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We investigate all feasible mathematical representations of disformal transformations on a space-time
metric according to the action of a linear operator upon the manifold’s tangent and cotangent bundles. The
geometric, algebraic, and group structures of this operator and their interfaces are analyzed in detail. Then,
we scrutinize a possible physical application, providing a new covariant formalism for a phenomenological
approach to quantum gravity known as rainbow gravity.
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I. INTRODUCTION

The study of new kinds of symmetries associated with
equations of motion is crucial in modern physics, since it
can elucidate hidden features and help us find new non-
trivial solutions to the equations involved [1]. We quote
Noether’s theorem, gauge choices, and the theory of the
angular momentum operators as some important examples
from a lengthy list describing physical properties of a given
system that can circumvent the cumbersomeness of solving
equations of motion.
The same reasoning can be applied to disformal trans-

formations. The increasing literature on this issue has
revealed new physics beyond Bekenstein’s initial proposal
[2,3]. Motivated by the results we have previously obtained
in Ref. [4], we show here that not only can disformal
transformations be defined as purely geometric transforma-
tions, but that they also allow for distinct representations
(algebraic, geometric, and group) in general. In this way, we
gather each mathematical aspect of disformal transforma-
tions ofmetric tensors in a unique object. By constructing an
abstract operator acting upon the tangent spaces of a
manifold, it is possible to see that it takes the form of a
space-time geometry, a genuine algebraic tensor, or a group
element. This unified description of the disformalmaps shall
be illustrated by means of the diagrams in Sec. III. The
aforesaid operator singles out a preferred vector field (or a
set of them) to deform a previously defined tetrad frame.
Therefore, depending on the choice of such a vector, the
physical notions of time, energy, and momentum can be
altered. As we shall see later, new trends in quantum gravity
phenomenology—for instance, rainbow gravity [5] and
doubly special relativity [6]—point in this direction.
Naturally, one can also interpret the new formalism

developed here for disformal transformations as purely

mathematical; nevertheless, this is already sufficient to
attract attention on its own. Notwithstanding, from the
physical point of view, there has been a growing interest
in disformal transformations due to their applications in
several gravitational theories, such as Bekenstein’s TeVeS
formalism [7] (which furnishes a covariant formulation for
modified Newtonian dynamics [8] in the weak-field limit),
bimetric theories of gravity [9], scalar [10] or scalar-tensor
theories [11–14] (includingmimetic [15–18] andHorndeski
ones [19–21]), cosmology [22–25], k-essence [26], and
analoguemodels of gravity [27,28]. There are also situations
where disformal transformations are related to the emer-
gence of a Lorentz signature in classical field theory [29],
nonmetricity [30], and particle physics [31,32], providing
alternative explanations for chiral symmetry breaking [33],
the anomalous magnetic moment [34], as well as the
disformal invariance of matter field dynamics [4,35,36].
This paper is organized as follows. In Sec. IIwe review the

standard geometric definitions for disformal transforma-
tions and; in Sec. II A, we introduce the aforesaid disformal
operator acting on vector fields on M. We then follow the
same approach to recover the inverse of a disformal metric
by introducing a operator acting on covectors. In other
words, we establish a new procedure such that instead of
mapping a previously defined metric onto a disformal
metric, we map a previously defined vector field onto a
disformal vector field. Indeed, a metric tensor is an addi-
tional structure we can endow a manifold with and the
existence of vector fields only relies on the differential
structure of the manifold; hence, it is more fundamental. In
Sec. III we show how these operators become algebraic
tensors in terms of an arbitrary coordinate system and their
relationship to the components of the disformal (co)metric.
With the help of the disformal group structure, already
satisfied by disformal metrics, we then show that all the
aforesaid operators can be reduced to a single one. In Sec. IV
we derive an algebraic criterium, in terms of the disformal
parameters, to promptly find the causal relation between the
background light cone and the disformal one. Also, we
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discuss how the introduction of a disformal operator gen-
erating a disformal metric gives rise to two consistent
interpretations of causality. Finally, in Sec. V we scrutinize
the case of rainbow gravity [5]—a formalism for quantum
gravity phenomenology that takes into account a possible
energy dependence of the space-time metric probed by a
particle with such energy—and show how such a phenom-
enological approach has a natural explanation within the
paradigm of disformal transformations.

II. DISFORMAL TRANSFORMATIONS:
THEN AND NOW

Using the definition presented in Ref. [4], a single-vector
disformal transformation of a given metric (which we shall
simply call a disformal transformation) is an application
that takes scalar functions α and β, a metric tensor g, and a
globally defined time-like1 vector field V in a space-time
and associates them to another (well-defined) metric tensor
ĝ according to

ĝð�; ·Þ ¼ αgð�; ·Þ þ β

gðV; VÞ gðV; �Þ ⊗ gðV; ·Þ; ð1Þ

where � and · represent the placements of arbitrary vector
fields on which the metric tensors g and ĝ act. The existence
of a nonvanishing time-like vector field onM is guaranteed
when one considers time-orientable space-times, which is
reasonable from the physical point of view. IfM is not time-
orientable, there still exists a time-orientable twofold
covering of M, where this formalism may lie (cf. the brief
discussion in Ref. [37]). Taking that into account, besides
mathematical convenience and physical reasonableness, we
shall henceforth consider only time-orientable space-times.
The map which defines the disformal metric is well

defined if α > 0 and αþ β > 0 throughout the manifold.
This well-definiteness means that the constructed ĝ is a
pseudo-Riemannian metric with the same signature as that
of g. The scalars α and β are not necessarily functions
depending only on points of the manifold, but rather
arbitrary functions that could also have a functional
dependence on V and its derivatives. We can write down
explicitly the components of the disformal metric in a given
coordinate system in its covariant and contravariant
versions as

ĝμν ¼ αgμν þ
β

V2
VμVν; ð2Þ

ĝμν ¼ 1

α
gμν − β

αðαþ βÞ
VμVν

V2
; ð3Þ

where V2 ≡ gμνVμVν and it is straightforward to verify
that ĝμνĝνσ ¼ δσμ.
The main goal of the ensuing mathematical machinery is

to introduce a new formalism to describe disformal metrics.
This shall be done in terms of disformal operators acting on
vectors and covectors in such a way that the disformal
metric inherits their properties.

A. New facet of a disformal transformation

Hereafter, let us fix a space-time ðM; gÞ and a non-
vanishing time-like vector field V ∈ ΓðTMÞ.2 Consider
also any two scalars α and β satisfying the conditions
α > 0 and αþ β > 0. Then, the map (1) can be equiv-
alently described as an action on the tangent space in each
point of the manifold by the following definition:

ĝðY; ZÞ ¼ gð ~DðYÞ; ~DðZÞÞ; ð4Þ

where, for any X ∈ ΓðTMÞ, we have

~DðXÞ ≐ ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p
X∥ þ

ffiffiffi
α

p
X⊥; ð5Þ

with

X∥ ≐ gðX; VÞ
gðV; VÞV; and X⊥ ≐ X − gðX; VÞ

gðV; VÞV; ð6Þ

where X∥ is the projection of X onto V and X⊥ is the
projection onto the orthogonal complement of V, such that
X ¼ X∥ þ X⊥. So, instead of working with a disformal
transformation on the metric, one can define the map

~D∶ ΓðTMÞ → ΓðTMÞ; X ↦ X̂ ¼ ~DðXÞ ð7Þ

to deform vectors and recover the disformal metric ĝ. We
shall denote by X̂ the disformal vector related to X through

the action of ~D. Clearly, such a map is linear, i.e.,
~DðγX þ YÞ ¼ γ ~DðXÞ þ ~DðYÞ for any scalar function γ

and vectors X and Y, and from this, ~D defines a mixed
rank-2 tensor field on M given by

~D∶ ΓðT�MÞ ⊗ ΓðTMÞ → F ðMÞ;
ðθ; XÞ ↦ ~Dðθ; XÞ ≐ θð ~DðXÞÞ; ð8Þ

where θ is an arbitrary covector field and F ðMÞ corre-
sponds to the set of all smooth real-valued functions onM.3

1It could be extended for light-like vectors or even tensorial
fields (as discussed in Refs. [4,36]), but these cases are out of the
scope of this paper, for practical reasons.

2ΓðTMÞ denotes the set of smooth sections of the tangent
bundle, i.e., vector fields over M. This set is also denoted in the
literature by XðMÞ or C∞ðTMÞ.

3For economy of notation, we use the same symbol for the
operator defined in Eq. (7) and the corresponding mixed
tensor (8).
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Furthermore, ~D can be seen as a linear transformation on
the tangent space TpM for each p ∈ M and, provided
α > 0 and αþ β > 0, a linear isomorphism.
It is simple to see that the operator ~D satisfying Eq. (4) is

not unique. In fact, all possible operators of the form
~DðXÞ ¼ f1X∥ þ f2X⊥ satisfying Eq. (4) are fourfold
degenerate:

~Df�;�gðXÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p
X∥ �

ffiffiffi
α

p
X⊥: ð9Þ

This degeneracy in the choice of ~D could lead to ambi-
guities in the definition of a disformal metric by a disformal
operator according to Eq. (4). For reasons that shall
subsequently become clear, we shall define the disformal
operator as ~DðXÞ ¼ ~Dfþ;þgðXÞ, for every vector field X,
and prove its uniqueness afterwards.

B. The disformal cometric

In Sec. V, concerning the physical applications of our
analyses, it will be important to use the disformal cometric
instead of the disformal metric; therefore, we briefly
elaborate upon how one can analogously define a disformal
operator acting on covectors to recover the information
contained in Eq. (3).
For each vector X in a manifold M endowed with a

metric tensor g, there exists its unique metric dual
~X ≐ gðX; �Þ. Hence the dual is a linear map ~X:
ΓðTMÞ → F ðMÞ, i.e., ~X ∈ ΓðT�MÞ. In this way, the
cometric h is defined by a linear, symmetric, and non-
degenerate map:

h∶ ΓðT�MÞ ⊗ ΓðT�MÞ → F ðMÞ;
ð ~X; ~YÞ ↦ hð ~X; ~YÞ ¼ gðX; YÞ: ð10Þ

In a given coordinate system fxμg, the cometric has
components gμν ¼ hðdxμ; dxνÞ, i.e., it is the contravariant
components of the metric. From Eq. (3), we can define the
disformal cometric intrinsically as

ĥð�; ·Þ ¼ 1

α
hð�; ·Þ − β

αðαþ βÞ
hð ~V; �Þ ⊗ hð ~V; ·Þ

hð ~V; ~VÞ ; ð11Þ

where � and · represent here the placements of arbitrary
covector fields on which the cometric tensors h and ĥ act.
Analogously to what we did before, we can define the
disformal covector ω̂ associated with ω by the application
of a linear map ~D: ΓðT�MÞ → ΓðT�MÞ, from which we
write the disformal cometric as

ĥðω; ηÞ ¼ hð ~DðωÞ; ~DðηÞÞ; ð12Þ

with ~D given by

~DðωÞ ≐ 1ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p ω∥ þ
1ffiffiffi
α

p ω⊥ ð13Þ

and again we have the decomposition

ω∥ ≐ hðω; ~VÞ
V2

~V and ω⊥ ≐ ω − hðω; ~VÞ
V2

~V: ð14Þ

Similarly to the covariant disformal operator, we have four
possible contravariant disformal operators. We shall set
~DðωÞ ¼ ~Dfþ;þgðωÞ to be the disformal operator for ele-
ments in ΓðT�MÞ and again prove that it is unique.

III. MACHINERY AND UNIQUENESS OF THE
DISFORMAL OPERATORS

In Ref. [4] one can find algebraic properties concerning
disformal metrics as the eigenvalue problem for ĝμν ¼
ĝμσgσν and a group structure satisfied by them. Indeed, we
now show that these metrics can be completely charac-
terized by (disformal) operators, since they share similar
properties. For practical purposes, it is useful to provide a

coordinate representation for both ~D and ~D. We then start
with these coordinate expressions and use them to prove
some propositions about the disformal operator, and
explore. their algebraic and geometric features.

A. Coordinate expressions

To derive a coordinate expression for the disformal

operators ~D and ~D, let fxμg be a coordinate system,
f∂μg the tangent vectors associated with the coordinate
lines, and fdxμg their duals. Thus,

~Dð∂νÞ ¼
ffiffiffi
α

p ∂ν þ
ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p − ffiffiffi
α

p
V2

VνV:

Applying dxμ to this, we get the desired expression

Dμ
ν ≐ dxμð ~Dð∂νÞÞ ¼

ffiffiffi
α

p
δμν þ

ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p − ffiffiffi
α

p
V2

VμVν: ð15Þ

In coordinates, we thus have X̂μ ¼ Dμ
νXν. Analogously,

we get

Dν
μ ≐ ∂νð ~DðdxμÞÞ ¼ 1ffiffiffi

α
p δμν þ

�
1ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p − 1ffiffiffi
α

p
�
VμVν

V2

ð16Þ

when defining ω̂μ ¼ Dμ
νων. It should be remarked that

with our definitions, vectors (covectors) transform upon the

action of ~D ( ~D). Although it is possible to transform
covectors (vectors) by means ofDμ

ν (Dν
μ) this shall not be

of our general interest here.
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With the coordinate expressions for ~D and ~D at our
disposal, we state the following.
Proposition 1. Dμ

ν and Dν
μ satisfy

Dμ
σDν

σ ¼ δμν ; ð17Þ

and hence act as mutual inverses.
Proof.—This is straightforward from Eqs. (15) and (16).
Using Eqs. (4) and (12) and the coordinate expressions

for Dμ
ν and Dμ

ν , it is easy to show the following.
Proposition 2. The diagrams

are not commutative, i.e., gð ~DðVÞ; ·Þ ≠ ĝðV; ·Þ and
hð ~DðωÞ; �Þ ≠ ĥðω; �Þ.
From the theory of differentiable manifolds it is known

that for each point p ∈ M, the tangent TpM and cotangent
T�
pM spaces of a differentiable manifold M are naturally

isomorphic linear spaces, although this isomorphism is
basis dependent. In the presence of a metric tensor on M,
there is a canonical isomorphism between TpM and T�

pM,
namely, for a given vector X ∈ TpM, there is a unique ω ∈
T�
pM satisfying gðX; ·Þ ¼ ω. Since we are now dealing with

a manifold endowed with two metric tensors, the above
proposition indicates an ambiguity when taking duals since
the g dual of a disformal vector is not the ĝ dual of the
vector. This ambiguity is always present when the manifold
under consideration has more than one metric tensor.
Therefore, it is important to make clear which metric
tensor is being used when raising and lowering indices.
However, there is a commutative manner to deform

vectors and covectors and take their duals. It is not difficult
to show that the diagram

ð18Þ

is commutative. In fact, we could have started with Eq. (4)

and the definition of ~D given by Eq. (5) and then defined ~D
to be the only operator able to make Eq. (18) a commutative
diagram. In doing so, one can recover the coordinate
expression for ~D and the other properties associated with
it. For completeness, we stress that if the direction of the
arrows labeled by g and ĝ is reversed, and g and ĝ are
replaced by their inverses, the diagram is also commutative.

Thus, one can start with the cometric and the definition of
~D to define ~D and everything else in terms of it.

B. Disformal group structure revisited

In this section we review one of the mathematical
structures underlying disformal transformations (for more

details the reader is referred to Refs. [4,36]). Let ~Di be
disformal operators with disformal parameters αi and βi, for
i ¼ 1, 2, given by

~D1ð·Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 þ β1

p
ð·Þ∥ þ

ffiffiffiffiffi
α1

p ð·Þ⊥; ð19Þ

~D2ð·Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
ð·Þ∥ þ

ffiffiffiffiffi
α2

p ð·Þ⊥: ð20Þ

Since the action of ~Di on a vector field is also a vector field,
it is easy to verify that for any vector field X the following
holds:

~D1ð ~D2ðXÞÞ ¼ ~D2ð ~D1ðXÞÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα1 þ β1Þðα2 þ β2Þ

p
X∥ þ

ffiffiffiffiffiffiffiffiffiffi
α1α2

p
X⊥: ð21Þ

We can use this equation to define the composition of two
disformal operators as

ð ~D1 • ~D2ÞðXÞ ¼ ð ~D2 • ~D1ÞðXÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα1 þ β1Þðα2 þ β2Þ

p
X∥ þ

ffiffiffiffiffiffiffiffiffiffi
α1α2

p
X⊥:

ð22Þ

One can also verify that the set of all disformal operators
with the composition law given above is closed. It means
that the composition of two disformal operators is itself
another operator. The commutativity and associativity are
easily checked, characterizing an Abelian group structure
for that set, where the identity operator has parameters
α ¼ 1 and β ¼ 0 and the inverse of an operator with
parameters α and β has parameters α0 ¼ α−1 and
β0 ¼ −β½αðαþ βÞ�−1. A similar result is surely obtained
for ~D, since they share the same structure.
As mentioned before, there is a group structure asso-

ciated with disformal metrics. Comparing the composition
law (22) with the approach developed in Ref. [4], it is neater
and more elegant if we deal with operators instead of the
group action. Finally, it should be noticed that particularly
interesting examples of disformal subgroups take place
when all conformal coefficients are equal to 1—which
renders disformal metrics similar to those from the spin-2
field theory formulation, but with finite inverse metric—
besides the cases in which the disformal coefficients are
zero (β0s ¼ 0), coinciding with the usual conformal group.
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C. Uniqueness of the disformal operator

It has been shown that disformal metrics are related to an
Abelian group structure [4]. More precisely, there is an
Abelian group acting on the space of metrics on M.

Besides, in the previous section, we have seen that ~D
and ~D also satisfy an Abelian group structure, and in Eq. (4)
we proposed that a disformal metric arises when we deform
vectors and use the background metric. So, if we want to
characterize the disformal metric in terms of a disformal

operator, ~Dmust be well defined and ĝmust inherit some of
its properties. Recalling that there are four possible dis-
formal operators satisfying Eq. (4) and that we have

claimed ~Dfþ;þg is unique in a certain sense, we then state
and prove the following.
Theorem 1. ~Dfþ;þg is the only disformal operator

which satisfies Eq. (4) and the disformal group structure.
The same holds for the disformal cometric and the
operator ~Dfþ;þg.
Proof.—Consider the set G of all admissible disformal

operators given by Eq. (9) with a composition law (21). By
admissible we mean those operators whose disformal
parameters (α’s and β’s) might satisfy α > 0 and
αþ β > 0. For instance,

ð ~D1
f−;þg • ~D

2
fþ;−gÞðXÞ

¼ ð ~D2
fþ;−g • ~D

1
f−;þgÞðXÞ

¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα1 þ β1Þðα2 þ β2Þ

p
X∥ − ffiffiffiffiffiffiffiffiffiffi

α1α2
p

X⊥ ¼ ~Df−;−gðXÞ;

for any X ∈ ΓðTMÞ, where the disformal parameters are
α0 ¼ α1α2 and β0 ¼ α1β2 þ β1α2 þ β1β2. It is easy to
ascertain that ðG; •Þ is an Abelian group isomorphic to
the Klein four-group (also isomorphic to Z2 ⊕ Z2). As a
result of this isomorphism, each element but the identity
has order two and the only one whose square is itself is the
identity; in our case these requirements are only fulfilled by
~Dfþ;þg. Therefore, the only closed composition of dis-
formal operators holds when they are both of the form
~Dfþ;þg. The proof that it satisfies a group structure was
given in the previous section. This is entirely analogous to
the ~D operator.
A geometrical argument to rule out the other candidates

for the disformal operator (the ones with at least one
negative sign) is that, because of the negative sign, they
must include a reflection in the direction perpendicular to V
and/or a change in direction along with V. Therefore,
whenever they are applied an even number of times, a
positive sign must appear, implying that the operation is not
closed. Thus, this ensures that there is a unique and well-
defined disformal operator characterizing the disformal
metric.

D. The disformal operator as the square root
of the disformal metric

We have shown that given a local coordinate system

fxμg the coordinate expression for the disformal operator ~D
takes the form (15). Lowering the μ index with the
background metric g, we thus get

Dμν ≐ gμσDσ
ν ¼ α0gμν þ

β0

V2
VμVν;

where α0 ¼ ffiffiffi
α

p
> 0 and α0 þ β0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

αþ β
p

> 0 and, there-
fore, Dμν can be seen as a disformal metric tensor on M.
Using the composition law between disformal metrics

(given in Ref. [4])

ð⌊α1; β1⌋⊙⌊α2; β2⌋Þg ¼ ðα1α2Þgμν
þ β1α2 þ β1β2 þ α1β2

V2
VμVν;

we obtain that the square of D is precisely ĝ:

ð⌊α0; β0⌋⊙⌊α0; β0⌋Þg ¼ ĝμν: ð23Þ

Another way to see this is by looking at the eigenvalues of
ĝμν ¼ ĝσνgσμ and Dμ

ν: from the definition (5), the eigen-
value problem associated with the operator ~D is trivially
solvable. We see that V is an eigenvector related to the
eigenvalue λV ¼ ffiffiffiffiffiffiffiffiffiffiffi

αþ β
p

, while the other eigenvalues are
degenerate and equal to

ffiffiffi
α

p
, with linearly independent

eigenvectors lying on the orthogonal complement of V. The
same analysis can be carried out for ~D. It means that the
eigenvalues of ĝμν (see Ref. [4]) are exactly the eigenvalues
of Dμ

ν squared, and hence D2 ¼ ĝ as operators.

IV. REMARKS ON THE CAUSAL STRUCTURE

We now study the relationship between light cones of the
background geometry and the disformal one, and how
Eq. (4) gives rise to two interesting (and equivalent)
interpretations of causality in the context of disformally
related metrics and operators. For the first task, consider a
disformal metric as in Eq. (1) with signature ðþ;−;−;−Þ.
Let us fix a point p ∈ M and at that point consider an
orthonormal basis feAg with respect to the background
metric g, where e0 ¼ V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðV; VÞp

. Thus, for any
X ∈ TpM, we can write X ¼ XAeA and obtain

ĝðX;XÞ ¼ ðαþ βÞðX0Þ2 − αδIJXIXJ;

where δIJ is the Kronecker delta, for I, J ¼ 1, 2, 3.
Since we want to compare light cones of both metrics, let

us assume that X is a null-like vector with respect to ĝ, that
is, ðX0Þ2 − δIJXIXJ ¼ −βðX0Þ2=α. Therefore, at p ∈ M,
we have the following conditions:
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(1) If β ¼ 0, then X is also a null-like vector with respect
to g and the disformal light cone is the same as the
background one.

(2) If β < 0, then X is a time-like vector with respect to g
and the disformal light cone lies inside the back-
ground one.

(3) If β > 0, then X is a space-like vector with respect to
g and the background light cone lies inside the
disformal one.

For the second task, note that the existence of the tensor

field ~D, such that a disformal metric in Eq. (1) can be
written as Eq. (4) for any fields X, Y, allows us to interpret
the left-hand side of Eq. (4) as a new metric tensor for M.
Thus, the light cones of the metric ĝ are, in general,
different from those of g and hence have a different causal
structure on M.
For practical reasons, we provide now a simple and

merely illustrative example, without any physical meaning

a priori. Let us fix the background metric to be the
Minkowski one [η ¼ diagð1;−1;−1;−1Þ] and, at a
fixed point p, we have VðpÞ ¼ ð2; 1; 0; 0Þ, XðpÞ ¼
5ð−1; 1; 1; 0Þ, αðpÞ ¼ 2, and βðpÞ ¼ 3. It is easily verified
that X is space-like with respect to g and time-like with
respect to ĝ at p, which means that a vector field could be
space-like in the background metric and time-like in the
disformal one. This situation is depicted in the top panel of
Fig. 1. Conversely, the right-hand side of Eq. (4) indicates
that we can consider just the background metric g, but
applied to deformed vectors. Therefore, although light
cones are preserved, causal relations change because the
vectors have done so. In the bottom panel of Fig. 1, the
vector is originally space-like and its disformal counterpart
is time-like. Surely, the important feature is that the causal
relation must agree whether you apply the disformal metric
to vectors or the background metric to the deformed
vectors.
We thus conclude the mathematical aspects of disformal

transformations we intended to develop here. Now, we shall
see how to apply this simple and elegant formalism to the
realm of quantum gravity phenomenology.

V. APPLICATION TO RAINBOW GRAVITY

As we have stated previously, disformal transformations
can naturally be seen as pure mathematics that are attractive
on their own and have various physical applications. In
particular, we have seen here different representations for
performing disformal transformations in the context of
differential geometry, essentially by means of metric
tensors.
Nevertheless, we are interested in the applications of the

aforesaid formalism in what concerns phenomenological
approaches to quantum gravity, specifically rainbow grav-
ity [5]. We believe that disformal transformations as
presented above provide a unified language for deforming
a background space-time metric in this scenario and can
shed light on some fundamental problems there, like
covariance and causality. With this in mind, we dedicate
the forthcoming sections to discussing these issues.

A. Rainbow gravity and disformal metrics

The formulation of rainbow gravity is a phenomeno-
logical modification of general relativity that incorporates
some properties of the doubly special relativity (DSR)
program [5]. DSR models deform the kinematics of special
relativity, modifying also the energy-momentum conserva-
tion laws and the Lorentz symmetry group, by admitting
an invariant energy scale associated with quantum-
gravitational effects: the Planck scale. Themotivationbehind
this stems from the path used to go fromGalilean relativity to
special relativity, namely, modifying the kinematic equations
of the former in order to arrive at an invariant velocity scale.
Following the same lines, it is possible to deform the latter by

FIG. 1. On top, the vector is kept and the light cone is changed.
In this case, X is space-like in g and time-like in ĝ. On the bottom,
the light cone is kept and the vector is deformed. The original
vector (red) is space-like and its deformed counterpart (yellow) is
time-like.
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taking into account an invariant energy scale, which is
generally believed to correspond to quantum-space-time
effects, and thus derive the DSR without violation of the
relativity principle. For pioneeringworks seeRefs. [6,38,39],
and for a broad review see Ref. [40].
Following the prescription presented in Ref. [38] to

perform such modifications, one can deform the momen-
tum space of a particle with momentum π ¼ ðp0; piÞ using
a function U that depends on the ratio between the particle
energy p0 and the Planck energy κ ≡ 1=

ffiffiffiffi
G

p
, where G is

Newton’s constant, as follows4:

Uðp0; piÞ ¼ ðf1ðp0=κÞp0; f2ðp0=κÞpiÞ; ð24Þ

leading to the modified dispersion relation (MDR)

∥π∥2 ¼ ηAB½UðπÞ�A½UðπÞ�B ¼ ðf1Þ2p2
0 − ðf2Þ2j~pj2: ð25Þ

In order to guarantee the invariance of this MDR,
Lorentz symmetry transformations also need to be
deformed. Although this deformation was initially intended
to take place in the Minkowski space, the idea of rainbow
gravity is that such a MDR can be described by energy-
dependent tetrad fields, which in turn produce an energy-
dependent (rainbow) metric of the form

ds2 ¼ ðdx0Þ2
f21

− 1

f22
δijdxidxj; ð26Þ

where δij is the Kronecker delta, for i, j ¼ 1, 2, 3. This
means that space-time is deformed in a way that is the
inverse of that in momentum space (for details, see
Ref. [5]). The U transformation defined in Eq. (24)
resembles the ones we have considered throughout this
paper, for a suitable choice of the disformal operator ~D.
In fact, considering a time-like 1-form field ~V as defining

a preferred direction in space-time leads to the definition of
energy as the projection of the four-momentum π onto the
direction of the corresponding normalized 1-form vector

ν ≐ ~V=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð ~V; ~VÞ

q
, that is, p0 ≐ hðπ; νÞ. Therefore, the

covector responsible for the disformal transformation
introduces a natural time-like direction to the reference
frame. Thus, using the orthonormal basis fν; θIg, an
immediate conclusion one can get from this analysis is
that the disformal momentum assumes the form

π̂ ¼ ~DðπÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
αþ β

p p0νþ
1ffiffiffi
α

p pIθ
I; ð27Þ

where α and β are now scalar functions depending on π and
ν, and are linked to the rainbow functions f1 and f2 through
Eq. (24):

α ¼ ðf2Þ−2 and β ¼ ðf1Þ−2 − ðf2Þ−2: ð28Þ

Furthermore, from the definition of the particle mass as the
norm of π, a MDR naturally appears from this map in
complete analogy with Eq. (25):

m̂2
π ≐ ĥðπ; πÞ ¼

�
1

αþ β

�
p2
0 − 1

α
δIJpIpJ: ð29Þ

Finally, the equivalence between the formalism we devel-
oped here and rainbow gravity is fulfilled by deriving the
induced space-time metric [see Eq. (26)]

dŝ2 ¼ ĝμνdxμdxν ¼ ðαþ βÞðdx0Þ2 − αδijdxidxj: ð30Þ

Thus, we could unequivocally identify the energy that
appears in Eq. (24) as p0 ¼ hðπ; νÞ as well as the respective
time-like direction that defines the deformation. We stress
that although this formalism seems to impose a preferred
inertial frame in space-time, which would break the local
canonical Lorentz symmetry, in the light of a DSR formu-
lation this is not at all the case, since a deformed version of
the Lorentz transformation is the one that preserves the local
relativity principle: this is the main conceptual achievement
of DSR. Not taking the existence of deformations into
account would lead to a formalism with Lorentz invariance
violation and, consequently, a preferred reference frame. It
should also be noticed that the formalismwe developed here
is intrinsically geometric and that it is fully covariant under
coordinate transformations.

B. Some examples

We now make use of the literature on rainbow gravity
(cf. Refs. [38,41]) to illustrate with some examples how this
relation works in practice.
The case with f1 ¼ f2: This will not alter the light cone.

If f1 is equal to f2, then β ¼ 0 and the disformal trans-
formation reduces to a conformal one. A well-known
example of this was first proposed in Ref. [38]:

f1ðE=κÞ ¼ f2ðE=κÞ ¼
1

1 − E=κ
; ð31Þ

implying that

α ¼
�
1 − hðπ; νÞ

κ

�
2

: ð32Þ

This choice of deformation yields a maximum energy for a
one-particle system, given by κ, and the causal structure is
(of course) kept invariant.
The case with f2 ¼ 1: This second example (cf. details in

Ref. [41]) has an invariant spatial contribution for the
dispersion relation. Let4We consider natural units: c ¼ ℏ ¼ 1.
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f1ðE=κÞ ¼
eE=κ − 1

E=κ
and f2ðE=κÞ≡ 1: ð33Þ

In terms of the disformal functions, we get

α ¼ 1; and β ¼
�

hðπ; νÞ=κ
ehðπ;νÞ=κ − 1

�
2 − 1: ð34Þ

For this dispersion relation, one can calculate the speed
of light as ðdE=dpÞjm¼0 ≈ 1 − E=κ. Therefore, ultraviolet
photons propagate with a speed smaller than infrared ones
within this model. Note that this is completely consistent
with the causal structure analyzed in Sec. IV. Since
−1 < β < 0, we have that αþ β < α and, therefore, the
disformal light cone lies inside the undeformed one.
The case with f1 ¼ 1: This third example is the opposite

of the previous one (see Ref. [42] and references therein), in
the sense that the time contribution is now kept invariant.
Consider

f1 ¼ 1; and f2 ¼
�
1þ

�j~pj
κ

�
4
�1

2

: ð35Þ

In terms of the metric coefficients, we obtain

α ¼ κ4

k4 þ ½h2ðπ; νÞ − hðπ; πÞ�2 ; ð36aÞ

β ¼ ½h2ðπ; νÞ − hðπ; πÞ�2
κ4 þ ½h2ðπ; νÞ − hðπ; πÞ�2 : ð36bÞ

For this dispersion relation the deformed speed of light
is ðdE=dpÞjm¼0 ≈ 1þ 5ðp=κÞ4=2, which means that
high-energy photons propagate with a speed larger than

low-energy ones. Again, this is compatible with the causal
structure, once 0 < β < 1 and, consequently, αþ β > α.
Therefore, the disformal light cone lies outside the unde-
formed one.

VI. CONCLUDING REMARKS

We have shown that disformal metrics can be written in
terms of a linear isomorphism acting on the tangent space
and that they actually inherit the properties of what we
called the disformal operator. From the reasons presented in
the text, this operator can be seen as a more fundamental
quantity than the disformal metric, providing a mathemati-
cal framework for disformal transformations. We then
analyzed this new facet of disformal transformations in
the light of the causal structure, where it gives rise to an
alternative interpretation of the modified causal cones in
purely algebraic terms.
Finally, as a direct application of the formalism devel-

oped previously, we verified that the most relevant models
in rainbow gravity are perfectly described in terms of
disformal transformations. In this vein, it was possible to
obtain the missing covariant approach for such a phenom-
enological theory, with a well-behaved causal structure and
a clear mathematical interpretation of the physical quan-
tities involved.
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