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Experimental studies of the quark-gluon plasma (QGP) focus on two, in practice distinct, regimes: one in
which the baryonic chemical potential μB is essentially zero, the other in which it is of the same order of
magnitude as the temperature. The cosmic QGP which dominates the early universe after reheating is
normally assumed to be of the first kind, but recently it has been suggested that it might well be of the
second: this is the case in the theory of “little inflation.” If that is so, then it becomes a pressing issue to fix
the trajectory of the Universe, as it cools, through the quark matter phase diagram: in particular, one wishes
to know where in that diagram the plasma epoch ends, so that the initial conditions of the hadronic epoch
can be determined. Here we combine various tools from strongly coupled QGP theory (the latest lattice
results, together with gauge-gravity duality) in order to constrain that trajectory, assuming that little
inflation did occur.
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I. THE COSMIC PLASMA IN THE
QUARK PHASE DIAGRAM

The history of the early universe is conventionally
divided into various “epochs”: the Planck epoch, the
plasma epoch, and so on. Each epoch is described by a
number of parameters, and it is the task of early universe
physics to determine the trajectory of the cosmos, as time
passes, through these parameter spaces.
The plasma epoch, just prior to the more familiar

hadronic epoch, is the earliest one involving forms of
matter that can be produced experimentally, and it is
therefore of particular interest to understand it more
completely. During that period, the Universe consisted
predominantly of a quark-gluon plasma (QGP), and the
relevant parameter space is the quark matter phase diagram
[1–4], in which the parameters are temperature T and the
baryonic chemical potential μB. This diagram is thought to
take the form shown in Fig. 1; as usual in such diagrams,
there is a line along which there is a first-order phase
transformation (to the hadronic or other, more exotic states
at very large μB) but this line does not persist to low values
of μB: instead it terminates at a critical endpoint [5], to the
left of which there is a smooth crossover; this has been
known for some time, as a result of highly sophisticated
lattice QCD computations [6].
As the Universe cooled, the plasma traced out a

trajectory downwards through this diagram. This immedi-
ately prompts a basic question: as the cosmic plasma
cooled, did it undergo an actual phase transition, or did
it merely pass through a smooth crossover? The answer to
this question is of basic importance in understanding the
initial conditions for the hadronic epoch [8].

The standard (current) answer to this question is that, in
view of the small value (ηB ≈ 10−9) of the net baryon
density/entropy density ratio in the hadronic epoch, μB
must have been small (relative to the temperature) through
the plasma epoch; so the evolution proceeded in a con-
tinuous way, through a smooth crossover. (On the quark
matter phase diagram, the evolution is represented by a
trajectory which is almost vertical, and very close to the T
axis, until the temperature falls far below the critical
temperature; at around 35 MeV it then deviates sharply
to the right, eventually entering the region corresponding to
nuclear matter. See [9].) This has not always been the
consensus view, however: in [10], Witten considered the
possible observational signatures of a cosmic first-order
phase transition, and in [11] and [12] the possibility that the
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FIG. 1. Possible Trajectories of the cosmic plasma in the
quark matter phase diagram (after Boeckel and Schaffner-
Bielich [7]).*matmcinn@nus.edu.sg
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cosmic plasma era ended at a large value of μB was
considered.1

More recently, in [7,15,16], this idea has been revived
and developed much more extensively: the result is a theory
of “little inflation.” One of the principal motivations of this
theory concerns the well-known Affleck-Dine theory of
baryogenesis [17] (see also [18]). This theory can indeed
produce the observed value of ηB, but [19] it can also easily
produce substantially larger values. The point of view of
little inflation is that one might regard (relatively) large
values of μB, arising from Affleck-Dine baryogenesis or
some related mechanism, to be generic for the cosmic
plasma. In fact, little inflation can handle, and is consistent
with, quite large values of μB (relative to the temperature
T), perhaps as large as μB=T ≈ 100.
In this theory, then, the value of μB was large throughout

the plasma epoch, even when it ended, through a first-order
transition. The theory postulates that, as the plasma crossed
the phase transition line, it first entered a false (metastable)
QCD vacuum, where it was trapped and inflated under the
influence of the constant potential. (The number of e-folds
is less than 10, hence “little” inflation.) When the plasma
transits to the true vacuum, the corresponding reheating
dilutes the baryon/photon ratio and the value of ηB drops
rapidly to around 10−9. (On the quark matter phase
diagram, this means that the trajectory of the plasma is a
diagonal line which descends towards, and intersects, the
phase line. After that, the trajectory is nearly horizontal,
until it meets, and merges with, the conventional evolution
at some point just below the critical temperature—in fact, at
essentially the same temperature as the point where it met
the phase line. See Fig. 1 (based on Fig. 2 of [7]).
This scenario is in good agreement with the data, and

makes numerous predictions for forthcoming observations.
In particular, it makes definite predictions regarding the
extremely intense magnetic fields which are now thought to
have permeated the cosmic plasma, and which must be
taken into account in any theory of that plasma: see [20,21]
for extensive recent reviews. That is, little inflation auto-
matically incorporates a “magnetogenesis” mechanism.
The magnetic field is an essential component of little
inflation and must be included in any (for example,
holographic) analysis of it.
From a theoretical point of view, this way of complet-

ing theories of baryogenesis is very attractive, since the
small observed value of ηB is accounted for by the
dramatic changes which, in any case, must occur if
the plasma era reaches its end through a first-order phase
transition.
Thus, we have two very different accounts of the

manner in which the cosmic plasma traverses the quark
matter phase diagram. It is remarkable that in these

theories the evolution of the cosmic plasma precisely
reflects the QGP as it is produced in two very different
current programs of heavy-ion collision experiments: on
the one hand, the low-μB plasma is being examined by
ALICE experiment at the LHC [22], while the high-μB
plasma has been the target of the beam scan experiments
at the RHIC [23–25], and will be further explored at
SHINE, NICA and FAIR, and the extended beam scan at
the RHIC [26–29]. Although comparing the cosmic
plasma with the QGP produced in heavy-ion collisions
is far from straightforward [30], it is reasonable to hope
that these experiments might yield at least some data
relevant to the cosmic plasma near the end of the plasma
epoch: one set of experiments will be relevant to the
conventional picture of the evolution of the cosmic
plasma, the other set to little inflation.
If the hadronic epoch began after an actual first-order

phase transition, this could have important consequences.
To take but three of many examples:

(i) A sharp phase transition could give rise to inhomo-
geneities that might help to explain currently ob-
served structures, such as voids [30].

(ii) There have been suggestions [31] that a first-order
cosmic phase transition might be accompanied by
acoustic effects, giving rise to observable signatures
in the form of gravitational waves.

(iii) A large value of μB during the plasma epoch could
modify the plasma equation of state in potentially
observable ways [32].

Little inflation does however suffer from one drawback:
unlike the conventional theory, it does not specify precisely
the actual trajectory of the cosmic plasma through the phase
diagram. Thus, in particular, one does not have a prediction
for the location of the point on the phase line where the
plasma epoch ended; that is, the theory does not fix initial
conditions for the hadronic epoch. Our objective here is to
ameliorate this problem.
We do this in two steps. First, the latest results from

lattice gauge theory [33] are used to constrain the position
of the phase transition line; and then gauge-gravity duality
(see [34] for the general case, [35–37] for the application to
the QGP) is used to impose a lower bound on the slope of
the little inflation trajectory shown in Fig. 1, in the manner
explained in [38,39]. We argue that, as the nucleation of a
false vacuum is a delicate process requiring that specific
conditions be satisfied regarding the height and the stability
of the relevant barrier—see Sec. III of [7]—it is essential to
avoid, as far as possible, the vicinity of the critical endpoint.
For one expects the typical strong fluctuation phenomena
associated with critical opalescence [40] to be important in
that region of the phase diagram; indeed, those fluctuations
are so strong that they provide the principal way of locating
the critical endpoint [41–43]. Combining all of these
arguments, we can constrain the trajectory of the cosmic
plasma rather strongly.

1Large values of μB also play a role in the theory of
“inhomogeneous baryogenesis;” see [13,14].
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II. THE PHASE TRANSITION LINE

There is as yet no complete agreement as to the location
of the quark matter critical endpoint, as obtained from
lattice studies: in [33] one finds a discussion of various
proposed points in the phase diagram, such as one (see
[44]) with coordinates ðμCEPB =TCEP; TCEP=TC

0 Þ ≈ ð1.68;
0.94Þ, where TC

0 is the crossover temperature at μB ¼ 0,
for which we follow [33] and take the value ≈150 MeV;
but also another with coordinates ðμCEPB =TCEP; TCEP=TC

0 Þ ≈
ð2.2; 0.99Þ (see [45]). In [5], a range for μCEPB =TCEP of 1–2
is suggested. However, it is argued in [33] that recent lattice
studies of the equation of state at nonzero μB, and of
cumulants of charge fluctuations, both indicate that a
critical endpoint satisfying μCEPB =TCEP < 2 is “unlikely.”
In view of all this, let us put the critical endpoint at
TCEP ¼ 145 MeV, μCEPB ¼ 300 MeV, since that is a point
on the curve shown in Fig. 6 of [33]. We stress, however,
that the question of the location of the critical point is far
from settled: we are selecting TCEP ¼ 145 MeV, μCEPB ¼
300 MeV simply to be definite, not to assert that these
values are confirmed.
The shape of the phase line2 has, again, recently been

constrained by lattice investigations: according to [48]
(very recently confirmed in [33]), the (absolute value of
the) curvature of the phase line is, at least for small μB,
given approximately by

κB ¼ 0.0066ð7Þ; ð1Þ

where κB is expressed in terms of the baryonic rather than
the quark chemical potential.3 Notice that this curvature is
very small, far smaller than is represented in the usual
schematic quark matter phase diagrams (including Fig. 1
above). The corresponding curve, reasonably extrapolated,
is shown in Fig. 6 of [33].
In the application to little inflation, the trajectory of

the cosmic plasma intersects this line at some point to
the right of the critical endpoint. We now try to use
gauge-gravity duality to constrain the location of this
intersection point.

III. THE CONSTRAINT FROM
GAUGE-GRAVITY DUALITY

As the phase transition line bends down and to the right
from the critical endpoint (see Fig. 1) it follows that, if
indeed a given plasma passes across this line, then the value

of μB=T at the point where the trajectory crosses the phase
line, μ#B=T

#, must satisfy

μCEPB =TCEP ≤ μ#B=T
#; ð2Þ

so we have a lower bound on μ#B=T
#. We now recall [39]

that gauge-gravity duality imposes an upper bound on it.
To see how this works, consider the submanifold of anti–

de Sitter spacetime AdS4 which is foliated by conformal
copies of three-dimensional Minkowski spacetime. Its
metric may be expressed as

gðAdS04Þ ¼ − r2

L2
dt2 þ dr2

r2=L2
þ r2½dψ2 þ dζ2�; ð3Þ

where L denotes the curvature scale, and the zero super-
script reminds us that the spacetime is foliated by (1þ 2)-
dimensional zero-curvature sections. We can regard t as
time at infinity, and ψ and ζ as dimensionless planar
coordinates there. Clearly the geometry at infinity is indeed
that of (1þ 2)-dimensional Minkowski spacetime, if we
make a conformal transformation using the factor r2=L2.
We ask the reader to regard this (1þ 2)-dimensional

spacetime as a timelike section through ordinary four-
dimensional Minkowski spacetime: that is, one constructs it
by arbitrarily choosing a specific spatial direction in three-
dimensional flat space, described by a dimensionless
coordinate ξ, and regarding t, ψ , and ζ as coordinates in
the (1þ 2)-dimensional spacetime perpendicular to that
direction (so that the full four-dimensional Minkowski
spacetime has metric −dt2 þ L2½dψ2 þ dζ2 þ dξ2�). That
is, the conformal infinity of (this version of) AdS can be
regarded as a (1þ 2)-dimensional subspacetime of four-
dimensional Minkowski spacetime.
Now the conformal factor we used here is not the only

possible choice: we are free to make a further transformation
involving t as well as r. Let aðtÞ be any smooth function
of t, let τ be defined by dτ ¼ aðtÞdt, and use this to express t
as a function of τ; then let AðτÞ denote aðtÞ when this is
done. A conformal transformation of the flat spacetime,
with conformal factor aðtÞ2, produces the conformally
flat Friedmann-Robertson-Walker (FRW) metric −dτ2þ
AðτÞ2L2½dψ2 þ dζ2 þ dξ2�. So we see that the conformal
infinity of AdS4 can be regarded as a (1þ 2)-dimensional
subspacetime of any spatially flat FRW spacetime.
Now of course FRW spacetimes have a very large

isometry group: they are homogeneous and isotropic.
In a physical sense, a four-dimensional spatially flat
FRW spacetime is “really” (1þ 2) dimensional: for if
we understand the physics on any two-dimensional plane,
then we automatically know the conditions on any other
two-dimensional plane, even if it has a different orientation
and location. In short, it suffices to understand the physics
associated with a (1þ 2)-dimensional subspacetime with
metric −dτ2 þ AðτÞ2L2½dψ2 þ dζ2�.

2Here and throughout we are assuming, as is customary (but
see the discussion in [46]), that the phase line corresponds to the
breaking of chiral symmetry [47].

3There has in fact been some very recent debate regarding this
value: see [49–53]. Again, our concern here is to be definite, not
to take a position on this question; in any case, the differences are
not such as would change our main conclusions substantially.
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As we have seen, this spacetime is holographically dual
to AdS4, and so we have a way of studying this FRW
spacetime holographically, section by section. This duality
is of little interest, however, since for example AdS4 does
not have a well-defined temperature, or any parameter
corresponding to the baryonic chemical potential of the
boundary theory; nor does it allow for the strong magnetic
fields which, as we discussed earlier, are thought to have
permeated the cosmic plasma. However, there is a very
well-known way of solving these problems [35–37]:
instead of using AdS4, let us insert an asymptotically
AdS dyonic Reissner-Nordström metric with planar (zero-
curvature) event horizon into the bulk. The metric, an exact
solution of the Einstein-Maxwell equations [54,55], is

gðAdSdyRN0
4Þ

¼ −
�
r2

L2
− 8πM�

r
þ 4πðQ�2 þ P�2Þ

r2

�
dt2

þ dr2

r2

L2 − 8πM�
r þ 4πðQ�2þP�2Þ

r2

þ r2½dψ2 þ dζ2�; ð4Þ

whereM�, Q�, and P� are geometric parameters connected
to the mass and electric and magnetic charges (per unit
horizon area), ψ and ζ are dimensionless Cartesian coor-
dinates, and L is now the asymptotic AdS curvature
parameter. This is the minimally complex bulk metric that
allows us to account for a dual field theory which [1] has a
well-defined temperature, [2] has a nonzero baryonic
chemical potential, and [3] is accompanied by a nonzero
magnetic field, as discussed earlier.
The electromagnetic potential form outside the black

hole is

A ¼
�
1

rh
− 1

r

�
Q�

L
dtþ P�

L
ψdζ; ð5Þ

where the constant term in the coefficient of dt is present to
ensure regularity; here rh represents the location of the
event horizon. The field strength form is

F ¼ − Q�

r2L
dt∧drþ P�

L
dψ∧dζ: ð6Þ

The baryonic chemical potential μB of the dual system is
related holographically to the asymptotic value of the time
component of the potential form, that is, to Q�=ðrhLÞ,
while the magnetic field associated with the dual system is
given by the asymptotic value of the field strength, that is,
to P�=L; see below for the precise relations. This pro-
cedure, making use of dyonic AdS black holes as duals of
strongly coupled systems with large chemical potentials
and subjected to strong magnetic fields, is standard in
applications of holography to condensed matter physics
(see [56]), and it works in just the same way here.

Now the conformal boundary here is precisely the same
as in the much simpler case of AdS4, discussed above: it is
conformal to a (1þ 2)-dimensional section of four-
dimensional Minkowski spacetime. This bulk geometry
is therefore dual, in precisely the same sense as we
discussed earlier, to physics on some (1þ 2)-dimensional
section through a FRW spacetime with flat spatial sections;
but now the bulk does have a well-defined temperature (the
Hawking temperature of the black hole), as well as having
additional parameters (Q� and P�) which can describe the
baryonic chemical potential μB and the magnetic field B in
a plasma at infinity. Thus we obtain a gauge-gravity
description of certain quantities characterizing the cosmic
plasma. (For a detailed description of this procedure,
see [38,39].)
Of course, this duality is severely limited, since the bulk

is static, and so we can only hope to account for (approx-
imately) time-independent quantities on the boundary.
Such quantities include two of particular interest, however,
namely the temperature-scaled magnetic field β, defined by

B ¼ βT2; ð7Þ

and the “specific baryonic chemical potential” ςB,
defined by

μB ¼ ςBT: ð8Þ

These two quantities are constant because B and T2 evolve,
in conventional cosmology, at the same rate (with the
inverse square of the cosmological scale factor) and
similarly μB and T both evolve with the reciprocal of
the scale factor; see [39] for the details. Note that ςB is the
reciprocal of the slope of the straight line trajectory4 shown
in Fig. 1. These two constants will be our main concern in
this work.
The holographic “dictionary” relates the black hole

parameters to the temperature, baryonic chemical potential,
and magnetic field strength of the boundary field theory by
means of the equations [39]

μB ¼ 3Q�

rhL
; ð9Þ

B ¼ P�=L3; ð10Þ

T ¼ 1

4πrh

�
3r2h
L2

− 4πðQ�2 þ P�2Þ
r2h

�
; ð11Þ

4The straightness of this trajectory should really be understood
in a piecewise sense, since the slope changes abruptly at
particular instants in the history of the cosmic plasma; see
[30]. However, we are mainly concerned here with the final
segment, terminating at the intersection with the phase line.
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here rh is, as above, the value of the radial coordinate at the
event horizon, but one can think of it as fixed function of
the boundary parameters by combining these equations to
obtain

3r4h − 4πTL2r3h − 4π

9
μ2BL

4r2h − 4πB2L8 ¼ 0: ð12Þ

That is, on the boundary we define rh to be the largest real
solution of this equation.
Now it has recently been emphasized, particularly by

Ferrari and Rovai [57], that the very existence of a holo-
graphic duality between a gravitational theory in the bulk
and a nongravitational boundary theory can impose highly
nontrivial conditions on both. In particular, it was found in
[57] that holography imposes an “isoperimetric inequality”
on the (Euclidean) bulk geometry, which runs as follows.
Consider a hypersurface Σ in the bulk which is homolo-

gous to the three-dimensional boundary, and denote the
area of a fixed compact domain in Σ by AðΣÞ. Let VðMΣÞ be
the volume enclosed by Σ. Then the requirement is that
(with “E” for “Euclidean”)

SE ≡ AðΣÞ − 3

L
VðMΣÞ ≥ 0; ð13Þ

where, as above, L denotes the asymptotic curvature scale.
This inequality is certainly not satisfied in all cases, so we
obtain a useful constraint just from the internal consistency
of holography.
There is of course a Lorentzian interpretation of the

isoperimetric inequality: in the case of a black hole bulk,
the Lorentzian version5 of (13) states that the black hole
should be free of an instability which can result when
branes are created in the bulk by a Schwinger-type pair-
production effect first studied by Seiberg and Witten [58];
see [59–61] for general studies of this important effect, and
[62] for the specific application to this case. This too is a
consistency condition, in the sense that, without it, it is not
consistent to assume that the bulk is static or that string-
theoretic objects (such as branes) in the bulk can be
neglected. Henceforth we focus on the Lorentzian version
of consistency.
Using Eq. (3), we can readily evaluate SE and its

Lorentzian counterpart SL for AdS04: one finds that
SLðAdS04Þ ¼ 0, and so the consistency condition is sat-
isfied. But for the black hole with metric (4), one has [39]

SLðAdSdyRN0
4ÞðrÞ

¼ ð−8πM� þ 4πðP�2þQ�2Þ
r Þ=L

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πM�L2

r3 þ 4πðP�2þQ�2ÞL2

r4

q þ r3h
L3

; ð14Þ

where, from the definition of rh, r is restricted to r ≥ rh.
The condition for holography to be internally consistent,
that is, the (Lorentzian version of) the isoperimetric
inequality (13), is now far from trivial: it requires that
SLðAdSdyRN0

4ÞðrÞ should be non-negative for all r. It
turns out (see again [39]) that the condition for this is

B2 þ μ2Br
2
h

L4
≤ 4π3T4; ð15Þ

where the holographic dictionary given earlier has been
used, and where rh is to be understood as a certain function
of B, μB, and T, to be found by solving Eq. (12). Thus the
isoperimetric inequality in the bulk has a dual version on
the boundary: a complicated inequality to be satisfied by
the boundary parameters B, μB, and T.
If the inequality (15) was not satisfied, then brane pair

production would run out of control, and the corresponding
backreaction on the bulk geometry would imply that it
ceases to be static. Apart from the fact, mentioned earlier,
that this would not be consistent, one should also consider
that the dual interpretation would presumably be that the
cosmic magnetic field, the temperature, and the baryonic
chemical potential (or their ratios) would begin to evolve in
a nonstandard manner. But the evolution of these quantities
with the scale factor is well understood. Thus we should
strive to ensure that (15) holds in all cases.
One can show [39] that the inequality (15), applied to

Eq. (12) above, is equivalent to the following inequality:

�
4π3 − 8α2

9

�
ς4B þ α3ςB − 3α4

4π
≤ 0; ð16Þ

where6

α2 ≡ 4π3 − β2; ð17Þ

and β and ςB are defined above in Eqs. (7) and (8).
Fixing β and regarding the left side of (16) as a function

of ςB, one finds that this function is increasing for all
positive ςB, and that it has a single positive root. Therefore
(16) imposes an upper bound on ςB, given by this root,
which we denote by ρðβÞ; this is to be regarded as a known
function, given by solving a quartic polynomial equation;
one finds that it is in fact a decreasing function of β.
Combining this statement with the inequality (2) and
recalling the definition of ςB, we have

5The Lorentzian version of (13) usually differs from the
Euclidean version, because the geometry of the Lorentzian bulk
differs from its Euclidean counterpart: one has to complexify not
just t but also some other parameters, such as the electric charge
and the angular momentum.

6Note that (15) itself implies that β2 ≤ 4π3, so there is no
difficulty in the following definition of α.
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μCEPB =TCEP ≤ μ#B=T
# ≤ ρðβÞ: ð18Þ

Thus, given a reasonable estimate for β, we can constrain
μ#B=T

# (and the slope of the trajectory of the plasma through
the phase diagram) from both sides.

IV. THE TRAJECTORY AND THE END
OF THE PLASMA EPOCH

The value of β has been extensively investigated in
theories of cosmic magnetogenesis [20,21]. There is much
uncertainty regarding its value during the plasma epoch,
with estimates for B at the end of the plasma epoch ranging
up to around 3.7 × 1017 gauss (though such a large value is
very unlikely in the specific magnetogenesis mechanism
given by little inflation). However, this means that β only
ranges from zero up to ≈1.15, and, fortunately, it turns out
that ρðςBÞ varies very little in this domain: a simple
numerical investigation shows that ρð0Þ ≈ 2.353, while
ρð1.15Þ ≈ 2.324. Let us take a value between these two
extremes, say 2.34. Since we are taking μCEPB =TCEP ¼
300=145 ≈ 2.07, we can now express (18) explicitly in
the following manner:

2.07 ≤ μ#B=T
# ≤ 2.34: ð19Þ

Now we should strongly emphasize that, at this point at
least, the gauge-gravity duality is not as precise as these
numbers suggest. For, as is well known, it applies to
boundary field theories which resemble strongly coupled
QCD in many ways, and which share surprisingly many
universal features with it, yet are not the same. The
generally accepted procedure (see [63] for a detailed
discussion) is that gauge-gravity predictions should be
interpreted as accurate to within a factor of about 2
(systematic error). A reasonably realistic interpretation of
(19) might state that μ#B=T

# is constrained to lie between
approximately 2 and 4.
Note that little inflation itself allows for far larger values,

up to 100 (see [7]); thus, despite its limitations, the gauge-
gravity duality makes a useful contribution here, narrowing
the range of possible values for μ#B=T

# very substantially. In
fact, the range is narrower than 2 ≤ μ#B=T

# ≤ 4: one can
argue that both the lower and the upper ends of the range
must be avoided.
To begin with the lower limit: as with any critical point,

the immediate vicinity of the quark matter critical endpoint
is beset by strong fluctuations: this is the well-known
phenomenon of critical opalescence [40], the detection of
which is in fact the precise goal of experiments relevant to
this regime [41–43]. It is highly likely that strong fluctua-
tions in this vicinity would disturb the establishment and
persistence of a metastable QCD vacuum, which is the very
basis of little inflation. Therefore we argue that, in order for

little inflation to be viable, values of μ#B=T
# around 2 must

be avoided.
On the other hand, as we have already mentioned, the

upper bound set by gauge-gravity duality is uncertain, by
the very nature of the duality in its present state of
development. The existence of a stable plasma violating
the isoperimetric inequality (13) would prove that gauge-
gravity duality cannot be consistently applied to the cosmic
QGP. Thus it would be risky to entertain values for μ#B=T

#

near to 4.
To be concrete, let us take μ#B=T

# ¼ 3 as a reasonable
estimate consistent with all of the above considerations.
The trajectory is then a line in the phase diagram of slope
1=3; one finds, using the parametrization of the phase line
described in [33], that the intersection with the phase line is
at approximately ðμ#B; T#Þ ¼ ð400; 135Þ in units of MeV.
This is at an acceptable distance from our assumed location
of the critical endpoint, ðμCEPB ; TCEPÞ ¼ ð300; 145Þ, so that
fluctuations should not disrupt little inflation, while
remaining compatible with the requirements of gauge-
gravity duality.

V. CONCLUSION: INITIAL CONDITIONS FOR
THE HADRONIC EPOCH

To summarize: using the latest lattice results and
methods drawn from gauge-gravity duality, we have argued
that, in the highly interesting and novel little inflation
theory, the following statements can be made.

(i) The trajectory of the cosmic plasma through the
quark matter phase diagram is a straight line (at least
in the late plasma epoch) such that 2 ≤ μ#B=T

# ≤ 4,
though the ends of this range should be avoided.

(ii) If we take μ#B=T
# ≈ 3, and use the parametrization

given in [33], the end of the plasma epoch occurred
near to the point in the diagram with coordinates
ðμ#B; T#Þ ¼ ð400; 135Þ MeV [assuming that the criti-
cal endpoint is near (300, 145) MeV]; that is, at a
temperature not far below that of the critical end-
point, but at baryonic chemical potential substan-
tially higher.

It follows that the beam scan experiments [23–29], many
of which may ultimately be capable of probing this regime,
will, under these assumptions, be examining a plasma
similar to the cosmic plasma just before it underwent a first-
order phase transition. The prospect of having direct access
to matter akin to the content of the microsecond universe,
just as it was undergoing a strong phase transition, is
exciting indeed.
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