVEFORMS AND HYBRID
CONSTRUCTION

A. Waveform notation and conventions

Our work concerns the l ¼ jmj ¼ 2 spherical harmonic
modes of the complex GW strain h22, which we decompose
into an amplitude A and phase ϕ, which depend on time t,
and the intrinsic parameters of the source Ξ,

h22ðt;ΞÞ ¼ Aðt;ΞÞe−iϕðt;ΞÞ: ð2:1Þ
The intrinsic parameters Ξ consist of the dimensionless

projections of the BH spins ~S1;2 in the direction of
the orbital angular momentum L̂, and the masses m1;2,
where

χi ¼
~Si · ~L

m2
i j~Lj

; ð2:2Þ

and we define the mass ratio q ¼ m1=m2 ≥ 1, total mass
M ¼ m1 þm2 and symmetric mass ratio η ¼ m1m2=M2.
Our binaries are nonprecessing, and as usual we choose our
coordinates and spherical harmonic modes consistent with
the equatorial symmetry exhibited by such spacetimes,
such that
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h22 ¼ h�2;−2: ð2:3Þ

We also assume negligible eccentricity, in which case the
angular frequency ωðtÞ ¼ dϕ=dt is a monotonic function
of t. Residual eccentricity in numerical waveforms and
potentially other numerical artifacts will cause oscillations;
however, provided these are small enough, monotonicity is
preserved until merger, and we can define the inverse
function tðωÞ. In the following, we also use the frequency
f, where ω ¼ 2πf, in particular in quantitative statements,
to facilitate comparisons with data analysis considerations.
We define the Fourier transform ~hðfÞ, of a complex

function hðtÞ, as

~hðfÞ ¼
Z

∞

−∞
hðtÞe−i2πftdt; ð2:4Þ

consistent with the conventions adopted in the LIGO
Algorithms Library [5]. With our convention of the
Fourier transform, time derivatives are converted to multi-
plication in the Fourier domain by i2πf. We recall that, as a
consequence of time derivatives being converted to multi-
plication in Fourier space, the standard conversion between
GW strain and the Newman-Penrose scalar ψ4, where

d2hðtÞ
dt2

¼ ψ4ðtÞ; ð2:5Þ

only affects the Fourier-domain amplitude, but not the
phase, up to a jump of π, and apart from possible effects
specific to the numerical algorithm used to carry out this
conversion.

For NR data or hybrid waveforms we need to Fourier
transform discrete time series hr, and then the above
convention implies

~hs ¼ Δt
Xn−1
r¼0

hre−2πirs=n; ð2:6Þ

where Δt is the uniform time step of the time series.
The low frequency limit for the Fourier-domain wave-

form can be understood from PN theory. Analytically
Fourier transforming the TaylorT2 approximant with the
stationary-phase approximation yields the TaylorF2
approximant, an explicit expression of the Fourier-
domain strain in the frequency domain. To leading order
the amplitude diverges at low frequency as f−7=6, and
the phase as f−5=3; see the discussion in Secs. IVA and
IV B below.
For the modelling of IMR waveforms we also need to

understand the falloff properties of the waveform at high
frequencies. For smooth square integrable functions of time
it is well known (see, e.g., Ref. [29]) that

~hðfÞ ¼ Oðjfj−MÞ as jfj → ∞ for all M; ð2:7Þ

thus the Fourier transform then falls off faster than any
power law at high frequency. If a function hðtÞ only has p
continuous derivatives in L2 for some p ≥ 0 and a pth
derivative in L2 of bounded variation, then [29]

~hðfÞ ¼ Oðjfj−p−1Þ as jfj → ∞: ð2:8Þ

TABLE I. Details of new BAM simulations. For each mass ratio q and choice of spins χ1 and χ2, the initial binary
separation is D=M, and the tangential and orbital momenta are ðpt; prÞ=M. The initial GW angular frequency is
Mωi, and the simulation produces a GW signal with NGW cycles before merger.

q χ1 χ2 D=M pt=M −pr=M ð×10−4Þ Mωi NGW

2 0.50 0.50 12.2 0.07277 3.468 0.04128 26.8
2 0.75 0.75 11.1 0.07591 3.404 0.04689 23.5
3 −0.50 −0.50 12.8 0.06309 2.870 0.03958 19.9
4 −0.75 −0.75 12.1 0.05694 1.858 0.04283 15.6
4 −0.50 −0.50 11.9 0.05669 2.694 0.04352 18.1
4 −0.25 −0.25 11.5 0.05694 2.784 0.04528 18.9
4 0.00 0.00 11.2 0.05710 2.829 0.04673 21.1
4 0.25 0.25 11.0 0.05681 2.962 0.04785 23.0
4 0.50 0.50 10.8 0.05648 4.493 0.04870 26.1
4 0.75 0.75 10.7 0.05604 1.136 0.04931 30.0
8 −0.85 −0.85 10.0 0.04135 2.6142 0.06486 8.2
8 0.80 0.00 8.00 0.04146 3.009 0.07266 23.3
8 0.85 0.85 6.50 0.04703 8.0706 0.10951 15.7
10 0.00 0.00 8.39 0.03670 1.685 0.06942 13.4
18 −0.80 0.00 10.0 0.02080 0.6589 0.05614 14.3
18 −0.40 0.00 9.00 0.02176 0.7842 0.06395 15.1
18 0.00 0.00 7.58 0.02379 1.261 0.07932 13.0
18 0.40 0.00 7.43 0.02300 1.161 0.08052 23.2
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While the Fourier-domain strain diverges as f−7=6 at low
frequencies, and is thus not square integrable for idealized
infinitely long signals (in contrast to finite astrophysical
signals), the time derivative of the strain (the news function)
is square integrable (being proportional to f−1=6 at low
frequencies), and the faster-than-power-law falloff for the
strain can be inferred from the scaling of the Fourier
amplitude when taking time derivatives.

B. Numerical relativity waveforms

Our numerical waveforms have been taken from two
independent data sets, the publicly available SXS catalog
[30] (computed by the SpEC code [31–37]), and from a set
of waveforms that have recently been constructed with the
BAM code [38,39], and which are listed in Tables I and II.
Both the SXS and BAM data sets are divided into wave-
forms we use to calibrate the PhenomD model, and a larger
set we use for model verification. The key data sets that
determine the calibration range of our waveform model are
the BAM waveforms for a range of spins at mass ratio

1∶18, high-spin BAM data at mass ratios 4 and 8 and equal
mass SXS data sets at very high spins of −0.95 and þ0.98.
SpEC is a multidomain pseudospectral code that uses

excision techniques to remove the BH interiors (and, most
importantly, each BH singularity) from the computational
domain. For an in-depth explanation see Refs. [30,40,41].
The SpEC code evolves the Einstein field equations using
the Generalized Harmonic coordinate formulation. This
code has been used to produce the longest simulations to
date (175 orbits/350 GW cycles for a mass ratio 1∶7
configuration [42]), and 201 waveforms have been made
publicly available as of June 2015 [30]; see Ref. [36] for
details.
A key set of waveforms in the SXS catalog is those for

highly spinning equal-mass BH binaries. Most codes in the
field (including BAM and SpEC) primarily use confor-
mally flat initial data, which limits the BH spins to a=m ∼
0.92 [43–45]. There has been some work in constructing
high-spin data for puncture codes like BAM [46,47], but to
date no waveforms for long-term quasicircular inspirals
have been published. For the SpEC code, however, high-
spin data have been produced and used in production
simulations, based on a superposition of Kerr-Schild data
[36,44,48]. This technique has made possible a number of
equal-mass binary simulations with high spins, and these
have been used here both in the calibration of our model
and in tests of its accuracy and fidelity.
The SXS waveforms that we use cover between 12 and

28 orbits of inspiral before merger, and the waveforms are
extrapolated to null infinity at third order as discussed in
Ref. [49]. In this paper we will use three waveforms as
listed in Table III from the SXS catalog to illustrate
waveform anatomy and for comparison with different
PN approximants.
The BAM code [38,39] solves the 3þ 1 decomposed

Einstein evolution equations using the χ-variant of the
moving-punctures version of the Baumgarte-Shapiro-
Shibata-Nakamura [50,51] formulation. Spatial derivatives
are sixth-order accurate in the bulk [39]. Kreiss-Oliger
dissipation terms converge at fifth order, and a fourth-order
Runge-Kutta algorithm is used for the time evolution. BBH
puncture initial data [52,53] are calculated with the pseu-
dospectral elliptic solver described in Ref. [54]. The GWs
are calculated using the Newman-Penrose scalar Ψ4. For

TABLE II. Eccentricity measured from the orbital frequency,
final Kerr parameter, af , and final mass,Mf=M, of the new BAM
simulations.

q χ1 χ2 Eccentricity ð×10−3Þ Mf=M af

2 0.50 0.50 1.2 0.945 0.805
2 0.75 0.75 4.4 0.930 0.889
3 −0.50 −0.50 1.0 0.9779 0.300
4 −0.75 −0.75 0.8 0.9846 0.049
4 −0.50 −0.50 1.0 0.9831 0.194
4 −0.25 −0.25 1.0 0.981 0.334
4 0.00 0.00 1.4 0.978 0.472
4 0.25 0.25 2.4 0.9738 0.607
4 0.5 0.5 3.6 0.9674 0.738
4 0.75 0.75 4.0 0.9573 0.863
8 −0.85 −0.85 0.5 0.9931 −0.320
8 0.80 0.00 4.9 0.977 0.860
8 0.85 0.85 9.1 0.9746 0.895
10 0.00 0.00 0.8 0.9918 0.255
18 −0.80 0.00 0.5 0.9966 −0.531
18 −0.40 0.00 0.5 0.9966 −0.188
18 0.00 0.00 1.3 0.9959 0.163
18 0.40 0.00 1.8 0.9943 0.505

TABLE III. High-spin equal mass waveforms from the SXS catalogs used in this paper to illustrate waveform
anatomy. For each configuration we list the SXS catalog number, number of GW cycles before merger and
dimensionless spins χ1 and χ2. The final BH has massMf and dimensionless spin af, and the QNM ringdown signal
has frequency MfRD. The frequency Mfhyb marks the midpoint of the transition region between SEOBv2 inspiral
and NR data.

Code/ID χ1 χ2 Mf=M af MfRD Mfhyb NGW

SXS:BBH:0001 0.00 0.00 0.9516 0.6865 0.0881 0.00398 56
SXS:BBH:0156 −0.95 −0.95 0.9681 0.3757 0.0713 0.00522 24
SXS:BBH:0172 0.98 0.98 0.8892 0.9470 0.1328 0.00497 50
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further details see Ref. [38]. The GWs are extracted at a
finite distance, typically ∼100M from the source.
For this work, new simulations were performed at mass

ratios 2, 3, 4, 8 and 18. We also repeat the nonspinning
1∶10 simulation reported in Refs. [55,56], using the same
parameters as given in that work.
For the simulations at mass ratios ≤ 4, the eccentricity

was reduced to e≲ 10−3 using the procedure described in
Ref. [57], which is an iterative procedure based on
comparisons against PN and EOB inspirals. At mass ratios
8 and 18, some of the simulations were too short to reliably
use this procedure. However, for large mass ratios the time
scale of significant early time perturbations of the orbital
quantities due to gauge transients is smaller than for
comparable masses, which allows one to easily relate
observed residual eccentricity in the orbital motion to an
excess or deficiency in the value of the initial tangential
component of the black-hole momentum, which dominates
the error with respect to the true quasicircular inspiral
parameters. Consequently, a straightforward iteration “by
hand” can be performed rather easily, starting with param-
eters calculated from PN inspirals.
The length of our NR waveforms, summarized in

Tables I and II, was chosen partly to sensibly connect
them to inspiral approximants. PN inspiral waveforms
become less accurate at higher frequencies, and we need
to decide at what frequency we need to be able to switch to
NR information in order to produce a sufficiently accurate
model. Previous work suggests that ∼5–10 orbits will be
sufficient to produce models that meet the needs for GW
detections with advanced GW detectors [58,59], if we use
standard PN approximants for the inspiral. Those works
took the largest differences between the highest-order PN
waveforms available at that time as a conservative estimate
of their overall error. Here, however, we push the bounda-
ries of the NR-accessible parameter space to higher mass
ratios and spins, and we aim to produce a waveform
model suitable not only for detection but also parameter-
estimation purposes in the advanced detector era.
If we were to follow the stringent accuracy requirements

for combining (any) PN approximant with NR data, we
would need to simulate hundreds of NR orbits [60–63],
which is prohibitively expensive, especially given the
parameter space that we are covering. At mass ratio 18,
medium-resolution simulations of only eight orbits
required 800,000 CPU hours, and high-resolution simu-
lations required 1.3 million CPU hours, using between 384
and 768 cores on the SuperMUC machine at the Leibniz
Supercomputing Centre [64] (equipped with Sandy Bridge-
EP Xeon E5-2680 cores). Previous length-requirement
studies, however, conservatively treated all PN approxim-
ants as equally (in)accurate, and it is worth investigating
whether an individual inspiral description is more accurate
than others, thereby allowing a matching with NR data at
higher frequencies. While this question is difficult to

answer exhaustively without extremely long NR wave-
forms, we discuss in Sec. II D that the dramatically
better agreement between NR and members of the EOB
family complements the evidence that EOB is a more
accurate inspiral description [42,65,66], and hence we can
connect it reliably to our reasonably short high-mass-ratio
simulations.
We must also ensure that our simulations are sufficiently

accurate. In the past we have performed detailed conver-
gence tests of our code [38], which provide strong evidence
that the numerics are correct. Since performing the simu-
lations reported in Ref. [67], we have found that the small
number of adaptive mesh refinement buffer zones (six)
limited the accuracy in long unequal-mass simulations.
This is the cause of the disagreement between the BAM and
SpEC nonspinning q ¼ 4 simulations that were discussed
in Sec. IV. A of Ref. [61]. In our current simulations we use
a minimum of 16 buffer zones, which is sufficient to buffer
mesh refinement boundary effects during a fourth-order
Runge-Kutta time step of a fine grid for sixth-order finite
differencing and compatible Kreiss-Oliger dissipation [68].
Even for the lowest-cost configuration (an equal-mass,

nonspinning binary), the computational cost prohibits a
standard factor-of-2 convergence test, and for many con-
figurations there have been no clean demonstrations of
convergence for any BBH code. Our confidence in NR
results in general is based on the strong agreement between
simulations from many independent codes, e.g., Refs. [69–
71]. The results of a convergence test for a series of
simulations for the q ¼ 18 nonspinning case are shown in
Fig. 1. Due most likely to poorly resolved initial gauge
dynamics and an initial burst of unphysical GW content
(“junk radiation”), we have not been able to show con-
vergence of the phase aligning at the beginning of the
simulation, but we see reasonable sixth-order convergence
when aligning the l ¼ m ¼ 2GW signal near the merger at
an angular frequency of MωGW ¼ 0.2. Figure 1 shows
results from grid configurations with (96,120,144) points in

FIG. 1. Convergence and Richardson-extrapolated error for
nonspinningBAMsimulationsatq ¼ 18atresolutions(96,120,144)
as described in the main text.

FREQUENCY-DOMAIN GRAVITATIONAL WAVES FROM … PHYSICAL REVIEW D 93, 044006 (2016)

044006-5



the innermost mesh refinement boxes, which dominate
phasing errors and computational cost. Differences are
scaled to sixth-order convergence, and we also show the
error obtained as the difference of the highest resolution
(144) and the Richardson-extrapolated result. Secular
dephasing is very small, below 0.04rad, and errors are
dominated by oscillations and noise. Due to the oscillations
and noise it is hard to decide by eye which convergence
order is most consistent with the data, so we considered the
rms deviation

RMS2 ¼ 1

t2 − t1

Z
t2

t1

ððX1 − X2Þ=CðnÞ − ðX2 − X3ÞÞ2dt;

ð2:9Þ
where the Xi are the phases at resolutions (96,120,144)
aligned at MωGW ¼ 0.2, C is the rescaling factor corre-
sponding to convergence order n, t1 and t2 are the minimal
and maximal times shown in Fig. 1, and the unresolved pulse
of noise between times −500 and −400 is set to zero. As can
be seen in Fig. 2, the best-fitting convergence order is 6. In
addition, in Fig. 3 we show the that the orbital motion for the
nonspinning convergence series and a low and medium
resolution for a spinning q ¼ 18 case is practically indis-
tinguishable for different resolutions. We have therefore not
carried out a higher-resolution run for the spinning case to
save another ≈2 million CPU hours, and we use the 96
points resolution or better for the q ¼ 18 production runs.
Our NR waveforms only model the waveform from an

astrophysical inspiral after some time t0, when the influ-
ence of initial transients can be neglected. When processing
a large number of waveforms, it is desirable to automatize
the tedious procedure to find appropriate choices of t0, and
we thus need to understand initial transients in the wave-
form well enough to exclude them with a general algorithm.
Two types of transients are of particular interest: the
unphysical radiation content in the initial data, often
referred to as junk radiation and a transient component
resulting from our conversion of ψ4 to strain. In order to
estimate the time on which junk radiation degrades the

FIG. 2. RMS difference between different resolutions as de-
fined in Eq. (2.9) for nonspinning BAM simulations at q ¼ 18 at
resolutions (96,120,144) as described in the main text. Rescaling
for sixth-order convergence as shown in Fig. 1 is most consistent
with our data.

FIG. 3. Left: Orbital motion of the three highest resolutions (96, 120, 144) for the nonspinning q ¼ 18 case, aligned at Mωorb ¼ 0.2.
Right: Orbital motion of the two highest resolutions (96, 120) for the q ¼ 18, χ1;2 ¼ 0.4, 0 case, aligned atMωorb ¼ 0.15. The point of
alignment in tine is marked by a red circle, and an overall rotation is chosen for each numerical simulation to position the alignment
point on the x axis.
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quality of the wave signal, we first determine the maximum
of the amplitude of the junk radiation tJ for the NR ψ4

waveforms and then add a multiple of the QNM damping
period TRD¼1=fdamp corresponding to the two initial BHs:

ΔTJ ¼ tJ þ σJTRD: ð2:10Þ

In order to convert ψ4 waveforms to strain we use the fixed
frequency integration algorithm [72], which depends on the
choice of cutoff frequency f0. We choose this frequency as
three-quarters of the initial orbital frequency, which for the
SXS data sets is determined from the included metadata
and for the BAM data sets is computed from the PN initial
data parameters for the BH momenta. This value of the
initial orbital frequency is cross checked from the actual
numerical waveform data by extrapolating the frequency
evolution of the numerical waveform to the initial time by
fitting to a fourth-order polynomial in a time window
starting after a time TJ. As can be expected on dimensional
grounds, this procedure causes transients in the strain that
persist for a time scale of the order of 1=f0. We thus define

ΔTh ¼ σh=f0 ð2:11Þ

and discard numerical data before a time t0, where

t0 ¼ maxðΔTh;ΔTJÞ: ð2:12Þ

For short waveforms of less than 3000M time to peak, we
choose σJ ¼ 1, σh ¼ 2.5, and for longer waveforms we
choose σJ ¼ 3, σh ¼ 1.5.

C. Post-Newtonian and effective-one-body descriptions

Our work uses PN waveforms in two ways. First is to
construct “hybrid waveforms” that represent the complete
inspiral-merger ringdown of a binary system by appropri-
ately gluing together PN and NR waveforms. Without
restricting the generality of our approach we will carry out
this procedure in the time domain (for an alternative
frequency-domain description see Ref. [27]). Second, we
will tune a frequency-domain PN approximant to the
hybrid waveforms by calibrating higher-order PN terms
(which have not yet been computed in PN theory), in order
to represent the inspiral regime of our final IMR wave-
form model.
Post-Newtonian perturbation theory provides a rich zoo

of different approximants, which solve the Einstein equa-
tions up to a certain order of expansion, but may differ in
higher-order terms depending on how intermediate non-
linear mathematical operations are performed. We will use
standard quasicircular nonprecessing “Taylor approxim-
ants,” described in Ref. [3], in particular the TaylorT1,
TaylorT2, and TaylorT4 time-domain variants and the
TaylorF2 frequency-domain version. These are consistently
derived from an energy and flux which incorporate up to

3.5PN-order nonspinning terms (see for instance Ref. [3]),
3.5PN order in spin-orbit interaction [73,74], 3PN-order
quadratic in spin [75], and 3.5PN-order cubic in spin [76].
Terms corresponding to higher PN order may also be

added in order to conform with a particular form of the
energy, flux, or some other property of the binary. In our
work we will in particular use models derived from the very
successful EOB description [14,15]. In particular, we will
use the SEOBNRv1 [77] and SEOBNRv2 [6] models in
two forms, the proper SEOBNRv1/v2 waveform model,
which is calibrated against numerical-relativity waveforms
from the SXS catalog [30], and an uncalibrated version,
which we refer to as SEOBv1/v2, where all terms calibrated
to NR have been set to zero. In detail, we have applied the
following changes to the SEOBNRv2 model [6] to obtain
the uncalibrated waveforms which we will refer to as
SEOBv2: In the EOB Hamiltonian we have set the 4.5PN
spin-orbit adjustable parametr dSO and the 3PN spin-spin
parameter dSS to zero, and we for nonspinning correction
only keep the mass ratio independent term in the parameter
K; thus K ¼ 1.712. The 3PN term added to the quantity
δ22 in the factorized waveforms is also set to zero, as
are all nonquasicircular corrections. Furthermore, in order
to keep the implementation of the SEOBNRv2 in the file
LALSimIMRSpinAlignedEOB.c LAL library [5] from
crashing, the parameter tStepBack was changed from
tStepBack ¼ 100. � mTScaled to tStepBack ¼
300. � mTScaled. While this work has been in progress,
it has been found in Ref. [42] that an (independent)
uncalibrated version of SEOBNRv2 shows excellent
agreement with a 125-orbit-long mass-ratio 7 nonspinning
waveform.

D. Hybrids

We construct hybrid waveforms, where the early time
behavior is described by a PN approximant, and the late
time behavior by a NR waveform, by essentially standard
procedures. See Refs. [25,60,63,70] for summaries of
different methods in the literature and Ref. [78] for a
detailed description of our specific procedure, which we
briefly summarize here.
First, we note that any non-precessing-binary waveform

hðtÞ we consider represents an equivalence class of wave-
forms, which correspond to a binary with the same masses
and spins and only differ by a relative time shift, a relative
rotation, and the sense of their orbital rotation (i.e., the sign
of the angular frequency ω). Without restricting generality
we will choose the frequency as positive. The PN and NR
strains hPN=NR will then be related by

hPN22 ðtÞ ¼ eiφ0hNR22 ðtþ ΔtÞ: ð2:13Þ

In order to find good parametersΔt and φ0, we fix an initial
time t0 and fitting window length T and minimize the
quantity
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ΔðΔt; t0; TÞ ¼
Z

t0þT

t0

ðωPNðtÞ − ωNRðtþ ΔtÞÞ2dt;

ð2:14Þ

with respect to the time shift Δt. Alternatively we replace ω
by ϕ to obtain a consistency and robustness check, which is
particularly useful when automatically processing tens of
waveforms as we do. Our original choice of ω has the
advantage of not depending on φ0. Other authors have
replaced ω by h [60] in the integrand; here we only use
phase and no amplitude information in order to avoid the
influence of amplitude errors. In Ref. [78] we have checked
that the window length T that corresponds to four GW
cycles (two orbits) is sufficient to average out oscillatory
waveform artifacts mostly due to residual eccentricity. In
order to find an appropriate phase shift φ0 for givenΔt from

the minimization of Eq. (2.14), we align the phases at the
middle of the matching window.
The hybrid waveform is then defined as

hðtÞ ¼ ω−
ðt0;t0þTÞe

iφ0hPNðtþ δtÞ þ ωþ
ðt0;t0þTÞh

NRðtÞ;
ð2:15Þ

where ω−=þ are linear transition functions over the time
window t ∈ ½t0; t0 þ T�.
The crucial step, however, when “gluing” PN to numeri-

cal waveforms is to consistently align them at some
reference frequency, where we choose their time coordi-
nates and phases to coincide. If the waveforms are identical,
the relative time (and phase) shift between them will be
independent of the matching frequency. We are interested
in the case where the waveforms are different and where we
have the choice of PN approximant, e.g., one discussed in
Sec. II C, to attach to a particular numerical waveform. For
nonidentical waveforms the relative time shift between the
PN and NR descriptions will depend on the frequency
where the two waveforms are compared or matched
together. A preferred PN approximant would exhibit a
time shift relative to the NR waveform which depends only
negligibly on time. In order to find the best-matching PN
approximant, we compute the hybridization time shift as a
function of matching frequency as follows. We consider the
time dependent frequencies ωPNðtÞ and ωNRðtÞ. We can
invert these functions numerically, e.g., by evaluating them
for a series of time steps and then interpolating inverse
functions of tðωÞ. To compute the time shift we then
compute the difference

Δt ¼ tPNðωÞ − tNRðωÞ: ð2:16Þ

The results are displayed in Figs. 4 and 5. First, in Fig. 4 we
consider the equal mass nonspinning case, where we,
however, use SEOBNRv2 and not the NR results as the
reference waveform, in order to reduce the effect of
oscillations in the NR result due to residual eccentricity.

FIG. 4. Time shift Δt according to Eq. (2.16) as a function of
wave frequency Mω for the case of nonspinning q ¼ 1, using
SEOBNRv2 as the reference waveform and SXS:BBH:0001
from the SXS catalog as the NR waveform. As is well known,
the SEOBNRv2 model and TaylorT4 are very close to the NR
result in this case. SEOBv2 (uncalibrated SEOBNRv2) is also
very close, while TaylorT1 (truncated at 3PN order) and TaylorT2
show significant dephasing. The SEOBNRv1 and SEOBv1
(uncalibrated SEOBNRv1) show rather similar performance,
with good agreement with NR, and disagreement with
SEOBNRv2 at lower frequencies.

FIG. 5. Left panel: Time shift Δt according to Eq. (2.16) as a function of wave frequencyMω for the case of mass ratio 18 with spins
f0.4; 0g with SEOBNRv2 as the reference waveform. The PN/EOB waveforms start at Mω ¼ 0.01. Right panel: Same analysis for an
equal mass binary with equal spins χ ¼ 0.98. The NR waveform is SXS:BBH:0172 from the SXS catalog; see Table III. SEOBNRv1/
SEOBv1 are not shown for this case, since the model is not valid for high spins parallel to the orbital angular momentum.
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One can see that the NR waveform SXS:BBH:0001 from
the SXS catalogue, and the uncalibrated SEOBv2 and
TaylorT4 waveforms, are very close to each other over the
frequency range of the NR waveform. SEOBNRv2 and
SEOBv2 are close over the whole frequency range plot-
ted, 0.01 ≤ Mω22.
In the left panel of Fig. 5 we consider the BAM mass-

ratio 18 case with a mild dimensionless spin of χ1 ¼ 0.4

parallel to the orbital angular momentum on the bigger
BH and a nonspinning smaller hole. Again we use
SEOBNRv2 as the reference waveform. We see that the
NR and SEOBNRv2 waveforms agree well over the
common frequency range, and the approximant that per-
forms next best is the uncalibrated SEOBv2. Note that
now the Δt time scales are much larger than in Fig. 4 and
that the standard PN approximants perform markedly
worse in comparison to the NR than the SEOB(NR)v2
waveforms.
In the right panel of Fig. 5 we finally consider again

equal masses, but now with large spins of χ1 ¼ χ2 ¼ 0.98
parallel to the orbital angular momentum. The NR wave-
form is SXS:BBH:0172, produced with the SpEC code.
The dephasing between the NR waveform and SEOBNRv2
is again rather small, although significantly larger than in
the nonspinning case. The SEOBv2 waveform is the
approximant closest to SEOBNRv2 for waveforms not
longer than 105M. For lower frequencies, TaylorT1 cutoff
at 3PN order is closer to SEOBNRv2, but all other
approximants show significantly larger differences.
The time-shift analysis discussed here for three examples

has also been carried out for a number of other cases, with
similar results, which will be presented in more detail in a
separate paper. The conclusion for our current work is that
in the frequency regime relevant for hybridization,

FIG. 6. Time domain amplitude of configurations at the corners
of our parameter-space coverage, aligned at merger, showing both
the NR waveform and the hybrid (marked as dashed lines). Thick
black lines mark the hybridization regions.

FIG. 7. Real part of the time-domain strain of the same corner cases as in Fig. 6, time coordinate is set to zero at the midfrequency of
the hybridization region, which is shown in red.
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SEOBv2 uncalibrated EOB waveforms are almost as close
to NR results as the calibrated EOB model and at low
frequencies are typically closer to SEOBNRv2 than any
other approximant at 3.5PN order. In Ref. [78] we have
shown a similar result, where we have applied a similar
analysis to compare TaylorT1, TaylorT4, and SEOBNRv1
to the BAM nonspinning NR waveform at mass ratio 18
and have found that SEOBNRv1 is far superior for
hybridization.
In this work we will therefore construct all our hybrid

waveforms, which form the input to our phenomenological
modeling, with the SEOBv2 model. We are thus able to
calibrate an inspiral model that is independent from the
calibration process performed for SEOBNRv2, which will
allow valuable cross checks.
Frequency-domain strain hybrids are constructed by

sampling the time-domain hybrid with equispaced time
steps and aligning all waveforms such that the value of the
time coordinate and phase at the peak amplitude vanish.
The waveforms are then zero padded to all start at a time
tstart and all end at a time tend, where tstart is significantly
smaller than the beginning of the numerical EOB data, and
tend is chosen at several hundred M after the amplitude
peak. Different batches of hybrids have been produced for
comparisons, with the time step typically chosen as 0.5M
or 1M.
The time-domain amplitude for selected hybrids is

shown in Fig. 6. The strain for the same cases is shown
in Fig. 7, and the Fourier-domain amplitudes are shown
in Figs. 8.

III. MODELING THE FINAL STATE

While it has not been rigorously proven within general
relativity, the final state of the coalescence observed in all
NR calculations is a single perturbed Kerr BH. The

complex frequency of the quasinormal ringdown provides
two key pieces of information for modelling the GW signal
and can be computed directly as a function of the final mass
and spin. As a first step to model waveforms, we will thus
model the final state and provide simple analytical fitting
formulas for the radiated energy and final spin as a function
of the symmetric mass ratio and an effective spin parameter.
These cover a wider parameter space than previous work in
the literature; see Refs. [79–82] and references therein. This
will also illustrate how we construct analytical fits across
the parameter space, and similar procedures will be used
afterward in our waveform modelling. The main goal of our
approach to model the final state is to construct accurate
explicit expressions, which are therefore fast to evaluate
and easy to generalize to larger calibration data sets.
To determine the dimensionless angular ringdown fre-

quencyMωRD as a function of af, we have interpolated the
data set in Refs. [83,84]. These well-known functions are
shown in Fig. 9, together with the wave frequency
corresponding to a test particle on innermost stable orbit
(ISCO) [85] of Kerr spacetime. One can see that the
steepest functional dependence happens for large positive
spins.
To calculate the dimensionful ringdown frequency of the

binary, loss of energy during inspiral needs to be accounted
for as

ωRD ¼ ðMωRDÞ
Mf

¼ ðMωRDÞ
M − Erad

; ð3:1Þ

and we need to model the radiated energy Erad in addition to
the final Kerr parameter.
We have used final spin and radiated energy results from

the following 106 data sets: 15 new BAM cases at mass
ratios 2, 3, 4, 8, and 18; 5 old BAM cases at mass ratio 4

FIG. 8. Fourier-domain amplitude of same corner cases as in Fig. 6 and ringdown frequency. In the left panel, the thick lines indicate
the part of the NR waveform that was used in the final hybrid, while data indicated by a thin line contained noise or other spurious
artifacts and were discarded. The vertical lines indicate the peak of the amplitude and the ringdown frequency fRD. In the right panel the
f−7=6 leading-PN-order amplitude has been scaled out to illustrate detailed features of the Fourier-domain amplitude through merger and
ringdown.

SASCHA HUSA et al. PHYSICAL REVIEW D 93, 044006 (2016)

044006-10



from data published in Ref. [86] (used only for the final
spin); 50 cases from the SXS catalog [30]; and 36 cases
from the RIT group [81]. For the RIT runs, two types of
results are given, derived from the isolated horizon for-
malism and from the radiation, and we use the isolated
horizon quantities due to the lower error bars quoted. We do
not use the mass-ratio 10 results from the RIT data set,
since the quoted result for the radiated energy differs from
ours and the numerical fit by a factor of 2 and is possibly a
misprint.

A. Final spin

Before merger, the total angular momentum can be
expressed in terms of the individual BH spins ~Si, which
for our purposes change only negligibly during inspiral,

and the orbital angular momentum ~L as

~J ¼ ~Lþ ~S1 þ ~S2: ð3:2Þ

Due to symmetry all angular momentum vectors are
orthogonal to the orbital plane, and the only nonzero
component is the z-component. For simplicity of notation,
we therefore drop the vector notation and write J, Si, etc.,
for the z-component. We seek to approximate J, L, and
correspondingly the final Kerr parameter af ¼ Jf=M2

f

through a function of the mass ratio and a single effective
spin parameter. Given that Eq. (3.2) depends trivially on the
sum of the individual spins, we attempt the approximation

af ≈ afðη; SÞ; S ¼ ðS1 þ S2Þ=M2:

In the infinite mass ratio limit, η ¼ 0, the final spin
coincides with the spin of the larger BH,

afðη; χ1; χ2Þ ¼ χ1: ð3:3Þ
For the fit to the radiated energy we will also use a
rescaled version of our total spin S ¼ ðS1 þ S2Þ=M2 to
Ŝ ¼ S=ð1 − 2ηÞ, for which −1 ≤ Ŝ ≤ 1, consistent with the
extreme Kerr limit.
The data points are shown in Fig. 10. As can be seen, our

waveform coverage is densest at equal mass and sparser at
higher mass ratios. To produce an analytical fit, we first
inspect the data set displayed in Fig. 10 and in particular the
nonspinning and equal mass subsets. We find that fourth-
order polynomials in η and S produce accurate fits for the
two subsets, and we fix the linear term in η by a Taylor
expansion around the extreme mass ratio limit as in
Ref. [87],

af ¼ 2
ffiffiffi
3

p
ηþ higher order in η and spins: ð3:4Þ

In order to cover the whole parameter space we extend the
ansatz by terms quadratic in η and quartic in the total spin S
to

aefff ¼ f00 þ Sþ η
X
i¼0;4

f1i
i!

Si þ η2
X
i¼0;4

f2i
i!

Si þ f30η3

þ f40η4: ð3:5Þ
After fixing coefficients for consistency with the non-
spinning and equal mass cases, the only coefficients left to
fit are the four numbers ðf11; f12; f13; f14Þ. The result is

aefff ðη;SÞ¼Sþ2
ffiffiffi
3

p
η−4.399η2þ9.397η3−13.181η4

þð−0.085Sþ0.101S2−1.355S3−0.868S4Þη
þð−5.837S−2.097S2þ4.109S3þ2.064S4Þη2:

ð3:6Þ

FIG. 9. Real (oscillatory) and imaginary (damping) part of the
ringdown frequency as a function of the final Kerr parameter af.
A positive sign denotes a final BH parallel to the initial orbital
angular momentum, and a negative sign denotes antiparallel.

FIG. 10. Final Kerr parameter from Eq. (3.6) plotted as a
function of symmetric mass ratio and total spin Ŝ. Black dots mark
data points with equal spins and gray dots mark unequal spins.

FREQUENCY-DOMAIN GRAVITATIONAL WAVES FROM … PHYSICAL REVIEW D 93, 044006 (2016)

044006-11



Rms errors are 6.8 × 10−3 and 2.4 × 10−3 when comparing
the fit with the equal spin subset. We also note that this fit
respects the Kerr limit, i.e., jaefff j ≤ 1.

B. Radiated energy

The data points for radiated energy are shown in
Fig. 11, together with the effective single spin fit we
will now discuss. Inspecting the plot, clearly, a poly-
nomial in the symmetric mass ratio and the effective
spin will not provide the ideal model, and a rational
function model comes to mind. Also, as in the final spin
case, clearly a reliable accurate model of the whole
parameter space would require further data points for
large spins.
It turns out that, after factoring out a fit to the

nonspinning subset, the radiated energy depends only
rather weakly on the symmetric mass ratio. We find that
the nonspinning radiated energy, ENS

radðηÞ, is very well
captured by a fourth-order polynomial, at a rms of
3.5 × 10−5,

ENS
radðηÞ ¼ 0.0559745ηþ 0.580951η2 − 0.960673η3

þ 3.35241η4: ð3:7Þ

As can be seen in Fig. 10, the effective spin Ŝ works
reasonably well for the radiated energy. We model the
dependence on the spin Ŝ through a simple rational
function, where the numerator and denominator are linear
in spin and quadratic in the symmetric mass ratio, with
some experimentation having gone into making a choice
for which the nonlinear fitting procedure converges well,
and the result has no singularities due to the vanishing
denominator. The result of the fit, with a rms error of
4 × 10−4, is

Erad

Mini
¼ ENS

radðηÞ

×
1þ Ŝð−0.00303023 − 2.00661ηþ 7.70506η2Þ
1þ Ŝð−0.67144 − 1.47569ηþ 7.30468η2Þ:

ð3:8Þ

IV. WAVEFORM ANATOMY

In the following sections we develop a procedure to
model the detailed features of both the phase and amplitude
of the GW signals. These techniques will be exploited in
Paper II to develop a complete model across the parameter
space covered by all of the available simulations.

A. Amplitude

The waveform anatomy in the time domain has been
studied extensively and combined with EOB resummation
techniques of PN results has given rise to the family of
EOB-NR waveform models [6,16–20]. One may distin-
guish three phases without sharp boundaries: (i) a long
inspiral with slowly increasing amplitude, where the
amplitude scales as Mηω2=3 in the low frequency limit
and the coalescence time as ω−8=3=η; (ii) an “extended-
merger” characterized by a rapid increase in amplitude and
frequency; (iii) followed by a damped sinusoidal ringdown.
The Fourier transformation to obtain the frequency-domain
waveform can in general not be carried out analytically. In
the low-frequency regime, however, the stationary phase
approximation (SPA) can be used to analytically obtain an
approximate Fourier transform, which is used in particular
to obtain the TaylorF2 PN approximant as a closed-form
expression. Following the procedure outlined for example
in Sec. III of Ref. [27] we obtain the SPA amplitude using
the TaylorT4 form of the energy balance equation. The
Fourier-domain amplitude, ~A22, is then given in terms of the
time-domain amplitude A22 and the second phase derivative
ϕ̈ evaluated at the Fourier variable tf ¼ ð2πf=mÞ2=3, where
m ¼ 2 for the dominant harmonic we consider,

~A22ðfÞ ¼ A22ðtfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

mϕ̈ðtfÞ

s
: ð4:1Þ

In particular, to leading order the Fourier amplitude is

j ~h22j ¼ A0f−7=6ð1þOðf2=3ÞÞ; A0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2η

3π1=3

r
: ð4:2Þ

In order to better emphasize the nontrivial features of the
amplitude, we rescale our numerical data sets by the factor
f7=6=A0, to normalize all amplitudes to unity at zero
frequency as shown in Fig. 8. We see a structure that is
sufficiently rich that a single analytical expression for the
entire frequency range is difficult to achieve in terms of

FIG. 11. Radiated energy according to fit Eq. (3.8) plotted as a
function of symmetric mass ratio and total spin Ŝ. Black dots mark
data points with equal spins and gray dots mark unequal spins.
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elementary (and thus computationally cheap) functions.
Our strategy will thus split our description into an inspiral
part which models the waveform as higher-order correc-
tions to PN expressions, a merger-ringdown part which
builds upon the knowledge of the final state, and an
intermediate part which describes the frequency regime
which cannot be based directly upon the PN or final state.
Regarding the merger ringdown, a crude time-domain

model, which can be Fourier transformed analytically, is a
sine exponential, which is symmetric around the peak
amplitude:

hðtÞ ¼ e2πðifRDt−fdampjtjÞ fRD; fdamp ∈ R: ð4:3Þ

The Fourier transform (2.4) yields a Lorentzian,

~hðωÞ ¼ −
1

π

fdamp

ðf − fRDÞ2 þ f2damp

; ð4:4Þ

which only falls off as f−2 at large frequencies as expected
from Eq. (2.8), due to the fact that the original time-domain
waveform hðtÞ is only C0 at the peak. Despite its over-
simplification, in particular the unphysical symmetry
around the peak and the incorrectly slow falloff at high
frequency, the Lorentzian has provided a valid model for
frequencies higher than the ringdown frequency in
PhenomA/B/C models. Looking at Fig. 8, the expected
roughly exponential drop at high frequencies is clearly
visible.
A natural extension of the Lorentzian ansatz used in the

previous Phenom models is to model the merger-ringdown
amplitude AMR by multiplying the Lorentzian by an
exponential as

AMR

A0

¼ γ1
ðγ3fdampÞ

ðf − fRDÞ2 þ ðfdampγ3Þ2
e−λðf−fRDÞ: ð4:5Þ

In order to find best fit parameters, we use Mathematica’s
NonlinearModelFit function. To achieve robust con-
vergence of the nonlinear least squares fit, we redefine

λ ¼ ðγ2=ðfdampγ3ÞÞ;

to achieve a magnitude of order unity for the new free
parameter γ2. The merger-ringdown amplitude model thus
has three free parameters that are fit from numerical
waveform data, and the real and imaginary parts fRD,
fdamp of the QNM ringdown frequency are computed from
the known fits for final spin and mass from Eqs. (3.6) and
(3.8) and the known dependence of the QNM frequencies
on the dimensionless Kerr parameter shown in Fig. 9.
Interestingly, it turns out that γ3 ∈ ½1.25; 1.36�; i.e., it has a
very narrow dynamical range and could also be approxi-
mated as constant γ3 ≈ 1.3.

The exponential factor in our ansatz Eq. (4.5) shifts the
amplitude peak from fRD for the Lorentzian to

fmax ¼
����fRD þ fdampγ3ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ22

p
− 1Þ

γ2

����: ð4:6Þ

An appropriate frequency range for fitting the model
Eq. (4.5) to numerical data can be determined as follows.
At the large frequency end, we first discard frequencies
with significant numerical noise by the following heuristic
procedure: We multiply the amplitude with fp, where we
find that p ≈ 4 works well. For physically accurate data we
expect a monotonic decrease for the rescaled amplitude.
Due to unphysical artifacts, however, a minimum will
appear, and we discard all frequencies higher than the one
of the minimum. The result can be seen in Fig. 8. While no
“fine-tuning” is required, a good choice of frequency range
for model fitting will not only increase the accuracy of the
fit but also lead to smoother variation over the BH
parameter space of mass ratio and spins, which will be
essential when constructing a phenomenological model in
Paper II [4]. At low frequency we find that the fit is only
good up to the peak f ¼ fmax, while at large frequencies,
where the amplitude is already very small, we need to control
contamination from numerical artifacts. Also, to avoid
boundary effects, we extend the fitting range to
slightly smaller frequencies than f ¼ fmax. We find that
two strategies work well: specifying the fitting range in
terms of multiples of the ringdown frequency and the
numerically determined local maximum, e.g., using the
range (fmax, 1.2fRD) or using the width of the Lorentzian,
e.g., as (fmax − fdamp=2, fRD þ 2fdamp). Fits and residuals
for the latter choice are shown in Figs. 12 and 13.
Since the merger-ringdown amplitude model Eq. (4.5)

thus covers a frequency range which will be covered even
by the shortest NR simulations of BH mergers, simulations
only need to be sufficiently long to control the systematic
error of residual eccentricity, to avoid low frequency

FIG. 12. Comparison of ringdown fit with numerical data
for five “corner cases” as indicated in the legend. Full thin
lines indicate raw numerical data, full thick lines indicate
numerical data with a heuristic cutoff to remove noise at high
frequencies, and dashed lines indicate the best fit to ansatz
Eq. (4.5).
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artifacts from the Fourier transformation, and to clearly
separate the unphysical radiation content discussed in
Sec. II B from the physical part of the signal.
Returning now to the inspiral, it is natural to model the

early frequency behavior as a modification of the known
closed-form PN expression corresponding to the TaylorF2
approximant. As can be seen in Fig. 8, modeling the
premerger amplitude is particularly challenging for neg-
ative spins (and higher mass ratios), where the amplitude
shows a very sharp drop, whereas for positive spins the
frequency dependence is rather shallow. In the PhenomC
model [27] the amplitude was taken directly in the form of
Eq. (4.1) as resulting from the SPA calculation. We find,
however, that the variation of the phenomenological
parameters is smoother if instead of using the SPA
amplitude defined in Eq. (4.1) we reexpand the ratio of
the separate PN expansions of A22ðtfÞ and ϕ̈ðtfÞ. A
comparison of different forms of the TaylorF2 amplitude
is displayed in Fig. 14 for the q ¼ 18 case with the larger
black hole spinning at χ1 ¼ −0.8. One can see that the
reexpanded forms are closer to the hybrid data. This does
not hold across the parameter space, but it is for the
negative spin cases like the one shown here where the
difference is particularly large.
To perform the rexpansion we set the logarithmic terms

to zero and retain the complex terms in A22. Based upon
comparisons to the hybrid it was only necessary to keep
terms to Oðf2Þ, which is equivalent to a consistent
truncation at 3PN order. In the final result we use only
the real part of this expression; the contribution from the
imaginary part is negligible. The reexpanded SPA ampli-
tude is given by

APNðfÞ ¼ A0

X6
i¼0

AiðπfÞi=3; ð4:7Þ

where A0 is the leading-order f−7=6 behavior. We then
calibrate the next three natural terms in the PN expansion,

AIns ¼ APN þ A0

X3
i¼1

ρifð6þiÞ=3: ð4:8Þ

The choice of three terms resulted as a compromise
between accuracy and simplicity, and adding more terms
may be necessary in the future to further improve the low
frequency behavior, while further progress computing post-
Newtonian terms or improvements in resumming tech-
niques may reduce the number of calibration terms needed
in the future. The frequency range for the inspiral fit was
chosen by experimentation, and fM ¼ 0.018 was found as
a good value across our parameter space of hybrids, where
lowering the cutoff frequency would not significantly
increase the accuracy of fits, but increasing the cutoff
would increase the fit residuals, as shown in Fig. 15 for an
example case.

FIG. 13. Residuals between numerical data and best fits for the
data shown in Fig. 12. FIG. 14. Different formsof theTaylorF2amplitude, rescaledas in

the right panel of Fig. 8, are displayed for the q ¼ 18 case with the
larger black hole spinning at χ1 ¼ −0.8. Shown are the numerical
data of the hybrid waveform, the absolute value of the complex
TaylorF2amplitude fromEq. (4.1), and the real part of theTaylorF2
amplitude after reexpanding to n ¼ 2.5, 3, 3.5PN order. It can be
seen that the reexpanded forms are closer to the hybrid data. Taking
the real part or absolute value of expressions makes no significant
difference for the case and frequency range shown.

FIG. 15. Residuals for the inspiral fits corresponding to
Eq. (4.8) with cutoff frequencies 0.016, 0.018, 0.02.
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Since the post-Newtonian expansion shows poor con-
vergence at higher frequencies, it is not surprising that the
higher-order terms we calibrate are alternating in sign, and
the problem of reconstructing the signal from parameter-
space fits of the coefficients ρi is poorly conditioned. We
obtain significantly better results by computing the values
of the fit at a set of three equispaced frequencies and
interpolating the values of these collocation points across
the parameter space. This technique is used in the
companion paper [4] to construct accurate inspiral ampli-
tude fits for the PhenomD model.

B. Phase

As already discussed regarding the construction of
hybrid waveforms in Sec. II D, waveforms from a system
with identical intrinsic physical parameters correspond
to an equivalence class of waveforms which differ by a
phase and time shift. In the time domain, both the
amplitude and phase are naturally affected by a time shift;
in the Fourier domain the amplitude is invariant; and the
phase picks up a constant and a term linear in the frequency,
as can be seen by Fourier transforming a shifted waveform
hϕ0;t0 ¼ hðt − t0Þeiϕ0 :

~hϕ0;t0ðωÞ ¼
Z

∞

−∞
hðt − t0Þeiϕ0e−iωtdt

¼ eiðϕ0þωt0Þ
Z

∞

∞
hðt0Þe−iωt0dt0: ð4:9Þ

Previous phenomenological waveform constructions
have dealt with this ambiguity by defining a standard form
of the phase function by subtracting a fit to a linear function
ϕ0 þ ωt0 over some suitably chosen frequency interval. In
Fig. 16, phase functions after removing different fits to
ϕ0 þ ωt0 are shown. The strong dependence of the phase
function on the alignment and the fact that no particular
features are visible at the ringdown makes it difficult to
learn about qualitative features of the phase, in particular in
the merger-ringdown regime.
For this reason we take a different path to simplify the

understanding of the anatomy of the phase functions, and
we consider the first and second derivatives of the phase
function with respect to the frequency. For NR data, the
second derivative is often noisy, and we thus mainly work
with the first derivative, which eliminates the phase shift
ambiguity and converts the time shift ambiguity into a
simple constant offset. In Fig. 17 we plot the derivative of
the phase for the same five corner cases of the maximal
mass ratio and/or spin shown in Fig. 6 and mark the
ringdown frequency. We notice a characteristic structure
rising above the background and centered at the ringdown
frequency, which reminds us of the Lorentzian Eq. (4.4) we
have previously employed to model the amplitude function.
Taking a derivative of the Lorentzian, we can derive that the
maxima of its derivative are located at fRD � fdamp=

ffiffiffi
3

p
. In

Fig. 18 we compare this prediction for the second phase
derivative with NR data from a BAM simulation, where we
can compute a relatively clean second phase derivative, and
we find excellent agreement. In order to capture the
“background” in which the Lorentzian is embedded, we
add terms with negative powers of the frequency f, to
capture the steep inspiral gradient, and our basic model
becomes

ϕ0
MR ¼ α1 þ

Xn
i¼2

αif−pi þ a
f2damp þ ðf − fRDÞ2

; ð4:10Þ

where the constant α0 acts as an overall time shift of the
phase function, which could be determined by matching to
a description of the inspiral, and the αi and a are free
parameters which can be fit to numerical data. The number

FIG. 16. Fourier-domain phase corresponding to a hybrid
constructed for SXS NR data corresponding to equal mass data
with equal spins of χi ¼ 0.98, with a term ϕ0 þ ωt0 subtracted
over a frequency range. The frequency ranges of the fits are
indicated in the plot, where MfS ¼ 0.0035 is the start frequency
of clean hybrid data and MfMR ¼ 0.018 the frequency where we
typically separate between inspiral and merger ringdown.

FIG. 17. Phase derivative ϕ0 for corner cases as indicated
in the legend; vertical straight lines mark the ringdown frequency
fRD.
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of free parameters αi and the choice of powers pn defines
a specific merger-ringdown ansatz. In order to find a
good choice for the number of parameters and pn, we
first produce fits with the free parameters (α1, α2, p2) and
determine the best fit power pn across the parameter
space. We find that p2 ≈ 2, so we choose the integer
p2 ¼ 2 as the leading contribution. Further terms can be
added to the ansatz, e.g., until the residual across the
parameter space resembles pure noise, and no further
information can be extracted via fits. The specific choice
made for the PhenomD model discussed in the companion
paper is to add one more term with p3 ¼ −1=4. In
order to improve the convergence of Mathematica’s
NonlinearModelFit function, we replace fdamp by
α0fdamp in Eq. (4.10) and also fit to α0. We find that the
parameter α0 is in the range [0.98, 1.04] and compensates
for errors in our final mass and final spin fits near the
boundary of our calibration region. For the actual
PhenomD model discussed in Ref. [4] this parameter will
be set to unity.
For intermediate frequencies, roughly between Mf ¼

0.018 and half the ringdown frequency, one finds that the
best choice of p2 for a single power law coefficient in
Eq. (4.10) is p2 ≈ 1, so we choose the integer p2 ¼ 1 as the
leading contribution in this regime, and we break up our
model into different frequency ranges in each of which we
use a very simple ansatz. A more sophisticated ansatz may
successfully treat the entire frequency range with a single or
at least only two fitting regions.
For consistency with our amplitude model, we again

choose Mf ¼ 0.018 as the transition between our inspiral
and high-frequency descriptions. For the merger-ringdown
part, we find that a simple choice in terms of the ringdown
frequency, e.g., ½0.45; 1.15�fRD, is sufficient. The upper
frequency 1.15fRD approximates the highest frequency for
which we have clean NR data. For the full IMR phase we
use the above fit for frequencies larger than 0.5 fRD.

For the intermediate phase we then choose a fitting
window of ½0.018; 0.6fRD�, and we use two fitting coef-
ficients p2 ¼ 1, p3 ¼ 4.
We thus have succeeded in directly using information

about the final spin and mass in the ringdown description of
both amplitude and phase and turn now to using PN
information for the inspiral. We can treat the inspiral along
the lines of the amplitude in Sec. IVA. For the amplitude
we have added the next three higher-order PN terms to the
known TaylorF2 expression. For the phase, the 4PN terms
corresponds to a constant offset for the phase, to which we
add the next three nontrivial higher-order PN terms, thus
four PN terms to be fitted in total.
The detailed choices we have made for the PhenomD

model and checks of the phase accuracy in terms of phase
error as well as checks of the closeness of the complete
waveformbuilt frommodels foramplitudeandphase in terms
ofmatchedfilteringarediscussed in thecompanionpaper [4].

V. SUMMARY

In this paper we have discussed preliminary work that
will enable us to construct a new phenomenological
waveform model for nonprecessing waveforms in a
companion paper [4].
We have first presented new NR simulations which

include data sets with a range of spin values at mass ratios
4, 8, and 18, which allow us to significantly extend
the calibration range of current nonprecessing inspiral-
merger-ringdown models. We have demonstrated sixth-
order convergence for one of the q ¼ 18 cases and
computed a phase error estimate on the order of
0.05 rad after aligning near merger. We find in particular
a small secular drift and errors that are dominated by noise
and oscillations. We have illustrated high accuracy also for
a ∼10 orbit aligned-spin case, where we have not com-
pleted the convergence series to save computational cost,
and conclude that finite difference codes based on the
“moving-puncture” paradigm [38,88–90] provide a very
robust tool to obtain NR data sets in new regions of
parameter space.
We then discussed our procedure to construct hybrid

PN/numerical-relativity waveforms in the time domain and
how to convert them to the frequency domain. Special
emphasis has been put on the alignment procedure which is
at the core of the hybridization procedure, and we have
presented a comparison of our NR data and different PN
approximants, from which we conclude that the most
appropriate approximant to use in our hybrid construction
is the uncalibrated SEOBv2 model. We have also described
our simple criteria to determine an appropriate frequency
range for the fitting procedure expressed in Eq. (2.10),
which determines the optimal alignment of PN and NR
waveforms. The PN comparison has been based on a time-
shift analysis directly relevant to the hybridization pro-
cedure, which we have, however, also found very useful for

FIG. 18. Second phase derivative for the BAM waveform with
q ¼ 2, χi ¼ 0.75; vertical straight lines mark the ringdown
frequency fRD and fRD � fdamp=

ffiffiffi
3

p
.
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other applications, such as studying the time-dependent
dephasing of numerical simulations due to numerical error.
A crucial part of a waveform model is a prediction of the

final mass and spin from the initial configuration, which
then allows one to compute the complex quasinormal
ringdown frequencies. While there are a number of
numerical fits to final mass and spin available in the
literature [79–82], we have presented new fits here, which
extend the calibrated range, are particularly simple, and can
easily be extended to new data sets or higher accuracy as
further improvements of our waveform model are devel-
oped. An essential feature of the final spin fit for waveform
modeling is that it respects the extreme Kerr limit. Also, the
final state fits illustrate techniques for constructing param-
eter-space fits which wewill use in the companion paper [4]
to construct the PhenomD waveform model.
Previous phenomenological waveform models have used

a Lorentzian to model the ringdown part of the Fourier
amplitude, which, however, leads to an incorrect high
frequency falloff behavior (f−2 instead of Oðf−MÞ
∀ M). Here we show that not only does a simple expo-
nential factor lead to an excellent agreement with numerical
data, but we also identify a Lorentzian of the same width,
centered at the ringdown frequency in the derivative of the
frequency-domain phase.
For low frequencies, we model the amplitude and phase

by the standard TaylorF2 approximant, augmented by
pseudo-PN terms tuned to our hybrids constructed from
SEOBv2 and NR data. For the amplitude, we use a re-
expanded form with the imaginary part of the amplitude set
to zero; i.e., we neglect the very small deviations between
the GW phase and twice the orbital phase some of us
discussed in Ref. [78]. We determine an appropriate cutoff
frequency, where our inspiral model is separated from our
merger-ringdown model as Mf ¼ 0.018, considering the

dependency of the inspiral amplitude fit residual on this
cutoff frequency.
In order to model how the phase Lorentzian is embedded

in the background functional dependance of the phase, we
propose to complete the model by adding inverse powers of
the frequency and identify the most appropriate lead-
ing term.
Having identified the Lorentzian feature in the phase,

and a frequency up to which even a simple extension of the
TaylorF2 approximant yields a good fit to the data, paves
the way for complete waveform models of extremely high
fidelity to the physical signal.
A first incarnation of our approach to develop phenom-

enological waveform models that are sufficiently accurate
for the advanced detector era is the PhenomDmodel, which
we present in a companion paper [4].
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