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We report on an extensive study of the evolution of domain wall networks in Friedmann-Lemaître-
Robertson-Walker universes by means of the largest currently available field-theory simulations.
These simulations were done in 40963 boxes and for a range of different fixed expansion rates, as well
as for the transition between the radiation and matter eras. A detailed comparison with the velocity-
dependent one-scale model shows that this cannot accurately reproduce the results of the entire range of
simulated regimes if one assumes that the phenomenological energy loss and momentum parameters are
constants. We therefore discuss how a more accurate modeling of these parameters can be done,
specifically by introducing an additional mechanism of energy loss (scalar radiation, which is particularly
relevant for regimes with relatively little damping) and a modified momentum parameter which is a
function of velocity (in analogy to what was previously done for cosmic strings). We finally show that this
extended model, appropriately calibrated, provides an accurate fit to our simulations.
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I. INTRODUCTION

It is generally accepted that phase transitions occurred
during the early stages of the evolution of the Universe.
Among their possible consequences is the production of
topological defects through the Kibble mechanism [1].
Two-dimensional topological defects (domain walls) are
tightly constrained, unless they are very light or they decay
soon after formation, since otherwise they would dominate
the energy density of the Universe, in disagreement with
observations [2]. On the other hand, one-dimensional
objects (cosmic strings) are in principle more benign,
although they are also subject to increasingly strong
constraints [3]. Nonetheless, cosmic strings could play
an important role as a relic of fundamental theories of the
early Universe, such as brane inflation scenarios [4,5] or
supersymmetric grand unified theories [6].
To understand the observational effects of the presence

of topological defects, a quantitative understanding of the
evolution of their networks is essential. Such quantitative
analytic models were first obtained for cosmic strings [7,8],
and subsequently for domain walls [9]. Meanwhile, the
latter can be more easily simulated numerically at higher
spatial resolution and dynamic range. For this reason, in
addition to their intrinsic relevance, domain walls also

provide a useful testbed for the evolution of cosmic strings
and superstrings [10]. Still, the velocity-dependent one-
scale model (VOS) for domain walls is currently less
developed than its cosmic string counterpart. Here we take
advantage of recent improvements in hardware and com-
puting power to improve this situation.
Specifically, we build upon the work done in Refs. [11,12]

and carry out an extensive set of high-resolution field theory
simulations of domain wall networks using the Press-Ryden-
Spergel (PRS) algorithm [13]. Compared to this earlier work
our simulations are both larger (40963 boxes, the largest
currently available) and span a more diverse set of con-
ditions, including simulations with fixed expansion rates
(radiation era, matter era and ten other expansion rates) as
well as, for the first time for domain walls, series of
simulations that accurately span the radiation-matter tran-
sition. This extended high-resolution data set enables us to
further calibrate and significantly improve the analytic
model, as was previously done for strings [14,15].

II. THE STANDARD VOS MODEL FOR
DOMAIN WALLS

The analytic VOS model for domain wall network
evolution was first obtained from arguments on energy
conservation in Ref. [9]. Later it was shown that the same
result can be reached from a microscopic description [16].
We will revisit and clarify this microscopic approach, and
further extend it to shed light on the momentum parameter
k for the wall network (to be rigorously defined below).
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The wall surface M2 can be parametrized by two
parameters, σ1 and σ2. As a result, the wall evolution is
described by the vector xμðσ1; σ2; τÞ, where we identified
σ0 ¼ τ [17]. If the function xμðσ1; σ2; τÞ is smooth, it is
possible to parametrize the wall surface in such a way that
two tangential vectors will be orthogonal

∂σ1x
μ∂σ2xμ ≡ xμ;1xμ;2 ¼ 0: ð1Þ

Moreover, we can require that the velocity of the wall
∂τxμ ≡ _xμ can be only normal to the tangent surface T M2

(cf. Fig. 1).
To derive the wall equation of motion we start from the

worldvolume (Dirac) action, which has the form

S ¼ −
Z

Ld3σ ¼ −σw
Z ffiffiffi

γ
p

d3σ; ð2Þ

where σw is a constant mass per unit area, γab ¼ gμνx
μ
;axν;b is

the induced metric, γ ¼ 1
3!
ϵabϵcdγacγbd is its determinant,

xμ;a ¼ ∂xμ
∂σa, ϵab is the Levi-Civita symbol, and L is the

Lagrangian density.
To obtain equations of motion for a domain wall from

Eq. (2), it is useful to use the following equality:

dL ¼ 1

2

ffiffiffi
γ

p
γabdγab; ð3Þ

from which one can obtain

∂L
∂xλ − ∂c

� ∂L
∂xλ;c

�
¼ 0 ¼ 1

2

ffiffiffi
γ

p
γabgμν;λx

μ
;axν;b

− ∂cð
ffiffiffi
γ

p
γabgμλx

μ
;aδcbÞ; ð4Þ

Tμν ffiffiffiffiffiffi
−g

p ≡ −2
δS
δgμν

¼ σw

Z ffiffiffi
γ

p
γabxμ;axν;bδ

4ðxρ − xρðσcÞÞd2σdτ; ð5Þ

where g is the determinant of the metric gμν. The energy of
the wall in that case is

E ¼ σwaðτÞ
Z ffiffiffi

γ
p

γ00d2σ ¼ σwa2ðτÞ
Z

εd2σ: ð6Þ

Let us now define the metric gμν as the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric with con-
formal time aðτÞdτ ¼ dt

ds2 ¼ a2ðτÞðdτ2 − dl2Þ; ð7Þ

where aðτÞ is the scale factor and dl2 ¼ dx2 þ dy2 þ dz2.
Then the equation of motion [Eq. (4)] can be rewritten as

_a
a
δ0λ

ffiffiffi
γ

p
γabγab − ∂cð

ffiffiffi
γ

p
γabgμλx

μ
;aδcbÞ ¼ 0: ð8Þ

Let us redefine the coordinates σ1 and σ2 to s1 and s2 in
such way that j ∂xi∂sα j2 ¼ 1 (α ¼ 1, 2). This means that
derivatives will be changed in the following way:

∂xi
∂σα ¼ jxi;αj

∂xi
∂sα ; ð9Þ

(no summation over α). In these new coordinates, it is
possible to introduce an orthonormal basis (refer to Fig. 1):
ξiα ¼ ∂xi

∂sα, and n
i ¼ _xi

j_xij. Consequently, the zeroth component

of Eq. (8) (λ ¼ 0) can be written as

_εþ 3
_a
a
ε_xi _xi ¼ 0: ð10Þ

The spatial part (λ ¼ i) of Eq. (8) contracted with the vector
ni has the form

ẍini þ 3
_a
a
_xinið1 − _xi _xiÞ ¼ ð1 − _xi _xiÞki1ni þ ð1 − _xi _xiÞki2ni;

ð11Þ

where kiα ¼ ∂ξiα∂sα.
The scalar products kiαni project the curvatures corre-

sponding to σ1 and σ2 along the normal vector ni. It should
be noted that kiα ¼ a

Rα
uiα, where uiα are unit vectors and Rα

are the radii of curvature for σ1 and σ2, respectively.
Now it is possible to obtain averaged equations, using

the same strategy as that used in Ref. [7]. One introduces
two macroscopic (averaged) quantities, the energy density

E
V
¼ ρ ¼ σwa2

V

Z
εd2σ ð12Þ

and the root-mean-squared (rms) velocity

FIG. 1. The wall surface M2 parametrized by two parameters,
σ1 and σ2.
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υ2 ¼
R
_x2εd2σR
εd2σ

; ð13Þ

and can thus average Eqs. (10)–(11), obtaining

dρ
dt

¼ −Hρð1þ 3υ2Þ;
dυ
dt

¼ ð1 − υ2Þ
�
K1 þ K2

L
− 3Hv

�
; ð14Þ

where t is a physical time, and H ¼ 1
a
da
dt is the Hubble

parameter, and we made the assumption that curvature radii
have the same averaged value and are equal to the
correlation length: R1 ¼ R2 ¼ L. The K1 and K2 param-
eters are curvature/momentum parameters. The component
K1 can be written as

K1 ¼ ui1ni; ð15Þ

suitably averaged over the network, with an analogous
definition for K2. As a first approximation they may be
assumed to be constants, but later on in this work we will
address how they may depend on the velocity υ.

III. SIMULATIONS AND PRELIMINARY
CALIBRATION

An evolving wall network loses energy because of
possible intersections and the creation of sphere-like
objects that eventually collapse. This energy loss mecha-
nism can be added to Eq. (14) by analogy to what was
originally done by Kibble for cosmic strings [18]. This has
the form

dρloss
dt

¼ −cwυ
ρ

L
; ð16Þ

where cw is a constant which we will call (by analogy to the
cosmic strings case) the chopping parameter.
Taking into account this energy loss term, we can rewrite

Eq. (14) in terms of the correlation length L ¼ σw
ρ , as

follows:

dL
dt

¼ ð1þ 3υ2ÞHLþ cwυ;

dυ
dt

¼ ð1 − υ2Þ
�
kw
L

− 3Hυ

�
; ð17Þ

where we further defined kw ¼ K1 þ K2 as the momentum
parameter, which we will initially consider as a constant.
For a FLRW universe expanding as a power law, a ∝ tλ,

Eq. (17) has the asymptotic scaling solution L ¼ ϵt and
υ ¼ v0, where λ, ϵ and v0 are constants [9]. The two
phenomenological parameters cw and kw can then be
expressed as

kw ¼ 3λϵv0; ð18Þ

cwv0 ¼ ϵ½1 − λð1þ 3v20Þ�: ð19Þ

It should be noted that the right-hand sides of
Eqs. (18)–(19) are general expressions for the momentum
parameter and energy loss mechanisms that can be mea-
sured directly and independently from simulations. For this
purpose, we should obtain the asymptotic values of the
quantities ϵ and v0 from our simulations.
Building upon the work done in Refs. [11,12], we have

carried out field theory simulations of the simplest (single-
field) domain wall networks in a FLRW background. The
equations of motion for the scalar field ϕ, adopting the
Press, Ryden and Spergel procedure [13], can be written in
terms of conformal time τ as

∂2ϕ

∂τ2 þ 3
d ln a
d ln τ

∂ϕ
∂τ −

∂2ϕ

∂xi∂xi ¼ −
∂V
∂ϕ : ð20Þ

Relevant numerical parameters are ϕ0 ¼ �1 for the minima
of the potential, while the maximum of the potential is
V0 ¼ π2=2W2

0 (whereW0 ¼ 10 is the initial wall thickness
in grid units). All these are similar to the ones used in
earlier simulations [11–13]. Relative to earlier works our
simulations have three key advantages.

(i) We used a faster and more memory-efficient version
of our earlier WALLS code [11,12], optimized for the
Intel Xeon Phi architecture.

(ii) This optimization allows us to increase the box size
(and therefore the spatial resolution and dynamic
range). Specifically, we ran several series of 40963

simulations on the COSMOS supercomputer, thus
gaining a factor of 8 in volume and a factor of 2 in
dynamic range as compared to Ref. [12]. Each
simulation starts with τi ¼ 1 and is stopped when
the horizon becomes half the box size (τf ¼ 2048),
ensuring that the periodic boundary conditions of
the simulation boxes do not affect the results. Each
such simulation requires 1 Tb of memory and takes
about 3.7 hours of wall clock time to run on
512 CPUs.

(iii) We explore a much larger range of fixed expansion
rates, including radiation era (λ ¼ 1=2), matter era
(λ ¼ 2=3) and ten other expansion rates, ranging
from λ ¼ 1=10 to λ ¼ 19=20. (Additionally we also
simulated universes during the transition from
radiation to matter, to which we will return below.)
For each choice of expansion rate we have carried
out ten simulations with different (random) initial
conditions: although each of the ten choices was
made randomly, the same ten choices were used for
each of the simulated expansion rates. (This ensures
that any differences can be solely ascribed to the
different expansion rates.) Unless otherwise stated,
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the results presented in what follows correspond to
the average of each set of ten runs. Figure 2
illustrates the results of these constant expansion
rate simulations.

Note that our choice of initial conditions will lead to large
energy gradients in the early time steps of the simulation, and
the network needs some time (which is proportional to the
wall thickness) to wash away these initial conditions. This
implies that in many grid points the field will go over the top
of the potential to get into the other minimum, transiently
leading to a relatively small average velocity (the more so the
faster the expansion rate), which is clearly visible in the early
time steps in the bottom panel of Fig. 2—note that τ ¼ 10 is
the light-crossing time for walls of the average thickness
being simulated. This erasing of initial conditions is done in
a quasicoherent way at the various points in the box, leading
to the damped oscillations in the average velocity that are
also visible in the bottom panel of Fig. 2 (though in this case

they are clearer for the slower expansion rates, correspond-
ing to weaker damping).
In practice, since the simulations are evolved in con-

formal time, the quantity we measure is the conformal
correlation length divided by conformal time, which can be
straightforwardly related to the physical time quantities

ξc
τ
¼ ð1 − λÞL

t
¼ ð1 − λÞϵ: ð21Þ

Similarly for the velocity we measure γv [or, more
precisely, ðγvÞ2], where γ ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p is the Lorentz factor

[11]. In order to identify accurate asymptotic values, we
should find the simulation dynamic range when ξc=τ and γv
have already reached the asymptotic behavior and the
simulation box still has enough walls for robust statistics
(towards the end of each simulation only a few long walls
remain, resulting in comparatively poor statistics). After
some tests, we conservatively defined the region τ ¼ 500 −
1500 in which our simulations are generally well behaved
for all expansion rates (specifically, they are in scaling
solutions without significant fluctuations).
Once this region is specified, the averaged values of ξc=τ

and γv can be obtained. These results are presented in
Table I. Together with values of ξc=τ and γv we also list the
scaling exponents ν and μ, quantifying convergence to the
attractor scaling solution. These are defined as

1

ξc
∝ τμ; ð22Þ

γv ∝ τν; ð23Þ
so for a scaling network these exponents should be
numerically consistent with μ ¼ −1 and ν ¼ 0. As
expected, one finds that the convergence to the scaling
solution is faster for faster expansion rates (corresponding
to a larger damping term in the wall equations of motion).
Indeed, the ν diagnostic shows that for the slowest
expansion rate we have simulated (λ ¼ 1=10) the network
has not converged to the scaling behavior and, as a result, it
cannot be used for further analysis. In fact this is also
qualitatively clear from a simple visual inspection of Fig. 2.
Using the asymptotic values, one can obtain ϵ ¼ ξc

τð1−λÞ
and the velocity v0 for each expansion rate. By inserting ϵ
and v0 into Eqs. (18)–(19) one numerically obtains the
momentum and chopping parameters. The values thus
obtained for each expansion rate are also listed in
Table I. It is noteworthy that, with the exception of the
λ ¼ 1=10 case, kw increases monotonically with λ, while cw
correspondingly decreases.
For comparison with previous work [11,12], it is

interesting to carry out a joint analysis of the data (except
the λ ¼ 1=10 case), and determine the best-fit values
for these phenomenological parameters if one imposes
that they should have the same constant value for all

FIG. 2. The evolution of the dimensionless density (ρτ, top
panel) and the rms speed ðγvÞ2 (where γ is the Lorentz factor,
bottom panel) in 40963 domain wall simulations with different
expansion rates, from λ ¼ 1=10 (red dashed, corresponding to the
highest velocity and lowest density) to λ ¼ 19=20 (black solid,
corresponding to the highest density and lowest velocity).
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epochs. The results of this analysis are shown in the top
panel of Fig. 3, and the following best-fit parameters and
uncertainties were found: cw ¼ 0.63� 0.36, kw ¼ 0.88
�0.51.
It should be noted that in this analysis only the

statistical errors were taken into account, because it is
not possible to determine the systematic error for these
simulations. Such errors would include effects such as the
PRS approximation [13] and the choice of the range of
conformal times in which to do the fits and numerically
measure the scaling parameters. However, it is expected
that the systematic error becomes smaller for higher
expansion rates (since the code is then more robust
[11]), just as the statistical error does. Therefore, while
the full errors can be larger than presented here, they are
broadly expected to have the correct behavior as a
function of the expansion rate: higher expansion rates
provide more accurate data. As a result, this set of data
can be reliably used to calibrate and extend the
VOS model.
If we compare the likelihood contours in the top panel

of Fig. 3 with the same plot from Ref. [12] (which only
had data from three expansion rates, λ ¼ 1=2, 2=3, 4=5), it
is seen that they are statistically consistent, but in our case
the error bars are significantly larger (as is the reduced chi-
squared for the fit). As a comparison, if we repeat the
analysis using only the simulations in the range 0.5 ≤ λ ≤
0.9 we find cw ¼ 0.48� 0.24, kw ¼ 1.12� 0.31; the
results of this analysis are shown in the bottom panel
of Fig. 3. The error bars become smaller and the agree-
ment with Ref. [12] is even better. This implies that
assuming cw and kw to be constants is not accurate enough
for these simulations, if one aims to model a broad range
of expansion rates.
More explicitly this can be shown by plotting the

right-hand sides of Eqs. (18)–(19) in terms of the
velocity—cf. Fig. 4. For the first of these (top panel),
the right-hand side describes the behavior of the

FIG. 3. The likelihood contours for the VOS model with
constant parameters cw and kw, for all scaling expansion rates
0.2 ≤ λ ≤ 0.95 (top panel) and for the restricted range 0.5 ≤ λ ≤
0.9 (bottom panel). Each point with error bars in the plot presents
asymptotic values from one simulation. The black dots denote the
simulations used in the fit, and the red dots the simulations not
used. The slowest expansion rate data was not used in either case:
it has a manifestly different behavior because the simulations did
not reach the asymptotic scaling behavior.

TABLE I. Scaling properties of numerical simulations for domain wall networks with different expansion rate λ in the range
τ ¼ ð500−1500Þ. See the main text for the definition of the various parameters.

λ μ ν ξc=τ γv kw cw

1=10 −1.020� 0.005 −0.147� 0.001 0.496� 0.016 0.867� 0.040 0.108� 0.004 0.65� 0.03
1=5 −0.992� 0.005 −0.085� 0.003 0.575� 0.020 0.514� 0.017 0.20� 0.01 1.06� 0.04
1=4 −0.984� 0.005 −0.066� 0.003 0.578� 0.020 0.489� 0.015 0.25� 0.01 1.06� 0.04
1=3 −0.984� 0.005 −0.057� 0.003 0.580� 0.021 0.467� 0.013 0.37� 0.02 1.00� 0.04
2=5 −0.983� 0.005 −0.054� 0.004 0.577� 0.021 0.449� 0.014 0.47� 0.03 0.94� 0.04
1=2 −0.989� 0.005 −0.046� 0.004 0.568� 0.019 0.418� 0.012 0.66� 0.04 0.81� 0.04
3=5 −0.996� 0.004 −0.039� 0.004 0.545� 0.018 0.379� 0.012 0.87� 0.05 0.67� 0.05
2=3 −1.000� 0.004 −0.032� 0.004 0.519� 0.015 0.348� 0.011 1.02� 0.05 0.56� 0.06
3=4 −1.003� 0.003 −0.026� 0.004 0.470� 0.012 0.302� 0.008 1.22� 0.06 0.41� 0.07
4=5 −1.006� 0.003 −0.021� 0.003 0.430� 0.009 0.269� 0.007 1.34� 0.05 0.31� 0.06
9=10 −1.006� 0.002 0.003� 0.003 0.316� 0.004 0.190� 0.004 1.59� 0.05 0.11� 0.06
19=20 −0.997� 0.001 0.008� 0.002 0.227� 0.002 0.133� 0.002 1.70� 0.03 0.03� 0.04
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momentum parameter kðvÞ for different expansion rates,
while for the second one (bottom panel) it describes an
energy loss function which we will denote FðvÞ. For
constant kw and cw, Eqs. (18)–(19) would imply a constant
value for the first plot and a linear function for the second
one. Data from our simulations show that this is not the
case. As a final, more straightforward check, Table I also
lists the numerically inferred cw and kw for each expansion
rate. Hence, the momentum parameter should depend on
velocity, and the chopping parameter is not sufficient for
describing the energy losses.

IV. EXTENDING THE VOS MODEL

We now describe how to extend the analytic VOS model,
by more accurately modeling the momentum parameter and
the energy loss term.

A. Momentum parameter

The momentum parameter can be estimated in an
analogous way to what was done for cosmic strings in
Ref. [8]. As we saw, the momentum parameter in our VOS
wall model is given by kw ¼ K1 þ K2 (refer to Sec. II). The
component K1 was previously defined in Eq. (15), suitably
averaged over the network, and a similar definition applies
to K2. We now need to estimate this scalar product in terms
of the velocity υ. As can be seen in Fig. 1, there is an
orthonormal basis fξi1; ξi2; nig, and therefore we can
decompose the vector

ui1 ¼ Ani þ Bξi2; ð24Þ

note that the vector ξi1 is orthogonal to u
i
1. Therefore u

i
1ni ¼

A and ui1u1i ¼ A2 þ B2 ¼ 1.
When the expansion rate is slow, the velocity squared

tends to some maximal value 1=q and perturbations on the
wall surface increase. Since the wall surface is highly
perturbed in that regime, the averaged value of ui1ni goes to
zero (A → 0). In the opposite limit when the rate of
expansion is fast, the velocity squared tends to zero, and
perturbations on the wall surface are very small. As a result,
the scalar product ui1ni goes to some value k0=2. The same
considerations apply for K2.
Hence, kðvÞ should reach some value k0 when the

velocity is zero and tend to zero when the velocity squared
is 1=q. In that case kðvÞ can be written similarly to the
momentum parameter of the string network [8]

kðvÞ ¼ k0
1 − ðqυ2Þβ
1þ ðqυ2Þβ ; ð25Þ

where β, k0 and q are unknown parameters.
At this point there is one difference between the string

and wall cases: there are no nontrivial analytic solutions for
walls (like the helicoidal solution for strings) that can be
used to infer exact values of q, k0 and β, as it was done for
strings. Consequently, it is only possible to impose physical
restrictions on these parameters. The constant k0 character-
izes the maximum value of the momentum parameter: it is
positive, but cannot be bigger than 2. The parameter 1=q is
an averaged maximal velocity for the wall network.
Similarly to what was done for strings in Ref. [18], using
the general expression for the n-dimensional topological
defect dynamics [16], it can be shown that the maximal
possible velocity is v2max ¼ n

nþ1
. For walls this is v2w ¼ 2=3,

as expected, but this result requires a set of assumptions that
need not be satisfied. In that case the maximal averaged
velocity of the network can be smaller (but not larger). As a
result we have

0 <
1

q
≤ v2w: ð26Þ

FIG. 4. Momentum parameter kðvÞ (top panel) and energy loss
function FðvÞ (bottom panel), as numerically determined from the
right-hand sides of Eqs. (18)–(19). The red line in the energy loss
plot is a linear function of the rms velocity cwv fitted for high λ
(hence low velocity). The blue lines are from the extended analytic
model, using phenomenological forms of the momentum param-
eter [Eq. (25)] and energy loss due to scalar radiation [Eq. (27)]
with the following best-fit parameters: d ¼ 0.28, r ¼ 1.30,
β ¼ 1.69, k0 ¼ 1.73 and q ¼ 4.27 (discussed in the text).
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Other than these general physical constraints, these param-
eters must be calibrated numerically. Fortunately, the
resolution of our simulations is high enough to enable this
calibration, as we will show below.

B. Energy loss mechanisms

The modification of the momentum parameter
described above is not sufficient to account for the
mismatch between the simulation data and the analytic
prediction for the energy losses. We should also improve
the modeling of the latter for a better description of the
wall network evolution. In addition to the chopping
mechanism, another significant contribution to energy
losses is expected to be from scalar radiation. Moreover,
one may expect it to be proportionally more important
(compared to the chopping mechanism) for slower
expansion rates.
Energy loss due to scalar radiation was considered in

Ref. [19]. It was shown that the uniformly moving wall
does not radiate. Only perturbations on the wall surface
produce scalar radiation. We have already estimated the
level of perturbations in the momentum parameter expres-
sion kðvÞ. The maximal value k0 corresponds to the
minimal rms velocity and hence to minimal perturbations
on the wall surface. Conversely the case when the momen-
tum parameter is zero corresponds to a maximal rms
velocity and a maximally perturbed surface. It looks
reasonable to anticipate that the amount of radiation is
proportional to the surface perturbations. As a result, we
can introduce a modified analytic description of energy
losses

FðvÞ ¼ cwvþ d½k0 − kðvÞ�r; ð27Þ

where d and r are constants. In the maximally perturbed
(slow expansion) limit v2 → 1=q this behaves as

FðvÞ ¼ cwffiffiffi
q

p þ dkr0; ð28Þ

and we expect the scalar radiation term to be the dominant
one. Conversely in the uniform surface (fast expansion)
limit we have

FðvÞ ∼ cwvþ dð2k0Þrqβrv2βr; ð29Þ

and in this case we expect the chopping term to be more
important, and possibly dominate (depending on the values
of the free parameters to be calibrated numerically).
Putting together these extensions, the VOS model

equations [Eq. (17)] can finally be rewritten as

dL
dt

¼ ð1þ 3υ2ÞHLþ cwυþ d½k0 − kðvÞ�r;
dυ
dt

¼ ð1 − υ2Þ
�
kðvÞ
L

− 3Hυ

�
; ð30Þ

where kðvÞ is defined by Eq. (25).

C. Calibrating the extended model

One can easily confirm that the extended VOS model
given by Eq. (30) possesses the same scaling behavior as
the original one, given by Eq. (17). In the extended model
we have in principle six undefined parameters that should
be determined from numerical simulation data. By using
bootstrapping techniques one finds that the chopping
parameter is negligibly small in comparison with the
contribution from scalar radiation and may be neglected
as a first approximation (specifically, we find cw ¼ 0.00
�0.01), while the other five parameters have the following
values:

d ¼ 0.28� 0.01; ð31Þ
r ¼ 1.30� 0.02; ð32Þ
β ¼ 1.69� 0.08; ð33Þ
k0 ¼ 1.73� 0.01; ð34Þ
q ¼ 4.27� 0.10: ð35Þ

The scaling solution of Eq. (30) with the best-fit parameters
is also shown in Fig. 4 by the blue lines. As can be seen, this
now provides an excellent agreement with the entire range
of numerical simulations.
For comparison, we have also repeated this analysis for

the restricted range 0.5 ≤ λ ≤ 0.9, finding

d ¼ 0.29� 0.01; ð36Þ
r ¼ 1.30� 0.06; ð37Þ
β ¼ 1.65� 0.12; ð38Þ
k0 ¼ 1.72� 0.03; ð39Þ
q ¼ 4.10� 0.17; ð40Þ

which are fully consistent with the ones obtained for the full
range of expansion rates. While this is not entirely
surprising (since the fit is dominated by the high expansion
rates, for which the statistical uncertainties of the param-
eters measured in the simulations are smaller) it is support-
ing evidence for the fact that the model can accurately
describe all expansion rates.
We note that in this restricted range the chopping

parameter is still negligible (cw ¼ 0.00� 0.03), indicating
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that much smaller velocities (and therefore faster expansion
rates than λ ¼ 19=20) would be needed to make this term
comparable to the scalar radiation one. Numerically explor-
ing this ultra-fast expansion regime is an interesting but
computationally challenging task which we leave for
subsequent work.
Alternatively, by solving Eq. (30) in the scaling regime

for different expansion rates λ with the best-fit parameters
determined above we can compare the model predictions
with the numerically determined quantities. Figure 5 dis-
plays this comparison (both for the full and restricted
ranges of the expansion rate λ), confirming that the
extended model accurately reproduces the simulation data.
Moreover, it can be concluded that the main energy loss
mechanism for the wall network is generically scalar
radiation, with the chopping term only becoming important
for fast expansion rates.

V. THE RADIATION-MATTER TRANSITION

Thus far we tested the model against numerical
simulations with a fixed expansion rate λ. As an addi-
tional test, we have carried out analogous field theory
simulations of the radiation-matter transition. In this
case the scale factor has the following exact analytic
expression:

aðτÞ
aeq

¼
�
τ

τ�

�
2

þ 2

�
τ

τ�

�
; ð41Þ

where τ� ¼ τeq=ð
ffiffiffi
2

p
− 1Þ and the parameters aeq and τeq

are constants denoting the scale factor and conformal
time at the epoch of equal radiation and matter densities.
For illustration purposes we can also calculate an
“effective” expansion rate during the transition

FIG. 5. Velocity v and conformal correlation length divided by
conformal time ξc=τ obtained from the model using Eq. (30) with
the best-fit parameters described in the text, compared to the data
(with statistical error bars) from the numerical simulations for
different expansion rates. The solid blue line corresponds to the
best-fit parameters for the full range of expansion rates consid-
ered while the red dashed one corresponds to the best-fit
parameters for the restricted range.

FIG. 6. The evolution of the dimensionless density (ρτ, top
panel) and ðγvÞ (bottom panel) in 40963 domain wall simulations
around the radiation-matter transition. Note that the two black
solid lines correspond to the radiation (λ ¼ 1=2) and matter
(λ ¼ 2=3) simulations already discussed in Sec. III.
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λeff ¼
2þ 2 τ

τ�
4þ 3 τ

τ�

; ð42Þ

as expected this interpolates between the radiation and
matter era values.
In this case we ran various sets of simulations with the

same parameters and (random) initial conditions that were
described in Sec. III, except that the scale factor obeys
Eq. (41). The requirement of sufficient resolution implies
that there is not enough memory available for a single

simulation to span the entire transition epoch; instead,
various sets of runs were carried out starting at various
different conformal times relative to the transition epoch,
equally spaced in the logarithm of τi=τeq.
Figure 6 (to be compared to Fig. 2) summarizes the

results of these simulations. Note that the two black solid
lines correspond to the radiation (λ ¼ 1=2) and matter
(λ ¼ 2=3) simulations already discussed in Sec. III. This is
an important test of our code: it shows that simulations
evolving sufficiently early and sufficiently late in the
transition behave exactly like radiation and matter era
simulations—as they must. This figure also makes it
visually clear that although the “early” and “late” simu-
lations reach scaling (since they are effectively evolving
with a constant or quasiconstant expansion rate) this is not
case for the ones evolving during the transition itself: in that
case the effective expansion rate is changing and the
network is constantly trying to adapt (as fast as allowed
by causality) to these changing conditions. This is clear in
the cyan, green and yellow lines in the plots.
By inserting the scale factor expression [Eq. (41)] with

the corresponding constants aeq and τ� in the system of
Eq. (30), we can now compare the dynamics of the
extended analytic model and the simulations. This com-
parison is summarized in Fig. 7, where the results of
simulations (solid color lines) and the extended analytic
model (dashed black line) are compared. It is seen that the
analytic model provides an excellent description of the
radiation-matter transition.

VI. CONCLUSIONS

In this paper we revisited the evolution of domain wall
networks in expanding FLRW universes. We took advan-
tage of recent progress in computing power and hardware
to carry out the largest and most extensive set of field
theory simulations of domain walls, using the PRS
algorithm. We have simulated expanding universes with
12 different fixed expansion rates, as well as sets of
simulations which together span the entire radiation-matter
transition.
Our simulations allowed us to significantly improve the

analytic description of wall network evolution, based on the
quantitative VOS model. We have explicitly shown that a
constant momentum parameter kw and chopping parameter
cw cannot fully reproduce the simulations for different
expansion rates. As a result of this mismatch, we used
phenomenological arguments to introduce an extended
model, given by Eq. (30). In this model the momentum
parameter is described by a velocity-dependent function
kðvÞ [Eq. (25)], and there is a generalized energy loss
function FðvÞ [Eq. (27)], which in addition to chopping
losses also includes scalar radiation of walls. We did not
address the issue of possible losses to gravitational radi-
ation, which is left for subsequent work.

FIG. 7. Evolution of the conformal correlation length divided
by conformal time ξc=τ (top panel) and of ðγvÞ2 (bottom panel)
during the radiation-matter transition, plotted as a function of the
natural logarithm of the scale factor (relative to aeq). The
simulations are denoted by solid color lines (each line being
an average of ten simulations with random initial conditions)
while the prediction of the extended analytic model with the best-
fit parameters discussed in the text is shown by the black dashed
lines. The plot only includes the dynamic range 20 ≤ τ ≤ 1500 of
each set of simulations; the earlier part (which is dominated by
the initial conditions in the box rather than converging to the
attractor solution) and the latter part (which has comparatively
poor statistics, as discussed in Sec. III) have been omitted
for clarity.
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Fitting the phenomenological parameters to the simu-
lations, we found that energy losses due to the creation of
sphere-like objects are typically subdominant in compari-
son with scalar radiation, except in the case of fast
expansion rates. We have confirmed that the extended
analytic model can describe both the fixed expansion rate
cases and the transition from the radiation to the matter-
dominated era. The latter one is an important test of the
model, since the network is not scaling during the transition
(while the model parameters were calibrated from fixed
expansion rate data in the scaling regime).
In the future it would be interesting to extend this

analysis to the case of cosmic strings. In that case the
chopping term is known to be more important, but
significant and not fully understood differences exist
between the results of Goto-Nambu and field theory
simulations. As already shown in Ref. [14], the VOS
model allows a direct comparison of the results of both
types of simulations, and the recent progress in computing
power should permit a clarification of this issue.
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