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We revisit the velocity-dependent one-scale model for topological defect evolution and present a new
alternative formulation in terms of a physical (rather than invariant) characteristic length scale. While the
two approaches are equivalent (as we explicitly demonstrate), the new one is particularly relevant when
studying the evolution of ultrarelativistic defects. Moreover, a comparison of the two provides further
insight on the interpretation of the model’s two phenomenological parameters, c related to energy losses
and k related to the curvature of the defects. As an illustration of the relevance of the new formulation, we
use it to study the evolution of cosmic string and domain wall networks in contracting universes. We show
that these networks are ultrarelativistic and conformally contracted, with the physical length scale behaving
as Lph ∝ a and the density as ρ ∝ a−4 (as in a radiation fluid) in both cases. On the other hand, the velocity
and invariant length respectively behave as ðγvÞ ∝ a−n and Linv ∝ a

4
4−n, where n is the number of

dimensions of the defect’s world sheet. Finally, we also study an alternative friction-dominated scenario
and show that the stretching and Kibble regimes identified in the case of expanding universes can also occur
for contracting ones.

DOI: 10.1103/PhysRevD.93.043542

I. INTRODUCTION

It is thought that the early universe underwent a series of
phase transitions, each one spontaneously breaking some
symmetry in particle physics and giving rise to topological
defects of some kind [1,2]. In many cases the defects will
persist throughout the subsequent evolution of the universe,
providing fossil relics of its early stages. Understanding the
evolution and cosmological consequences of these defect
networks is therefore a mandatory component of any
consistent attempt to quantitatively describe the early
universe.
Since defects are intrinsically nonlinear objects, there are

two basic approaches to studying their evolution. The first
is to resort to field theory (and/or, for cosmic strings, Goto-
Nambu) numerical simulations [3–20]. Alternatively, one
can develop analytic models which aim to capture the key
properties of the network, at least on large scales.
The first effort within the latter framework was Kibble’s

one-scale model of string networks [21], which has a single
macroscopic parameter: a length scale that can be identified
as the string correlation length, the string curvature radius,
or the interstring distance—in the model’s approximation
they should be seen as identical or at least comparable.
This was later generalized to a three-scale model by Austin,
Copeland and Kibble [22] where there are three distinct
length scales: the first two are again the string correlation

length and the interstring distance, while the third is a
typical scale for small-scale structures.
A different approach stems from the realization that in

order to be able to quantitatively describe the whole
cosmological history of these networks, one must be able
to describe the evolution of the defect velocities, not least
because, depending on the cosmological epoch (and on
their own specific properties), the defects may be moving at
nonrelativistic or at ultrarelativistic speeds. This is the basis
for the velocity-dependent one-scale model (VOS) of
Martins and Shellard [23,24], which retains Kibble’s
assumptions on the existence of a single length scale but
adds the RMS velocity as a second macroscopic quantity.
This model has been rigorously derived starting from the
Goto-Nambu action, and it has also been successfully
tested and calibrated against high-resolution field theory
[8,10] and Goto-Nambu numerical simulations [10,12].
More recently, it has also been extended to domain walls
[25], monopoles [26], semilocal strings [27] and several
other related contexts.
The standard VOS model relies on an invariant length

scale (to be rigorously defined below), although in a few
specific circumstances a corresponding physical length
scale was also briefly discussed—in particular, in [28,29].
Here we present a detailed formulation of the VOS model
in terms of a physical characteristic length scale. We also
show that the two descriptions are equivalent (leading to
the same scaling solutions), and discuss how the model
parameters are related in the two approaches. A model
based on a physical length scale turns out to be particu-
larly useful for studying the evolution of ultrarelativistic
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defects. As a concrete illustration of this point, we revisit
the evolution of cosmic strings in contracting universes,
first studied in [28,29] (whose results we generalize), and
further extend it by discussing the case for domain wall
networks.

II. ANALYTIC MODELING GENERALITIES

Broadly speaking, the key idea behind the analytic
modeling of defect networks is that one abandons the idea
of studying their “statistical physics” (which can only be
done numerically, except in idealized circumstances) and
instead concentrates on its “thermodynamics.” In other
works, one or more macroscopic quantities are chosen to
describe the network, and the knowledge of the micro-
physics is used to obtain the evolution equations for these
macroscopic quantities. This has the advantage of leading
to relatively simple models which can, in principle,
encapsulate most of the relevant physics, but it also has
an associated cost: in going from the microphysics to the
macrophysics one is forced to introduce phenomenological
parameters, which can only be calibrated by direct com-
parison with numerical simulations. In what follows we
provide a simplified derivation of the dynamical equations
of the model, along the lines of [26].
Consider a network of defects with n-dimensional world

sheets (n ¼ 1 for monopoles, n ¼ 2 for cosmic strings and
n ¼ 3 for domain walls) evolving in (3þ 1) space-time
dimensions. We temporarily assume them to have velocity
v, and to be noninteracting and (for the case of extended
objects) planar. Then the momentum per unit comoving
defect volume—simply the momentum, in the case of
monopoles—behaves as

p ∝ a−1 ⇒ vγ ∝ a−n ð1Þ
from which we get, by differentiation,

dv
dt

þ nHð1 − v2Þv ¼ 0: ð2Þ

Under the above hypotheses the average number of defects
in a fixed comoving volume should be conserved, which
implies

ρ ∝ γa−ð4−nÞ ð3Þ
and again, differentiating and using the velocity equation,
we find

dρ
dt

þH½ð4 − nÞ þ nv2�ρ ¼ 0: ð4Þ

The hypotheses so far are, of course, widely unrealistic.
However, we can use this as a starting point to build a
reasonable model. As has been pointed out above, the
validity of this process can be checked for the case of

cosmic strings, where a more rigorous derivation has been
done [23,24].
Let us start by defining a characteristic length scale

L4−n ¼ M
ρ
; ð5Þ

whereM will have dimensions appropriate for the defect in
question (i.e., monopole mass, string mass per unit length,
or wall mass per unit area), and can also be written

M ∼ ηn; ð6Þ

with η being the corresponding symmetry breaking scale.
Also, we interpret the velocity as being the RMS velocity of
the defect network, and allow for energy losses due to
interactions, which in many physically relevant circum-
stances can be modeled (purely on dimensional grounds) by

dρ
dt

¼ −c v
L
ρ: ð7Þ

An additional source of defect damping is friction due to
particle scattering. Typically, this is only relevant in the early
stages of cosmological defect evolution, but we introduce it
here for completeness. This damping can be characterized by
a friction length scale

F ¼ −M
lf

γv; ð8Þ

where we are defining

lf ≡ M
θTnþ1

∝ anþ1: ð9Þ

T is the background temperature and θ is a parameter
counting the number of particle degrees of freedom inter-
acting with the defects. We can also define an overall
damping length which includes both the effect of Hubble
damping and the friction due to particle scattering

1

ld
¼ nH þ 1

lf
: ð10Þ

Putting together all of the above effects, we find the
following evolution equations for the characteristic length
scale L and RMS velocity v,

ð4 − nÞ dL
dt

¼ ð4 − nÞHLþ v2
L
ld

þ cv; ð11Þ

dv
dt

¼ ð1 − v2Þ
�
f − v

ld

�
; ð12Þ

where in the latter equation we have also allowed for the
possibility of further driving forces affecting the defect
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dynamics. Note that f has the units of acceleration—it is
the force per unit mass. For extended objects (walls and
strings) that have been extensively studied in the past, this
driving force is obviously the local curvature, and we have

f ∼
k
R
¼ k

L
; ð13Þ

in the last equality we are implicitly assuming that our
characteristic length scale is the same as the defect
curvature radius. For monopoles the situation is somewhat
more complex since there are forces due to other monop-
oles, as discussed in [26].

III. PHYSICAL AND INVARIANT QUANTITIES

Throughout the previous section, the characteristic
length scale L was an invariant quantity or, in other
words, a measure of the invariant string energy (and hence
length). We now discuss how to express the VOS model in
terms of a physical length scale. Let us start by consid-
ering the network’s energy. The invariant and physical
quantities are related through the standard Lorentz factor,
γ ¼ ð1 − v2Þ−1=2, as follows:

Einv ¼ γEph: ð14Þ

Since, according to Eq. (5), ρ ∝ L−ð4−nÞ, we see that the
characteristic length scales are related via

Lph ¼ γ
1

4−nLinv: ð15Þ

Note that this length scale is a measure of the total energy
content of the network, or (in the context of the VOS model
assumption of a single independent characteristic scale) the
typical separation between defects. We may instead define
a characteristic defect size

Sinv ¼ γSph; ð16Þ

this would therefore be a characteristic length (or total
length) for the strings, and a characteristic area (or total
area) for walls. This can then be equivalently expressed in
terms of a characteristic radius S ∝ Rn−1, leading to

Rinv ¼ γ
1

n−1Rph: ð17Þ

Let us consider the standard VOS model described in the
previous section. Again, the evolution equations are

ð4 − nÞ dLinv

dt
¼ ð4 − nÞHLinv þ v2

Linv

ld
þ cv; ð18Þ

dv
dt

¼ ð1 − v2Þ
�

k
Rinv

− v
ld

�
: ð19Þ

For clarity, we have now explicitly identified the invariant
quantities. As is well known [23–25], for a universe whose
scale factor grows as a power law, a ∝ tλ (with 0 < λ < 1),
these equations have an attractor scaling solution�

L
t

�
2 ≡ ϵ2 ¼ kðkþ cÞ

nð4 − nÞλð1 − λÞ ; ð20Þ

v2 ¼ 4 − n
n

1 − λ

λ

k
kþ c

: ð21Þ

Note that in this attractor solution frictional damping due to
particle scattering is negligible compared to that due to the
Hubble expansion. We can now change variables using

dγ
dt

¼ vγ3
dv
dt

ð22Þ

leading to

dðγvÞ
dt

¼ kγ
R

− γv
ld

ð23Þ

and

ð4 − nÞ dLph

dt
¼ ð4 − nÞHLph þ kv

Lph

Rinv
þ γ

1
4−ncv: ð24Þ

Finally, noting that in the canonical model R is an invariant
quantity which, in a one-scale model context, is identified
as Rinv ≡ Linv and transforming it to the physical one, we
finally obtain

dðγvÞ
dt

¼ kγ1þ 1
4−n

Lph
− γv
ld

; ð25Þ

ð4 − nÞ dLph

dt
¼ ð4 − nÞHLph þ vðkþ cÞγ 1

4−n: ð26Þ

Note that the damping length scale does not appear in the
evolution equation for the physical length scale, but only in
the one for the invariant length scale (as well as in the one
for the velocity). If we now look for attractor scaling
solutions we get

ϵ2ph ¼ γ
2

4−nϵ2inv; ð27Þ

ðγvÞ2ph ¼ γ2v2inv; ð28Þ

which is trivially correct and consistent given the various
definitions above.
We finally need to confirm how the model parameters c

and k behave as one switches between the physical and
invariant approaches. Starting with the energy loss term c,
one simply has to generalize the argument first made in [21]
and note that the probability dP that a defect segment will
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encounter another segment in a time interval dt should be
given approximately by

dP ¼ −dρ
ρ

¼ ð4 − nÞ dLph

Lph
∼ cph

vdt
Lph

∼ cph
vdt

γ
1

4−nLinv

: ð29Þ

From this we infer that

cph ¼ γ
1

4−ncinv: ð30Þ

For the specific case of strings, if (as suggested in [28]) one
has cinv ¼ c0γ−1=2 (with c0 being a constant), then it
follows that cph ¼ γ1=2cinv ¼ c0 ¼ const. Our analysis
shows that analogous results hold regardless of the defect
dimensionality.
A similar argument can be made for the curvature

parameter (whose phenomenology, in the specific case of
strings, has been discussed in detail in [8,10,12]), leading to

kph ¼ γ
1

4−nkinv; ð31Þ

though of course the physical interpretation of this parameter
for defects other than strings is less clear, so the other
cases should be treated by analogy. For the case of strings its
behavior is phenomenologically well described by the
following velocity dependence:

kðvÞ≡ 2
ffiffiffi
2

p

π
ð1 − v2Þð1þ 2

ffiffiffi
2

p
v3Þ 1 − 8v6

1þ 8v6
: ð32Þ

One important point pertaining to the behavior of this
parameter is that k → 0 as v → 1, and we assume that
the same holds for domain walls (for which no analogous
expression is known).
With these relations between the physical and invariant

model parameters, we can finally write

ð4 − nÞ dLph

dt
¼ ð4 − nÞHLph þ ðcph þ kphÞv; ð33Þ

dv
dt

¼ ð1 − v2Þ
�
kph
Lph

− v
ld

�
; ð34Þ

or equivalently

dðγvÞ
dt

¼ γkph
Lph

− γv
ld

; ð35Þ

which are the evolution equations for the VOS model based
on physical rather than invariant parameters.

IV. DEFECTS IN CONTRACTING UNIVERSES

As an application of the model, we now discuss the
evolution of defect networks in contracting universes,

clarifying and extending the results of [28,29]. Some
possible motivations for studying contracting universe
scenarios have been recently reviewed in [30]. In this
section we ignore the effects of friction due to particle
scattering (in other words, assume θ ¼ 0 and lf → ∞).
The consequences of relaxing this assumption will be
discussed in the following section.
The key physical difference between this case and the

standard one is that in a contracting phase the Hubble
parameter becomes negative—in other words, it becomes
an acceleration term (rather than a damping term). As a
result the velocity will increase and the network will
become ultrarelativistic, with v → 1. This is true even
though in this limit we expect kðvÞ → 0, at least for
extended objects (cosmic strings and domain walls).
In this case one easily finds from Eq. (35) an asymptotic

behavior

γv ∝ a−n; ð36Þ
or more simply

γ ∝ a−n: ð37Þ

On the other hand, from Eq. (18) one finds for the invariant
length scale

Linv ∝ a
4

4−n; ð38Þ
which can be reexpressed in terms of the corresponding
physical scale

Lph ¼ γ
1

4−nLinv ∝ a: ð39Þ
These asymptotic scaling laws were briefly described in
[31,32]; in what follows we will study in more detail the
evolution of the networks as they approach this asymptotic
state. This last relation, which can also be obtained directly
from Eq. (33), agrees with the intuitive expectation that
the defect network is being conformally contracted as the
universe collapses. Similarly, for the characteristic radius
for extended defects we have

Rph ∝ a; ð40Þ
and therefore

Rinv ¼ γ
1

n−1Rph ∝ a− 1
n−1: ð41Þ

We also note that in all cases the network’s energy density
behaves as

ρ ∝ L−ð4−nÞ
inv ∝ a−4; ð42Þ

again this is to be expected: an ultrarelativistic network
behaves as a radiation fluid. An interesting consequence of
this is that, even if the defect network eventually dominates
the energy density of the universe, the universe’s contraction
rate will still be radiationlike. In any case, as the temperature
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rises and approaches that of the defect-forming phase
transition, we expect the defects to effectively dissolve into
the high-density background.
We can further quantify how this asymptotic scaling

regime is approached. This corresponds to studying the
behavior of Eqs. (33) and (35) when the cph and kph terms
provide a small but not entirely negligible contribution.
In the former case, we can assume Lph ¼ afðaÞ, where
fðaÞ is a correction factor, in which case Eq. (33) leads to

ð4 − nÞa df
da

da
dt

¼ cph: ð43Þ

Assuming for simplicity that in this regime the scale factor
behaves as a ∝ ðtc − tÞλ, where tc is the big crunch time
and 0 < λ < 1, this equation can be straightforwardly
integrated, leading to

Lph ∝ a

�
1 − cph

ð1 − λÞð4 − nÞ a
1
λ−1

�
; ð44Þ

and as expected, the correction factor approaches unity
as a → 0.
Similarly, for Eq. (35) we can assume that γv ¼ a−ngðaÞ,

which leads to

dg
da

da
dt

¼ kph
Lph

g; ð45Þ

and making the same assumption on the behavior of the
scale factor, we find the approximate solution

γ ∝ a−n exp
�
− kph
1 − λ

a
1
λ−1

�
≈ a−n

�
1 − kph

1 − λ
a

1
λ−1

�
: ð46Þ

Note that the form of the correction term is quite similar to
that for the length scale equation, the two differences being
that the γ correction is independent of the defect dimension-
ality (there is no dependence on n) and that kph is expected to
be negative in this limit and to approach zero as v → 1 while
cph is expected to be a positive constant. Finally, we can put
the two together using Eq. (15), obtaining

Linv ∝ a
4

4−n

�
1 − cph − kph

ð1 − λÞð4 − nÞ a
1
λ−1

�
; ð47Þ

which matches the physical intuition that cph should be more
important than kph in determining this correction.

V. ALTERNATIVE SCENARIO: FRICTION
DOMINATION

In the previous section the effects of friction due to
particle scattering were neglected. This is a reasonable
assumption for heavy defects (say, those formed around the
grand unified theory scale) since in that case friction is only

significant very close to the defect-forming phase transition
and becomes negligible soon afterwards [23–25]. Although
this argument holds, in principle, both for strings and for
domain walls, in practice it is only relevant for strings since
heavy domain walls are observationally ruled out [33]. The
same argument would naturally apply for a contracting
universe. However, for very light defects (say, those formed
around the electroweak scale) friction will dominate over
Hubble damping for a considerable period. In what follows
we discuss how the above solutions change in this case.
Let us start with some order-of-magnitude estimates. We

are comparing the Hubble and friction contributions to the
damping length scale

1

ld
¼ nH þ 1

lf
¼ nH þ σ

anþ1
; ð48Þ

where for convenience we wrote the friction length scale in
terms of the scale factor by introducing a constant param-
eter σ which is related to the parameter θ defined in Eq. (9).
Both of these parameters count the number of effective
degrees of freedom which interact with the defect. To give
an example, assuming that all standard model degrees of
freedom interact with a cosmic string formed at the grand
unified theory scale (T ∼ 1016 GeV), then at formation the
friction term is 30 times larger than the Hubble term; for a
string formed at the electroweak scale (T ∼ 102 GeV) the
ratio is much larger, about 1015. However, these numbers
are highly model dependent: in models beyond the standard
model the number of degrees of freedom may be larger, but
on the other hand, not all degrees of freedom in a particular
theory necessarily interact with its defects—that number
could even be zero.
It should be noticed that the two terms have generically

different dependencies on the scale factor: the Hubble term
behaves as H ∝ a−1=λ (for a scale factor a ∝ tλ) while the
friction term behaves as l−1

f ∝ a−ð1þnÞ. Therefore, it
follows that for a fast expansion or contraction rate,
λð1þ nÞ > 1, the Hubble term decays more slowly (and
eventually dominates) in an expanding universe, and
conversely it grows more slowly in a contracting universe.
In the opposite regime of slow expansion or contraction,
corresponding to λð1þ nÞ < 1, it is the friction term that
decays more slowly in the expanding case (and grows more
slowly in a contracting one). Interestingly, the transition
between these fast and slow regimes depends on the
dimensionality of the defect: it occurs at λ ¼ 1=2 (that
is, the radiation era) for monopoles, at λ ¼ 1=3 for cosmic
strings, and at λ ¼ 1=4 for domain walls. This justifies our
statements in the first paragraph of this section.
In any case, it is interesting to study the behavior of the

defect networks in regimes where the friction term domi-
nates. This has already been done, for radiation- and matter-
dominated expanding universes, both for cosmic strings
[23,24] and domain walls [25]. In that case the friction term
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is assumed to be dominating but decaying faster than the
Hubble term, so the two possible solutions (known as the
stretching and Kibble regimes) are both transient ones, and
linear scaling eventually ensues. Here we provide a simple
generalization of this analysis, first by considering all
possible expansion rates (that is, whether λ is fast or slow)
and second by considering both expanding and contracting
universes. The interesting result is that in all these cases not
only do these two solutions still exist, but they are the only
possible ones.
In this case, neglecting the Hubble damping term and

keeping the friction one, the evolution equations become

ð4 − nÞ dLinv

dt
¼ ð4 − nÞHLinv þ σ

v2Linv

a1þn þ cv; ð49Þ

dv
dt

¼ ð1 − v2Þ
�

k
Linv

− σ
v

a1þn

�
: ð50Þ

We have kept the invariant index in the length scale L for
completeness, although in this case the physical and
invariant lengths are effectively the same: it is easy to
show that the only possible attractor solutions of this
system have decreasing nonrelativistic speeds (v → 0),
and therefore the Lorentz factor approaches unity. From
this one can then find the two possible solutions. For low-
density, slow networks, the energy loss (chopping term) is
negligible and the network is simply conformally stretched
(or contracted) as the universe evolves. This is therefore the
stretching regime, in which we have

L ∝ a; ð51Þ

v ∝
lf

L
∝ an: ð52Þ

Note that although the defect velocity is small, it is growing
if the universe is expanding, and decreasing if the universe
is collapsing. This implies that this solution must always be
a transient one. If the chopping term cannot be neglected
we have the Kibble regime [1,34]

L ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a1þnþ1

λ

p
∝

ffiffiffiffiffiffiffi
lf

jHj

s
; ð53Þ

v ∝
lf

L
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a1þn−1

λ

p
∝

ffiffiffiffiffiffiffiffiffiffiffiffi
lfjHj

q
: ð54Þ

In this case the correlation length is the geometric mean
between the damping length and the horizon length.

Note that for fast expansion rates λð1þ nÞ > 1 the velocity
increases in the standard case of an expanding universe (in
which case the solution is a transient one, and is followed
by the usual linear scaling one) but it would be an attractor
for a contracting universe. Conversely, for slow expansion
rates λð1þ nÞ < 1 the velocity decreases in an expanding
universe (in agreement with the fact that the friction term
does dominate asymptotically in this case), whereas it
increases in a collapsing universe, meaning this solution
would be transient.

VI. CONCLUSIONS

In this work we introduced a new alternative formulation
of the velocity-dependent one-scale model, based on a
physical rather than invariant characteristic length scale.
While the two formulations are equivalent (as we have
explicitly shown) our discussion provides additional con-
ceptual insight on the behavior of the model, and specifi-
cally on its phenomenological parameters.
As an application we studied one context in which such a

formulation is particularly useful: the evolution of defect
networks in contracting universes. We have shown that
provided Hubble damping is the dominant damping term,
the networks become ultrarelativistic and are conformally
contracted as the universe collapses (so that Lph ∝ a), and
that asymptotically, they will behave like a radiation fluid.
We also carried out a general analysis of the friction-
dominated case, showing that the stretching and Kibble
regimes that have been identified for the case of expanding
universes also apply to the contracting cases.
Physically, the interesting point to notice is that the

evolution of a defect network in a contracting universe is
not simply the reverse of that in an expanding one: instead,
there is an unavoidable asymmetry, previously discussed in
[28]. Our results significantly generalize previous works and
apply to extended defects (domain walls and cosmic strings),
and with some caveats also to global monopoles. The scaling
laws we have obtained can be tested in numerical simu-
lations of sufficiently high resolution and dynamic range—
an interesting task which we leave for subsequent work.
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