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Provided the quantum fluctuations are amplified in the presence of a classical gauge field configuration
the resulting curvature perturbations exhibit a mild statistical anisotropy which should be sufficiently weak
not to conflict with current observational data. The curvature power spectra induced by weakly anisotropic
initial states are computed here for the first time when the electric and the magnetic gauge couplings evolve
at different rates as it happens, for instance, in the relativistic theory of van der Waals interactions. After
recovering the results valid for coincident gauge couplings, the constraints imposed by the isotropy and the
homogeneity of the initial states are discussed. The obtained bounds turn out to be more stringent than
naively expected and cannot be ignored when discussing the underlying magnetogenesis scenarios.
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I. INTRODUCTION

Over the last decade the temperature and the polarization
anisotropies of the cosmic microwave background (CMB in
what follows) have been scrutinized with the aim of finding
specific hints signaling a minute breaking of rotational
invariance of the power spectrum of curvature perturbations.
Both the WMAP [1] and the Planck experiments published
dedicated analyses with the aim of estimating the size of this
admittedly small effect whose physical consequences could
be potentially significant. In particular the seven and nine
years WMAP [2–4] data and the two Planck [5] releases
specifically addressed this problem without reaching a con-
clusive evidence of the possible systematic nature of the effect
whose statistical relevance is anyway not yet compelling.
In this situation various authors speculated that the

anisotropic correction to the power spectrum of curvature
perturbations could be the result of some form of inflationary
dynamics leading to a perturbative breaking of rotational
invariance (see [6–9] for a time-ordered but still incomplete
list of references1). While different models have been
examined, a plausible class of scenarios involves the presence
of either electric ormagnetic fieldswhichmust be sufficiently
intense to affect the spectra of curvature perturbations but also
extremely weak not to spoil the isotropy of the background.
This possibility clashes, however, with a relatively well-
known obstruction represented by the so-called cosmic

no-hair conjecture. In conventional inflationary models
any finite portion of the universe gradually loses the memory
of an initially imposed anisotropy or inhomogeneity so that
the universe attains the observed regularity regardless of the
initial boundary conditions [11,12].
The electric or the magnetic energy densities should be

roughly constant for most of the inflationary evolution: this
is the narrow path to obtain a sufficiently strong effect on the
power spectrum and a comparatively negligible impact on
the isotropy of the background geometry. In this respect a
particularly plausiblemodel is the one based on the coupling
of the gauge kinetic term either to the inflaton or to some
other spectator field (see, for instance, [13,14]). This
scenario has been recently generalized to a class of models
including, as a subcase, the relativistic theory of van der
Waals interactions [15]. This framework naturally leads to a
different evolution of the electric and magnetic susceptibil-
ities or, equivalently, of the electric and magnetic gauge
couplings [16]. In this paper we shall show that the
possibility of achieving a substantial anisotropy in the
power spectrumcan be used to constrain themagnetogenesis
scenarios based on the asymmetric evolution of the gauge
couplings. The plan of this paper is therefore the following.
In Sec. II we shall discuss, in a unified manner, the
magnetogenesis models based on the coupling of an
Abelian gauge field to the inflaton or to some other spectator
field. In Sec. III we shall derive the evolution of curvature
perturbations triggered by the presence of the gauge fields.
The anisotropic power spectra and the constraints imposed
on thewhole scenario will be specifically derived in Sec. IV.
Section V contains the concluding remarks.

II. MAGNETOGENESIS AND
STATISTICAL ANISOTROPY

A. General considerations

We shall now consider a general form of the four-
dimensional gauge action written in terms of two
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1In this paper we shall be concerned with partial breaking of
the statistical anisotropy induced at early times, for instance,
during an inflationary stage of expansion. There also exist various
sources of late time breaking of statistical anisotropy (see, for
instance, [10]).
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symmetric tensors (i.e.Mρ
σ andN

ρ
σ) which may depend on

the inflaton field φ possibly supplemented by some
spectator field σ:

S ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffiffi
−G

p
½λðφ; σÞYαβYαβ þMρ

σðφ; σÞYραYσα

−N ρ
σðφ; σÞ ~Yρα

~Yσα�; ð2:1Þ

where G denotes the determinant of the four-dimensional
metric Gμν; in Eq. (2.1) Yμν and ~Yμν are, respectively, the
gauge field strength and its dual. Conformally flat back-
ground geometries Gμν ¼ a2ðτÞημν (where τ denotes the
conformal time coordinate, aðτÞ is the scale factor and ημν
the Minkowski metric) will be the main focus of the present
analysis but various considerations can also be applied to
different backgrounds.
For specific choices ofMρ

σ andN
ρ
σ, Eq. (2.1) reproduces

the relativistic theory of van der Waals interactions
[15]. The detailed derivation of the equations of motion
has been already discussed in Ref. [16] together the
relevant symmetries of the system. The evolution
equations for the electric and magnetic fields shall then
be written as2:

~∇ × ð
ffiffiffiffiffiffi
ΛB

p
~BÞ ¼ ∂τð

ffiffiffiffiffiffi
ΛE

p
~EÞ þ 4π~J; ð2:2Þ

~∇ ×

� ~Effiffiffiffiffiffi
ΛE

p
�
þ ∂τ

� ~Bffiffiffiffiffiffi
ΛB

p
�

¼ 0; ð2:3Þ

~∇ ·

� ~Bffiffiffiffiffiffi
ΛB

p
�

¼ 0; ~∇ · ð
ffiffiffiffiffiffi
ΛE

p
~EÞ ¼ 4πρq; ð2:4Þ

where ~J and ρq are the current and the charge densities.
Note, furthermore, that in Eqs. (2.2), (2.3) and (2.4) the
electromagnetic fields3 have been rescaled through the

electric and magnetic susceptibilities, i.e. ~B ¼ a2
ffiffiffiffiffiffi
ΛB

p ~b and
~E ¼ a2

ffiffiffiffiffiffi
ΛE

p
~e. Whenever ~J → 0 and ρq → 0, Eqs. (2.2),

(2.3) and (2.4) are invariant under duality transformations

generalizing the standard case [17] of coincident gauge
couplings.

B. Electric and magnetic gauge couplings

Equations (2.2), (2.3) and (2.4) can be expressed in terms
of the electric and magnetic susceptibilities defined as
χE ¼ ffiffiffiffiffiffi

ΛE
p

and χB ¼ ffiffiffiffiffiffi
ΛB

p
; the inverse of the susceptibil-

ities are related to the corresponding gauge couplings as
gE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π=ΛE

p
and gB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π=ΛB

p
. The time evolution of

gE and gB during a quasi-de Sitter stage of expansion
amplifies the gauge field fluctuations. In this investigation
the curvature perturbations induced by the amplified gauge
field fluctuations will be used to constrain the rates of the
evolution of the gauge couplings denoted hereunder by FE
and FB:

gEðaÞ ¼ ḡE

�
a
ai

�
FE

; gBðaÞ ¼ ḡB

�
a
ai

�
FB

;

f ¼ g2B
g2E

¼ fi

�
a
ai

�
2ðFB−FEÞ

; ð2:5Þ

where ai denotes the scale factor at the onset of the
dynamical evolution of the gauge couplings and fðaÞ
measures the mismatch between gE and gB. The moment
at which the largest wavelength of the curvature perturba-
tions exits the Hubble radius (i.e. aex) may either be OðaiÞ
or much larger than ai. Even if the present considerations
are general, for the specific discussions we shall preferen-
tially consider the case where ai and aex are of the same
order but with ai < aex.
The limit of exactly coincident coupling corresponds to

fðaÞ ¼ 1 during the whole evolution and, in this case, the
standard results apply [13,14]. Two extreme physical
situations can be envisaged: the case when f → 1 at the
end of inflation [i.e. ff ¼ Oð1Þ, the couplings converge
towards the end of inflation] and the case when f → 1 at the
beginning of inflation [i.e. fi ¼ Oð1Þ the couplings con-
verge at the onset of inflation but diverge at the and of
inflation]. These two limiting situations are purely illus-
trative and various intermediate possibilities are also
physically plausible. Having said this, the constraints
derived from the impact of the gauge field fluctuations
on the gauge-invariant curvature perturbations will be
charted in the ðFB; FEÞ plane and the two benchmark
cases of converging couplings (i.e. ff → 1) and of
diverging couplings (i.e. fi → 1) will be specifically
examined.
If FB and FE are both positive the gauge couplings are

initially small and get strong at the end of inflation.
Conversely if FB and FE are both negative the gauge
couplings may be strong at the beginning of inflation while
they get weaker and weaker toward the end. This second
situation seems to be the most natural in conventional
inflationary models where, initially, the gravitational

2To derive Eqs. (2.2), (2.3) and (2.4) we assumed Mαβ ¼
λEuαuβ and N αβ ¼ λBūαūβ where the generalized four-velocities
are normalized gradients of the inflaton or of the spectator field
[16]. In this case ΛB and ΛE are defined, respectively, as ΛB ¼
λþ λB=2 and ΛE ¼ λþ λE=2. More general parametrizations of
Mαβ and ofN αβ do change the explicit expressions of ΛB and ΛE
in terms of the various couplings (e.g. λ, λB, λE and possibly
others) but do not affect the general form of the evolution
equations (2.2), (2.3) and (2.4).

3The explicit components of the fields strengths will be
denoted, in what follows, as Yi0 ¼ a2ei and Yij ¼ −a2ϵijkbk;
in practice all the discussion will be conducted in terms of the
rescaled fields ~E and ~B.
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coupling is potentially very large during the preinflationary
phase. In the class of models investigated in [16] however,
this choice is not mandatory.4

C. Initial conditions and gauge field fluctuations

The nature of the initial conditions for the evolution of
the Abelian gauge fields depends on the unknown features
of the protoinflationary phase. For instance we could
consider a globally neutral Lorentzian plasma as a possible
remnant of a preinflationary stage of expansion and pose
the problem of the suitable initial conditions for the
evolution of the large-scale electromagnetic inhomogene-
ities. During the protoinflationary regime, the Weyl invari-
ance of the Ohmic current guarantees that the comoving
conductivity is approximately constant. When the electric
fields are negligible thanks to the large conductivity of the
protoinflationary plasma, the magnetic field is supported by
a static solenoidal current obeying, from Eq. (2.2),
~∇ × ð ffiffiffiffiffiffi

ΛB
p ~BÞ≃ 4π~J. Since the plasma is globally neutral

the charge density vanishes in Eq. (2.4). These initial
conditions are generally inhomogeneous but they do not
induce specific anisotropies. This analysis, in the case of
coincident gauge couplings, can be found in [18].
Another example of inhomogenous initial conditions not

inducing specific anisotropies are the quantum mechanical
initial data. In this case both the current density and the
charge density vanish in Eqs. (2.2) and (2.4). Quantum
mechanical initial data are justified in the case where, for
instance, the duration of inflationary phase is extremely
long (i.e. ai ≪ aex in our notations). Purely quantum
mechanical initial data have been discussed in a variety
of situations [13,14] in the case of coincident gauge
couplings and also in the situation parametrized by
Eq. (2.5) [16]. There is a third type of initial data that
could be imposed namely the weakly anisotropic initial
data: they do not modify the isotropic evolution of the
background but may contain either an electric or a magnetic
field (or both). We are considering here the situation where
the electric and the magnetic fields are sufficiently small
not to change the background geometry but large enough to
affect the evolution of the curvature inhomogeneities.
In the absence of sources the evolution of the electric

and magnetic fields can be separated into a homogeneous

part [i.e. Eð0Þ
i ðaÞ and Bð0Þ

i ðaÞ] supplemented by a fully
inhomogeneous contribution denoted, in real space, by

Eð1Þ
i ð~x; aÞ and Bð1Þ

i ð~x; aÞ. The evolution of the homogenous
contribution in terms of the susceptibilities (or of the

corresponding gauge couplings) can be derived from
Eqs. (2.2) and (2.3) by neglecting all the spatial gradients
and the sources. The result can be expressed as follows:

Eið~x;aÞ ¼ Eð0Þ
i ðaÞ þEð1Þ

i ð~x;aÞ; Eð0Þ
i ðaÞ ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffi

ΛEðaÞ
p n̂i;

ð2:6Þ

Bið~x;aÞ¼Bð0Þ
i ðaÞþBð1Þ

i ð~x;aÞ; Bð0Þ
i ðaÞ¼B0

ffiffiffiffiffiffiffiffiffiffiffiffi
ΛBðaÞ

p
m̂i;

ð2:7Þ

where E0 and B0 are space-time constants while n̂i and m̂i
are unit vectors defining the direction of the homogeneous
components.

D. The inhomogneous energy-momentum tensor

With the same notation of Eqs. (2.6) and (2.7) the first
and second-order fluctuations of the energy density are
defined as

δρE ¼ δρð1ÞE þ δρð2ÞE þ � � � ; δρB ¼ δρð1ÞB þ δρð2ÞB þ � � �
ð2:8Þ

where the ellipses stand for the higher order in the
perturbative expansion. The fluctuations appearing in
Eq. (2.8) can be directly expressed in terms of the gauge
field fluctuations and they are5

δρð1ÞE ¼ 1

4πa4
Eð0Þ
i Eð1Þ

i ; δρð2ÞE ¼ 1

8πa4
Eð1Þ
i Eð1Þ

i ; ð2:9Þ

δρð1ÞB ¼ 1

4πa4
Bð0Þ
i Bð1Þ

i ; δρð2ÞB ¼ 1

8πa4
Bð1Þ
i Bð1Þ

i : ð2:10Þ

According to Eqs. (2.6) and (2.7) a particularly relevant

case is the one where, up to numerical factors, δρð1ÞE and

δρð1ÞB are proportional to n̂ · ~Eð1Þ and to m̂ · ~Bð1Þ. This
situation is realized when the time dependence of ΛE
and ΛB exactly matches the dilution factors of the energy
density:

ffiffiffiffiffiffi
ΛE

p
∝
�
a
ai

�
−2
;

ffiffiffiffiffiffi
ΛB

p
∝
�
a
ai

�
2

; ð2:11Þ

guaranteeing that the corresponding energy densities are
constant. The same expansion can be obtained for the
pressure and for the total anisotropic stresses. In particular

we have that Πij ¼ Πð1Þ
ij þ Πð2Þ

ij ; note, however, that Π
ð1Þ
ij ¼

0 and the first contribution comes to second order in the

4In the case of coincident gauge couplings [13,14], a quasiflat
magnetic field spectrum realized in the case of a decreasing gauge
coupling which gets progressively smaller during inflation. If the
magnetic and the electric susceptibilities do not coincide [16], the
allowed regions in the parameter space of inflationary magneto-
genesis gets anyway wider in comparison with the conventional
class of models where FE → FB.

5This result holds, strictly speaking, when N αβ ¼ 0. The
general result is discussed below in connection with Eq. (2.17).
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amplitude of the electric and magnetic fields. The terms
containing the spatial gradients of the inflaton [like, for

instance, ~∇φ · ð~B × ~EÞ] contribute only to the third order.
The effect of the amplified gauge field fluctuations on

the curvature perturbations depend not only on the energy
density but also on the other components of the energy
momentum tensor. It is useful to write down, in this
perspective, the energy-momentum tensor of the electric
and magnetic inhomogeneities in their full generality:

T ν
μ ¼

1

4π

�
−Sν

μ þ
1

4
Sδνμ

�
; ð2:12Þ

Sν
μ ¼ λYαμYαν þ 1

2
ðMρ

μYραYνα þMρ
σYρμYσνÞ

−
1

2
ðN ρ

μ ~Yρα
~Yνα þN ρ

σ ~Yρμ
~YσνÞ: ð2:13Þ

From Eq. (2.13) with simple algebra the explicit compo-
nents of Eq. (2.12) can be formally written as:

T 0
0 ¼ δρB þ δρE; ð2:14Þ

T j
i ¼ −ðδpE þ δpBÞδji þ Πj

i ; ð2:15Þ

T i
0 ¼

1

4πa4

2
4

ffiffiffiffiffiffi
ΛE

ΛB

s
þ

ffiffiffiffiffiffi
ΛB

ΛE

s
−

Λ̄Bffiffiffiffiffiffiffiffiffiffiffiffi
ΛEΛB

p
3
5ð~E × ~BÞi; ð2:16Þ

where, recalling the remarks of Eqs. (2.2), (2.3) and (2.4),
Λ̄B ¼ ðλ − λB=2Þ. The fluctuations of the energy density, of
the pressure and the total anisotropic stress are given
explicitly by:

δρB ¼ 3δpB ¼ B2

8πa4

�
Λ̄B

ΛB

�
; δρE ¼ 3δpE ¼ E2

8πa4
;

ð2:17Þ

Πij ¼ ΠðEÞ
ij þ ΠðBÞ

ij ; ð2:18Þ

ΠðEÞ
ij ¼ 1

4πa4

�
EiEj −

E2

3
δij

�
;

ΠðBÞ
ij ¼ 1

4πa4

�
BiBj −

B2

3
δij

��
Λ̄B

ΛB

�
: ð2:19Þ

Whenever ΛB ¼ Λ̄B we must have that λB ¼ 0. In this case
N σ

ρ ¼ 0 in the action of Eq. (2.1). Note also that when

ΛB ¼ Λ̄B the prefactor in Eq. (2.16) reduces to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛE=ΛB

p
.

In explicit models Λ̄B=ΛB → 0 at the beginning of inflation
and goes to 1 at the end of inflation; this effect reduces the
contribution of the magnetic field to the total energy
density. For the sake of simplicity we shall analyze the
simplest situation namely the one corresponding to the case

λB → 0. The case λB ≠ 0 can be recovered, if needed, by
redefining the relevant components of the energy-momen-
tum tensor through the ratio Λ̄B=ΛB.

III. MAGNETIZED CURVATURE
PERTURBATIONS

The evolution of the magnetized scalar modes can be
studied in terms of two well-known but slightly different
variables denoted hereunder by R and ζ whose physical
interpretation depends on the coordinate system: for in-
stance R measures the curvature perturbations on comov-
ing orthogonal hypersurfaces while ζ defines the curvature
perturbations on uniform density hypersurfaces.6 Both
variables are invariant under infinitesimal coordinate
transformations as required in the context of the Bardeen
formalism [19]. When spatial gradients can be neglected as
it happens in the large-scale limit, ζ and R are approx-
imately the same. This is why the second-order (decoupled)
evolution equations obeyed by R and ζ are formally very
different and lead to the same results only in the large-scale
limit. With these caveats the evolution of the magnetized
perturbations can be easily derived by selecting the hyper-
surfaces where the curvature is uniform: on these hyper-
surfaces the derivation of the evolution equation of R is
easier. In this respect a consistent choice is represented
by the so-called uniform curvature gauge [20–22] which
has been successfully exploited in related contexts. In what
follows the evolution equations of the magnetized pertur-
bations will be derived and solved.

A. Uniform curvature gauge

In the uniform curvature gauge the scalar fluctuations of
the four-dimensional geometry are parametrized by two
different functions describing the inhomogeneities in the
(00) and ð0iÞ entries of the perturbed metric [20–22]:

δsG00 ¼ 2a2ϕ; δsGij ¼ 0; δsG0i ¼ −a2∂iβ;

ð3:1Þ

where δs denotes the scalar fluctuation of the corresponding
quantity. The choice of Eq. (3.1) completely fixes the
coordinate system and guarantees the absence of spurious
gauge modes. In the gauge (3.1), up to a background
dependent coefficient, ϕ coincides with R while ζ is
instead proportional to the total density contrast7:

6On uniform curvature hypersurfaces (which will be the ones
adopted hereunder in the uniform curvature gauge) ζ corresponds
to the total density contrast.

7As usual we shall denote with the prime a derivation with
respect to the conformal time coordinate τ and, as usual,
H ¼ a0=a.
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R ¼ −
H2

H2 −H0 ϕ; ζ ¼ δsρt þ δρB þ δρE
3ðpt þ ρtÞ

; ð3:2Þ

where ρt and pt are the energy density and pressure of the
background sources while δsρt (and later on δspt) denote
the corresponding fluctuations.
Using Eqs. (2.14), (2.15) and (2.16) giving the perturbed

form of the gauge energy-momentum tensor, the (00) and
ð0iÞ components of the perturbed Einstein equations
become8:

H∇2β þ 3H2ϕ ¼ −4πGa2½δsρt þ δρB þ δρE�; ð3:3Þ

ðH0 −H2Þ∇2β−H∇2ϕ¼ 4πGa2½ðpt þ ρtÞθt þP�; ð3:4Þ
where P is the three-divergence of the Poynting vector
appearing in Eq. (2.16); δsρt and θt denote, respectively, the
fluctuations of the total energy density of the background
and the three-divergence of the total velocity field. With the
same notations the spatial components of the perturbed
Einstein equations are

ðH2 þ 2H0ÞϕþHϕ0 ¼ 4πGa2½δspt − ΠE þ ΠB�; ð3:5Þ

∇2β0 þ 2H∇2β þ∇2ϕ ¼ 12πGa2ðΠE þ ΠBÞ; ð3:6Þ

where, as alreadymentioned, δspt denotes the fluctuation of
the total pressurewhileΠE andΠB are the scalar projections
of the total anisotropic stress defined in the standardmanner,
i.e. ∇2ΠB ¼ ∂i∂jΠ

ij
B and ∇2ΠE ¼ ∂i∂jΠ

ij
E .

B. Adiabatic evolution of magnetized
curvature perturbations

The evolution of the curvature perturbations can be
different depending on the background sources but in the
present context we shall bound our attention on the most
relevant case of a single inflaton field φ. In this case we
have that, in the uniform curvature gauge, δsρt ≡ δρφ,
δspt ≡ δpφ and θt ≡ θφ where

δρφ ¼ ð−ϕφ02 þ χ0φφ0Þ=a2 þ V;φχφ;

δpφ − c2φδρφ ¼ V;φ

6πGφ0 ∇2β; ð3:7Þ

c2φ ¼ ∂pφ

∂ρφ ¼ 1þ 2a2V;φ

3Hφ0 ; θφ ¼ −
∇2χφ
φ0 −∇2β;

ð3:8Þ

where VðφÞ is the inflaton potential, χφ is the inflaton
fluctuation defined in thegauge (3.1) andV;φ is the derivative

of the inflaton potential with respect to φ. In the single field
case the constraint of Eq. (3.4) together with the background
equations implies that ∇2ϕ ¼ 4πG½φ0∇2χφ=H − a2P=H�;
the divergence of the Poynting vector can be neglected
as in the case of coincident gauge couplings so that ϕ ¼
4πGφ0χφ=H [23].
From Eqs. (3.2) and (3.3) we can easily show that ζ ¼

R −H∇2β=½12πGa2ðpt þ ρtÞ� where a2ðpt þ ρtÞ ¼ φ02 in
the particularly relevant case where the background sources
are represented by a single inflaton field φ. As a conse-
quence of the previous relation the large-scale solutions ofR
coincide with the large-scale solutions of ζ. This observa-
tion, however, does not imply that the second-order evolu-
tion equations of R and ζ coincide. In the absence of
magnetized contribution the evolution equation of R coin-
cides with the canonical normal mode identified by Lukash
[24] when the source of the background is represented by a
perfect relativistic fluid. The evolution of ζ in the presence of
magnetized curvature perturbations has been discussed in
[23] and subsequently employed by various authors.
To derive the decoupled evolution equation forRwe can

sum up Eq. (3.3) (multiplied by c2φ) and Eq. (3.5); after
simple manipulations the following equation can be easily
obtained:

R0 ¼ ΣR þ H2

4πGφ02∇2β; ð3:9Þ

ΣR ¼ Ha2

φ02

��
c2φ −

1

3

�
ðδρB þ δρEÞ þ ΠE þ ΠB

�
: ð3:10Þ

By taking the first derivative of Eq. (3.9) and by using
(3.10) Eq. (3.6) to eliminate the time derivative of the
Laplacian of β the decoupled equation obeyed by R
becomes9

R00 þ 2
z0φ
zφ

R0 −∇2R ¼ Σ0
R þ 2

z0φ
zφ

ΣR

þ 3a4

z2φ
ðΠE þ ΠBÞ;

zφ ¼ aφ0=H: ð3:11Þ

The term containing R0 at the left-hand side of Eq. (3.11)
can be eliminated by defining q ¼ −zφR and Eq. (3.11)
gets modified as:

q00 −∇2q −
z00φ
zφ

q ¼ −
1

zφ

∂ðz2φΣRÞ
∂τ −

3a4

zφ
ðΠE þ ΠBÞ:

ð3:12Þ

8Equations (3.3) and (3.4) are commonly referred to as,
respectively, the Hamiltonian and the momentum constraints.

9We are assuming, as natural, the background equations
written in the form H2 −H0 ¼ 4πGφ02 and 3H2 ¼
8πGðφ02=2þ Va2Þ.
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When the only source of inhomogeneities is an irrotational
fluid, Eqs. (3.11) and (3.12) keep almost the same form,
with few changes:

R00 þ 2
z0t
zt
R0 − c2st∇2R ¼ Σ0

R þ 2
z0t
zt
ΣR þ 3a4

z2t
ðΠE þ ΠBÞ;

zt ¼ ða2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt þ ρt

p Þ=ðHcstÞ; ð3:13Þ

where c2st ¼ ∂pt=∂ρt. Except for the source term due to the
inhomogeneities of the gauge fields ztR defines, up to an
irrelevant sign, the normal mode of an irrotational and
relativistic fluid discussed by Lukash [24]; the subsequent
analyses of Refs. [25,26] follow exactly the same tenets
of Ref. [24] but in the case of scalar field matter; the
normal modes of Refs. [24–26] coincide with the
(rescaled) curvature perturbations on comoving orthogonal
hypersurfaces [19,27].
So far only the adiabatic case has been treated but the

presence of nonadiabatic fluctuations can be easily incor-
porated in Eqs. (3.11) and (3.13) (see, in particular, the
second paper of Ref. [23] for the case of coincident gauge
couplings). Indeed defining the nonadiabatic pressure
fluctuation δpnad ¼ δpt − c2stδρt, the derivation leading to
Eqs. (3.11) and (3.13) can be swiftly generalized and the
result is that Eq. (3.13) still holds in the presence of
nonadiabatic pressure fluctuations provided ΣR is replaced
by a slightly different source function denoted hereunder
by Σ̄R:

ΣR → Σ̄R ¼ −
Hδpnad

ðpt þ ρtÞ
þ ΣR: ð3:14Þ

A nonadiabatic pressure fluctuation develops, for in-
stance, when the background contains two scalar fields (for
example the inflaton φ and a spectator field σ) When the
energy density of the inflaton dominates against the energy
density of the spectator field σ the evolution of curvature
perturbations will still be given by Eq. (3.11) where ΣR is
replaced by Σ̄R and δpnad is now given by ðδpσ − c2φδρσÞ
where δpσ and δρσ are the pressure and the energy density
fluctuations associated with the spectator field.10

Conversely, if the energy densities of the two fields are
comparable the total curvature perturbation can be written,
in the uniform curvature gauge as

∇2R ¼ zφHφ0

φ02 þ σ02
∇2Rφ þ

zσHσ0

φ02 þ σ02
∇2Rσ þ

Ha2

φ02 þ σ02
P;

ð3:15Þ

where, in the uniform curvature gauge, Rφ ¼ −χφ=zφ and
Rσ ¼ −χσ=zσ. In this case the evolution of the quasinormal

modes of the system (i.e. Rφ and Rσ) is coupled and the
relevant source terms can be deduced in full analogy with
the discussion of the adiabatic case. If taken into account
the nonadiabatic component will lead to the kind of mixed
initial conditions for CMB anisotropies often discussed in
the literature [28,29] also in the presence of large-scale
magnetic fields.

C. Large-scale solutions

We shall now focus on the adiabatic case and assume a
single field inflationary background. Equations (3.11) and
(3.12) can be easily solved for a > aex in the regime where
the Laplacians are negligible11:

Rð~x; aÞ ¼ Radð~x; aÞ þ
Z

a

aex

bdb
φ02

×

��
c2φ −

1

3

�
ðδρB þ δρEÞ þ ΠB þ ΠE

�
b

þ 3

Z
a

aex

�
H
φ0

�
2 db
b2

Z
b

aex

ðΠE þ ΠBÞ
b03

Hðb0Þ db
0;

ð3:16Þ

Radð~x; aÞ ¼ R�ð~xÞ

þR0ð~x; aexÞ − ΣRð~x; aexÞ
Hex

��
aex
a

�
3

− 1

�
:

ð3:17Þ

The second term appearing at the right-hand side of
Eq. (3.17) is negligible for a > aex while R�ð~xÞ is the
(asymptotically constant) adiabatic solution. While
Eqs. (3.16)–(3.17) have been derived in real space, they
can be easily Fourier transformed whenever needed.
If the contribution of the anisotropic stress is negligible

Eq. (3.16) can be further simplified and the result is

Rð~x; aÞ ¼ Radð~x; aÞ

þ 2

3

Z
a

aex

bdb
φ02

�
1þ b2V;φ

Hφ0

�
ðδρB þ δρEÞ: ð3:18Þ

Furthermore, since the slow-roll approximation can be
safely adopted for a > aex, Eq. (3.18) becomes:

Rð~x; aÞ ¼ Radð~x; aÞ − 2

Z
a

aex

db
bϵðbÞVðbÞ ðδρB þ δρEÞ:

ð3:19Þ

10In the uniform curvature gauge the definition of δpσ and δρσ
is similar to Eq. (3.7) but with φ → σ and with χφ → χσ .

11For future convenience the integration variable appearing in
Eq. (3.16) coincides with scale factor. As previously mentioned in
Sec. II, aex denotes the moment at which the fluctuation with the
largest wavelength exits the Hubble radius.
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The situation described by Eq. (3.19) is exactly the one
relevant for the present discussion. Indeed, recalling
Eqs. (2.9) and (2.10) and the related considerations, we
have that the anisotropic stress vanishes to first-order so
that Eq. (3.19) becomes12:

Rða; ~xÞ ¼ Radð~xÞ −
1

2π

Z
a

aex

d ln b
b4ϵðbÞVðbÞ ½E

ð0Þ
i ðbÞEð1Þ

i ðb; ~xÞ

þ Bð0Þ
i ðbÞBð1Þ

i ðb; ~xÞ�; ð3:20Þ

where ϵðbÞ denotes the slow-roll parameter.
The result of Eq. (3.20) has been obtained by neglecting

the Laplacian in Eq. (3.11) but it follows also from the
general solution of Eqs. (3.11) and (3.12) after integration
by parts. Indeed, from Eqs. (3.11) or (3.12) we have, in
Fourier space, that13:

Rðk; τÞ ¼ Radðk; τÞ þ
Z

τ

τ�
dτ0

GðφÞ
k ðτ; τ0Þ

zφðτÞzφðτ0Þ

×

� ∂
∂τ0 ðz

2
φΣRÞ þ 3a4ðΠE þ ΠBÞ

�
τ0
; ð3:21Þ

where R�ðk; τÞ denotes the solution of the homogeneous
equation with the appropriate boundary conditions.
Denoting with FkðτÞ and F�

kðτÞ the two independent
solutions of the homogeneous equation obeyed by zφR
[i.e. Eq. (3.12)], the corresponding Green’s function is

GðφÞ
k ðτ; τ0Þ ¼ Fkðτ0ÞF�

kðτÞ − FkðτÞF�
kðτ0Þ

Wðτ0Þ ; ð3:22Þ

where Wðτ0Þ ¼ ½F0
kðτ0ÞF�

kðτ0Þ − F�0
k ðτ0ÞFkðτ0Þ� is the

Wronskian of the solutions. The explicit form of the mode
function is14

FkðτÞ ¼
N φffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffi
−kτ

p
Hð1Þ

~μ ð−kτÞ; ~μ ¼ 3þ ϵþ 2η

2ð1 − ϵÞ :

ð3:23Þ

The expression of the Green’s function depends on the
index ~μ of the corresponding Hankel functions. Since ϵ ≪
1 and η ≪ 1, the Bessel index ~μ can be expanded in powers

of the slow roll parameters and ~μ≃ 3=2þ 2ϵþ η and
~μ ¼ 3=2þ ϵ. Consequently, to leading order in the slow
roll expansion ~μ≃ 3=2 and, in this limit, the explicit

expressions of GðφÞ
k ðτ; τ0Þ is

GðφÞ
k ðτ; τ0Þ ¼ 1

k

�
τ0 − τ

kτ0τ
cos½kðτ0 − τÞ�

−
�

1

k2τ0τ
þ 1

�
sin½kðτ0 − τÞ�

�
: ð3:24Þ

Equation (3.20) follows then immediately from Eq. (3.21)
after one integration by parts. The essential result, in this
respect, is the following:

z2φðτ0ÞΣRðk; τ0Þ
∂
∂τ0

�
GðφÞ

k ðτ; τ0Þ
zφðτÞzφðτ0Þ

�

→
ΣRðk; τ0Þ

3τ02
∂
∂τ0 ½τ

03 − τ3�≡ ΣRðk; τ0Þ; ð3:25Þ

where the limit has been taken for τ0 > τ and kτ0 < 1 (valid
at large scales). In summary, these considerations demon-
strate that Eq. (3.20) can be safely used for the explicit
analysis: it has been obtained by solving the exact evolution
equation at large scales and it is correctly reproduced by
taking the large-scale limit of the exact solution.

D. Quantum mechanical considerations

Since the effective action obeyed by the curvature
perturbations is given by:

SR ¼
Z

d3xdτ

�
z2φ
2
½ð∂τRÞ2 − ð∂iRÞ2�

þ ½∂τðz2φΣRÞ þ 3a4ðΠE þ ΠBÞ�R
�
; ð3:26Þ

the corresponding Hamiltonian is given by the sum of the
free and of the interacting parts asHRðτÞ ¼ H0ðτÞ þHIðτÞ
where H0ðτÞ and HIðτÞ are

H0ðτÞ ¼
1

2

Z
d3x

�
π2R
z2φ

þ z2φð∂iRÞ2
�
; πR ¼ z2φ∂τR;

HIðτÞ ¼ −
Z

d3x½∂τðz2φΣRÞ þ 3a4ðΠE þ ΠBÞ�R: ð3:27Þ

The normal modes and the corresponding momenta can be
promoted to quantum field operators, i.e. R → R̂ and
πR → π̂R obeying canonical commutation relations at
equal time15 ½R̂ð~x; τÞ; πRð~y; τÞ� ¼ iδð3Þð~x − ~yÞ. The evolu-
tion equations obeyed by the field operators are ∂τπ̂R ¼
i½ĤR; π̂R� and ∂τR̂ ¼ i½ĤR; R̂�. It is easy to show that

12Equation (3.20) holds also when ϵ is not strictly constant
even if, for concrete applications, we shall bound the attention on
the situation where the slow-roll parameters are constant, at least
approximately. Notice that the 2π factor appearing in Eq. (3.20)
follows, ultimately, from the 1=ð8πÞ of the energy-momentum
tensor of the gauge fields.

13In Eq. (3.21) the various functions appearing in the source
term are evaluated in Fourier space.

14In Eq. (3.23) η and ϵ denote the standard slow-roll
parameters in the case of single field inflationary backgrounds;
furthermore the normalization is given by jN φj ¼

ffiffiffiffiffiffiffiffi
π=2

p
. 15Units ℏ ¼ 1 will be used throughout.
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Eq. (3.11) also holds for the corresponding field operator.
In the absence of electromagnetic sources the operator
corresponding to the adiabatic solution of Eqs. (3.17) and
(3.21) is given by:

R̂adð~x; τÞ ¼
1

ð2πÞ3=2
Z

d3kR̂adð~k; τÞe−i~k·~x;

R̂ð~k; τÞ ¼
FkðτÞâ~k þ F�

kâ
†
−~k

zφ
: ð3:28Þ

where ½â~q; â
†
~p� ¼ δð3Þð~q − ~pÞ and the mode functions Fk

and F�
k appearing in Eq. (3.28) have been already intro-

duced in Eqs. (3.22) and (3.23). The connection between
the Green functions discussed in Eqs. (3.24)–(3.22) and the
quantum discussion follows from the commutator of the
field operators in Fourier space at different times:

½R̂adð~q; τ1Þ; R̂adð~p; τ2Þ� ¼ −i
Gqðτ1; τ2Þ
zφðτ1Þzφðτ2Þ

δð3Þð~qþ ~pÞ:

ð3:29Þ

As a consequence of the previous discussion, Eq. (3.20)
holds also in quantum mechanical terms when the field
fluctuations are replaced by quantum operators. More
precisely we have that

R̂ð~x; aÞ ¼ R̂adð~x; aÞ −
1

2π

Z
a

aex

d ln b
b4ϵðbÞVðbÞ

× ½Eð0Þ
i ðbÞÊð1Þ

i ð~x; bÞ þ Bð0Þ
i ðbÞB̂ð1Þ

i ð~x; bÞ�;
ð3:30Þ

where operators corresponding to the electric and magnetic
fields are instead given by:

B̂ð1Þ
i ð~x; ηÞ ¼ −

iϵmni

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffi
fðηÞ4

p X
α

Z
d3kkme

ðαÞ
n

× ½F̄kðηÞâ~k;αe−i
~k·~x − F̄�

kðηÞâ†~k;αe
i~k·~x�;

Êð1Þ
i ð~x; ηÞ ¼ −

1

ð2πÞ3=2 ffiffiffiffiffiffiffiffiffi
fðηÞ4

p X
α

Z
d3keðαÞi

× ½ḠkðηÞâ~k;αe−i
~k·~x þ Ḡ�

kðηÞâ†~k;αe
i~k·~x�: ð3:31Þ

The time variable η appearing in Eq. (3.31) is related to the
conformal time coordinate as dτ ¼ ffiffiffi

f
p

dη. Using this new
time parametrization16 the mode functions appearing in
Eq. (3.31) obey the following simple equations:

d2F̄k

dη2
þ
�
k2 −

ffiffiffiffiffiffiffiffiffiffi
gBgE

p �
1ffiffiffiffiffiffiffiffiffiffi
gBgE

p
�

••
�
F̄k ¼ 0;

d2Ḡk

dη2
þ
�
k2 −

ð ffiffiffiffiffiffiffiffiffiffi
gBgE

p Þ••ffiffiffiffiffiffiffiffiffiffi
gBgE

p
�
Ḡk ¼ 0: ð3:32Þ

The explicit solutions for F̄k and Ḡk can be directly
obtained by solving Eq. (3.32) in the η parametrization
and the result is

F̄kðηÞ ¼
Nffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffi
−kη

p
Hð1Þ

σ ð−kηÞ; σ ¼ 1− 2FE

2ð1þFB −FEÞ
;

ð3:33Þ

ḠkðηÞ ¼ −N
ffiffiffi
k
2

r ffiffiffiffiffiffiffiffi
−kη

p
Hð1Þ

σ−1ð−kηÞ; ð3:34Þ

where jN j ¼ ffiffiffiffiffiffiffiffi
π=2

p
where Hð1Þ

α ðzÞ denotes, in general, the
Hankel function of the first kind with index α and argument
z. Having solved the mode functions in terms of η it is
always possible to go back to the conformal time coor-
dinate τ or even to the scale facto itself as we shall show
explicitly in the next section.
To compute the anisotropic corrections to the adiabatic

power spectrum it will then be necessary to evaluate the
two-point function of R̂. From Eq. (3.20) the anisotropic
correction to the two-point function of R̂ is related to the
two-point functions of the gauge field fluctuations in terms
of the mode functions, the Fourier components of the field

operators B̂ð1Þ
i ð~x; τÞ and Êð1Þ

i ð~x; τÞ are respectively:

B̂ð1Þ
i ð~q; ηÞ ¼ −

iffiffiffiffiffiffiffiffiffi
fðηÞ4

p ϵmni

X
α

eðαÞn qm½â~q;αF̄qðηÞ

þ â†−~q;αF̄
�
qðηÞ�; ð3:35Þ

Êð1Þ
i ð~q; ηÞ ¼ 1ffiffiffiffiffiffiffiffiffi

fðηÞ4
p X

β

eðβÞi ½â~q;βḠqðηÞ þ â†−~q;βḠ
�
qðηÞ�:

ð3:36Þ

Using Eqs. (3.35) and (3.36) the explicit correlation
functions of the electric and magnetic fluctuations can
be computed in terms of the corresponding mode functions,
namely

hB̂ð1Þ
i ð~k; ηÞB̂ð1Þ

j ð~p; ηÞi ¼ k2jF̄kðηÞj2ffiffiffiffiffiffiffiffiffi
fðηÞp PijðkÞδð3Þð~kþ ~pÞ;

ð3:37Þ
16The time variable η cannot be confused with the slow-roll

parameter since the two quantities do not appear in the same
context.
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hÊð1Þ
i ð~k; ηÞÊð1Þ

j ð~p; ηÞi ¼ jḠkðηÞj2ffiffiffiffiffiffiffiffiffi
fðηÞp PijðkÞδð3Þð~kþ ~pÞ;

ð3:38Þ

where PijðkÞ ¼ ðδij − kikj=k2Þ.
Before analyzing the anisotropic corrections to the power

spectrum of curvature perturbations we mention that the
Hamiltonian of the gauge fields can be easily written by
using the η parametrization and the result is

HAðηÞ ¼
1

2

Z
d3x

�
~Π2 þ 2

ð ffiffiffiffiffiffiffiffiffiffi
χEχB

p Þ•ffiffiffiffiffiffiffiffiffiffi
χEχB

p ~Π · ~Aþ ∂i
~A · ∂i ~A

�
;

ð3:39Þ

~Π ¼ ∂η
~A −

ð ffiffiffiffiffiffiffiffiffiffi
χEχB

p Þ•ffiffiffiffiffiffiffiffiffiffi
χEχB

p ~A; ð3:40Þ

where the overdot denotes a derivation with respect to η.
Equation (3.39) is written in the Coulomb gauge which is
the appropriate gauge to use since it is invariant under the
Weyl rescaling of the four-dimensional metric [18]. For
notational convenience Eq. (3.39) is written in terms of the
susceptibilities χE and χB while the parameter space of the
model is more easily discussed in terms of the correspond-
ing gauge couplings already introduced in Eq. (2.5). In

terms of the ~A the electric and the magnetic field are

given, respectively, by ~Eð~x; ηÞ ¼ −~Πð~x; ηÞ= ffiffiffiffiffiffiffiffiffi
fðηÞ4

p
and

~Bð~x; ηÞ ¼ ~∇ × ½ ~Að~x; ηÞ= ffiffiffiffiffiffiffiffiffi
fðηÞ4

p �. From the two preceding
expressions of the electric and of the magnetic fields and
from the decomposition in Fourier modes of Âið~x; ηÞ,
Eq. (3.31) follows immediately.

IV. ANISOTROPIC POWER SPECTRA
OF CURVATURE MODES

The two point function of curvature perturbations in
Fourier space can be computed from Eq. (3.30) after some
lengthy but straightforward algebra.17 Thus, the two-point
function in Fourier space becomes:

hR̂ða; ~kÞR̂ða; ~qÞi
¼ hR̂adða; ~kÞR̂adða; ~qÞi

þ 1

4π2

Z
a

aex

db
b5ϵV

Z
a

aex

dc
c5ϵV

F ð~q; ~k; b; cÞ; ð4:1Þ

where F ð~q; ~k; b; cÞ is the sum of four different
contributions:

Eð0Þ
i ðbÞEð0Þ

j ðcÞhÊð1Þ
i ð~q; bÞÊð1Þ

j ð~k; cÞi
þ Bð0Þ

i ðbÞBð0Þ
j ðcÞhB̂ð1Þ

i ð~q; bÞB̂ð1Þ
j ð~k; cÞi

þ Eð0Þ
i ðbÞBð0Þ

j ðcÞhÊð1Þ
i ð~q; bÞB̂ð1Þ

j ð~k; cÞi
þ Bð0Þ

i ðbÞEð0Þ
j ðcÞhB̂ð1Þ

i ð~q; bÞÊð1Þ
j ð~k; cÞi: ð4:2Þ

Note that in Eq. (4.2) Eð0Þ
i and Bð0Þ

j (with the appropriate
combinations of indices) have been defined in Eqs. (2.6)–
(2.7) while Êð1Þ

i and B̂ð1Þ
j have been introduced in

Eqs. (3.35) and (3.36). The power spectrum of curvature
perturbations is defined, within the present conventions, as

hR̂ða; ~kÞR̂ða; ~qÞi ¼ 2π2PRðk; aÞδð3Þð~kþ ~qÞ=k3.
Recalling therefore Eqs. (3.35) and (3.36) into Eq. (4.2) we
can compute the explicit form of the anisotropic correction:

PRðk; aÞ ¼ PadðkÞ þ Panisðk; aÞ; ð4:3Þ

Panisðk; aÞ ¼ ½1 − ðn̂ · k̂Þ2�I2
Eðk; a; aexÞ

þ ½1 − ðm̂ · k̂Þ2�I2
Bðk; a; aexÞ

þ 2½ðn̂ × m̂Þ · k̂�IEðk; a; aexÞIBðk; a; aexÞ:
ð4:4Þ

In Eq. (4.3) PadðkÞ denotes the adiabatic contribution while
the integrals IEðk; a; aexÞ and IBðk; a; aexÞ are given,
respectively, by:

IEðk; a; aexÞ ¼
E0

2π

Z
a

aex

db
b3VðbÞϵðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PEðk; bÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
ΛEðbÞ

p ; ð4:5Þ

IBðk; a; aexÞ ¼
B0

2π

Z
a

aex

db
b3VðbÞϵðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PBðk; bÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
ΛBðbÞ

p
:

ð4:6Þ

Note that the PBðk; bÞ and PEðk; bÞ appearing in Eqs. (4.5)
and (4.6) are the electric and the magnetic power spectra
defined as:

PBðk; ηÞ ¼
k5

2a4π2
ffiffiffiffiffiffiffiffiffi
fðηÞp jF̄kðηÞj2;

PEðk; ηÞ ¼
k3

2a4π2
ffiffiffiffiffiffiffiffiffi
fðηÞp jḠkðηÞj2: ð4:7Þ

In Eq. (4.7) the power spectra appear as a function of η but
to perform explicitly the integrals of Eqs. (4.5) and (4.6) we
rather need the power spectra in terms of the corresponding
scale factors. To comply with this statement the mode
functions of Eqs. (3.33) and (3.34) can be first expressed in
the conformal time parametrization (by means of the
definition dτ ¼ ffiffiffi

f
p

dη) and then rewritten as a function

17The same result can be obtained by using Eq. (3.20) by
specifying separately the two-point functions of the gauge fields
in Fourier space.
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of the scale factor during the quasi-de Sitter stage of
expansion.
As an interesting cross-check of the obtained results, we

remark that Eq. (4.4) can also be obtained within the
Schwinger-Keldysh approach often dubbed as in-in for-
malism (see, for instance, [30]). For this purpose we need to
use the interaction Hamiltonian of Eq. (3.27) and to recall
that the connection between our Green function and the
commutator of two field operators at different times is
given by Eq. (3.29). The general expression of the n-point
correlation function in the in-in formalism is given, for
instance, by Ref. [30] and it depends on an infinite sum
over N: the N ¼ 0 term in is simply the average of the
product of the field operators in the interaction picture and
gives the adiabatic tree-level adiabatic contribution, the
N ¼ 1 term vanish, the N ¼ 2 gives the anisotropic power
spectrum and so on and so forth for the higher orders. Each
order contains the integrals of the average of commutators.
For instance, in the case relevant to the present situation, we

need to evaluate h½½R̂ð~k1; τÞR̂ð~k2; τÞ; HIðτ1Þ�; HIðτ2Þ�i
where the interaction Hamiltonian has been given in
Eq. (3.27). As shown in Eq. (3.29), the commutator of
the adiabatic solutions at different times gives the Green’ s
function (3.24) and this is the bridge between the two
complementary approaches.

A. Explicit form of the anisotropic contribution

The explicit expressions of the power spectra entering
Eqs. (4.5) and (4.6) and appearing in Eq. (4.7) can be
obtained by evaluating the solutions of Eqs. (3.33) and
(3.34) in the small argument limit of the corresponding
Hankel functions [31]. The horizon crossing condition in
terms of η [i.e. kηex ¼ Oð1Þ] is not equivalent to the
standard condition implemented in the τ parametrization
[i.e. kτex ¼ Oð1Þ]. After some simple algebra we can
therefore reobtain the magnetic power spectrum already
derived in Ref. [16]:

PBðk; b; σ; μÞ ¼ H4QBðσ; μÞfðbÞjσj−1
�

k
bH

�
5−2jσj

;

QBðσ; μÞ ¼
Γ2ðjσjÞ
π3

22jσj−3j1þ μj2jσj−1; ð4:8Þ

where σ has been already introduced in Eq. (3.33) while μ
measures the difference18 in the rate of evolution of the
electric and magnetic gauge couplings of Eq. (2.5):

σ ¼ 1 − 2FE

2ð1þ FB − FEÞ
; μ ¼ F

2
¼ FB − FE: ð4:9Þ

Similarly thanks to Eq. (3.34) the electric power
spectrum is

PEðk; b; σ; μÞ ¼ H4QEðσ; μÞfðbÞjσ−1j−1
�

k
bH

�
5−2jσ−1j

;

QEðσ; μÞ ¼
Γ2ðjσ − 1jÞ

π3
22jσ−1j−3j1þ μj2jσ−1j−1:

ð4:10Þ

Note that in the plane ðFB; FEÞ there is a singular trajectory,
namely 1þ FB − FE ¼ 0 where σ diverges. This singu-
larity is not physical and stems from the fact that for FE ¼
FB þ 1 the gauge couplings evolve exponentially in η.
We now insert Eqs. (4.8) and (4.10) into Eqs. (4.5) and

(4.6) and recall the relations of ΛE and ΛB to the gauge
couplings [see Eq. (2.5)]; the corresponding integrals can
be performed in explicit terms and the result is

IEðk; a; aexÞ

¼ Ē0H2
ffiffiffiffiffiffiffi
QE

p

4π3=2VϵαE
fðjσ−1j−1Þ=2ex

�
k

aexH

�
βE
��

a
aex

�
αE

− 1

�
;

ð4:11Þ

IBðk; a; aexÞ ¼
B̄0H2

ffiffiffiffiffiffiffi
QB

pffiffiffi
π

p
VϵαB

�
k

aexH

�
βB
��

a
aex

�
αB

− 1

�
;

ð4:12Þ

where we found convenient to redefine E0 an B0 by
introducing Ē0 ¼ gEðaexÞE0=a2ex and B̄0 ¼ B0=
½a2exgBðaexÞ�. In Eqs. (4.11) and (4.12) ðαE; αBÞ, ðβE; βBÞ
and ðQE;QBÞ are all functions of FE and FB. In particular
ðαE; βEÞ and ðαB; βBÞ are given by:

αEðFE; FBÞ ¼ ðμþ 1Þjσ − 1j þ FE − μ − 9=2;

βEðFE; FBÞ ¼ 5=2 − jσ − 1j; ð4:13Þ

αBðFE; FBÞ ¼ ðμþ 1Þjσj − FB − μ − 9=2;

βBðFE; FBÞ ¼ 5=2 − jσj: ð4:14Þ

The variables αX and βX (with X ¼ E, B) are solely
functions of FE and FB since both σ and μ only depend
upon ðFE; FBÞ according to Eq. (4.9). Equations (4.11) and
(4.12) hold when αE ≠ 0 and αB ≠ 0. If αE ¼ 0 and
αB ¼ 0, Eqs. (4.11) and (4.12) become, respectively,

IEðk; a; aexÞ ¼
Ē0H2

ffiffiffiffiffiffiffi
QE

p

4π3=2Vϵ

�
k

aexH

�
βE
ln ða=aexÞ; ð4:15Þ

18In Eq. (3.23) a variable called ~μ has been introduced as the
index of the Hankel function entering the adiabatic power
spectrum. Clearly ~μ and the μ variable of Eq. (4.9) are totally
unrelated. Similar comment holds for σ appearing in Eq. (4.9) and
the notation employed in Sec. II for a generic spectator field:
since the two quantities never appear in the same context there
cannot be any confusion.
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IBðk; a; aexÞ ¼
B̄0H2

ffiffiffiffiffiffiffi
QB

pffiffiffi
π

p
Vϵ

�
k

aexH

�
βB
ln ða=aexÞ: ð4:16Þ

If βE ¼ βB ¼ 0 in Eqs. (4.15) and (4.16) the corrections to
the power spectra are logarithmically sensitive to the
duration of inflation.

B. Phenomenological considerations

The total power spectrum of curvature perturbations in
the presence of anisotropic contributions changes depend-
ing upon the specific initial conditions. In the case of
electric initial conditions, for instance, we will have that the
total power spectrum is19

PRðkÞ ¼ AR

�
k
kp

�
ns−1½1þ gðEÞ� ðk̂ · n̂Þ2�;

gðEÞ� ¼ −
4QEΩ̄EGE

3ϵþ 4QEΩ̄EGE
;

GE ¼ 1

α2E

�
k

aexH

�
2βE

fjσ−1j−1ex

��
a
aex

�
αE

− 1

�
2

; ð4:17Þ

where Ω̄E ¼ Ē2
0=ð8πVÞ. The explicit expression of QE has

been already given in Eq. (4.10). In the case of magnetic
initial conditions Eq. (4.17) is replaced by

PRðkÞ ¼ AR

�
k
kp

�
ns−1½1þ gðBÞ� ðk̂ · m̂Þ2�;

gðBÞ� ¼ −
64π2QBΩ̄BGB

3ϵþ 64π2QBΩ̄BGB
;

GB ¼ 1

α2B

�
k

aexH

�
2βB

fjσ−1j−1ex

��
a
aex

�
αB

− 1

�
2

; ð4:18Þ

where Ω̄B ¼ B̄2
0=ð8πVÞ. Note, as in the case of QE that the

explicit expression of QB has been already given in
Eq. (4.8). If the electric and magnetic fields are simulta-
neously present we can have also mixed initial data:

PRðkÞ ¼ AR

�
k
kp

�
ns−1f1þ gðBEÞ� ½ðn̂ × m̂Þ · k̂�2g;

gðBEÞ� ¼ −
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QBQE

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ω̄BΩ̄E

p
GBE

3ϵþ 16π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QBQE

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ω̄BΩ̄E

p
GBE

;

GBE ¼ 1

αBαE

�
k

aexH

�
βEþβB

f
jσjþjσ−1j

2
−1

ex

×

��
a
aex

�
αB

− 1

���
a
aex

�
αE

− 1

�
: ð4:19Þ

The anisotropic corrections to the power spectrum of
curvature perturbations have been derived under the
hypothesis that the electric and the magnetic fields have
a negligible impact on the evolution equations of the
background geometry. Thus Eqs. (4.17), (4.18) and
(4.19) are valid provided Ω̄E ≪ 1 and Ω̄B ≪ 1; this means,
in practice, that Eqs. (4.17), (4.18) and (4.19) can be
approximated as:

gðEÞ� ≃ −
4

3ϵ
QEΩ̄EGE; gðBÞ� ≃ −

64π2

3ϵ
QBΩ̄BGB; ð4:20Þ

gðBEÞ� ≃ −
16π

3ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QBQE

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ω̄BΩ̄E

q
GBE: ð4:21Þ

The argument pursued in the remaining part of this section
is, in short, the following. If the gauge couplings are
coincident the flat spectrum of magnetic perturbations is
realized when FE ¼ FB ¼ −2 and, in this case, the bounds
stemming from the isotropy of the power spectra depend
logarithmically on the duration of the inflationary phase. If
FE ≠ FB the flat magnetic power spectrum can also be
obtained when FE → ð5FB þ 4Þ=3, as it follows from
Eq. (4.8) by setting jσj ¼ 5=2. When FE ≠ FB the bounds
stemming from the contribution of the gauge fluctuations to
the curvature perturbation may show exponential sensitiv-
ity to the total number of inflationary efolds and this is why
the curvature bounds are potentially more relevant in the
FE ≠ FB case. In the next subsection we shall examine the
bounds logarithmically dependent on the duration of
inflation. In the remaining two subsections we shall
discuss, respectively, the bounds that are independent of
the number of efolds and the bounds depending exponen-
tially on the number of efolds. We shall finally draw the
relevant exclusion plots in the ðFE; FBÞ plane and get to our
conclusions.

1. Bounds logartithmically dependent
on the duration of inflation

When the gauge couplings coincide we have that μ → 0
and FB ¼ FE ¼ F�. In this case from Eqs. (4.13) and
(4.14) we have

19For reasons of opportunity related to the way the observa-
tional data are presented (see e.g. [3,4,6]) the total power spectra
of curvature perturbations have been parametrized as in
Eq. (4.17). This parametrization corresponds to the one of Ref. [6]
with the difference that, in the present case, the factor gðXÞ� (with
X ¼ E;B; BE) can also depend k.
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αE ¼ F� − 9=2þ j1þ 2F�j
2

;

βE ¼ 5=2 − j1þ 2F�j=2; ð4:22Þ

αB ¼ j1 − 2F�j=2 − 9=2 − F�;

βB ¼ 5=2 − j1 − 2F�j=2: ð4:23Þ

Two particularly significant cases are the magnetic initial
conditions (i.e. Ē0 ¼ 0) with βB ¼ 0 and the electric initial
conditions (i.e. B̄0 ¼ 0) with βE ¼ 0. In these two cases

both gðEÞ� and gðBÞ� are independent on the wave number and
they are given by:

gðEÞ� ≃ −
3Ω̄E

ϵπ2
N2

ex; gðBÞ� ≃ −
48Ω̄B

ϵ
N2

ex: ð4:24Þ

For the benchmark values Nex ¼ Oð65Þ and ϵ ¼ Oð10−2Þ
we have that Ω̄B (or Ω̄E) must beOð10−9Þ (or smaller) if we
want the anisotropic contribution to the power spectrum to
be Oð0.1Þ (or smaller). This result agrees with the figures
already obtained in the literature (see e.g. last two papers of
Ref. [9]). When the gauge couplings coincide and the
anisotropy parameters are scale-invariant there are two
possible situations: either the magnetic power spectrum is
also scale invariant (and the electric power spectrum is
violet) or the electric power spectrum is scale invariant (and
the magnetic power spectrum is red). The case of scale-
invariant magnetic power spectrum is phenomenologically
viable since magnetic fields Oð10−2Þ nG2 can be safely
produced [16] at the onset of galactic rotation.20 The case of
electric initial conditions supplemented by a scale-invariant
electric power spectrum is instead not phenomenologically
viable [16]. In summary we can say that, in the case of
coincident gauge couplings, no further constraints on the
model itself can stem from the analysis of curvature
perturbations.

2. Bounds independent on the number of efolds

Since the induced curvature anisotropy must be negli-
gible all over the dynamical evolution, it should also be
subleading, in particular, few efolds after the given wave-
length exceeded the Hubble radius. Therefore the following
bounds must hold for the electric and magnetic initial
conditions:

4QE

3ϵα2E
ΩEf

3=2
ex < Oð0.1Þ; 64π2

3ϵα2B
QBΩBf

3=2
ex < Oð0.1Þ;

ð4:25Þ

16π

3ϵαBαE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
QBQE

p ffiffiffiffiffiffiffiffiffiffiffiffi
ΩEΩB

p
f3=2ex < Oð0.1Þ; ð4:26Þ

where we consider the experimental upper limits on the
anisotropic contribution to be at most Oð0.1Þ [2–5].
Equations (4.25) and (4.26) are obtained by evaluating
the anisotropy for a > aex but a ¼ OðaexÞ. These relations
are easily derived by recalling that kηex ¼ Oð1Þ implies
also k=ðaexHÞ ¼ Oð ffiffiffiffiffiffiffi

fex
p Þ since dτ ¼ ffiffiffi

f
p

dη. The two
complementary cases of diverging gauge couplings [i.e.
fðaiÞ ¼ fi ¼ Oð1Þ] and of converging gauge couplings
[i.e. fðafÞ ¼ ff ¼ Oð1Þ] are not exhaustive but they can
be used to illustrate the nature of the bounds.
Consider, for the sake of simplicity, the case fi ¼ 1

as illustrative of the case of diverging gauge couplings. In
this case fex ≃ ðaex=aiÞ2ðFB−FEÞ. As long as the relevant
modes exit few efolds after the onset of inflation a
potentially large term can be easily compensated by the
relative smallness of Ω̄E. Conversely in the case ff ¼ 1 we
have fex ≃ ðaex=afÞ2ðFB−FEÞ. But this is nothing but
exp ½−2NexðFB − FEÞ� where Nex denotes the number of
efolds elapsed since aex. This number is pretty small iff
FE < FB but it is very large otherwise. To ensure the
validity of the constraints of Eqs. (4.25) and (4.26) we
therefore have to demand FE < FB. The case ff ¼ Oð1Þ is
not exactly independent on the number of efolds and it is
partly similar to the bounds derived in the following
subsection.
In summary we can say that the case of diverging gauge

couplings is not constrained at kηex ¼ Oð1Þ while the case
of converging gauge couplings is strongly constrained and,
to be conservative, we should demand FE < FB. In this
case the region of the parameter space is drastically
reduced. Apparently, a way out would be to postulate that
Ω̄E ¼ Ω̄B ¼ 0: this would mean that the case ff ¼ Oð1Þ is
incompatible with the presence of an initial electric or
magnetic field. This way out is simplistic: to second
order the contribution of the electric and magnetic fields
to the power spectra will present the same problem.
The second-order contribution does not produce the
dependence on a specific direction and arises even if
the initial state is only the vacuum [23]. In this case the
analysis valid for coincident gauge couplings can be easily
extended and the supplementary contribution to the power
spectrum of curvature perturbations will depend on f3ex
(rather than f3=2ex as in the present case). In conclusion the
derived bound is genuinely physical and cannot be artifi-
cially ignored.

20The power spectra of the electric and magnetic fluctuations
have the dimensions of energy densities so that they are correctly
measured in nG2 (1 nG ¼ 10−9 G). Furthermore, in the present
terminology, violet and red spectra are, respectively, steeply
increasing and decreasing as a function of the comoving wave
number.
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3. Bounds exponentially dependent
on the number of efolds

The bounds depending exponentially on the number of
efolds can be obtained by evaluating the functions GEðk; aÞ,
GBðk; aÞ and GEBðk; aÞ for a ¼ OðafÞ and by demanding
that their relative contribution does not exceed the obser-
vational limits, in particular, at the maximal wave number
of the spectrum. The general expressions of GEðk; aÞ,
GBðk; aÞ and GEBðk; aÞ can be found, respectively, in
Eqs. (4.17), (4.18) and (4.19). Since the same argument
can be repeated for these three distinct functions we shall
discuss analytically only GEðkmax; afÞ and then mention the
results for the remaining cases. In the discussion we shall
also assume21 that αE ≠ 0 and αB ≠ 0.
From Eq. (4.17) we can easily deduce the following

expression:

GEðkmax; afÞ ¼
1

α2E

�
kmax

afH

�
2βE

�
af
aex

�
2αE−2μ½jσ−1j−1�þ2βE

:

ð4:27Þ
Since, by definition, kmaxηmax ¼ Oð1Þ we must also have
kmaxτf ¼ Oð ffiffiffiffiffi

ff
p Þ. As before the case of converging and

diverging gauge couplings can be treated separately. In
particular, if ff ¼ Oð1Þ, Eq. (4.27) implies that the con-
tribution of GEðkmax; afÞ will not explode iff:

αE − μ½jσ − 1j − 1� þ βE < 0: ð4:28Þ

But recalling the explicit values of αE, βE, μ and σ the last
condition simply means that FE < 2. The same argument
leading to Eqs. (4.27) and (4.28) can be repeated in the case
of Eqs. (4.18) and (4.19). The analog of Eq. (4.28) but
derived from Eqs. (4.18) and (4.19) will be, respectively,

βB þ αB − μ½jσj − 1� < 0;

βE þ βB þ αE þ αB − μ½jσj þ jσ − 1j − 2� < 0: ð4:29Þ

In more explicit terms the two conditions of Eq. (4.29)
imply respectively FB þ 2 > 0 and FE − FB < 4.
In the case of converging couplings the constraints

obtained in the present and in the previous subsections
are illustrated in Fig. 1. The large shaded area extending
through the fourth quadrant of the ðFE; FBÞ plane repre-
sents the allowed region of the parameter space where all
the constraints are safely satisfied. This region is bounded
by the lines FE ¼ 2, FB ¼ −2 and FE ¼ FB. The smaller
region appearing in the first quadrant illustrates, as an
example, a class of magnetogenesis models based on the
case of converging gauge couplings [16]: this area corre-
sponds to the region 5FB=3þ 4=3 ≤ FE ≤ 1.56þ 2.13FB
and it is excluded since it does not overlap with the
wider region allowed by the constraints on the isotropy
of the power spectrum. There are other regions in the first
quadrant which are not excluded, including the frontier
FE ¼ FB. It is however clear that the allowed region
extends more towards the fourth quadrant. This means,
in practice that the models where FB > 0 and FE < 0 are
comparatively less constrained.
Let us finally move to the case of diverging gauge

couplings and assume for concreteness fi ¼ OðfexÞ ¼
Oð1Þ. In this case the analog of Eq. (4.27) becomes

GEðkmax; afÞ ¼
1

α2E
fβEex

�
af
aex

�
2μβEþ2αE−2μ½jσ−1j−1�þ2βE

;

ð4:30Þ

implying that the contribution to the anisotropy is small for
fex ¼ Oð1Þ provided

βEðμþ 1Þ þ αE − μ½jσ − 1j − 1� < 0: ð4:31Þ
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FIG. 1. In both plots the shaded area illustrates the allowed region of the parameter space. The left and right plots describe,
respectively, the case of converging and diverging gauge couplings.

21When αE → 0 and αB → 0 we showed that GE and GB
depend logarithmically on the duration of the inflationary phase.
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The same argument can be applied to GBðkmax; afÞ and
GEBðkmax; afÞ. The results are, respectively,

ðμþ 1ÞβB þ αB − μ½jσj − 1� < 0;

ðβE þ βBÞðμþ 1Þ þ αE þ αB − μ½jσj þ jσ − 1j − 2� < 0:

ð4:32Þ

In the right plot of Fig. 1 the bounds obtained in the present
and in the previous subsections are illustrated in the case of
diverging gauge couplings. The various absolute values
appearing in Eqs. (4.31) and (4.32) make the frontier of
the allowed region less intuitive. It is however clear that the
least constrained portion of the parameter space is the
second quadrant of the ðFE; FBÞ plane where FB < 0 but
FE is positive. As before there exist limited regions where
both rates have the same sign.
Before concluding the present section two remarks are in

order. The highest frequency of the electric power spectrum
at the present time is controlled by the post-inflationary
evolution. More precisely the electric power spectra are
affected as soon as the reheating starts. Imposing the correct
boundary conditions between the inflationary phase and the
post-inflationary phase entails also an overall suppression
of the electric power spectrum in comparison with the
magnetic power spectrum. These themes have been dis-
cussed, for instance, in Refs. [16] and [18]. It is important
to appreciate, however, that the subsequent fate of the
electric fields does not alter the anisotropic modulations of
the curvature power spectra produced before the actual
suppression of the electric fields (i.e. during the early stages
of inflation).
The second remark is that in this analysis the attention

has been focused on the constraints derivable from the
effect of gauge fields on the evolution of curvature
perturbations but there exist direct constraints on the
magnetic fields that should be satisfied by every magneto-
genesis scenario (see, for instance, [16]). In particular,
direct constraints can be obtained from CMB data (see, for
instance, [32] for some recent analyses obtained from the
temperature and polarization anisotropies). Indeed, as
noticed over ten years ago, the temperature and the
polarization anisotropies of the CMB may be magnetized
since the initial conditions of the scalar modes are affected
by the presence of stochastic magnetic fields [33]. This
observation offers the unique opportunity of direct limits on
the large-scale magnetism prior to matter-radiation equality
since the large-scale magnetic fields affect directly the
initial conditions of the Einstein-Boltzmann hierarchy. The
current Planck explorer data have been used to set bounds
on large-scale magnetic fields coming from inflation as
previously done with the WMAP 3-yr and 9-yr releases
(see, respectively, third and fourth papers of Ref. [33]). The
results can be summarized by saying that the WMAP9 and
Planck data are compatible, they are both sensitive to

magnetic fields in the nG range (1 nG ¼ 10−9 G) for
magnetic spectral indices nB ¼ Oð1.3Þ using the available
temperature and polarization power spectra.22 Since the
curvature perturbations induced by the gauge fields during
inflation have been used to constrain the parameters of the
underlying inflationary model, it is important to stress that
the bounds on the anisotropic modulation of the curvature
power spectrum discussed here do not depend, in general,
on the limits on the magnetic field strength derived from the
temperature and polarization anisotropies.

V. CONCLUDING REMARKS

A generalized class of magnetogenesis scenarios based
on the relativistic theory of van der Waals interactions
implies an asymmetric evolution of the magnetic and
electric gauge couplings. As the quantum fluctuations of
the gauge fields are amplified, they also gravitate and even
if they do not affect the evolution of the background itself,
they contribute to the curvature power spectra which have
been specifically computed in this paper during a quasi-de
Sitter stage of expansion.
Depending on the sensitivity of the derived spectra to the

total number of inflationary efolds three different classes of
constraints may arise: bounds logarithmically sensitive to
the duration of inflation, bounds independent on the duration
of inflation and finally bounds which are exponentially
sensitive to the number of inflationary efolds. In each of
these cases the gauge couplings may either converge toward
the end of inflation or diverge from the initial state. If the
gauge couplings are converging they are of the same order at
the end of inflation and, in this case, the allowed region
corresponds, in practice, to the fourth quadrant in the
ðFB; FEÞ plane where FB and FE are the rates of the
evolution of the gauge couplings in units of the Hubble
rate. If thegauge couplings are diverging they are of the same
order at the onset of inflation but they can be very different
later on. In this case, except for few slices of the parameter
space the allowed region falls almost entirely within the
second quadrant of the ðFB; FEÞ plane. It is relevant to stress
that the scope of the obtained constraints is exactly to pin
down the regions of the parameter space where all the
potentially large corrections to the curvature power spectra
are negligible. In this sense the duration of inflation is
immaterial for the allowed regions of the parameter space.
The obtained results clearly show that the constraints

point at the case where one of the two gauge couplings
contracts and the other expands. On this basis, various
classes of magnetogenesis scenarios can be excluded.

22We use here the conventions consistently followed in this
paper where the scale invariant magnetic power spectra
are realized for nB → 1. Other conventions stipulate that the
scale-invariant limit is realized for nB → −3, but, in this case, the
Fourier transform of the two-point function does not have
dimensions of an energy density, as in our case.
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There remains trajectories in the ðFB; FEÞ plane where the
rates can be simultaneously negative or positive (like in the
case when FE → FB) but these typically coincide with
the boundaries of the allowed region. When the rates have
the same sign the gauge couplings may converge at the end
of inflation but these models lead to strong anisotropic
corrections to the curvature power spectra and seem
therefore excluded by the present conclusions. In a com-
plementary perspective the obtained result might also
suggest that there exist viable models of magnetogenesis

based on the asymmetric evolution of gauge couplings but
admitting a strongly anisotropic initial state which becomes
isotropic at a later stage. This analysis is beyond the scope
of the present discussion.
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