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Light scalar fields such as axions and string moduli can play an important role in early-universe
cosmology. However, many factors can significantly impact their late-time cosmological abundances. For
example, in cases where the potentials for these fields are generated dynamically—such as during
cosmological mass-generating phase transitions—the duration of the time interval required for these
potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars,
mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time
abundances. Previous studies have focused on the effects of either the first or the second timescale in
isolation. In this paper, by contrast, we examine the new features that arise from the interplay between these
two timescales when both mixing and time-dependent phase transitions are introduced together. First, we
find that the effects of these timescales can conspire to alter not only the total late-time abundance of the
system—often bymany orders of magnitude—but also its distribution across the different fields. Second, we
find that these effects can produce large parametric resonances which render the energy densities of the fields
highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase
transition unfolds. Finally, we find that these effects can even give rise to a “reoverdamping” phenomenon
which causes the total energy density of the system to behave in novelways that differ from those exhibited by
pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-
universe phenomenology and cosmological evolution. They also highlight the importance of taking into
account the time dependence associated with phase transitions in cosmological settings.
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I. INTRODUCTION

Light scalar fields are a common feature in many cosmo-
logical scenarios and thus frequently play an important role
in early-universe cosmology. Such scalars include, for
example, the QCD axion [1–4] and other axionlike particles
[5], supersymmetric partner particles such as sneutrinos and
staus [6–9], string moduli such as the dilaton and other
geometric moduli [10–12], Q-balls [13,14], quintessence
fields [15] and chameleons [16–18], familons [19] and
Majorons [20,21], certain degrees of freedom within inert
Higgs-doublet models [22], additional scalars present in
little-Higgs theories [23], and others [24–27]. Some of these
fields may even serve as candidates for dark matter or as
significant contributors to dark energy. Moreover, the num-
ber of such scalars can be relatively large; indeed, the recent
Dynamical Dark Matter framework [28,29] posits a dark
sector containing an entire ensemble of such fields which
together conspire to produce a number of phenomenological,
astrophysical, and cosmological effects which differ

markedly from those arising from more traditional dark
sectors. Likewise, string-inspired models typically involve
significant numbers of moduli—and frequently a large
number of light axions and axionlike fields as well [30–33].
When a scalar field is light, the reason is usually that a

mass term for this field is forbidden by a symmetry of the
full, high-temperature theory. Such a mass term must
therefore be generated at a lower temperature scale through
some dynamics which violates these symmetries—
dynamics typically associated with a cosmological phase
transition. For example, masses for axions or axionlike
particles can be generated by nonperturbative instanton
effects which become significant at temperatures near the
confining temperature of the corresponding gauge group.
Indeed, dynamical mass generation through cosmological
phase transitions provides a natural mechanism for engi-
neering mass-scale hierarchies.
However, dynamical mass generation can also have

potentially significant ramifications for the cosmology of
the particles involved. First, cosmological phase transitions
are never instantaneous. In the case of a second-order phase
transition, the transition between the high- and low-
temperature phases is smooth but nevertheless time-
dependent. Even in the case of a first-order transition, a
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rapid epoch of bubble nucleation and expansion interpo-
lates between the two phases. As a result, scalar masses
which are dynamically generated during either kind of
phase transition do not “turn on” instantaneously every-
where in the universe; rather, these masses depend non-
trivially on time and evolve continuously over the course of
the phase transition towards whatever asymptotic values
they will have at late times. It turns out that this time
dependence—and the existence of an associated timescale
or “width” over which the phase transition unfolds—can
have a significant impact on the cosmology of light scalars.
For example, in the case of an axion receiving its mass via
nonperturbative instanton effects, the nontrivial conse-
quences of this time-dependence on the resulting axion
cosmological abundance were assessed in Ref. [34].
Another important consequence of dynamical mass

generation is that it can give rise to mixing amongst scalars
sharing the same quantum numbers. Indeed, if multiple
such scalars couple to the same source of dynamical mass
generation, there is no guarantee that the mass eigenstates
of the theory will be the same before and after the
corresponding phase transition. The phenomenological
consequences of such mixing were investigated in
Refs. [29,35,36] for an ensemble of light axionlike fields.
Mixing can also be induced amongst light scalar fields at
low energies through a variety of other dynamical proc-
esses, including the integration out of massive fields to
which our light scalars are coupled. For example, the
phenomenological implications of such mixings amongst
axionlike fields have been studied in Ref. [37]. Regardless
of the source, however, we find that dynamically induced
mixing generally results in a nontrivial modification of the
coupling structure of the fields involved and can thus have a
significant impact on the resulting energy densities of the
fields at late times.
The effects of mixing and of a nontrivial time depend-

ence for scalar mass generation have historically been
studied separately. In this paper, by contrast, we shall
examine the effects that arise when the mass matrix for a set
of multiple light scalar fields includes both mixing and a
nontrivial time dependence. As we shall demonstrate, the
interplay between the different timescales associated with
these effects can, in the presence of a time-dependent
background cosmology, give rise to a number of qualita-
tively new features which are not seen when these effects
are each considered in isolation.
These new features generally concern the late-time

cosmological abundances (energy densities) associated
with the scalar fields in our coupled multiscalar system.
For example, we shall demonstrate that the total late-time
energy density of our system can be altered—often by
many orders of magnitude–compared with traditional
expectations. This includes situations in which the late-
time energy density is enhanced to greater values as well as
situations in which it is strongly suppressed. Second, we

shall demonstrate that not only can the total energy density
be altered, but so can the distribution of this total energy
density across the different fields in our system—often in
dramatic ways. Indeed, these effects can even completely
change which field carries the largest abundance. Third, we
shall demonstrate that under certain circumstances, the
combined effects of our two timescales can give rise to
large parametric resonances which render the energy
densities of the fields highly sensitive to the degree of
mixing as well as the duration of the time interval over
which the phase transition unfolds. As a result of this
heightened sensitivity, any effects which modify the mixing
slightly or which change the rate at which our mass-
generating phase transition unfolds can have a huge
influence on the corresponding late-time cosmological
abundances. Finally, we shall demonstrate that mixing in
conjunction with a time-dependent phase transition can
even give rise to a “reoverdamping” phenomenon which
causes the field values and total energy density of the
system to behave in novel ways which differ from those
normally associated with pure dark matter or vacuum
energy.
Taken together, we see that all of these features give rise

to new possibilities for the phenomenology of the early
universe and cosmological evolution. In particular, many
new possibilities for model-building emerge. However, our
results can also serve as a warning: in the presence of
multiple mixed scalar fields, it is essential to treat mass-
generating phase transitions rigorously, with the proper
time dependence included. Indeed, approximations in
which such phase transitions are treated as instantaneous
can produce late-time energy densities which differ from
their true values by many orders of magnitude. This
warning is particularly relevant in the case of axions,
where the mass-generating phase transition is nothing
but the instanton-induced QCD phase transition. This phase
transition unfolds over a calculable nonzero timescale, and
we shall demonstrate explicitly that ignoring this timescale
(by setting it to be either zero or effectively infinite) can
lead to highly inaccurate late-time axion abundances.
This paper is devoted to a general study of the new

features discussed above. Because these features are
common to many systems of scalars which exhibit mixing
in conjunction with a time-dependent mass-generating
phase transition, in this paper we shall work within the
context of a general model of scalars ϕi whose identities
remain unspecified. We shall likewise make no assump-
tions about the nature of the mass-generating phase
transition except that it unfolds over a certain timescale.
Moreover, quite remarkably, we shall find that a simple toy
model consisting of only two scalar fields is sufficient to
illustrate all of the features outlined above. This paper will
therefore focus on an analysis of this two-component toy
model, and we shall defer a study of more complex
scenarios to future work [38].
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This paper is organized as follows. In Sec. II, we
introduce the two-component toy model which forms the
basis for all subsequent discussions in this paper. As
outlined above, this toy model contains both a mixing
between our two fields as well as a time-dependent mass-
generating phase transition. Along the way we also
introduce all needed definitions, conventions, and notation.
We also discuss some of the basic properties of this model.
Then, in Sec. III, we study the behavior of the total late-
time energy density of our two-component system, while in
Sec. IV we study how this total late-time energy density is
distributed between the two fields of our model. In Sec. V
we discuss the parametric resonance which appears in the
energy density, while in Sec. VI we turn our attention to the
“reoverdamping” phenomenon.
Although our analysis up to this point is completely

general, our results have many immediate phenomenologi-
cal applications. In Sec. VII, we therefore focus on a special
case by considering the effects on the standard QCD axion
that emerge when a second axion is incorporated into the
theory. In Sec. VIII we then sketch some of the additional
features that emerge when more than two fields are
considered. These features will ultimately be explored
more fully in Ref. [38]. Finally, in Sec. IX, we conclude
with a discussion of our main results and possible avenues
for extension and generalization.
This paper also contains two appendices. Although most

of the results of this paper are obtained through numerical
analysis, Appendix A provides exact analytical results in
certain tractable special cases. Appendix B then discusses
an alternative approach towards analyzing some of the
features presented in this paper.

II. A TOY MODEL

In this section we delineate the toy model which shall be
the basis of our analysis in this paper. This section will also
serve to establish our notation and conventions.

A. Motivation: A one-component warm-up

As a prelude to the presentation of our model, we begin
with a short discussion of the one-component case. Along
the way we will also review some basic facts about scalar
fields in a Friedmann-Robertson-Walker (FRW) cosmology
and provide motivation for the particular construction of
our eventual multicomponent toy model.
Towards this end, let us consider a single scalar field ϕ of

mass m evolving in a flat FRW universe. If all spatial
variations in ϕ are assumed to be negligible, such a field
evolves according to the standard equation of motion

∂2ϕ

∂t2 þ 3HðtÞ ∂ϕ∂t þm2ϕ ¼ 0 ð2:1Þ

where the Hubble parameter HðtÞ scales as 3HðtÞ≈
κ=t with κ ¼ 2 (respectively κ ¼ 3=2) during a

matter- (radiation-)dominated epoch. As a result, the field
behaves as a damped oscillator with a time-dependent
damping ratio ζðtÞ≡ 3HðtÞ=2m. Since HðtÞ falls
with time, a field which is initially overdamped will
inevitably become underdamped and experience decaying
oscillations.
For simplicity, the energy-momentum tensor for such a

field can be modeled as a perfect fluid with energy density
ρ and pressure p given by

ρ ¼ 1

2
½ð∂ϕ=∂tÞ2 þm2ϕ2�;

p ¼ 1

2
½ð∂ϕ=∂tÞ2 −m2ϕ2�: ð2:2Þ

If ϕ is initially in an overdamped phase with ∂ϕ=∂t ¼ 0,
then ρ ¼ −p: the energy density ρ associated with such a
field in this phase behaves as vacuum energy. By contrast,
after ϕ transitions to an underdamped phase, the field
eventually experiences oscillations which are approxi-
mately virialized: in this phase p ¼ 0 and the correspond-
ing energy density ρ can be associated with massive matter.
Of course, there is also an intermediate time interval during
the transition from the overdamped to underdamped phase
within which the behavior of the field exhibits transient
features that eventually dissipate.
The equation of motion (2.1) can be simplified by

defining a dimensionless time variable τ≡mt. The sol-
utions can then be expressed analytically in terms of Bessel
functions of the first and second kind. The exact evolution
of the corresponding energy density ρ is shown in Fig. 1,
where τζ denotes the critical damping time at which ζ ¼ 1.
The different phases of the system are clearly evident in
Fig. 1. For early times τ ≪ τζ, the system is overdamped
and the energy density ρ is essentially constant: ρ ∼ ρ0. For
late times τ ≫ τζ, by contrast, the system is underdamped
and the energy density ρ scales as ρ ∼ τ−κ. Finally, during
the intermediate times τ ∼ τζ, the energy density ρ exhibits
a corresponding transition between the two limiting behav-
iors above, punctuated by small transient oscillations.
Although the specific dynamics of the field during this
transitional period does not affect the late-time asymptotic
scaling of ρ with time, these transients are nevertheless
important in determining the overall scale of the late-time
energy density.
In this example, we have taken the mass m to be a

constant, nonzero for all time. However, in many
cosmological situations, masses are generated by phase
transitions. In such cases, the masses of such fields can be
time-dependent. Awell-motivated example of this is case of
the QCD axion: the axion potential is flat (i.e., m ¼ 0) at
temperatures T ≫ ΛQCD, but this flat potential is modified
at lower temperatures by instanton effects which generate
an effective mass.
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Time-dependent masses mðτÞ can significantly modify
the evolution of such scalar fields. In this paper, we are
primarily interested in cases in which at least a portion of
the contributions to the scalar masses are generated as the
result of phase transitions. We shall therefore generally
consider cases in which mðτÞ has one (smaller) value at
early times, a second (larger) value at asymptotically late
times, and a smooth time-dependent transition between the
two. Indeed, we shall let τG represent the “central” time at
which this mass-generating phase transition occurs, and
imagine that this transition unfolds over a time interval of
duration or width ΔG. We then obtain the situation
illustrated schematically in Fig. 2.
The introduction of a nonzero time interval ΔG during

which our phase transition unfolds can have a significant
effect on the time-evolution of ϕ. When ΔG ¼ 0, there are
essentially two regimes which one can consider, each with
its own distinctive phenomenology: τζ < τG and τζ > τG.
However, a nonzero width ΔG opens up a third possibility,
with τζ ∼ τG. Indeed, more generally, the introduction of a
nonzero ΔG introduces a new timescale into the problem,
and we shall see that this can have dramatic effects. We
shall explore the phenomenology of this region as part of
our larger general study. We emphasize, however, that
phenomenon of having τζ ∼ τG is completely different from
having τG during the “damping transition” region of Fig. 1.

Indeed, while ΔG may be considered to represent a width
around τG, the “damping region” of Fig. 1 can instead be
considered a width around τζ, a width which exists—as
shown in Fig. 1—even if the mass is constant.

B. Defining our toy model

The introduction of a nonzero time interval ΔG for our
phase transition is just one feature we wish to study in this
paper. The other concerns the possibility ofmixing between
different field components ϕi, i ¼ 1;…; N. The phenom-
enological effects stemming from each can certainly be
studied in isolation. However, as we shall find, these two
features can conspire to produce a number of remarkable
effects that transcend what is possible with either alone. For
this reason, we shall study the implications of both features
together. The effects of either feature in isolation can then
be extracted through the limiting cases in which the effects
due to the other feature are gradually turned off.
In this paper, we shall explore these effects within the

context of a simple toy model involving only two compo-
nents, ϕ0 and ϕ1. As we shall see, our toy model is simple
enough to be tractable, yet rich enough to incorporate all of
the phenomena of interest.
Our model consists of two real scalar fields, ϕ0 and ϕ1. If

we again assume that the spatial variations in these fields

FIG. 2. Two time-dependent mass scales: a growing mass
function mðτÞ and a falling Hubble friction scale 3HðτÞ=2. Their
intersection determines the transition time τζ . We assume that the
growth of mðτÞ takes place during an interval of approximate
duration ΔG centered at τG. As we shall see, the introduction of a
nonzero ΔG can have many dramatic effects on the late-time
energy densities of those fields which (either directly or indi-
rectly) are sensitive to this change in mass. For example, one new
possibility is that the transition between overdamped and under-
damped phases can occur during the mass-generating phase
transition.

FIG. 1. The energy density ρ, normalized to its initial value ρ0,
for a solution to Eq. (2.1) in a radiation-dominated (RD) universe,
i.e., κ ¼ 3=2 (red), or a matter-dominated (MD) universe, i.e.,
κ ¼ 2 (blue). In the overdamped phase, the energy density
remains nearly constant at ρ ¼ −p > 0, behaving as vacuum
energy. By contrast, once the critical damping ζ ¼ 1 threshold is
crossed at τζ (a critical time which is slightly different for RD and
MD universes), the energy density begins to dissipate, asymp-
totically exhibiting the simple power-law scaling behavior ρ ∼
τ−κ expected for matter.
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are negligible, their equations of motion in a flat FRW
universe take the form

∂2ϕi

∂t2 þ 3HðtÞ ∂ϕi

∂t þ
X
j

M2
ijϕj ¼ 0 ð2:3Þ

where M2 is the corresponding squared-mass matrix. At
times t ≪ tG, long before mass generation occurs, we shall
take M2 constant and diagonal. In fact, for simplicity, we
shall further assume that ϕ0 is massless at such early times.
Thus, at early times, we shall assume

M2 ⟶
t≪tG

�
0 0

0 M2

�
ð2:4Þ

where M ≠ 0 is a general unfixed mass parameter. By
contrast, long after the phase transition has occurred, we
assume that new components m̄2

ij will have been generated
in the squared-mass matrix:

M2 ⟶
t≫tG

�
0 0

0 M2

�
þ
�
m̄2

00 m̄2
01

m̄2
01 m̄2

11

�
: ð2:5Þ

In order to connect these two asymptotic extremes, we shall
let m2

ijðtÞ denote time-dependent elements of the mass
matrix which interpolate between zero at early times and
m̄ij at late times. We can then write

M2ðtÞ ¼
�
0 0

0 M2

�
þ
�
m2

00ðtÞ m2
01ðtÞ

m2
01ðtÞ m2

11ðtÞ

�
: ð2:6Þ

Having specified the mass matrix, we can now introduce
a dimensionless time variable τ≡Mt, as in the single-
component case. Our equations of motion then take the
form

ϕ̈i þ 3HðτÞ _ϕi þ
X
j

M2
ijðτÞϕj ¼ 0 ð2:7Þ

where the dots indicate ∂=∂τ and where our mass matrix is
also dimensionless and takes the form

M2ðτÞ ¼
�
m2

00ðτÞ m2
01ðτÞ

m2
01ðτÞ 1þm2

11ðτÞ

�
ð2:8Þ

with each dimensionless mij now understood to be a
fraction ofM.We shall adopt these conventions throughout
the rest of this paper.
In general, there is no reason to expect that the mass

generation occurs in the same basis as in Eq. (2.4). We shall
therefore allow for the possibility that m2

01 ≠ 0—i.e., the
possibility that our phase transition induces a mixing
between our primordial field components ϕ0 and ϕ1.

However, we shall nevertheless make the simplifying
assumption that the time dependence of each component
is identical, allowing us to focus on those effects that come
from a single common timescale for mass generation.
Indeed, since the mass matrix is nothing but the curvature
matrix associated with the potential Vðϕ0;ϕ1Þ induced by
the phase transition, this assumption is tantamount to
assuming a single time dependence for the potential as a
whole. As a result, we can write each of the individual mass
components in a factorized form

mijðτÞ ¼ m̄ij · hðτÞ; ð2:9Þ

where hðτÞ is a smooth function of timewhich describes the
time development of the phase transition.
Our next step in specifying our toy model is to choose a

suitable function hðτÞ. As indicated above, we require that
hðτÞ → 0 as τ → 0 and hðτÞ → 1 as τ → ∞. However,
because one of our main interests in this paper concerns the
timescale associated with the mass-generating phase tran-
sition, we would also like hðτÞ to incorporate a dimension-
less parameter σ which controls how abruptly the phase
transition occurs. The limit σ → 0might then correspond to
a phase transition which is effectively instantaneous, while
nonzero values of σ correspond to phase transitions which
occur increasingly slowly. It is also desirable, regardless of
the width of the transition, that the midpoint at τG be a fixed
point of reference. We therefore include in our construction
the requirement that hðτGÞ ¼ 1=2 for all σ. Indeed, this
may be taken as a definition of τG.
Beyond these constraints, the choice of hðτÞ is com-

pletely arbitrary, and many functions may be chosen. For
concreteness, however, we shall take

hðτÞ ¼ 1

2

�
1þ erf

�
1

σ
log

�
τ

τG

���
; ð2:10Þ

where the error function erfðzÞ is given by

erfðzÞ≡ 2ffiffiffi
π

p
Z

z

0

e−x
2

dx: ð2:11Þ

As illustrated in Fig. 3, this function satisfies all of our
requirements. Of course, many other choices for hðτÞ are
possible. However, none of the qualitative results of this
paper will ultimately depend on the specific choice for hðτÞ.
Thus, any smooth, monotonic function hðτÞ satisfying the
above constraints will lead to similar results.
Corresponding to each nonzero value of the parameter σ

there exists a nonzero timescale ΔG over which the phase
transition occurs. In general, we may define ΔG in terms of
the slope of the hðτÞ function at its midpoint τG:

hðτG þ δτÞ ≈ 1

2
þ δτ

ΔG
for δτ ≪ ΔG: ð2:12Þ
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Adopting this definition for ΔG, we then find for our hðτÞ
function that

ΔG ≡ ffiffiffi
π

p
στG: ð2:13Þ

We thus see that ΔG → 0 as σ → 0, as expected. Indeed,
this limit corresponds to the case of an instantaneous phase
transition, with the hðτÞ taking the form of the Heaviside
step function Θðτ − τGÞ.
In this paper, we shall consider the effects that arise when

σ is nonzero. There is, however, a critical value σ� above
which the behavior of hðτÞ changes in an important way. To
see this, let us first consider the limit in which σ → ∞. In
this limit, we find that hðτÞ is essentially constant and τG-
independent: hðτÞ ≈ 1

2
ΘðτÞ for all τ. This limit may there-

fore be interpreted as one in which our original phase
transition at τG effectively disappears and is replaced by a
new, infinitely sharp “phase transition” at τ ¼ 0. Note that
this latter transition is nothing but an artifact of our
boundary condition that h ¼ 0 at τ ¼ 0. As a result, dialing
σ from 0 to ∞ has the effect of slowing our original phase
transition near τG while simultaneously building up an
artificial phase transition near τ ¼ 0. Indeed, if σ grows too
large, the most rapid changes in the mass parameters of our
system will no longer be associated with our original phase
transition near τ ¼ τG, but with the artificial one near τ ¼ 0.
In this paper, we wish to maintain the notion that

increasing the value of σ corresponds to slowing the time
development of our mass matrix. Even more importantly,

we also wish to ensure that the time period exhibiting the
most rapid time development of our mass matrix is still
associated with our original phase transition near τG and
not the artifact near τ ¼ 0. Therefore, in this paper, we shall
always restrict our attention to values 0 ≤ σ ≤ σ� where σ�
is that value of σ for which maxτðdh=dτÞ is minimized. For
the hðτÞ function given in Eq. (2.10), we find that σ� ¼ ffiffiffi

2
p

for all τG. As a result, in what follows we shall only
consider values of ΔG in the range

0 ≤ ΔG ≤
ffiffiffiffiffiffi
2π

p
τG: ð2:14Þ

In order to gain insight into the values of σ that we
might expect for a well-motivated phase transition, let us
consider the case of the instanton-induced phase transition
during which a mass is generated for the QCD axion.
Detailed lattice studies [39,40] have yielded approximate
expressions for the mass of the QCD axion as a function
of temperature T. However, the cosmological time-
temperature relation appropriate for a radiation-dominated
epoch is given by

TðtÞ ¼
�

5

2g�

�
1=4

�
3MP

πt

�
1=2

; ð2:15Þ

where MP is the Planck mass and where g� is the
temperature-dependent effective number of relativistic
degrees of freedom. Use of this relation then allows us
to determine the axion mass as a function of cosmological
time t, with the results shown in Fig. 4. For comparison, our
h-function with σ ≈ 0.47 is also shown in Fig. 4. It is clear
that these two functions match quite well over the entire
range of times shown.
The only remaining ingredient to be specified as part of

our toy model is a set of initial conditions to be imposed at
some early time τ0. For the differential equations in
Eq. (2.7), this means specifying initial values for our
two fields ϕ0;1 and their first derivatives _ϕ0;1. While many
possibilities exist, one particularly natural choice is to
consider a mere displacement for the ϕ0 field:

�
ϕ0

ϕ1

�
τ¼τ0

¼
�
A0

0

�
;

� _ϕ0

_ϕ1

�
τ¼τ0

¼
�
0

0

�
: ð2:16Þ

There are three special properties associated with this initial
configuration which make this choice especially appealing.
First, as long as τ0 ≪ τG, this configuration does not
introduce any initial energy into the system. Thus, all of
the energy that our system accrues will be solely that
injected through the phase transition. Second, as long as
τ0 ≪ τG, the specific choice of the initial time τ0 will be
irrelevant. In other words, given our other assumptions, the
system is essentially time-independent for all τ ≪ τG and
thus completely insensitive to variations of τ0. As a result,

FIG. 3. The general form of the h-function in Eq. (2.10), plotted
for several choices of the parameter σ. In all cases we see that hðτÞ
rises smoothly from h ¼ 0 to h ¼ 1 and crosses h ¼ 1=2 at
τ ¼ τG. Large values of σ correspond to more gradual transitions,
while for σ → 0 we find that h approaches the Heaviside step
function Θðτ − τGÞ.
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we shall never need to refer to τ0 again, understanding
implicitly throughout this paper that τ0 has always been
chosen to be sufficiently early that our results are inde-
pendent of τ0. Finally, the choice of A0 in Eq. (2.16) merely
serves to set an overall mass scale for our system. However,
since we shall always be considering ratios of field values
or energy densities in this paper, our results will also be
insensitive to A0.
This completes the specification of our toy model. It

contains only five free parameters: two (namely τG and
ΔG ∼ σ) which describe the time development of the phase
transition, and three (namely m2

00, m
2
11, and m2

01) which
describe the effects of the phase transition and the mixing it
induces. Despite its simplicity, however, we shall find that
this toy model is not only of sufficient generality to
accommodate a wide variety of physical systems but also
of sufficient richness to give rise to a number of surprising
phenomena.

C. Preliminary analysis: Constraints on mixing

In subsequent sections, we shall analyze the behavior of
our fields and of their corresponding energy densities
within different regions of our five-dimensional parameter
space. However, even before proceeding, there are a
number of preliminary observations that hold more gen-
erally and which serve to significantly constrain the
allowed parameter space.

These constraints all ultimately stem from the observa-
tion that not every choice of the masses m2

ij can be made
independently. Requiring that the eigenvalues of M2 be
real is tantamount to demanding that M2 be Hermitian.
However we must further demand that these eigenvalues be
non-negative, which requires that M2 be positive-
semidefinite. This requires that all m2

ij be real and satisfy
the three constraints

8<
:

• m2
00 ≥ 0

• m2
11 ≥ −1

• m2
00ð1þm2

11Þ ≥ m4
01:

ð2:17Þ

These constraints provide a set of intrinsic limits on the
magnitude of the mixing that may occur within our toy
model. Indeed, these constraints imply that

jm2
01j ≤ ½m2

01�max ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

00ð1þm2
11Þ

q
: ð2:18Þ

However, for many purposes it will prove useful to
introduce the variables

m2
sum ≡M2

11 þM2
00 ¼ 1þm2

00 þm2
11

Δm2 ≡M2
11 −M2

00 ¼ 1 −m2
00 þm2

11 ð2:19Þ

in terms of which our squared-mass matrixM2 in Eq. (2.8)
takes the more symmetric form

M2 ¼
� 1
2
ðm2

sum − Δm2Þ m2
01

m2
01

1
2
ðm2

sum þ Δm2Þ

�
: ð2:20Þ

Note while the individualm2
ij quantities each carry the same

time dependence [proportional to hðτÞ2], the same is no
longer true for m2

sum and Δm2. In terms of these variables,
the constraints in Eq. (2.17) then take the form

8<
:

• m2
sum ≥ 0

• jΔm2j ≤ m2
sum

• jm2
01j ≤ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

sumÞ2 − ðΔm2Þ2
p

;

ð2:21Þ

whereupon we find from Eq. (2.18) that

½m2
01�max ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

sumÞ2 − ðΔm2Þ2
q

: ð2:22Þ

Finally, perhaps the most useful way to parametrize the
mixing in our toy model is in terms of a rotation angle θ
which relates the mass eigenstates ϕλ0 and ϕλ1 at any instant
of time to the original mass eigenstates prior to the onset of
the phase transition:

FIG. 4. The function hQCD describing the instanton-induced
time-dependent mass of the axion (solid blue line), plotted as a
function of t=tG. This curve is generated for ΛQCD ¼ 200 MeV,
with tG defined as that location where the curve crosses h ¼ 1=2.
For comparison purposes, our h-function in Eq. (2.10) with σ ≈
0.47 is superimposed (dashed red line). We see that our h-
function matches hQCD surprisingly well throughout the entire
range of values of plotted, and fits particularly well near the
“center” of the phase transition at t ¼ tG.
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�
ϕλ0

ϕλ1

�
¼

�
cos θ − sin θ

sin θ cos θ

��
ϕ0

ϕ1

�
; ð2:23Þ

from which it follows that

tanð2θÞ ¼ 2m2
01

Δm2
: ð2:24Þ

Indeed, while θ generally populates the range −π ≤ θ ≤ π
in Eq. (2.23), we see from Eq. (2.24) that it is sufficient to
focus on −π=2 ≤ θ ≤ π=2 for the purpose of calculating
mixing angles, since these are invariant under the mapping
ðϕλ0 ;ϕλ1Þ → −ðϕλ0 ;ϕλ1Þ. The same will also be true for
calculating energy densities—our main interest in this
paper—because these energy densities will depend only
quadratically on the fields in Eq. (2.23). However, we
further observe that in the fϕλ0 ;ϕλ1g basis introduced in
Eq. (2.23), the equations of motion in Eq. (2.7) now take
the form

ϕ̈λ0 þ 3H _ϕλ0þðλ20 − _θ2Þϕλ0

¼ −2_θ _ϕλ1 − ðθ̈ þ 3H _θÞϕλ1

ϕ̈λ1 þ 3H _ϕλ1þðλ21 − _θ2Þϕλ1

¼ þ2_θ _ϕλ0 þ ðθ̈ þ 3H _θÞϕλ0 : ð2:25Þ

These equations of motion exhibit an invariance under the
simultaneous correlated transformations ðϕλ0 ;ϕλ1Þ →
ðϕλ0 ;−ϕλ1Þ and θ → −θ. Since this is also an invariance
of our initial conditions in Eq. (2.16), our toy model will
exhibit this invariance at all points during its time evolu-
tion. Note that this invariance is also tantamount to the
simultaneous correlated transformations ðϕ0;ϕ1Þ →
ðϕ0;−ϕ1Þ and m2

01 → −m2
01. We can henceforth truncate

our attention to m2
01 ≥ 0 and 0 ≤ θ ≤ π=2 without loss of

generality, and we shall do so throughout the rest of this
paper. The region 0 ≤ θ < π=4 then corresponds to
Δm2 > 0, while the region π=4 < θ ≤ π=2 corresponds
to Δm2 < 0.
It then follows from Eq. (2.24) that for any values of

m2
sum and Δm2, the allowed mixing angles θ are those for

which

j tanð2θÞj ≤ j tanð2θmaxÞj≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

sum

Δm2

�
2

− 1

s
ð2:26Þ

where θmax is defined as the value of θ which maximizes
j tanð2θÞj. Thus θ ≤ θmax for θmax ≤ π=4, while θ ≥ θmax
for θmax ≥ π=4. These angles are illustrated in Fig. 5. Note
that for Δm2 ¼ �m2

sum (corresponding to m2
00 ¼ 0 or

m2
11 ¼ −1, respectively), the corresponding values of θ

are restricted to 0 or π=2. Indeed, any other values would
lead to a squared-mass matrix M2 with at least one

negative eigenvalue, corresponding to a tachyonic mode.
Finally, for Δm2 ¼ 0, we have θ ¼ π=4 for all m2

01 > 0,
while the angle θ is in principle undetermined for m2

01 ¼ 0.
We conclude this section with some further definitions

that shall also prove useful in what follows. Quite often, we
shall be evaluating a quantity X which is a function of the
time τ. For example, such quantities might include the mass
parameters mijðτÞ, the mixing angle θðτÞ, the field values
ϕλðτÞ, or the total energy density ρðτÞ. For any such
quantity XðτÞ, we shall define

X̄ ≡ lim
τ→∞

XðτÞ: ð2:27Þ

In other words, X̄ shall denote the asymptotic late-time
value of XðτÞ, where in practical terms the notion of a “late”
time can be taken as referring to a time at which both fields
ϕλ have reached the asymptotic underdamped regime, with
corresponding energy densities ρλ exhibiting the virialized
damped scaling behavior ρλ ∼ τ−κ shown in Fig. 1. Finally,
we shall also find that a crucial measure for the degree of
mixing that might be present in a given system is not the
absolute value of the mixing parameter m2

01 (or θ), but
rather the value of this parameter as a fraction of the total
degree of mixing that would have been allowed for that
system, given the constraints discussed above. The same is
often true for the splitting parameter Δm2. Towards this
end, we define the mixing saturation

FIG. 5. Allowed ranges for the mixing angle θ (blue shaded
region), plotted as a function ofΔm2=m2

sum.Note that θ is restricted
to0orπ=2whenΔm2 ¼ �m2

sum—i.e.,whenm2
00 ¼ 0orm2

11 ¼ −1,
respectively. By contrast, when Δm2 ¼ 0, the allowed range for θ
dependsonthevalueofm2

01: form
2
01 ≠ 0, theonlyallowedθ-valueis

θ ¼ π=4 (blue dot), while for m2
01 ¼ 0 we find that tanð2θÞ is

indeterminateandanyvalueforθ isallowed(redline),dependingon
how relevant limits are taken.
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ξ≡ m2
01

½m2
01�max

¼ jtanð2θÞj
jtanð2θmaxÞj

¼ m2
01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
00ð1þm2

11Þ
p ð2:28Þ

as well as the analogous splitting saturation

η≡ Δm2

½Δm2�max
¼ Δm2

m2
sum

¼ 1 −m2
00 þm2

11

1þm2
00 þm2

11

: ð2:29Þ

Note that in terms of these variables1 we have

tanð2θÞ ¼ ξ

η

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
: ð2:30Þ

We emphasize, however, that a maximally saturated mixing
configuration with ξ ¼ 1 does not necessarily imply that
the mixing itself is maximal or even large on an absolute
scale. For this reason, we shall usually specify the degree of
mixing in a given configuration by quoting both ξ and θmax.
Indeed, for many quantities, it will be ξ rather than θ or θmax
which characterizes the behavior of interest and which
allows us to compare across systems with different values
of θ or θmax.
Note that for Δm2 ¼ 0, ambiguities can arise when

defining ξ. In particular, the middle expression in
Eq. (2.28) is formally indeterminate in such situations.
In this paper, for Δm2 ¼ 0, we shall therefore define ξ
through the final expression in Eq. (2.28). Thus ξ can vary
even though θ may be fixed at π=4. Moreover, again
following the final expression in Eq. (2.28), in this paper
we shall define

XjΔm2¼0
ξ¼0

≡ lim
m2

01
→0
ðXjΔm2¼0Þ ð2:31Þ

for any quantity X. Thus the ξ → 0 limit will always be a
smooth one with θ ¼ π=4, even for Δm2 ¼ 0.

D. Temporal properties of the model: Basic features

Given the definition of our toy model, it is now relatively
straightforward to study the corresponding dynamics.
Indeed, this can be done numerically if not analytically,
and certain features are entirely as expected and relatively
easy to understand. However, many other features are

surprising and will play a significant role in what follows.
In the remainder of this section, therefore, we shall discuss
general features of the time evolution of this model. In
particular, we shall focus on the time dependence of the
mass eigenvalues, mixing angles, and mass eigenstates—
quantities upon which our future results will rest.
We begin by studying the mass eigenvalues in our model.

At any moment in time, these masses are given by

λ20;1 ¼
1

2
m2

sum

h
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ð1 − η2Þξ2

q i
¼ 1

2
m2

sumð1∓η sec 2θÞ: ð2:32Þ

The late-time values of these masses are shown in Fig. 6,
while the evolution of these masses from early to late times
is shown in Fig. 7. Numerous features are immediately
apparent. First, as predicted from Eq. (2.32), we see that the
eigenvalues at early and late times (τ ≪ τG and τ ≫ τG,
respectively) are independent of the sign of Δm2 (or η). [In
this connection we recall from Fig. 5 that secð2θÞ < 0when
η < 0.] Thus, the early- and late-time values of λ20;1 are
identical in the left and right panels of Fig. 7. However, we
see that the time evolution of the eigenvalues between these
two endpoints is highly sensitive to the sign of Δm̄2. For
Δm̄2 > 0, the eigenvalues evolve from initial to final values
without any tendency towards level-crossing. For
Δm̄2 < 0, by contrast, the eigenvalues initially head
towards each other as if to experience a level-crossing.
However, whether this level-crossing actually occurs
depends on the value of the mixing. For ξ̄ > 0, the nonzero

FIG. 6. Asymptotic (late-time) eigenvalues λ̄i plotted as
functions of the late-time splitting and mixing parameters η̄ and
ξ̄. For all values of η̄, we see that λ̄20 → 0 and λ̄21 → m̄2

sum as ξ̄ → 1.

1We caution the reader that unlike the other variables we have
thus far introduced, neither ξ nor η has a unique time dependence.
In other words, knowledge of the value of either ξ or η at a given
time does not fix the value of ξ or η at other times without
knowledge of the values of the more primordial m2

ij variables
from which ξ and η are derived. Thus, when we write a relation
such as that in Eq. (2.30), we are illustrating the functional
dependence of θ on ξ and η and asserting that θ does not depend
on the more primordial variables except in these combinations.
However, the time dependence of θ cannot be determined from
such an expression and must be calculated directly in terms of the
primordial variables themselves.
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mixing between mass eigenstates induces a level repulsion
which ultimately prevents a direct level-crossing. As a
result, the eigenvalues veer away from each other, and
ultimately assume the same late-time values that they had
for Δm̄2 > 0.
The case with Δm̄2 < 0 and ξ̄ ¼ 0 is more subtle, and

deserves special discussion. As ξ̄ → 0, we see from the left
panel of Fig. 7 that our eigenvalues λ0 and λ1 actually meet
near τG before bouncing off each other. [Note, in this
connection, that λ0 is always defined as the lighter
eigenvalue, consistent with Eq. (2.32).] In this sense, no
actual level- crossing occurs, even for ξ̄ ¼ 0; instead, each
eigenvalue develops a “kink”—i.e., a discontinuous slope
—at their meeting point near τ ¼ τG.
Finally, for Δm̄2 ¼ 0, we see from Fig. 7 that there is no

tendency towards level-crossing. However, for ξ̄ ¼ 0, the
two eigenvalues approach each other asymptotically.
We can also study the mixing angle θ as a function of

time. The result is shown in Fig. 8. As we see, for ξ̄ > 0 the
mixing angle begins at zero, as expected, and rises to a
nonzero late-time value θ̄; this corresponds to Δm2 tran-
sitioning from its initial value Δm2 ¼ m2

sum ¼ 1 to its final
value Δm̄2. Once again, however, the behavior of the angle
θ is highly sensitive to the sign of the late-time value Δm̄2.
For Δm̄2 > 0, the angle θ remains below π=4 (i.e., within
the lower right “lobe” of Fig. 5). For Δm̄2 < 0, by contrast,
the angle θ eventually grows above π=4, moving from the
lower right lobe of Fig. 5 to the upper left. The case with
Δm̄2 ¼ 0 will be discussed below.
It is natural to define the time τθ at which θ crosses its

midpoint value θ̄=2; in general, this is the time for which

hðτθÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ̄21 − λ̄20

q : ð2:33Þ

Likewise, for Δm̄2 < 0, we find that the transition between
lobes at θ ¼ π=4 occurs at the time τ� for which

hðτ�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δm̄2

p : ð2:34Þ

In general, this “lobe-crossing” time τ� is distinct from τG
and τθ. However, τ� and τθ coincide when θ̄ ¼ π=2. As we
see from Fig. 8, this happens only when Δm̄2 < 0

and ξ̄ ¼ 0.
Once again, this case with Δm̄2 < 0 and ξ̄ ¼ 0 deserves

special mention. At early times we have Δm2 ¼ m2
sum ¼ 1,

and our mixing angle θ begins at zero. This angle then
remains at zero all the way until the eigenvalue meeting
time shown in the left panel of Fig. 7; note that this
eigenvalue meeting time is indeed nothing but τ� ¼ τθ. At
this time, θ changes instantaneously to θ ¼ π=2, consistent
with the fact that after τ� we have Δm2 < 0. Thus we see
that θ behaves as a step function in this limit, with an
effectively instantaneous field rotation. Note that this
“instantaneous” behavior in the ξ → 0 limit applies only
for Δm̄2 < 0.
The situation with Δm̄2 ¼ 0 also deserves special

attention. As usual, we have θ ¼ 0 at early times. For
all ξ̄ ≠ 0, this mixing angle θ then transitions to θ̄ ¼ π=4 at
late times. Moreover, as discussed above, it follows
formally from Eq. (2.31) that θ̄ ¼ π=4 even for ξ̄ ¼ 0.

FIG. 7. Time evolution of the two mass eigenvalues λ20;1 as the phase transition unfolds, plotted for different mixing saturations.
Typical behaviors are shown for Δm̄2 < 0 (left panel), Δm̄2 ¼ 0 (middle panel), and Δm̄2 > 0 (right panel). In all cases, the eigenvalues
begin at f0; 1g, as expected. ForΔm̄2 > 0, the eigenvalues slowly transition to their late-time values without any tendency towards level-
crossing. For Δm̄2 < 0, by contrast, the eigenvalues meet and rebound off each other in the case of zero mixing (ξ̄ ¼ 0) but such a
meeting is thwarted by level repulsion for all nonzero mixing. In general, the strength of the level repulsion increases with degree of
mixing ξ̄. Despite these different features at intermediate times, we observe that the eigenvalues ultimately arrive at the same late-time
values regardless of whether Δm̄2 is positive or negative, in accordance with Eq. (2.32). Finally, for Δm̄2 ¼ 0, we see that there is no
tendency towards level-repulsion, but for ξ̄ ¼ 0 the two eigenvalues approach each other asymptotically.
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However, there is an important subtlety in the latter case.
As ξ̄ → 0withΔm̄2 ¼ 0, it turns out that hðτθÞ ¼ 1. This in
turn implies that τθ → ∞. Thus, even though θ̄ ¼ π=4 in
this case, we never actually reach the point at which the
corresponding mixing occurs. Rather, our two original
states ϕ0 and ϕ1 remain unmixed at all finite times.
Indeed, in some sense, the transition to θ̄ ¼ π=4 occurs
only when the two corresponding eigenvalues λ0 and λ1
actually meet. Note, in this connection, that even though the
field rotation does not occur at any finite time, the mass
eigenvalues λ20;1 nevertheless experience their normal evo-
lution in the neighborhood of τG, a result which follows
directly from the time dependence of the original mass
matrix and which is independent of mixing. In other words,
in this special case, the two timescales τG and τθ are
maximally separated.
Our discussion thus far has focused on the eigenvalue/

mixing structure of the mass matrix as a function of time.
However, the corresponding field values also generally
behave as one might expect, at least as far as their grossest
features are concerned. For times τ ≪ τθ, our two fields

ϕλ0;1 are effectively uncoupled: ϕλ0 evolves independently
of ϕλ1 , and indeed ϕλ1 remains vanishing. For times τ ∼ τθ,
by contrast, the phase transition generates a nonzero, time-
dependent mixing which couples the two fields together
and thereby causes ϕλ1 to accrue a nonzero value as well.
Finally, for times τ ≫ τθ, our mixing angle θ̄ is nonzero but
essentially constant. This means that a similar decoupling
exists during this period as well, except that our decoupled
fields are now those linear combinations which are rotated
relative to our original fields by θ̄. In general, each of these
linear combinations will have a nonzero field value, and
will evolve independently according to whether it is
individually overdamped or underdamped.
The limiting case with Δm̄2 < 0 and ξ̄ ¼ 0 is again

worthy of special note. In this case, ϕλ0 retains its original
amplitude until the eigenvalue meeting time τ� ¼ τθ. The
entire amplitude of ϕλ0 then transfers instantaneously to
ϕλ1 , where it remains for all later times. (This follows from
the observation that in this limit we have an instantaneous
rotation of our fields from θ ¼ 0 to θ ¼ π=2.) This rapid
amplitude transfer is consistent with the instantaneous
infinite value of _θ at τ� ¼ τθ. As a result of this amplitude
transfer, quantities which depend on the field amplitudes
(such as the associated energy densities) transfer instanta-
neously from ϕλ0 to ϕλ1 at this time. In other words, they
“ride” smoothly across the eigenvalue collision in the left
panel of Fig. 7, transitioning from ϕλ0 to ϕλ1 . Of course, this
is completely as expected, reflecting nothing more than the
fact that the energy density began in our original field ϕ0

and remains there when ξ̄ ¼ 0. All that has suddenly
changed at the eigenvalue collision time is the identification
between this field ϕ0 and our mass-eigenstate fields ϕλ0;1 .
One could, in principle, continue along this line of

inquiry. For example, one could proceed to study the phase-
space trajectories of our mass-eigenstate fields ϕλ0 and ϕλ1 ,
and map out how these trajectories depend on the different
defining parameters of our model. However, an exhaustive
study of this toy model is not our purpose in this paper.
Rather, as stated in the Introduction, in this paper our
interest in this toy model stems from the fact that—despite
its simplicity—it gives rise to certain features which have
the potential to transcend our typical expectations when
interpreted in a cosmological setting. It is therefore to these
new features that we now turn.
In keeping with the above observations, in the rest

of this paper we shall mostly concentrate on those
regions of parameter space in which our fields are already
underdamped—or are in the process of becoming
underdamped—during the mass-generating phase transi-
tion. This is important, since the time-dependent effects of
our mass-generating phase transition tend to be washed
out if our fields remain overdamped while it occurs. Thus,
in this way, we shall be focusing on precisely those
parameter-space regions of interest: those which are likely

FIG. 8. The mixing angle θ, plotted as a function of time for
Δm̄2 ¼ �2 and different values of ξ̄. For early times τ ≪ τG, we
generally haveΔm2 ¼ m2

sum ¼ 1 and θ ¼ 0. The subsequent time
dependence then depends critically on the sign of the late-time
value Δm̄2. If Δm̄2 < 0, then Δm2 eventually switches from
positive to negative values; this occurs at τ ¼ τ�, where τ� is
defined in Eq. (2.34). At this point, the mixing angle θ passes
from the lower “lobe” of Fig. 5 to the upper lobe through the
only allowed transition point between the two lobes at
Δm2 ¼ 0 and θ ¼ π=4. For Δm̄2 > 0, by contrast, the mixing
angle stays entirely within the lower lobe of Fig. 5 and thus
remains below π=4. Finally, for Δm2 ¼ 0, the angle θ moves to
the central point between the two lobes, consistent with our
expectation that θ̄ ¼ π=4. However, as discussed in the text, it
takes infinite time to do this as ξ̄ → 0.
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to exhibit a nontrivial interplay between the width of the
mass-generating phase transition, the transition between
overdamped and underdamped regimes, and the mixing
between all of the fields experiencing these effects.

III. TOTAL LATE-TIME ENERGY DENSITY

The total energy density ρ is the quantity of central interest
in this paper. The role it plays as a cosmological observable
gives it direct importance in any analysis of our toy model—
particularly at late times, after our phase transition has been
completed. In general, we are interested not only in the total
late-time energy density ρ̄, but also in its distribution
between the two individual components ρ̄λ. Moreover, in
each case, we are particularly interested in knowing the
extent to which our mass-generating phase transition might
leave imprints on these late-time energy densities. These are
the issues that we shall study in this section.
Calculating the energy density of the system proceeds

directly from the equations of motion for our two fields and
their derivatives. In the original fϕ0;ϕ1g basis, the total
energy density is given by

ρ ¼ 1

2

�X
i

_ϕ2
i þ

X
ij

ϕiM2
ijϕj

�
: ð3:1Þ

By contrast, in the mass-eigenstate basis fϕλ0 ;ϕλ1g intro-
duced in Eq. (2.23), the total energy density is given by

ρ ¼ 1

2

X
λ

½ _ϕ2
λ þ ðλ2 þ _θ2Þϕ2

λ � þ _θ
X
λλ0

_ϕλϵλλ0ϕλ0 ; ð3:2Þ

where ϵλλ0 is the Levi-Civita symbol with ϵλ0λ1 ≡þ1.
The first thing we observe is that in neither case can we

express our total energy density as a sum of individual
contributions. Indeed, we cannot write ρ in the form ρ ¼P

iρi or ρ ¼ P
λρλ. The reason for this, as most evident

from Eq. (3.2), is ultimately that our fields experience a
time-dependent mixing, with _θ ≠ 0. Without mixing—or
even with only a constant mixing—such a decomposition
could have been done and individual contributions iden-
tified. Thus, in this paper we shall never refer to the
individual contributions to the total energy density except
at late times when the mixing has essentially stabilized and
_θ ¼ 0. Indeed, at late times, we can then identify

ρ̄λ ¼
1

2
ð _ϕ2

λ þ λ̄2ϕ2
λÞ; ð3:3Þ

where the overbar indicates late-time values in accordance
with Eq. (2.27).
As already discussed at the end of Sec. II, the effects of

the mass-generating phase transition are washed out if our
fields are still overdamped when it occurs. Likewise, given
the formulation of our toy model, there is no meaningful

way for the mass-generating phase transition to occur very
much later than the critical overdamped/underdamped
transition for either of our two fields: the lighter field is
massless prior to the mass-generating phase transition and
as such remains overdamped during this entire period,
while the heavier field, either formally overdamped or
underdamped, has no amplitude of its own until the mass-
generating phase transition. For this reason, in this section
we shall focus on those regions of parameter space in which
our fields become underdamped near the time at which the
phase transition begins.
The most complete way of surveying physics within this

regime is to vary both τG and ΔG, with τG limited to the

range τG ≳ τðiÞζ , where each τðiÞζ is implicitly defined (as in
Fig. 2) as the time at which 3H ¼ 2λi. This method, which
by construction surveys all possibilities, thus involves
variations in two independent parameters. However,
another way of surveying many aspects of the physics
within this regime is to fix τG, and instead to vary the width
of the phase transition ΔG. By considering fiducial values
of τG which are carefully chosen with respect to the m̄2

ij

values, we can reach situations in which τðiÞζ are near τG or

just prior to it. These values of τð0Þζ are illustrated in Fig. 9,
and we see that this method also allows us to reach the

desired values of τð0Þζ . It is therefore this latter approach that
we shall follow in the next two sections.

FIG. 9. The critical damping time τð0Þζ for the lighter field ϕλ0 in
a matter-dominated universe, expressed as a number of widths
ΔG prior to the central phase-transition time τG and plotted as a
function of ΔG=τG for different values of τG. For τG ∼ 1, the
critical damping transition essentially occurs during the central
portion of the mass-generating phase transition for all ΔG; for
large τG, by contrast, the critical damping transition occurs just
prior to the mass-generating phase transition. These two cases
thus survey our main regions of interest in this paper.
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Given our choices for τG andΔG, we can then calculate the
late-time total energy density ρ̄ for different values of the m̄2

ij

parameters—i.e., for different values of m̄2
sum, Δm̄2, and

ðξ̄; θ̄maxÞ. Our goal is to understand the effects on the total
late-time energy densities ρ̄ that emerge when a nonzero
mixing, parametrized by ξ̄, and a nonzero width ΔG for our
mass-generatingphase transitionarepresent simultaneously.
Our results are shown inFigs. 10–12: InFigs. 10and11we

assume τG ¼ 1 (for radiation- and matter-dominated uni-
verses respectively), while in Fig. 12we assume τG ≫ 1 (for
which matter- and radiation-dominated universes yield the
same results). In each of these figureswe survey values of the
late-time mixing saturation ξ̄ within the range 0 ≤ ξ̄ < 1;
note that we refrain from considering the actual limiting case
with ξ̄ ¼ 1 when discussing late-time quantities such as the
late-time energy density ρ̄ because the lighter field ϕλ0

remains massless at late times when ξ̄ ¼ 1 (as is evident
from Fig. 6) and therefore never technically enters the
asymptotic underdamped region which characterizes our
definition of “late” times.We also note that although the left,
center, and right panels within each figure correspond to
different values of themaximum allowedmixing angle θ̄max,
we see that it is only in terms of the mixing saturation ξ̄ that
we can make sensible comparisons across the different
panels. Indeed, although a fixed change in ξ̄ within a panel
with large θ̄max corresponds to a much larger change in the
absolutemixing angle θ̄ than it doeswithin a panelwith small
θ̄max,we see that it is only the changes in ξ̄ rather than θ̄which
can be compared meaningfully across panels. For this
reason, even though the value of θmax is important in order
to express our results in terms of absolute mixing angles, in
the following we shall simply describe our mixings as small
or large depending on the corresponding values of ξ̄.
These figures illustrate the effects of turning on a finite

width ΔG for the mass-generating phase transition in
conjunction with nonzero mixing between our two fields.
For the small-τG regime plotted in Figs. 10 and 11, we
observe that small mixing actually enhances the late-time
energy density ρ̄. By contrast, we see that large mixing
actually suppresses the late-time energy density ρ̄. Indeed,
we see from Figs. 10 and 11 that these effects (in both
directions) are more pronounced for matter-dominated
universes than radiation-dominated universes and for sit-
uations inwhichΔm̄2 is positive rather than zero or negative.
For the large-τG regime plotted in Fig. 12, by contrast, we

see thatmatter- and radiation-dominated universes give rise to
identical results.All late-timeenergy densities ρ̄, regardless of
themixing saturation ξ̄, share a commonvaluewhenΔG ¼ 0.
However, unlike the small-τG case, the late-time energy
densities experience no enhancement at all, even in the
absence of mixing (ξ̄ ¼ 0). Indeed, ρ̄ experiences only a
suppression for nonzeroΔG—a suppression which, given the
logarithmic ρ̄ axes within Fig. 12, grows much more severe
than itwas for small τG.Moreover,wesee that thissuppression

of the late-time energy density ρ̄ is stronger for negativeΔm̄2

(i.e., for negative η̄) than for zero or positive—a featurewhich
is completely reversed relative to the small-τG case! Finally,
we observe the emergence of a nonmonotonic “oscillatory”
behavior for ρ̄ as a function ofΔG when τG is large and when
the mixing saturation ξ̄ grows close to 1. This feature is most
pronounced when Δm̄2 is positive, but exists for all Δm̄2.
These oscillations will be discussed in Sec. V, and indicate a
strong sensitivity of the suppression factor relative to even
small variations in the phase-transition width ΔG.
All of these results illustrate the dramatic consequences

that ensue when we consider the timescales associated with
both our mass-generating phase transition and the mixing it
generates. For example, we see from the Δm̄2 > 0 plot in
Fig. 11 that mixing has no effect on the total late-time
energy density ρ̄when the mass-generating phase transition
is rapid (i.e., whenΔG ¼ 0). Thus, it is only the existence of
a nonzero phase-transition timescale which allows the
mixing to leave a nontrivial imprint at late times!
Moreover, we see from these figures that the enhancements
and suppressions experienced by ρ̄ are typically quite large,
stretching from 20% or 30% in the case of enhancements all
the way to many orders of magnitude in the case of
suppressions! These effects can thus have dramatic impli-
cations for the relative size of the corresponding slice of the
“cosmic pie”—i.e., for the overall composition of the total
late-time energy budget of the universe.
It is also instructive to understand those limits of the above

results inwhich one or the other of our twovariables ξ̄ andΔG
is taken to zero. We begin by focusing on the effects that
emerge solely due to the presence of a nonzero width ΔG for
the mass-generating phase transition (i.e., the effects that
occur when ξ̄ ¼ 0). Results are shown in Fig. 13, where we
plot contours of the total normalized late-time energy density
ρ̄ðσÞ=ρ̄ð0Þ within the ðτG; σÞ plane, where σ ≡ ΔG=ð

ffiffiffi
π

p
τGÞ

as in Eq. (2.13). Generally, we see from Fig. 13 both
suppression and enhancements in the late-time energy density
are possible, depending on whether τG ≳ 5 or τG ≲ 1 respec-
tively. These results therefore explain the behaviors of the
ξ̄ ¼ 0 curves inFigs.10, 11, and12.Furthermore,wesee from
Fig. 13 that ρ̄ðΔGÞ is largely insensitive to σ, and instead
depends almost exclusively on the value of τG. Indeed, for
τG ≳ 1, we see from Fig. 13 that ρ̄ðΔGÞ scales approximately
as τ−1G . This in turn implies that ρ̄ðΔGÞ ∼ Δ−1

G in this region.
This observation will be discussed further in Sec. IV.
Conversely, we can also study the effects that arise due

to mixing alone (i.e., with ΔG ¼ 0). It turns out that when
ΔG ¼ 0, the late-time energy density ρ̄ can actually be
calculated analytically for arbitrary mixing; the general
result is given in Eq. (A8). In Fig. 14, we choose values
Δm̄2 ¼ 3 and m̄2

sum ¼ 4, and plot the corresponding
late-time energy density ρ̄ðξ̄Þ as a function of the late-
time mixing saturation ξ̄, normalized to its unmixed value
ρ̄ðξ̄ ¼ 0Þ, for a variety of different τG. For ξ̄ ¼ 0, this
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FIG. 10. Behavior of the total late-time energy density ρ̄ðΔG; ξ̄Þ when mixing effects, parametrized by ξ̄, are combined with a nonzero
width ΔG for the mass-generating phase transition. For these plots we adopt a relatively small fiducial time τG ¼ 1.0 and assume a
radiation-dominated universe; we also hold m̄2

sum ¼ 4 and take Δm̄2 ¼ −3, 0, þ3 for the left, center, and right panels, respectively. In
each case we plot the late-time energy density ρ̄ as a function of the phase-transition width ΔG for different values of the mixing
saturation ξ̄, where in each panel ρ̄ is normalized to its value for ΔG ¼ 0 and ξ̄ ¼ 0.

FIG. 12. Same as Figs. 10 and 11, except that we now adopt a relatively large fiducial time τG ¼ 104. For such large values of τG, the
results are nearly the same for both radiation- and matter-dominated universes. Note that unlike Figs. 10 and 11, the vertical axes here are
logarithmic.

FIG. 11. Same as Fig. 10, but for a matter-dominated universe.
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corresponds to a situation in which our two original
unmixed fields ϕ0;1 remain uncoupled, with all of the
energy density remaining in ϕ0; by contrast, as ξ̄
increases, increasing amounts of energy density are shared
between our two fields during the mass-generating phase
transition. Surprisingly, we see from Fig. 14 that increas-
ing ξ̄ results in an enhanced dissipation of the total energy
density, so that the total late-time energy density ρ̄ðξ̄Þ is
suppressed relative to what it would have been in the
absence of mixing. Indeed, we see from Fig. 14 that this
suppression is strongest for relatively small τG and
relatively large mixing saturations ξ̄. Moreover, as evident
from the calculation in Appendix A, this effect exists in all
cases except for a matter-dominated epoch. This effect was
first observed in Ref. [35] within the context of an infinite
tower of Kaluza-Klein axionmodes, where it was exploited
in order to permit a higher-dimensional loosening of the
usual four-dimensional overclosure bounds on the Peccei-
Quinn scale fPQ. However, we now see that this effect is
completely general, and persists even when only two
modes are involved.
We thus conclude that for phase transitions occurring

during a radiation-dominated epoch, mixing alone induces
a significant suppression in the late-time energy density.

Indeed, this is true even if the phase transition is treated as
instantaneous. This effect grows in significance as Δm̄2 →

m̄2
sum and ξ̄ → 1. This effect is also largest when τG ∼ τðiÞζ ,

and ultimately vanishes for τG ≫ τðiÞζ .
Note that all of these observations are consistent with the

plots shown in Figs. 10, 11, and 12. For ΔG ¼ 0, we see
that all of the plotted curves begin at ρ̄ðΔG; ξ̄Þ=ρ̄ð0; 0Þ ¼ 1
except for those in Fig. 10, where the mere fact of having
ξ̄ ≠ 0 induces a suppression of the late-time energy density,
even for ΔG ¼ 0.
Finally, along the same lines, it is interesting to con-

template what happens for more general universes beyond
those that are radiation-dominated. The corresponding
results for universes with general values of κ are shown
in Fig. 15. We see that mixing alone indeed produces a
suppression of the late-time energy density for universes
with κ < 2, but this suppression actually becomes an
enhancement for universes with κ > 2! Moreover, as
expected, both effects become stronger as the mixing
saturation ξ̄ increases—strong enough to change the
late-time energy density by factors of two or three or even
more. Indeed, it is only for a matter-dominated universe
(corresponding to κ ¼ 2) that this effect disappears.

FIG. 13. Contours of the total late-time energy-density en-
hancement/suppression factor ρ̄ðΔGÞ=ρ̄ð0Þ, plotted in the ðτG; σÞ
plane, assuming a matter-dominated universe without mixing
(ξ̄ ¼ 0) and m̄2

00 ¼ 1. The thick black line running vertically and
along the σ ¼ 0 axis is the contour for which we have neither
enhancement nor suppression. The corresponding contours for a
radiation-dominated universe are similar. We observe that in the
absence of mixing, a finite width for the mass-generating phase
transition tends to modify the late-time energy density ρ̄ðσÞ
compared to what it would have been for an instantaneous phase
transition; this suppresses ρ̄ðσÞ rather significantly for τG ≳ 5, but
enhances ρ̄ðσÞ for τG ≲ 1. Remarkably, these results are generally
insensitive to σ as long as σ ≳ 0.1, and follow an approximate
scaling behavior ρ̄ ∼ Δ−1

G in this region.

FIG. 14. Suppression of the late-time energy density ρ̄ due to
mixing effects alone, with ΔG ¼ 0, in a radiation-dominated
universe. We assume an instantaneous phase transition at
τ ¼ τG, and plot the corresponding late-time energy density ρ̄ðξ̄Þ
as a function of the late-time mixing saturation ξ̄, normalized to its
value at ξ̄ ¼ 0, for different choicesof τG.Wesee that inall cases the
late-time energy density ρ̄ðξ̄Þ experiences a suppression which
grows increasingly severe as themixing saturation is increased. As
discussed in the text, the magnitude of this effect increases as η̄≡
Δm̄2=m̄2

sum → 1 (i.e.,asm̄2
00 → 0),andisentirelyabsent if thephase

transition instead occurs during amatter-dominated epoch ormore
generally if τG ≫ 1.
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IV. INDIVIDUAL LATE-TIME
ENERGY DENSITIES

In the previous section, we focused on only one quantity:
the total late-time energy density ρ̄. However, another
important feature is the actual distribution of this total
energy density ρ̄ amongst the two fields of our system. We
shall now proceed to study this issue.
In Fig. 16, we show the behavior of the individual late-

time energy densities associated with ϕλ0 (the lighter field)
and ϕλ1 (the heavier field) for a mass-generating phase
transition occurring at τG ¼ 104. It is therefore the sum of
these two energy densities which produces the results in
Fig. 12; recall that these results are the same for matter- and
radiation-dominated universes. It turns out that there are
many features illustrated within Fig. 16 which will be
important for our future results. We shall therefore step
through these features, one by one.
We begin by concentrating on the special case without

mixing (i.e., with ξ̄ ¼ 0). This will allow us to study the
effects of the nonzero phase-transition width ΔG for a
single component alone without the complications due to
mixing. For Δm̄2 ≥ 0, all of the energy density arising due
to the mass-generating phase transition accrues to the
lighter field ϕλ0 . For Δm̄2 < 0, by contrast, all of the

late-time energy density is associated with the heavier field
ϕλ1 , as discussed at the end of Sec. II.
In either case, we observe from Fig. 16 that the corre-

sponding late-time energy density ρ̄λ remains essentially
constant (i.e., independent of ΔG) for ΔG ≲ 2π=λ. This
makes sense, as the effects of introducing a nonzero width
for our phase transition will be essentially invisible if the
mass generation occurs more rapidly than the natural time-
scale of oscillations of our (underdamped) field ϕλ. In other
words, for ΔG ≲ 2π=λ, the process of pumping energy
density into our system occurs with what may be considered
to bemaximumefficiency, since the phase transition appears
to be effectively instantaneous with respect to the natural
oscillation timescale. However, for ΔG ≳ 2π=λ, the field
oscillations tend to compete against the process of mass
generation. As a result, the mass-generating phase transition
is less efficient in pumping energy density into our system,
thereby inducing a suppression in the late-time energy ρ̄λ
which ultimately scales as an inverse power of ΔG:

ρ̄λðΔG; 0Þ ∼ 1=ΔG for ΔG ≫ 2π=λ: ð4:1Þ

Thus, once ΔG exceeds the natural oscillation period of our
mass eigenstate, increasing the width of the phase transition
has the effect of introducing a power-law suppression of the
corresponding late-time energy density.
These results hold for the unmixed scenarios with ξ̄ ¼ 0.

However, for the lighter fields ϕλ0 (corresponding to the top
row of Fig. 16), we see that the above asymptotic behavior
continues to hold regardless of the value of the mixing:

ρ̄λ0ðΔG; ξ̄Þ ∼ 1=ΔG for ΔG ≫ 2π=λ0: ð4:2Þ

Thus, we see that increasing the width of the phase
transition continues to be associated with a power-law
suppression of the late-time energy density of the lighter
field—even in the presence of nonzero mixing.
Turning on a mixing between our two fields also has

a number of other important effects on their individual
late-time energy densities. For the lighter fields ϕλ0 (as
considered along the top row of Fig. 16), themost prominent
effect is of course the set of very strong oscillations which
are induced for very large mixing saturations ξ̄≲ 1 and
“intermediate” widths 1≲ ΔG ≲ 100. We shall defer our
discussion of these oscillations until the next section, but we
see from Fig. 16 that these oscillations are relatively large,
occasionally enhancing the corresponding late-time energy
densities abovewhat they would have been in the absence of
mixing by several orders of magnitude! Indeed, this
enhancement of the corresponding late-time energy den-
sities above their ξ̄ ¼ 0 values persists even for values ofΔG
which lie beyond the actual oscillations themselves.
As a result, we see that in the presence of a nonzero

width for the phase transition, mixing has a general
tendency to enhance the late-time energy density of the

FIG. 15. Suppression of the late-time energy density ρ̄ due to
mixing effects alone, with ΔG ¼ 0, for arbitrary universes para-
metrized by κ. As in Fig. 14, we assume an instantaneous phase
transition at τ ¼ τG, but we now plot the corresponding late-time
energy density ρ̄ðξ̄Þ as a function of κ, normalized to its value at
ξ̄ ¼ 0, for different choices of ξ̄. We see that mixing causes a
suppression of the late-time energy density within κ < 2 uni-
verses but an enhancementwithin κ > 2 universes—indeed, these
effects disappear only in the special case of a matter-dominated
universe. These effects can therefore produce significant mod-
ifications of the final late-time energy density, even for instanta-
neous mass-generating phase transitions.
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lighter field—all without disturbing the power-law sup-
pression discussed above. Indeed, for the lighter fields ϕλ0 ,
the effects of the nonzero transition width ΔG and the
nonzero mixing saturation ξ̄ tend to pull in opposite
directions: the width tends to suppress the corresponding
late-time energy density while the mixing tends to enhance
it. As evident from the plots along the top row of Fig. 16,
the nature of the net result (either an overall enhancement or
overall suppression) therefore depends nontrivially on the
precise values of ΔG and ξ̄ involved.
By contrast, for the heavier fields ϕλ1 (for which the

corresponding energy densities are plotted along the
bottom row of Fig. 16), the effects of nonzero mixing
are quite the opposite: the enhancement discussed above is
gone, and instead there is now an additional suppression
which helps to drive the corresponding energy densities to
even smaller values, as functions ofΔG, than we had for the
lighter fields!
It is important to understand the origins of this additional

suppression. Unlike the lighter field ϕλ0 , which obtains its

energy density directly from the phase transition through
the generation of a nonzero mass, the heavier field ϕλ1
actually gains its energy density when it gains an overall
field amplitude through mixing with the lighter field. The
magnitude of the resulting energy density is then governed
by two factors: the magnitude of the field amplitude
generated, and the masses that are also generated by the
phase transition.
Thus, while the natural timescale governing the rate at

which the energy density is originally pumped into the
lighter field is given directly by ΔG—and thus by the
function hðτÞ plotted in Fig. 3—the natural timescale
governing the rate at which the energy density is pumped
into the heavier field is governed not only byΔG but also by
the rate of change of the mixing angle θ plotted in Fig. 8. In
analogy with Eq. (2.12), we may even define a correspond-
ing width Δθ for the mixing angle θ via the slope of θðτÞ at
its midpoint θ̄=2:

Δθ ≡ ðθ̄=_θÞjτθ ; ð4:3Þ

FIG. 16. Behavior of the individual late-time energy densities ρ̄λ0;1ðΔG; ξ̄Þ when mixing effects, parametrized by ξ̄, are combined with
a nonzero width ΔG for the mass-generating phase transition. For these plots we adopt the large fiducial time τG ¼ 104 utilized for
Fig. 12, which leads to identical results for radiation- and matter-dominated universes. The top row shows results for ρ̄λ0 (associated with
the lighter state in all cases), while the bottom row shows results for ρ̄λ1 (associated with the heavier state); we have also held m̄2

sum ¼ 4

and take Δm̄2 ¼ −3, 0, þ3 for the left, center, and right columns, respectively. In each case we plot the late-time energy density ρ̄λ as a
function of the phase-transition widthΔG for different values of the mixing saturation ξ̄, normalized to its value forΔG ¼ 0. Note that we
refrain from plotting curves for ξ̄ ¼ 0 (and instead plot curves for ξ̄ ¼ 0.05) in cases where the corresponding energy densities vanish.
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here τθ, as defined in Eq. (2.33), is defined analogously to
τG as the time at which θ ¼ θ̄=2. A rough analytical
approximation for Δθ when η̄ < 0 is given by

Δθ ≈
ξ̄

3jη̄jΔG for η̄ < 0: ð4:4Þ

The magnitudes of ΔG and Δθ are compared in Fig. 17,
from which we see that Δθ never exceeds ΔG. Indeed, we
see from Fig. 17 that Δθ can be much smaller than ΔG for
η̄ < 0 and ξ̄ ≪ 1. We thus see that during our mass-
generating phase transition, the mixing angle θ always
changes at least as rapidly as do the eigenvalues λi, and can
in fact under certain circumstances change even more
rapidly, the latter despite the fact that both sets of changes
arise due to the same phase transition.
This observation is directly relevant for the manner in

which the heavier field accrues its energy density from the
mass-generating phase transition. As such, this feature is
thereby directly relevant for the resulting behavior of the
late-time energy density ρ̄λ1. There are three distinct cases
to consider.

(i) ΔG ≪ 2π=λ1: In this case, the oscillations of the
heavier field are so slow during the phase transition
that all aspects of the phase transition appear

effectively instantaneous. This is true for the gen-
eration of the amplitude of the heavier field as well
as the change in its mass. Energy density is thereby
delivered to the heavier field with maximum effi-
ciency, in a manner which is completely insensitive
to the nonzero timescales Δθ andΔG associated with
the phase transition and which is thereby protected
against all of their associated dissipating effects.
This behavior is evident for sufficiently small ΔG
within the plots along the lower row of Fig. 16.

(ii) Δθ ≲ 2π=λ1 ≲ ΔG: In this case, the oscillations of
the heavier field are sufficiently slow that the
generation of its field amplitude appears to be
effectively instantaneous; these oscillations are
nevertheless sufficiently rapid that full oscillations
can occur during the change in field mass. The net
result is that the heavy-field energy density ρ̄λ1
experiences the same suppression as does the
light-field energy density ρ̄λ0, with both depending
nontrivially on ΔG and ultimately scaling inversely
withΔG. Note that this case exists only for situations
in which Δθ is significantly smaller than ΔG, which
according to Fig. 17 tend to emerge only for Δm̄2 <
0 and relatively small mixing.

(iii) 2π=λ1 ≲ Δθ: In this case, the field oscillations of the
heavier field are sufficiently rapid that full oscillations
areoccurringnotonlyduringthechangein itsmassbut
also during the generationof its amplitude. This latter
feature leads toanadditional sourceof suppression for
the late-time energy density beyond what the lighter
field experiences, and causes ρ̄λ1 to exhibit an even
more dramatic suppression as a function of ΔG than
that exhibited by ρ̄λ0. This behavior is clearly evident
for sufficiently large ΔG in the plots along the lower
row of Fig. 16.

The above discussion describes the behaviors of the
individual components ρ̄λ as functions of ΔG and ξ̄.
However, our final task is to determine how much each
of these individual components contributes to the total
energy density ρ̄. Of course, to do so requires that we
understand not just the intrinsic behaviors of these indi-
vidual components as functions of ΔG and ξ̄, but also the
relative sizes of these individual components. In other
words, we need to understand the relative normalization of
the curves for ρ̄λ0 in the top row of Fig. 16 relative to those
for ρ̄λ1 in the bottom row. However, this relative normali-
zation may easily be determined in the ΔG ¼ 0 limit, for
which analytical results are given in Appendix A. Indeed,
use of the virial approximation λiτG ≫ 1, which is valid for
the plots in Fig. 16, yields the ratio

ρ̄λ0ð0; ξ̄Þ
ρ̄ð0; ξ̄Þ ¼ λ̄20cos

2θ̄

λ̄20cos
2θ̄ þ λ̄21sin

2θ̄
¼ cos2θ̄

�
1 − η̄ sec 2θ̄

1 − η̄

�

ð4:5Þ

FIG. 17. The ratio of the two timescales ΔG and Δθ, plotted as a
function of η̄ for different mixing saturations ξ̄. In all cases, we
see that Δθ < ΔG, with Δθ ≪ ΔG for η̄ < 0 and ξ̄ ≪ 1. The dots
represent the approximate analytical result in Eq. (4.4). The
distinction between Δθ and ΔG has important implications for the
energy density associated with the heavier field ϕλ1 , since ΔG

governs the rate at which the mass of this field is modified during
the phase transition while Δθ governs the rate at which the
amplitude of this field is generated as a result of its mixing with
the lighter field.
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as the fraction of the total late-time energy density
remaining in the lighter field. As expected, this quantity
evolves monotonically from unity at θ ¼ 0 to zero at θ ¼
θmax [where θmax is defined in Eq. (2.26)]. It may thus be
greater or less than 50%, depending on the eigenvalues and
mixing angles in question. Note that in the limit of small
mixing (which corresponds to θ ≈ 0 or θ ≈ π=2), the result
in Eq. (4.5) implies that whether the bulk of the energy
density winds up at late times associated with the lighter or
heavier field depends simply on the sign of η rather than its
magnitude. (Recall, in this connection, that η → −η implic-
itly changes θ → π=2 − θ.)
The result in Eq. (4.5) holds only for ΔG ¼ 0. However,

as ΔG grows larger, this ratio will change. For the total
energy densities plotted in Fig. 12, the corresponding
fractional results are shown in Fig. 18 as a function of
ΔG. It is easy to understand the behavior shown in Fig. 18.
Regardless of the fraction of the total late-time energy
density associated with the lighter field ϕλ0 when ΔG ¼ 0,
we have already seen that the energy densities associated
with the heavier fields are typically more suppressed as a
function ofΔG than are the energy densities associated with
the lighter fields. Thus, regardless of the late-time energy-
density configuration when the phase transition is instan-
taneous, we see that increasing the width of the phase
transition has the effect of throwing an increasingly large
share of the total late-time energy density into the lighter
field. Indeed, in some cases, we see that we can entirely
reverse the distribution of the total energy density from the
heavier field to the lighter field, simply by adjusting the
timescale over which the phase transition occurs!

V. PARAMETRIC RESONANCE

We now turn to what is perhaps the most prominent
feature within the plots shown in Figs. 12, 16, and 18: the

appearance of nonmonotonicities in the late-time energy
densities ρλ associated with the lighter fields ϕλ0 as
functions of the phase-transition width ΔG. As indicated
in Sec. III, these oscillations grow particularly large when
τG is large and when the mixing saturation ξ̄ grows close to
1. These nonmonotonicities indicate that within this region
of parameter space there exists an extremely strong
sensitivity of the late-time energy density ρ̄λ0 to even small
variations in the phase-transition width ΔG. Moreover, as
evident from Fig. 16, these nonmonotonicities can often
enhance ρ̄λ0 by several orders of magnitude!
These nonmonotonicities are yet another consequence of

the interplay between the width of our phase transition and
the mixing it induces. It is not difficult to understand the
origin of these oscillations: ultimately they are parametric
resonances triggered by our mass-generating phase tran-
sition. Recall that a parametric resonance generically
occurs when the mass of an oscillator itself exhibits an
oscillatory behavior whose frequency is approximately
twice the natural frequency of the oscillator. (An example
of this is a child “pumping” a swing by alternatively
standing and squatting on the swing seat at the correct
moments during the period of the swing.) In such systems,
the amplitude of oscillation grows exponentially and with-
out bound unless the oscillator also has a frictional damping
term. A similar behavior can also emerge if the friction term
(rather than the mass term) experiences the oscillatory
behavior.
At first glance, it may seem that our system of coupled

scalar fields has no means of experiencing a parametric
resonance. The equations of motion of our model are given
in Eq. (2.7), and although both the Hubble damping term
HðτÞ and the mass matrix M2

ij in our model are time-
dependent, the Hubble term is monotonically falling.
Likewise, the hðτÞ-function—which governs the time

FIG. 18. The fraction of the total late-time energy density ρ̄ðΔG; ξÞwhich is associated with the lighter field ϕλ0 , plotted as functions of
ΔG for different values of ξ, with τG ¼ 104. Regardless of the small-ΔG values of this fraction [as given analytically in Eq. (4.5)], we see
that increasing the width ΔG of the phase transition generally has the net effect of transferring more and more of the total energy density
into the lighter field. Thus, simply by adjusting the width of the phase transition, we see that we can often entirely reverse the distribution
of the late-time energy density.
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development of our mass matrix, as in Eq. (2.9)—is also
monotonic.
However, this is where the mixing plays a critical role.

Because of the nonzero mixing inherent in this system, the
aspects of the mass matrix which are important are not its
individual components m2

ij but rather its eigenvalues λi.
Indeed, even though the mass-matrix components m2

ijðτÞ
are all monotonic as functions of time τ, the eigenvalues λi
need not be. These eigenvalues were plotted as functions of
time in Fig. 7, and we see that for the smaller eigenvalue λ0
the mixing induces a level-repulsion that often results in a
nonmonotonic “pulse.” This pulse is more prominent for
Δm̄2 < 0 than for Δm2 > 0, but it is ultimately a generic
feature of the behavior of the lower eigenvalue for
sufficiently saturated mixing. Indeed, this pulse grows
increasingly dramatic as ξ̄ → 1, and has a width governed
by ΔG. In general, it is straightforward to show that a
pulse will always appear for the lightest eigenvalue if the
extra contribution to the squared-mass matrix that comes
from the mass-generating phase transition has negative
determinant—i.e., det m̄2

ij < 0.
Strictly speaking, a single pulse does not oscillatory

behavior make. However, during the relevant time interval
near τG, this pulse may be regarded as one oscillation
within a full sinusoidal pattern. This situation is illustrated
schematically in Fig. 19. Of course, variations in ΔG
directly affect the width of this pulse, and thereby change
the effective pulse frequency. As a result, there will exist a
single value of ΔG for which this frequency is exactly twice
the natural frequency of our oscillator, and for which our

primary parametric resonance emerges. Even greater values
of ΔG then correspond to the higher harmonics of this
resonance.
This, then, is the origin of the parametric oscillations

apparent in the plots shown in Figs. 12, 16, and 18. As
such, this entire phenomenon is a prime example of the
interplay between the mixing ξ̄ and the width of the mass-
generating phase transition: the nonzero mixing produces
the level repulsion that leads to the pulse, while the nonzero
width of the phase transition endows this pulse with the
specific width/frequency needed for it to potentially trigger
an actual resonance. Moreover, with this explanation, we
now understand why these resonances occur only for
certain values of ΔG, and only for the lighter field. This
also explains why these resonances grow stronger as ξ̄ → 1.
Furthermore, although this pulse exists for both Δm̄2 < 0

and Δm̄2 > 0 (as evident in Fig. 7), we have already
learned in the previous section that for the intermediate
values of ΔG relevant for the parametric resonance, the
energy density of the lighter field contributes a greater
fraction of the total energy density forΔm̄2 > 0 than it does
for Δm̄2 < 0. This behavior is illustrated, for example, in
Fig. 18. It is for this reason that the total energy density ρ̄
exhibits a stronger parametric resonance for Δm̄2 > 0 than
for Δm̄2 < 0 (as evident in Fig. 12), even though the
individual component ρ̄λ0 exhibits a stronger parametric
resonance for Δm̄2 < 0 than for Δm̄2 > 0 (as is evident
in Fig. 16).
In general, it is easy to determine the values of ΔG for

which such parametric resonances occur. As indicated
above, we imagine that λ20ðτÞ experiences a “pulse”
centered at τ ¼ τp, as sketched in Fig. 19. Within the
region of the pulse, we then approximate the behavior of
the pulse as part of a sinusoidal function with an effective
frequency ωeff :

λ20ðτÞ ≈
1

2
λ20ðτpÞf1þ cos½ωeffðτ − τpÞ�g ð5:1Þ

for τ ≈ τp. From Eq. (5.1) we then find that

ω2
eff ¼ −4

�̈
λ0
λ0

�				
τ¼τp

: ð5:2Þ

A pulse with this frequency will lead to an nth-order
parametric resonance only if ωeff is (2=n) times the natural
oscillation frequency of our system. The case with n ¼ 1
produces the primary parametric resonance, while the cases
with n ∈ Z > 1 produce its higher-order harmonics.
However, near τ ≈ τp, the natural oscillation frequency
associated with the lightest field is nothing but λ0ðτpÞ, since
it is the mass of the field which drives its oscillations. We
thus must demand

FIG. 19. A schematic illustration of the “pulse” (solid blue
curve) experienced by the smaller eigenvalue λ0ðτÞ near τ ≈ τp
and a full sinusoidal function (dashed red curve) to which it may
be approximated in the vicinity of the pulse. As discussed in the
text, this approximation allows us to extract the effective
frequency ωeff associated with the pulse and thereby determine
the mathematical condition under which an nth-order parametric
resonance occurs.
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ωeff ¼
2

n
· λ0ðτpÞ: ð5:3Þ

In other words, a parametric resonance will occur only
when two timescales are balanced: the timescale 1=ωeff of
the pulse, and the timescale 1=λ0ðτpÞ of the field oscil-
lations in the vicinity of the pulse. Combining this with
Eq. (5.2), we then obtain a condition for an nth-order
parametric resonance:

�̈
λ0
λ30

�				
τ¼τp

¼ −
1

n2
; n ∈ Zþ: ð5:4Þ

Variations inΔG will modify the value of the left side of this

equation. Thus, there exist a discrete set of values ΔðnÞ
G for

which this equation can be satisfied, one for each value of
n. These are then the phase-transition widths for which
parametric resonances exist.

The solutions for ΔðnÞ
G can be obtained numerically, and

our results are shown in Fig. 20. We see that the values of

ΔðnÞ
G generally increase with n, as expected. Likewise, these

critical widths also increase as functions of η̄ and ultimately
diverge as η̄ → 1. Moreover, superimposed on this plot are
contours showing the values of 2π=λ1 in relation to Δθ. As
noted in Sec. IV, the smaller 2π=λ1 is in relation to Δθ, the
more suppressed is the energy-density contribution of the

heavier field relative to that of the lighter field and hence
the more the lighter field (which feels the parametric
resonance) dominates the total energy density. This then
confirms our previous expectation that the parametric
resonance, through stronger within ρ̄λ0 when Δm̄2 < 0,
is nevertheless more pronounced within ρ̄ when Δm̄2 > 0.
Thus, we conclude that parametric resonances not only

occur, but can also dominate the total energy density of our
system. Such parametric resonances can distort the result-
ing late-time energy densities by several orders of magni-
tude, and thus may play an important role in early-universe
cosmology.

VI. REOVERDAMPING

We now turn to another novel feature which
results from the confluence between mixing and a finite
phase-transition width: a phenomenon which we refer to as
“reoverdamping.”
As discussed at the beginning of Sec. II, any scalar field

ϕ with mass λðtÞ will experience overdamped behavior
(and thus function as vacuum energy) at times t for which
3HðtÞ=2≳ λðtÞ. By contrast, such a field will experience
underdamped behavior (and thus function as matter) when
3HðtÞ=2≲ λðtÞ. Of course, HðtÞ ∼ 1=t in any postinfla-
tionary epoch. Thus, in situations for which λðtÞ is either
constant or monotonically increasing, as illustrated in

FIG. 20. The phase-transition widthsΔðnÞ
G (n ¼ 1, 2, 3) at which

the first three parametric resonances occur, plotted as functions of
η̄. Contours showing 2π=λ1 in relation to Δθ are also super-
imposed. The region with large η̄ is thus one in which our
parametric resonances occur while Δθ ≫ 2π=λ1—i.e., a region in
which the total late-time energy density ρ̄ is dominated by the
contribution from the lighter field experiencing the parametric
resonance.

FIG. 21. A schematic illustrating the behavior of the lower-
mass eigenvalue λ0ðtÞ in the presence of a “pulse,” plotted as a
function of time with the Hubble parameter 3HðtÞ=2 super-
imposed. The corresponding field ϕλ0 therefore experiences not
just the usual transition from overdamped to underdamped
behavior, as in Figs. 1 and 2, but also a novel reoverdamping
transition. As shown, this reoverdamped phase can persist for
considerably longer than the width ΔG of the pulse that produced
it, and thus can have a significant impact on the resulting
cosmological history.
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Fig. 2, there exists a single, relatively short era of times t for
which 3HðtÞ=2 ≈ λðtÞ. Indeed, this is the period, as dis-
cussed in Sec. II, during which our scalar field ϕ is
transitioning from overdamped to underdamped behavior.
After this transition, our field then remains underdamped
for all future times.
This is the standard situation, and assumes that λðtÞ is

either constant ormonotonically increasing. However, as we
discussed in Sec. V, this need not be true when multiple
fields mix in the presence of a mass-generating phase
transition of nonzero width. Indeed, as we have seen in
Sec. V for our two-component toy model, the mass of our
lighter field can experience a “pulse,” as illustrated in
Fig. 19; this is the phenomenon underlying the parametric
resonances discussed in Sec. V. In the presence of a pulse,
however, the 3HðtÞ=2 curve may cross the λðtÞ curve not
just once but three times, resulting in a field which begins
overdamped, then becomes underdamped, but then

experiences a reoverdamped phase before eventually set-
tling back into a final underdamped state. This behavior is
illustrated in Fig. 21. Moreover, as sketched in Fig. 21, the
period during which the field exists in a reoverdamped
phase can be of extremely long duration—even relative to
the width of the pulse that produced it. Indeed, as we shall
discuss below, this duration can become arbitrarily long,
depending on the values of the underlying input parameters
of our model. As a result, the reoverdamped phase can
persist throughout a sizable portion of cosmological history.
It is important to stress that unlike the original over-

damped phase, this reoverdamped phase of the theory
should not be associated with vacuum energy. Indeed, at the
moment of transition into the reoverdamped phase, oscil-
latory behavior ceases but our field value reenters the
overdamped phase carrying a nonzero velocity _ϕ. Thus, the
reoverdamped phase is one in which our field value has a
nonzero but steadily decreasing first derivative. In this

FIG. 22. The lighter field ϕλ0 (top row) and corresponding total energy density ρ (bottom row), plotted as functions of time for
situations (left to right) in which ξ → 1 (or ϵ≡ 1 − ξ → 0). Note that the fields and corresponding energy densities are normalized so
that ϕλ0 ¼ 1 for τ ≪ τG. Time intervals during which the system is overdamped are shaded (blue), while the width ΔG of the original
mass-generating phase transition is also indicated (red). As the mixing saturation increases towards its maximum value
(a point of enhanced symmetry for the system), we see that a reoverdamped phase emerges with increasing duration. For comparison
purposes, superimposed on each plot are the field values and/or total energy densities that our system would have exhibited in the
ΔG → 0 limit (green); recall that in this limit it is the energy density of the heavier field which dominates the total energy density. We
thus see that the reoverdamped phase can easily persist throughout a large period of cosmological history, with a phenomenology that is
quite different from those of the traditional overdamped or underdamped phases.
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sense, then, the reoverdamped phase represents a truly
different behavior for our field values—one which is
neither vacuum energy (constant field values) nor matter
(oscillatory field values), but something completely differ-
ent which transcends our traditional expectations for scalar
fields in an expanding universe.
The reoverdamped phase tends to emerge in systems in

which the mixing is close to its maximum allowed value,
with ξ → 1 (or ϵ≡ 1 − ξ → 0). The resulting behavior for
field values and energy densities in this limit are illustrated in
Fig. 22. As expected, we see that the reoverdamped phase
has a phenomenology which is quite distinct from those of
the traditional overdamped or underdamped phases.
On the one hand, this reoverdamped phase can be

considered to be a mere “transient.” After all, it cannot
last forever: as long as the field ϕ has nonzero mass at late
times, this phase must always give way to a final under-
damped phase. In other words, the reoverdamped phase can
never represent the eventual end-state for our system as
t → ∞. Moreover, even within this phase, the nonzero
initial field velocity _ϕ which characterizes its unique
properties always eventually dissipates to _ϕ ≈ 0 as long
as this phase has sufficient duration. In such cases, this
phase eventually comes to resemble vacuum energy. On the
other hand, however, this attitude can be viewed as
unnecessarily stringent. Even though the reoverdamped
phase must always eventually give way to one which is
underdamped, we have seen that it can, depending on the
specific model under study, be made to persist for arbi-
trarily long duration. Likewise, this phase can begin with
arbitrarily large initial velocity _ϕ. Thus, in purely practical
terms, this phase can be considered alongside “vacuum
energy” and “matter” as an equally valid new behavioral
phase that a scalar field can experience during a significant
portion of cosmological evolution.
As a final comment, we remark that this reoverdamping

phenomenon also leads to a resonancelike behavior
wherein quantities such as the late-time energy density
experience a nonmonotonic sensitivity to quantities such as
ΔG. This is because the behavior of our field ϕ during
the reoverdamped epoch depends very sensitively on the
particular field velocity _ϕ that happened to exist at the
precise moment the reoverdamping transition occurs. This
gives rise to a periodic sensitivity of the final energy density
to any quantity which affects the positioning of the
reoverdamping transition moment. However, it turns out
that the mathematical conditions underlying this periodicity
are essentially the same as those underlying the parametric
resonance discussed in Sec. V; this makes sense as both
concern the fitting of (half-)integral numbers of field
oscillations within the same eigenvalue pulse. Moreover,
it turns out that the parametric resonance necessarily exists
for all situations in which reoverdamping exists (even
though the converse is not true). As a result, in such
situations both features are inherent in the solutions to our

equations of motion and the effects of this reoverdamping-
induced oscillation are difficult to disentangle from those of
the parametric resonance.

VII. PHENOMENOLOGICAL EXAMPLE:
A SECOND AXION

As a phenomenological example of some of the main
results of this paper, let us consider the effects that might
come from adding a second axion to the standard QCD
axion theory. As we shall see, the introduction of a second
possible axion can severely distort the physics normally
associated with the ordinary QCD axion, even if the second
axion is itself associated with a relatively heavy Peccei-
Quinn scale or is only mildly coupled to the first.
Our theoretical set up is as follows. We assume that ϕ0

and ϕ1 are both axionlike particles—i.e., the pseudo-
Nambu-Goldstone bosons associated with the breaking
of global symmetries Uð1Þ0 and Uð1Þ1 at energy scales
f0 and f1, respectively. We assume that both fields are
coupled to the QCD gauge fields via the chiral anomaly,
with Oð1Þ model-dependent coefficients ξ0 and ξ1.
Moreover, in keeping with the assumptions of our toy
model, we assume that at early times ϕ0 is massless while
ϕ1 has a nonzero massM which possibly arises due to some
earlier dynamics. Eventually, nonperturbative QCD instan-
ton effects give rise to a temperature dependent effective
potential Vðϕ1;ϕ2Þ which takes the form

VðTÞ ¼ μ4Λh
2
QCDðTÞ

�
1 − cos

�
ξ0ϕ0

f0
þ ξ1ϕ1

f1
þ Θ̄

��
ð7:1Þ

where μ4Λ ≡ g2sΛ4
QCD=ð32π2Þ, where hQCDðTÞ describes the

temperature dependence of this effective potential as it
turns on (as illustrated in Fig. 4), and where Θ̄ is the QCD
theta-angle. Thus we see that the instanton-induced
QCD confining phase transition plays the role of our
mass-generating phase transition: it occurs at time tG ¼
tQCD with width ΔG ¼ ΔQCD ¼ ffiffiffi

π
p

σtQCD, and gives rise to
an additional contribution to the squared-mass matrix of
our axionlike fields which at late times takes the form

m̄2
ij ≡ ∂2V

∂ϕi∂ϕj

				
hϕi

¼ μ4Λ
fifj

ð7:2Þ

where we have set ξ0 ¼ ξ1 ¼ 1 for simplicity.
Given this setup, we thus have two mass eigenstates, ϕλ0

and ϕλ1 , with late-time masses λ̄0 and λ̄1 respectively. As
we survey the range from M ¼ 0 to M ¼ ∞, we find that
these late-time masses increase monotonically within the
ranges

0 ≤ λ̄0 ≤ μ2Λ=f0 ð7:3Þ

and
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μ2Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f20
þ 1

f21

s
≤ λ̄1 ≤ ∞: ð7:4Þ

For reasons to be discussed shortly, we shall identify the
lighter mass eigenstate as our QCD axion, which means
that we shall identify λ̄0 as the axion massma. We shall also
define x≡ λ0f0=μ2Λ; thus 0 ≤ x ≤ 1. Note that in this
section we are keeping M explicit in our expressions;
thus, all quantities such as λ̄i have their true physical mass
dimensions. Our goal is then to understand how the late-
time energy density associated with this field is influenced
by the presence of the additional axion.
Note that there are two physically distinct ways in which

to realize a limit in which the second axion decouples from
the first: either we can take M → ∞ and leave f1=f0
arbitrary, or we can take f1=f0 → ∞ and leaveM arbitrary.
In the first case, we find that x̄ ¼ 1 regardless of the value
of f1. In the second case, by contrast, we find that x̄ ¼ 1 for
all M ≥ μ2Λ=f0, but x̄ ¼ Mf0=μ2Λ < 1 for all M < μ2Λ=f0.
Of course both decoupling limits smoothly merge together
in the region for which both M and f1=f0 are taken to
infinity.
In order to quickly survey the expected phenomenolo-

gies of this two-axion system as functions of fM; f0; f1g—
and also to understand the properties of these different
decoupling limits—let us calculate the corresponding

values of η̄ and ξ̄. In terms of fM; f0; f1g, these are
given by

η̄ ¼ 1þ ðf1=f0Þ2½2ðMf0=μ2ΛÞ2 − 1�
1þ ðf1=f0Þ2½2ðMf0=μ2ΛÞ2 þ 1� ð7:5Þ

and

ξ̄ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðf1=f0Þ2ðMf0=μ2ΛÞ2

q : ð7:6Þ

These quantities are shown in Fig. 23. Although both
decoupling limits result in ξ̄ → 0 (the absence of mixing),
as expected, we immediately see that the decoupling limit
with f1 ≫ f0 and arbitrary M generally gives rise to all
possible values of η̄ in the range −1 ≤ η̄ ≤ 1. By contrast,
the decoupling limit with M → ∞ gives rise to η̄ ¼ 1
regardless of the value of f1=f0.
This is an important distinction because we have already

seen in Sec. IV that η̄ > 0 is the regime in which the
majority of the energy density is found in the lighter field at
late times, whereas η̄ < 0 is the regime in which the
majority of the energy density is transferred to the heavier
field at late times. This behavior was in fact discussed
explicitly below Eq. (4.5) in the limit of an instantaneous
phase transition. Thus, it is only the decoupling limit with

FIG. 23. The quantities η̄ (left panel) and ξ̄ (right panel), plotted as functions ofM for different values of f1=f0. Superimposed on each
plot are contours of x̄ (dashed black lines). The decoupling regions in each case correspond to taking f1=f0 → ∞ for any M as well as
taking M → ∞ for any f1=f0; these smoothly connect to form the curves labeled “decoupling limit” on each plot. Note that we have
ξ̄ ¼ 0 along the entire decoupling-limit line, as expected since the decoupling limit is one in which there is no mixing between the two
axions. By contrast, the decoupling-limit line surveys all possibilities of η̄. We also observe from either panel that x̄ ¼ 1 along the
decoupling line for allM ≥ μ2Λ=f0, while x̄ < 1 along the decoupling line for allM < μ2Λ=f0; this is easier to see in the right panel but is
true as a general statement about the relationship between M and x̄ in the decoupling limit. Thus, an infinite M implies that x̄ ¼ 1 but
x̄ ¼ 1 implies only that M ≥ μ2Λ=f0.
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M → ∞ and arbitrary f1=f0 for which the energy density
actually remains in the lighter field where it started, as we
would expect for a proper decoupling limit.
We shall therefore adopt the limit with M → ∞ and

arbitrary f1=f0 as our benchmark against which to measure
the effects that come from the presence of the second axion.
Note that in the M → ∞ limit, the physics of our system
actually becomes independent of f1=f0; we have already
seen this behavior for the specific quantities η̄ and ξ̄ in
Fig. 23, but this feature indeed holds more generally for all
properties of the system.
Although we have been considering the lighter mass

eigenstate ϕλ0 as our QCD axion, it is important to realize
that the entire notion of a “QCD axion” no longer strictly
applies. For example, there is no mass eigenstate in our
model whose mass is inversely proportional to f0 or f1, as
might be taken to characterize a QCD axion. Likewise,
there is no mass eigenstate in this model which solves the
strong CP problem; in particular, we see from Eq. (7.1) that
it is only the linear combination ϕ0=f0 þ ϕ1=f1 which
dynamically relaxes against the strong CP angle Θ̄.
However, in the M → ∞ decoupling limit, our model
reduces to the standard single-axion model: the lighter mass
eigenstate remains massless prior to the instanton-induced
phase transition, gathers a mass μ2Λ=f0 after this transition,
and solves the strong CP problem. For this reason we shall
continue to refer to the lighter mass eigenstate as our “QCD
axion,” even in the presence of mixing.
Given this, we now calculate the late-time energy density

associated with the lighter (QCD) axion as a function of the
lighter (QCD) axion mass x̄≡ λ̄0f0=μ2Λ, normalized to our
decoupled benchmark limit with M ¼ ∞ (for which
x̄ ¼ 1). (As a technical point, note that we describe this
benchmark through the condition M ¼ ∞ rather than the
condition x̄ ¼ 1, since the former implies the latter

regardless of f1=f0 whereas the latter fails to imply the
former when f1=f0 → ∞.) In all cases we take tG ¼ tQCD
and ΔG ¼ ΔQCD to have the specific fixed values that
correspond to the instanton-induced QCD phase transition,
as plotted in Fig. 4.
Our results are shown in Fig. 24. We see from Fig. 24

that the late-time energy density associated with the QCD
axion is suppressed relative to what would have been
expected in the M → ∞ decoupling limit. Indeed, this
suppression is significant, occasionally stretching over
many orders of magnitude, and arises regardless of the
mass x̄ of the QCD axion, its corresponding Peccei-Quinn
scale f0, or the Peccei-Quinn scale f1 associated with the
second axion. Indeed, none of this would have occurred
were it not for the nonzero width of the instanton-induced
QCD phase transition. This then demonstrates the phe-
nomenological relevance of this nonzero width, and the
need to incorporate these kinds of effects in studies of
multiaxion theories.
Note that this suppression of the late-time energy density

due to the presence of the second axion field persists even
in the limit for which f1 ≫ f0. However, this somewhat
counter-intuitive result should not come as a surprise. As
we know, the limit f1=f0 → ∞ corresponds to one in
which ξ̄ → 0—i.e., one in which the late-time mixing
vanishes. However, this does not imply that the mixing
is small throughout the time evolution—in fact, both θ and
its time derivative can be quite sizable during the mass-
generating phase transition. Indeed, this is particularly true
for the relatively small values of x̄ which correspond to
η̄ < 0. Thus, it is during the mass-generating phase
transition that the bulk of the energy density can be
transferred to the second axion—even when f1 ≫ f0!
This is therefore an effect that arises as a direct conse-
quence of the nonzero width of the instanton-induced QCD
phase transition and its associated timescale.

FIG. 24. The late-time energy density ρ̄λ0ðΔQCD;MÞ associated with the QCD axion field ϕλ0 , plotted as a function of the late-time
axion mass x̄≡ λ̄0f0=μ2Λ and normalized to what it would have been in the decoupling limit in which the second axion plays no role.
These plots thus illustrate the effects of the nonzero mixing between our two axion fields in the presence of a nonzero QCD phase
transition widthΔQCD. Note that although each normalization factor ρ̄λ0ðΔQCD;M → ∞Þ is in principle different for each different f1=f0
curve, physics in the decoupling limit M → ∞ is insensitive to the value of f1=f0. Thus all curves in each panel share the same
normalization factor.
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Interesting as these results are, they only address the
issue of how our late-time energy density compares
with what would arise in the decoupled case—i.e., the
case with no mixing (ξ̄ ¼ 0). In this paper, however, we
have also repeatedly studied another comparison, namely
to the case of an instantaneous phase transition—i.e.,
the case in which we imagine our phase transition to
have ΔQCD ¼ 0. The corresponding results are shown
in Fig. 25.
Once again, it is not difficult to understand the features in

these plots. First, let us discuss the endpoints at x̄ ¼ 1. Of
course, these endpoints correspond to the decoupling limit
(because x̄ ¼ 1 implies ξ̄ ¼ 0, as we have seen in Fig. 23);
thus the physics at these endpoints includes the effects from
only the lighter (QCD) axion itself. As we see from Fig. 25,
even in this limit the resulting late-time energy density is
significantly suppressed by factors ranging from 5 to 500 as
f0 ranges from 1015 to 1013 GeV. Thus the effects of
properly accounting for the nonzero width ΔQCD of our
instanton-induced phase transition are extremely important,
even for a single QCD axion!
Moving away from the decoupling limit towards smaller

values of x̄, we now begin to incorporate the additional
effects of the mixing with the second axion field. As we see
from Fig. 25, these effects enhance the resulting late-time
energy density above what it would have been in the
decoupling limit. In so doing, they can even possibly
overcome the above suppression completely—a prospect
that depends on the value of f1=f0—and thereby poten-
tially increase the late-time energy density above what it
would have been for an instantaneous phase transition! This
enhancement ultimately reflects the same physics that we
have already seen in Figs. 10 and 11 for small mixing

saturations in the tG ≈ tð0Þζ region. Indeed, we see from
Fig. 23 that larger values of f1=f0 correspond to smaller
mixing saturations ξ̄.

Finally, we can also understand why these curves all
begin at 1 for x̄ ¼ 0. At this endpoint of these plots,
our axion fields remain overdamped during the mass-
generating phase transition. They thus remain insensitive
to the transition width ΔQCD.
We can also consider the fraction of the total energy

density of our two-axion system which is associated with
the lighter axion field. These results are shown in Fig. 26. In
general, we see that as f1=f0 increases, an increasing
fraction of the total energy density is associated with the
heavier axion field. However, as x̄ → 1, we see that
virtually all of the total energy density can be associated
with the lighter axion field.

FIG. 25. Same as Fig. 24 except that the late-time energy densities ρ̄λ0ðΔQCD;MÞ are now normalized to the values that they would
have had if the QCD phase transition had been treated as instantaneous. These plots thus illustrate the effects that emerge due to the
actual nonzero width of the QCD phase transition—effects which survive even in theM → ∞ decoupling limit (for which x̄ → 1). Note
that unlike the plots in Fig. 24, here the normalization factors ρ̄λ0ð0;MÞ are different for each f1=f0 curve and in fact even vary with x̄
along each curve.

FIG. 26. The late-time fraction ρ̄λ0=ρ of the total late-time
energy density which is associated with lighter axion field,
plotted as a function of x̄. We see that this fraction generally
decreases as f1=f0 increases, and also increases as a function
of x̄.
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As a final comment, we remark that it is the combination
ϕ0=f0 þ ϕ1=f1 which not only solves the strong-CP
problem but which also couples to gluons. Depending
on the particular model under study, this combination may
also couple to photons and other Standard-Model (SM)
particles. We can therefore decompose this combination
into our late-time mass eigenstates in order to determine the
effective mass scales fλ0 and fλ1 that govern the relevant
SM couplings of our mass eigenstates at any moment in
time:

ϕ0

f0
þ ϕ1

f1
≡ ϕλ0

fλ0
þ ϕλ1

fλ1
: ð7:7Þ

The late-time values of these effective coupling scales are
plotted in Fig. 27.
Several features of these plots are worthy of note.

For example, we observe that in all cases the f̄λi coupling
scales associated with our mass eigenstates are never
significantly smaller than the fi coupling scales associated
with our original unmixed states. Thus neither of our mass
eigenstates will decay too rapidly to SM states, a situation
which might potentially have resulted in phenomenological
difficulty. Likewise, combining the results in Fig. 27
with those of Figs. 23 and 26, we see that there are a
variety of different phenomenological situations which can
emerge, depending on the underlying parameters in
our model.
For example, let us consider the case withMf0=μ2Λ ≈ 0.4

and f1 ≈ 5f0. We immediately learn from Fig. 27 that our
QCD axion coupling scale is fλ0 ≈ 1015 GeV, which is a
full order of magnitude higher than the value that it would
have had in the decoupling limit. This implies that the QCD

axion has an enhanced invisibility as assessed through its
interactions with SM states. However, we see from Fig. 23
that these parameter combinations correspond to x̄ ≈ 0.4,
whereupon we see from Fig. 26 that this in turn corre-
sponds to an energy-density fraction ρ̄λ0=ρ̄ ≈ 80%. This is
thus a situation in which our QCD axion is invisible but
nevertheless carries the bulk of the total late-time energy
density.
A somewhat different situation emerges if we keep f1 ≈

5f0 but now takeMf0=μ2Λ ≈ 0.1. In this case, we learn from
Fig. 27 that our QCD axion coupling scale is even higher
—fλ0 ≈ 1017 GeV—which suppresses its couplings to SM
states by three orders of magnitude compared with the
decoupling limit. However, we see from Fig. 23 that these
parameter combinations now correspond to x̄ ≈ 0.1, where-
upon we see from Fig. 26 that this in turn corresponds to an
energy-density fraction ρ̄λ0=ρ̄ ≈ 3%. This is thus a situation
in which our QCD axion is invisible and carries almost
none of the total energy density—all because of its mixing
with the second axion in the presence of a nonzero phase
transition width!
The opposite situation, of course, emerges for large M.

For example, withMf0=μ2Λ ≈ 10we find that the physics of
this model is roughly insensitive to the value of f1=f0; we
find x̄ ≈ 1 and ρ̄λ0=ρ̄ ≈ 100%. This, of course, signifies
nothing but the approach to our decoupling limit. However,
as long as we are not precisely at the decoupling limit, we
still find from Fig. 24 that the energy density associated
with this lighter axion field remains considerably sup-
pressed compared with what we would have found at the
full decoupling limit. Thus in this sense our QCD axion has
regular couplings to SM states but nevertheless carries
relatively little total energy density.

FIG. 27. The effective coupling scales fλ0 and fλ1 associated with our axion mass eigenstates ϕλ0 and ϕλ1 , plotted as functions of
Mf0=μ2Λ. We see that these scales are never significantly smaller than the fi coupling scales associated with our original unmixed states,
and that either one or the other typically takes a value which significantly exceeds this when f1=f0 ≫ 1.
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Needless to say, our goal in this section has not been to
propose a complete phenomenological model of axion
physics. Rather, it has merely been to illustrate the rich
implications that can emerge for a QCD axion in the
presence of mixing with a second axion when the nonzero
width of the QCD phase transition is properly taken into
account. As we have seen, the total energy density of such a
two-axion system can be significantly suppressed relative
to what might have been expected in the decoupling limit,
and the individual energy densities associated with each
axion can be severely distorted. Indeed, this lesson has been
one of the primary themes of this paper.

VIII. BEYOND TWO FIELDS

In Sec. II, a toy model was constructed in order to study
the effects that arise in multiscalar models due to the
simultaneous presence of two key ingredients: mass-
generating phase transitions with finite widths, and non-
zero mixing between the different components. For the
sake of simplicity, our toy model consisted of only two
scalar fields, as this is the minimum number that could be
chosen for our purposes. However there is no reason that
we are limited to two fields, and indeed the number of
fields may be extended arbitrarily. Therefore, in order to
gain a quick sense of what possibilities might emerge with
an increased number of fields, we shall now briefly
consider several aspects of the case with three fields. A
more general study of the N-field case will be presented
in Ref. [38].

In analogy with Eq. (2.8), we shall begin by assuming a
rescaled (dimensionless) mass matrix M2ðtÞ which takes
the form

M2ðτÞ ¼

2
64
m2

00ðτÞ m2
01ðτÞ m2

02ðτÞ
m2

01ðτÞ 1þm2
11ðτÞ m2

12ðτÞ
m2

02ðτÞ m2
12ðτÞ 4þm2

22ðτÞ

3
75: ð8:1Þ

Here τ≡Mt (whereM is the overall mass parameter which
has been scaled out, as in Sec. II), and we assume that all
components have a common time dependence associated
with a mass-generating phase transition whose properties
are exactly those of our two-component model. Note that
the diagonal components of this matrix imply that our three
fields have masses 0, M, and 2M at early times prior to the
phase transition. These values are chosen for simplicity, and
are also motivated by the Kaluza-Klein masses that might
result in a theory with a flat extra dimension (in which
case we would identify M as the inverse length of this
dimension).
Inherent in this mass matrix are now three independent

mixing angles which correspond to m2
01, m

2
02, and m2

12.
However, just as in the two-field case in Sec. II, there are
ultimately constraints on these mixing parameters which
ensure that our mass matrix M2 remains positive-
semidefinite. Such constraints are illustrated in Fig. 28
for the case with m̄2

00 ¼ 5, m̄2
11 ¼ 5, and m̄2

22 ¼ 1—a fixed

FIG. 28. The region within the three-dimensional mixing space
parametrized by fm̄2

01; m̄
2
02; m̄

2
12g for which the mass matrix M2

in Eq. (8.1) is positive-semidefinite. For this plot we have taken
m̄2

00 ¼ 5, m̄2
11 ¼ 5, and m̄2

22 ¼ 1.

FIG. 29. The two smaller mass eigenvalues λ20 and λ21 in our
three-field model, plotted as a function of time for different values
of m̄2

02 ¼ m̄2
12. As in Fig. 28, we have taken m̄2

00 ¼ 5, m̄2
11 ¼ 5,

and m̄2
22 ¼ 1. We see that each field can now separately have its

own pulse with its own effective frequency, resulting in the
possibility of two parametric resonances which can either
reinforce or interfere with each other.

KEITH R. DIENES, JEFF KOST, and BROOKS THOMAS PHYSICAL REVIEW D 93, 043540 (2016)

043540-28



parameter choice we shall adopt for all of the plots in this
section.
In our two-component toy model, we have seen that the

lighter field can occasionally develop a “pulse” which is
ultimately responsible for the parametric-resonance and
reoverdamping phenomena in Secs. V and VI respectively.
However, in a three-component model, it turns out that the
two lightest fields can each develop a pulse. This is
illustrated in Fig. 29. Indeed these two pulses need not
have the same effective frequencies or correspond to the
same values of ΔG. As we shall see, this can then give rise to
multiple resonances which can reinforce or interfere with
each other and thereby produce new effects which transcend
those realizable with only a single pulse. We also note that
the pulse of our second mass eigenvalue λ21 can leave this
eigenvalue with a smaller magnitude at late times than at
early times—a phenomenon which was not possible for λ20 in
the two-field case. This has the effect of allowing a further
elongation of the time interval during which this field can
remain in a reoverdamped or parametrically resonant state.
To illustrate the interplay between the different reso-

nances, we can consider the late-time energy densities of
this system. Since we now have three individual contri-
butions to the total energy density, we shall highlight their
separate effects by considering the partial sums

Pl ≡
Xl
i¼0

ρλi : ð8:2Þ

In Fig. 30 we have plotted these partial sums, with each
normalized to the value that it would have had if the mass-
generating phase transition had been instantaneous. This
demonstrates the combined effects of the mixing and the

finite phase-transition width. The left panel of Fig. 30
illustrates the behavior of P̄0 ≡ ρ̄λ0 alone: this behavior is
similar to what we have already seen in our two-field toy
model, for which the pulse in the evolution of λ20 produces
resonant peaks in the corresponding energy-density com-
ponent at late times. These peaks grow stronger for larger
m̄2

02, with the energy density in this field dissipating
inversely with ΔG once ΔG ≳ 2π=λ0. However, the center
panel shows the combined contribution to the total energy
density from the two lighter fields and thus exhibits
something new: the contributions of the two separate
parametric resonances combine to reinforce each other and
even produce an effective enhancement plateau which
stretches over an extended interval in ΔG. Indeed, all along
this plateau, the energy densities of our system can be
enhanced by as much as nearly an order of magnitude!
Finally, the right panel of Fig. 30 illustrates the behavior
of the total energy density ρ̄. Note that in this case, the
heaviest field effectively dominates the energy density for
ΔG ≲ 5, thereby washing out those parametric resonances
that appear in that range, while leaving those that appear
for ΔG ≳ 5.
The purpose of this section has merely been to provide

several short examples of new phenomena that can arise
when more than two scalar fields are involved. We shall
defer a more detailed study of these general cases
to Ref. [38].

IX. CONCLUSIONS

In this paper we have examined some of the novel
effects that emerge when multiple scalars mix with each
other and experience a time dependent mass-generating
phase transition within the context of a time-dependent

FIG. 30. The partial-sum energy densities P̄lðΔGÞ, l ¼ 0, 1, 2, plotted as functions of the phase-transition width ΔG and normalized
to the values P̄lð0Þ that they would have had for an instantaneous phase transition. As in Figs. 28 and 29, we have again taken m̄2

00 ¼ 5,
m̄2

11 ¼ 5, and m̄2
22 ¼ 1. We observe many features familiar from our two-component toy model, including parametric resonances which

enhance the corresponding energy densities as well as suppressions by many orders of magnitude that develop for sufficiently large ΔG.
However, there are also new features which arise due to the fact that we now have more than two fields in our system. The center panel,
in particular, illustrates the manner in which the separate resonances from the two lighter fields reinforce each other and produce a
plateau along which the partial-sum energy density P̄1 is enhanced by nearly an order of magnitude over a significant ΔG-interval.
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background cosmology. As we have explicitly demon-
strated within a relatively simple two-field toy model,
these effects include both enhancements and suppressions
of the total late-time energy density of the system as well
as the late-time energy densities of the individual scalar
components. These enhancements and suppressions need
not be mere Oð1Þ effects; indeed, we have seen that the
resulting late-time energy densities can often be altered by
many orders of magnitude. These alterations are even
sufficient to produce wholesale shifts in the identity of the
field carrying the bulk of the late-time cosmological
abundance.
We also found that our late-time energy densities can

exhibit large parametric resonances which make them
extremely sensitive to relatively small changes in the
degree of mixing or in the width of the phase transition.
Thus, any effects which might change—even slightly—
the rate at which the phase transition unfolds can have a
significant impact on the late-time abundances of our
fields. We also demonstrated that our system can enter a
so-called “reoverdamped” phase in which the field values
and energy densities behave in a manner quite different
from what would normally be associated with pure dark
matter or vacuum energy. Indeed, we saw that the system
can remain in this reoverdamped phase for a considerable
length of time, suggesting that this phase be considered
alongside “vacuum energy” and “matter” as an equally
valid new behavioral phase that a scalar field can expe-
rience during a significant portion of cosmological evo-
lution. Finally, we illustrated the importance of some of
these effects within the context of a simple model in which
a second axion is incorporated into the standard QCD
axion theory.
As indicated in the Introduction, our results can be

taken as an explicit demonstration of how critical it can be
to properly incorporate the nonzero but finite widths of
mass-generating phase transitions when discussing late-
time energy densities in cosmological settings involving
multiple mixed scalars. Indeed, treating these widths as
being either zero or infinite (the latter corresponding to a
so-called “adiabatic” approximation in the axion case) can
lead to results for late-time quantities such as cosmologi-
cal abundances which are significantly distorted from
their true values, often by many orders of magnitude!
Given the sensitivity with which the different slices of the
so-called “cosmic pie” have already been measured, such
effects will inevitably play critical roles in determining
whether a particular cosmological scenario is viable or
ruled out.
Needless to say, the features we have discussed in this

paper give rise to many new possibilities for the phenom-
enology of the early universe and cosmological evolution.
As such, new approaches to model-building can readily be
imagined. For example, many extensions to the Standard
Model involve scalar fields which are massless (or

effectively massless) at high scales, but for which masses
are generated dynamically at lower scales. Examples include
string moduli, string axions, and other axionlike particles.
However, these particles can be cosmologically problematic
if these dynamically-generated masses are sufficiently large
because they can overclose the universe once they begin
oscillating and act as massive matter. Indeed, this is the crux
of the cosmological moduli problem [41–43]. Moreover,
particles of this sort are often produced throughmechanisms
such as vacuum misalignment which are completely
decoupled from the dynamics of inflation. In such cases,
spatial fluctuations in the energy density of these particles
therefore give rise to isocurvature perturbations, the obser-
vational limits on which are quite severe [44].
Fortunately, mechanisms such as those we have dis-

cussed in this paper can suppress the resulting late-time
energy densities by many orders of magnitude. This
enhanced energy dissipation can therefore provide a novel
way of alleviating such constraints on models of new
physics, and may represent an alternative solution to the
moduli and isocurvature problems. They may also allow a
general weakening of the cosmological bounds on the
energy scales associated with the new physics (such as the
Peccei-Quinn scale associated with axions).
As we have discussed, the features explored in this paper

can lead not only to a reduction in the total late-time energy
density of our system, but also to changes in the late-time
partitioning of that total energy density amongst the fields
in our theory. In new physics scenarios which involve
multiple scalar fields, this too can have observable phe-
nomenological consequences. For example, certain classes
of string models are generically expected to give rise to
large numbers of light axionlike particles [30–33], the
masses of which must be generated dynamically via non-
perturbative effects. In situations in which the same
dynamics contributes to the generation of mass terms for
multiple such particles, the relative cosmological abundan-
ces of those particles can be significantly altered by the
effects we have studied here.
There are many ways in which the analysis in this paper

might be extended and generalized. For example, in this
paper we have focused primarily on scalar fields which
have a negligible back-reaction on the background cosmol-
ogy, at least during the epoch of dynamical mass gener-
ation. In other words, we have assumed that our scalars do
not contribute significantly to the total energy density of the
universe until well after their masses have settled into their
late-time values. However, in principle, we could relax this
assumption and broaden this study to include scalars which
do have a significant impact on the background cosmology.
This would then establish a nonlinear back-reaction which
could possibly enrich the dynamics of this system even
further, with the evolution of the Hubble parameter HðtÞ
itself depending on the behaviors of the scalar energy
densities as functions of time.
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This possible extension of our work could be particularly
important if the scalars involved are those which are
directly responsible for triggering periods of rapid cosmo-
logical expansion, including cosmic inflation. Indeed, a
wide variety of inflationary models involving multiple
scalar fields exist in the literature; these include hybrid
inflation [45,46], assisted inflation [47–50], N-flation [51],
and multifield stochastic inflation [52]. Likewise, several
constructions have been proposed through which a poten-
tial for the fields responsible for cosmic inflation is
generated dynamically [53–56]. Such constructions are
typically motivated by the possibility of realizing a viable
inflationary potential without the introduction of extremely
small couplings or arbitrary mass scales. It would therefore
be extremely interesting to explore the cosmological
consequences of a time dependent, dynamically-generated
inflaton potential in the context of multifield inflation.
In this connection, it is perhaps worth emphasizing that

the parametric resonance we have discussed in Sec. V is
entirely unrelated to the parametric resonance which gives
rise to an epoch of explosive production of light scalars in
inflationary models with a preheating phase [57–61].
Indeed, the effect we have discussed in this paper involves
a resonance between the oscillation frequency of the light
scalar, as given by its mass λ0, and the effective modulation
frequency ωeff of that mass. As such, this parametric
resonance is ultimately driven by the dynamics of the
mass-generation mechanism and leads to an enhancement
in the amplitude for coherent oscillations of the zero-
momentum mode of ϕλ0 . By contrast, the effect discussed
in preheating scenarios involves a resonance between the
frequency of the coherently-oscillating inflaton field and
the frequency associated with a given momentum mode of
the lighter scalar field into which it decays. Such a
resonance is ultimately driven by inflaton dynamics and
results in particlelike excitations of this lighter scalar.
Other extensions and generalizations of our work are

also possible. For example, our original dynamical equa-
tions in Eq. (2.1) assume that there are no significant spatial
variations in our field values, but in general it is possible to
allow our field values to vary not only in time but also in
space. This could then give rise to distinctly different
physics in different spatial regions, with domain walls
potentially separating different regions experiencing differ-
ent phases and different energy densities. Such spatial
variations and domain walls would inevitably introduce
additional length scales into the problem, and thereby likely
give rise to new complex dynamical behaviors for our
system as a whole.
In a similar vein, we could likewise imagine that our

fundamental dynamical equations in Eq. (2.1) are modified
by the inclusion of source terms reflecting possible
interactions with more complex cosmological environ-
ments (e.g. with other fields). Such source terms could
then give rise to additional features which effectively

modify our mass eigenvalues and eigenstates, trigger
enhancements or suppressions of late-time energy den-
sities, and produce additional kinds of resonances. Indeed,
such effects would be analogous to the well-known “matter
effects” (i.e., MSW effects) that arise when neutrinos
propagate through matter rather than through a pure
vacuum.
Another possible generalization of our toy model is to

consider more than two scalar fields. Indeed, as briefly
discussed in Sec. VIII, there is no limit to the number of
scalar fields which may be considered. These models can
therefore grow in both complexity and sophistication
compared with the two-component model we have studied
here.
One natural possibility along these lines is to consider

the case in which the different fields ϕi are nothing but the
Kaluza-Klein (KK) modes of a single higher-dimensional
fieldΦ. This is indeed a well-motivated possibility, as string
theory naturally gives rise to many scalars (axions, geo-
metric/gravitational moduli, gauge-neutral singlets, and so
forth) that populate the “bulk” volume transverse to the
brane on which gauge interactions reside. As such, the
different KK modes of such bulk fields are natural dark-
matter candidates, even though they might be unstable—an
observation which has motivated the Dynamical Dark
Matter framework of Refs. [28,29,36]. In this case, the
masses that we have assumed to exist prior to the phase
transition would be nothing but the corresponding KK
masses, while the extra time-dependent contributions
m̄ijhðτÞ are presumably generated by a phase transition
which breaks the higher-dimensional symmetries that
would otherwise have aligned our mass eigenstates with
KK eigenstates. The resulting mixing structure is therefore
determined according to the intrinsically higher-dimen-
sional geometric symmetries of the theory and the manner
in which these symmetries might be broken by the phase
transition. (For example, in the five-dimensional axion
scenario of Refs. [29,35,36] the instanton-induced phase
transition takes place purely on the brane and thereby
breaks a translation symmetry that otherwise existed along
the extra dimension.) In general, the cosmological proper-
ties of such KK systems can be extremely rich, and will be
discussed in more detail in Ref. [38].
Given these observations, it might at first glance seem

that the two-component toy model we have studied in this
paper—while illustrative for pedagogical purposes—might
not have been worthy of the detailed attention we have
afforded it. However, this model can always be viewed as
the low-energy limit of a more complete model (such as the
model of Kaluza-Klein cosmology discussed above) in
which only the contributions from the lightest two modes
are considered. Indeed, in many cosmological settings, the
contributions of the lightest fields are likely to dominate the
resulting phenomenology and/or carry the largest abun-
dances. Thus, in this sense, our two-component toy model
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can be viewed as the common root underlying a variety of
much more general models—a “kernel” which gives rise to
rather universal features and behaviors that will continue to
appear (perhaps with further embellishments) in more
complete or realistic settings. As such, then, this toy model
can be viewed as representing a universal low-energy limit
of a wide class of models of this type whose leading-order
phenomenologies will be exactly those we have investi-
gated in this paper.
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APPENDIX A: NARROW-WIDTH BEHAVIOR OF
THE LATE-TIME ENERGY DENSITY:

ANALYTICAL RESULTS

As we have seen, the presence of a nonzero width ΔG for
the mass-generating phase transition prevents us from
obtaining analytical results for most of our quantities of
interest. However, in the case with ΔG ¼ 0 (corresponding
to an instantaneous phase transition), the resulting dynam-
ics can be treated analytically. In this appendix we provide
analytical results for the late-time energy density ρ̄.
For ΔG ¼ 0, the behavior of each of our two fields is

relatively simple. Prior to the phase transition at τG, only
the massless field has a nonzero value A0, as in Eq. (2.16);
this field is necessarily overdamped, however, and thus
remains effectively constant until the phase transition at τG.
At that point, the mass matrix receives the extra contribu-
tion which mixes the two fields with an angle θ; the initial
massless field value is thus redistributed at τ ¼ τG such that

ϕλ0ðτGÞ ¼ A0 cos θ; ϕλ1ðτGÞ ¼ A0 sin θ: ðA1Þ

Each field then evolves forward in time independently.
At first glance, motivated by the behavior illustrated in

Fig. 1, we might try to estimate the total late-time energy
density ρ̄ using a virial approximation in which we assume
that the energy density associated with each field ϕλi

remains constant until τðiÞζ ≡ κ=2λi [where κ ≡ 2 (or 3=2)
for a matter- (radiation-)dominated universe], after which it
scales as ∼τ−κ. Defining τλ ≡maxfτG; κ=2λg, we would
then write

ρ̄ ≈
X
λ

ρλðτλÞ
�
τ

τλ

�
−κ

¼ 1

2

X
λ

λ2½ϕλðτGÞ�2
�
τ

τλ

�
−κ
: ðA2Þ

Unfortunately, this approximation breaks down for any

fields ϕi for which the threshold of critical damping τðiÞζ ¼
κ=2λi is close to the phase transition time τG.
For this reason, we shall instead evaluate our field values

and corresponding energy densities exactly. In the limit of
an instantaneous phase transition occurring at τG, the exact
solution for each field is given by

ϕλðτÞ ¼
π

2
½ϕλðτGÞ�λτG

�
τ

τG

�
−κ−

× ½JκþðλτGÞYκ−ðλτÞ − YκþðλτGÞJκ−ðλτÞ� ðA3Þ

where κ� ≡ ðκ � 1Þ=2, where λ refer to the mass eigen-
values for τ ≥ τG, and where JνðzÞ and YνðzÞ are Bessel
functions of the first and second kind, respectively. From
this result we may directly calculate the corresponding
energy densities for all τ ≥ τG, obtaining

ρλðτÞ ¼
π2

8
½ϕλðτGÞ�2λ4ðτGτÞ

�
τ

τG

�
−κ
J λðτÞ ðA4Þ

where

J λ ¼ ½JκþðλτGÞYκ−ðλτÞ − YκþðλτGÞJκ−ðλτÞ�2
þ ½JκþðλτGÞYκþðλτÞ − YκþðλτGÞJκþðλτÞ�2: ðA5Þ

Given these exact results, we can now extract the late-time
behavior of ρλ through the asymptotic expansions

JαðzÞ ∼
ffiffiffiffiffi
2

πz

r
cos

�
z −

απ

2
−
π

4

�
þ…

YαðzÞ ∼
ffiffiffiffiffi
2

πz

r
sin

�
z −

απ

2
−
π

4

�
þ… ðA6Þ

which hold for z ≫ 1. With this approximation we find that

J̄ λ ≈
2

πλτ
½J2κþðλτGÞ þ Y2

κþðλτGÞ� þ…; ðA7Þ

whereupon use of Eq. (A1) yields the total late-time energy
density

ρ̄ ¼ π2

8
A2
0ðτGτÞ

�
τ

τG

�
−κ

× ðλ40J̄ λ0cos
2θ þ λ41J̄ λ1sin

2θÞ: ðA8Þ

The result in Eq. (A8) is an exact expression for the late-
time energy density ρ̄ in the ΔG → 0 limit. Given this
result, several things are immediately clear. First, we
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observe that in the case of matter-dominated universe
(corresponding to κ ¼ 2), the total late-time energy density
simplifies to

ρ̄ ¼ A2
0

4τ2
½2þ ðλ20 þ λ21Þτ2G þ ðλ20 − λ21Þτ2G cosð2θÞ�

¼ A2
0

2τ2
ð1þm2

00τ
2
GÞ; ðA9Þ

where in passing to the second line we have used the results
in Eq. (2.32). As a result, all θ-dependence drops out of the
final result for the total late-time energy density. In other
words, for a matter-dominated universe, the corresponding
late-time energy density is independent of mixing!
Second, we see that the virial approximation in Eq. (A2)

corresponds to the limit in which τGλi ≫ 1 for both fields.
Indeed, in this limit we see that τλ ¼ τG for each field (since
both fields are already significantly underdamped when the
phase transition occurs), and we can likewise apply the
asymptotic expansions in Eq. (A6) to the remaining Bessel
functions in Eq. (A7), thereby reproducing the result in
Eq. (A2). Further use of the results in Eq. (2.32) then gives
the total late-time energy density

ρ̄ ≈
A2
0

2
m2

00

�
τ

τG

�
−κ
; ðA10Þ

which is again independent of the mixing—now regardless
of the value of κ! However, comparing this result with the
exact result in Eq. (A9) for the case of a matter-dominated
universe illustrates the imperfect nature of the virial
approximation.

APPENDIX B: LATE-TIME ENERGY DENSITIES:
AN ALTERNATIVE APPROACH

In the main body of this paper, we have consistently
viewed the matrix elements m2

ij as our independent vari-
ables. These have been reparametrized in other forms,
giving rise to variables such as m2

sum, Δm2, η, θ, and ξ, but
in all cases these independent variables have served as
inputs. We then calculated the values of dependent quan-
tities such as the eigenvalues λi, energy densities ρ, and so
forth. Thus, when we have studied how a certain dependent
variable such as a late-time energy density ρ̄ depends on the
mixing, we have implicitly held the diagonal matrix
elements m̄2

00 and m̄2
11 (or equivalently m̄2

sum and η̄) fixed,
and varied the off-diagonal matrix element m̄2

01 (or equiv-
alently the mixing angle θ̄ or mixing saturation ξ̄).
However, another possibility is to study the mixing-

dependence of quantities such as ρ̄ when we hold the late-
time eigenvalues λ̄i fixed instead. This approach can be
useful in situations where the masses of our states are
known and it is only the mixing between such states that we
wish to vary.

In order to implement this approach, we must first invert
our usual algebraic relations and express fm2

00; m
2
11g in

terms of fλ20; λ21g. However, we must also recognize that our
previous assumption of holding fm2

00; m
2
11g fixed is also

implicitly buried within the definition of another variable:
the mixing saturation ξ. Although m2

01 or θ parametrize the
mixing in absolute terms and are thus independent of such
assumptions, the mixing saturation ξ defined in Eq. (2.28)
describes the mixing as a fraction of the maximum allowed
mixing, and this maximum allowed mixing has always
been determined relative to a fixed fm2

00; m
2
11g. What we

now need, by contrast, is a new variable ξλ which describes
the mixing as a fraction of the maximum mixing allowed
for a given fixed fλ20; λ21g. Indeed, this is an entirely
different quantity.
Thus, we seek to express fm2

00; m
2
11; ξg in terms of

fλ20; λ21; ξλg. Equivalently, defining

λ2sum ≡ λ20 þ λ21 ðB1Þ

and

ηλ ≡ Δλ2

λ2sum
≡ λ21 − λ20

λ20 þ λ21
ðB2Þ

in analogy with m2
sum and η, we would like to express

fm2
sum; η; ξg in terms of fλ2sum; ηλ; ξλg. Surprisingly, these

relations ultimately take a relatively simple form:

m2
sum ¼ λ2sum

η2 ¼ η2λ

�
1 − ξ2λ
1 − η2λξ

2
λ

�
ξ ¼ ηλξλ: ðB3Þ

These relations in turn imply that

m2
01 ¼

1

2
ðΔλ2Þξλ

�
1 − η2λ
1 − η2λξ

2
λ

�
: ðB4Þ

Likewise, following Eq. (2.30), we can also determine the
absolute mixing angle θ via

tan2ð2θÞ ¼ ξ2

η2
ð1 − η2Þ ¼ ξ2λ

�
1 − η2λ
1 − ξ2λ

�
: ðB5Þ

Note that 0 ≤ ηλ ≤ 1, whereas −1 ≤ η ≤ 1. Also note that
the eigenvalues λ2i are independent of the sign of η (as
evident from Fig. 6). It is for this reason that our inverse
relations in Eq. (B3) determine η [and likewise tanð2θÞ]
only up to an overall sign. Thus, strictly speaking, our
variable map really trades fη; ξg for fηλ; ξλ; ϵg where ϵ≡
signðηÞ ¼ �1 is a discrete Z2 phase. Having ϵ > 0 corre-
sponds to η > 0 and tanð2θÞ > 0. However, we shall avoid
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writing ϵ in what follows, understanding the proper phase
choice to be implicit.
In principle, given this variable map, we could now

work our way through this entire paper again using the
variables fλ2sum; ηλ; ξλg rather than the variables
fm2

sum; η; ξg. Indeed, every curve in every plot which
has been labeled in terms of certain numerical values for
the first set of parameters could now equivalently be
relabeled in terms of different numerical values for the
second set of parameters. In cases where these curves
describe the behavior of a certain quantity such as an
energy density as a function of time, or the behavior of a
quantity such as a late-time energy density as a function of
a phase-transition width ΔG, these curves would them-
selves remain intact and continue to take the same shapes
as before because our time and ΔG parameters are
independent of our variable change. All that would change
are the labels associated with each such curve. Indeed,
every feature that appears in our plots for certain fixed
values of fm̄2

sum; η̄g (such as the oscillations due to
parametric resonances or the reoverdamping of certain
fields) would continue to exist when fλ̄2sum; η̄λg are held
fixed instead. As a result, nothing we have said in this
paper concerning the parametric-resonance or the reover-
damping phenomena would be affected by this change in
variables.
The only changes that could potentially occur due to

this variable exchange concern the effects of mixing as
discussed in Secs. III and IV. Of course, each individual
curve within the plots in Figs. 10, 11, 12, 16, and 18 would
remain exactly as before and would merely be relabeled
using fλ2sum; ηλ; ξλg rather than fm2

sum; η; ξg. However,
what would change is the resulting grouping of these
curves into distinct panels in which all curves share
common values of, say, ηλ rather than η. Indeed, although
the space of all possible curves is not changed, these
curves would experience a reshuffling into differently-
grouped subsets. As a result, the only physics questions
whose answers might change in this process are those
which rely on comparisons between the different curves
within a given grouping. Clearly, questions pertaining to
the effects of mixing (i.e., the effects of changing the
values of ξ or ξλ while holding η or ηλ fixed) are in this
category.
Rather than provide an exhaustive study of such

regroupings and their outcomes, we shall here content
ourselves with providing a concrete example of the
effects that can emerge by focusing on a single pair of
curves which we shall call A and B. These curves can be
taken to show, for example, a late-time energy density ρ̄
as a function of ΔG, but they will differ in their absolute
mixing by an angle Δθ̄ when fm̄2

sum; η̄g are held fixed. We
will then calculate a third curve B0 which also differs from
the curve A by the same absolute angle Δθ̄ when
fλ̄2sum; η̄λg are held fixed instead. In this way, comparing

curves B and B0 will then give us an idea of the difference
that can come from the choice of which variables to
hold fixed.
For concreteness, we select curves A and B to be the

ξ̄ ¼ 0.9 and ξ̄ ¼ 0.5 curves within the right panel of
Fig. 11. Within this panel, Δm̄2 ¼ 4 and η̄ ¼ 0.75 for both
curves. Use of Eq. (B3) then provides us with the
corresponding fλ̄2sum; η̄λ; ξ̄λg values for each of these
curves: we find f4.0; 0.96; 0.94g for curve A and
f4.0; 0.82; 0.61g for curve B. Likewise, use of Eq. (B5)
with either the fη̄; ξ̄g or fη̄λ; ξ̄λg variables then tells us that
θ̄A ≈ 19.22° and θ̄B ≈ 11.90°. [The fact that these values
emerge in each case using either set of variables is a useful
cross-check that the absolute mixing angle θ̄ is indeed
invariant across the mapping in Eq. (B3).] We now wish to
define a third curve B0 such that η̄λ is held fixed relative to

curve A (i.e., η̄ðB
0Þ

λ ¼ η̄ðAÞλ ≈ 0.96) while the mixing-angle
shift Δθ̄AB0 ≡ θ̄B0 − θ̄A matches Δθ̄AB ≡ θ̄B − θ̄A. This
latter condition implies that θ̄B0 ¼ θ̄B ≈ 11.90°, whereupon

use of Eq. (B5) tells us that ξ̄ðB
0Þ

λ ≈ 0.84. Use of Eq. (B3)
then tells us that fm̄2

sum; η̄; ξ̄g ≈ f4; 0.88; 0.80g for curve B0.
These parameter values for curves A, B, and B0 are
summarized in Table I.
In Fig. 31 we plot curves A, B, and B0. The left panel of

Fig. 31 shows these curves for a matter-dominated uni-
verse, while the right panel shows these same curves for a
radiation-dominated universe. Thus, while curves A and B
in the left panel of Fig. 31 respectively correspond to the
ξ̄ ¼ 0.9 and ξ̄ ¼ 0.5 curves in the right panel of Fig. 11,
curves A and B in the right panel of Fig. 31 respectively
correspond to the ξ̄ ¼ 0.9 and ξ̄ ¼ 0.5 curves in the right
panel of Fig. 10.
As evident from Fig. 31, there are significant

differences between curves B and B0. Indeed, these curves
are sufficiently distinct in the radiation-dominated case
(right panel) to turn what would have been an overall
enhancement of the normalized late-time energy density
(curve B) into an overall suppression (curve B0)! We thus
conclude that the question of which variables to hold
fixed can indeed be a critical one for certain types of
physics questions within certain regions of parameter
space. This also highlights the need to be extremely
careful about specifying which parameters are held fixed
when making statements concerning the effects of vary-
ing some parameters relative to others. In this paper, in

TABLE I. Parameters defining the curves A, B, and B0 shown in
Fig. 31. All curves correspond to m̄2

sum ¼ λ̄2sum ¼ 4 and ϵ ¼ þ.

η̄ ξ̄ η̄λ ξ̄λ θ̄

A 0.75 0.90 0.96 0.94 19.22°
B 0.75 0.50 0.82 0.61 11.90°
B0 0.88 0.80 0.96 0.84 11.90°
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order to study the effects of mixing, we have consistently
held our diagonal mass-matrix elements m2

00 and m2
11

fixed while varying m2
01 (or equivalently varying θ or ξ).

This ultimately represents a choice which stems from our

desire to perturb the potential generated by our under-
lying mass-generating phase transition as minimally as
possible. However, this issue will be explored further
in Ref. [38].
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