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It is shown that the basic observed properties of the gamma-ray bursts (GRBs) are accounted for if one
assumes that the GRBs arise by blueshifting the emission radiation of hydrogen and helium generated
during the last scattering epoch. The blueshift generator for a single GRB is a region with a nonconstant
bang-time function tBðrÞ (described by a Lemaître–Tolman (L–T) exact solution of Einstein’s equations)
matched into a homogeneous and isotropic (Friedmann) background. Blueshift visible to the present
observer arises only on those rays that are emitted radially in an L–T region. The paper presents three L–T
models with different Big Bang profiles, adapted for the highest and the lowest end of the GRB frequency
range. The models account for (1) the observed frequency range of the GRBs; (2) their limited duration;
(3) the afterglows; (4) their hypothetical collimation into narrow jets; (5) the large distances to their sources;
(6) the multitude of the observed GRBs. Properties (2), (3) and (6) are accounted for only qualitatively.
With a small correction of the parameters of the model, the implied perturbations of the CMB radiation will
be consistent with those actually caused by the GRBs. A complete model of the Universe would consist of
many L–T regions with different tBðrÞ profiles, matched into the same Friedmann background. This paper
is meant to be an initial exploration of the possibilities offered by models of this kind; the actual fitting of all
parameters to observational results requires fine-tuning of several interconnected variables and is left for a
separate study.
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I. MOTIVATION AND BACKGROUND

In the Lemaître [1]–Tolman [2] (L–T) models, in which
the bang-time function tBðrÞ is not everywhere constant,
radial light rays emitted at the Big Bang (BB) can display
infinite blueshifts (z ¼ −1) to all later observers. This
happens when the radial rays are emitted at the generic
points of the BB, at which dtB=dr ≠ 0 [3–5]. On the other
hand, gamma-ray bursts (GRBs) are observed and are
believed to originate at large distances from our Galaxy, up
to several billion light years [6]. The question thus arises:
could GRBs have been emitted during the last scattering
epoch, together with the relic radiation now observed
as the cosmic microwave background (CMB), and then
blueshifted to gamma-ray frequencies by the mechanism
mentioned above?
For the blueshift mechanism to work, the GRBs would

have to originate in regions that emerged from a locally
delayed BB.1 The relic radiation is emitted a finite time
after the BB, at the last-scattering hypersurface (LSH), so
the observed blueshift must be bounded from below,
z ≥ zLS > −1, where zLS is the blueshift acquired between
the LSH and the present time. The main technical problem
to solve is this: can zLS be sufficiently near to −1 that, with
the free functions of the L–T model suitably chosen, the

frequencies are blueshifted from the range of the emission
spectra of hydrogen and helium (the only elements present
in large amounts during last scattering) to the gamma-ray
range observed today? The present paper answers this
question in the positive—see Sec. IX.
Section II provides the most basic information on the

GRBs. Section III is an introduction to the L–T models, and
Sec. IV provides information on light propagation in these
models. Section V discusses the method of calculating and
the properties of redshift in the L–Tmodels. It is shown there
that nonradial rays emitted at the BB display infinite redshift
to all observers, independent on whether dtB=dr at the BB is
zero or not. In Sec. VI the definition of the extremum-
redshift hypersurface (ERH) and the method of determining
it are recalled. In Sec. VII it is shown how the Friedmann
models follow as a limiting case of the L–T model, and
geometric parameters of the now-standard ΛCDM model
are presented. Section VIII presents the background
Friedmannmodel used in this paper; it hasΛ ¼ 0, k ¼ −0.4.
Section IX presents three L–T models that account for

the observed range of frequencies of the GRBs. Section X
shows how the third model qualitatively explains the
limited duration of the GRBs. A quantitative modeling
of the duration would require a much higher numerical
precision, but it is shown that the model contains a
parameter that can be adapted to the actually observed
durations. Section XI shows how the same Model 3
accounts (qualitatively) for the afterglows of the GRBs.
In Sec. XII, nonradial rays passing through the L–T

region are discussed. It is shown that the angular diameter
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1Regions where the BB occurred earlier than in the back-

ground generate shell crossing singularities [3,7] in addition to
blueshifts.
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of the L–T region as seen by the present observer in the
sky would be ∼2 degrees, and beyond that cone the CMB
radiation would not be perturbed. Thus, with the param-
eters of the model suitably corrected, the implied pertur-
bations will be hidden within the 1-degree cone of the
present resolution of the GRB detectors. The implied
pattern of the perturbations could be observationally tested
when the resolution improves.
Section XIII explains how the models of Sec. IX can

create the illusion of the collimation of the GRBs into
narrow jets, even though they are emitted isotropically by
the L–T regions.
Section XIV shows how the models deal with the large

distances to the sources of the GRBs. If the GRBs are really
generated at last scattering, then the distances to them
are even larger than currently believed. However, with
inhomogeneities and blueshifts present, the redshift is not
a monotonic function of distance, and thus fails to be a
distance indicator, while the present estimates of distances
to the GRB sources assume a homogeneous background
model and use redshifts of the afterglows for calculating
distances. As a by-product it emerges that local blueshifts
arise also on nonradial rays, but they are not visible to the
present observer; they are overcompensated by redshifts
acquired earlier and later along the ray.
Section XV shows that the models used in the paper

would allow one to accommodate up to ∼104 GRB sources
in the sky at the present time. Decreasing the diameter of
the L–T region by a factor f (necessary anyway for other
purposes) would increase this number by f2.
Improvements in the model needed to achieve a full

quantitative fit are discussed in Sec. XVI. Conclusions are
summarized in Sec. XVII.

II. BASIC FACTS ABOUT THE GRBS

The amount of information on the GRBs is enormous
[8]. In this preliminary study we do not try to interpret
all the observational data that are available. Instead, we
concentrate on the most characteristic properties of the
GRBs to show how they follow from a simple combined
Friedmann/L–T model. The following properties of the
GRBs need to be accounted for [6]:
(1) Their frequencies extend from νγmin≈0.24×1019Hz

to νγmax ≈ 1.25 × 1023 Hz [9]2 (see also Ref. [12]).
(2) They typically last from less than a second to a few

minutes [6], but a few examples are known of GRBs
lasting from over two to about 30 hours [13].

(3) FormostGRBs, longer-lived and fainter “afterglows”
at larger wavelengths are observed. It is believed that
all GRBs have afterglows, but some of them were

not detected for technical reasons (like the afterglow
lasting for too short a time) [14].

(4) They are probably focused into narrow jets.
(5) Nearly all GRBs come from very large distances,

from over 108 to several billion light years.
Currently, there is no universally accepted explanation

of origins of the GRBs. There exist competing attempts at
explanation by known astrophysical phenomena such as
gravitational collapse to a black hole, a supernova explo-
sion or a collision of ultradense neutron stars [6].
The models presented in Sec. IX account quantitatively

for the frequency range in property (1), for property (5),
qualitatively for properties (2) and (3), and are consistent
with the hypothetical Property (4). References to these
properties will be marked by bullets •. Modeling individ-
ual GRBs with full quantitative agreement will require
more precise (and much more time-consuming) numerical
fitting of the tBðrÞ profiles to the time profiles of the GRB
frequencies. This is left for future research. The present
paper is a proof of existence of L–T models that reproduce
the basic GRB properties via suitably adjusted tBðrÞ
profiles.

III. THE L–T MODELS

The metric of the L–T models is

ds2¼dt2−
R;r

2

1þ2EðrÞdr
2−R2ðt;rÞðdϑ2þsin2ϑdφ2Þ; ð3:1Þ

where EðrÞ is an arbitrary function. The source in the
Einstein equations is dust; its (geodesic) velocity field is

uα ¼ δα0: ð3:2Þ

Because of the property p ¼ 0, this model is inadequate for
describing times before the LSH.
The function Rðt; rÞ is determined by

R;t2 ¼ 2EðrÞ þ 2MðrÞ=Rþ 1

3
ΛR2; ð3:3Þ

MðrÞ being another arbitrary function and Λ being the
cosmological constant. We consider models with R;t > 0,
E > 0 and Λ ¼ 0. The solution of (3.3) is then

Rðt; rÞ ¼ M
2E

ðcosh η − 1Þ;

sinh η − η ¼ ð2EÞ3=2
M

½t − tBðrÞ�; ð3:4Þ

where tBðrÞ is one more arbitrary function; the BB occurs at
t ¼ tBðrÞ. The mass density is

κρ ¼ 2M;r

R2R;r
; κ ¼def 8πG

c2
: ð3:5Þ

2Converted from keV to Hz by ν ¼ E=h, where 1 keV ¼
1.6 × 10−16 J [10] and h ¼ 6.626 × 10−34 J s [11]. The lowest
energy was read out from Figs. 1 and 2 in Ref. [9] as 10 keV.
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The r-coordinate is chosen so that [5]

M ¼ M0r3; ð3:6Þ

and M0 ¼ 1 (kept in formulae for dimensional clarity).
The units used in numerical calculations were introduced

and justified in Ref. [15]. Taking [10]

1 pc¼ 3.086× 1013 km; 1 y¼ 3.156× 107 s; ð3:7Þ

the numerical length unit (NLU) and the numerical time
unit (NTU) are defined as follows:

1 NTU ¼ 1 NLU ¼ 9.8 × 1010 y

¼ 3 × 104 Mpc: ð3:8Þ

The L–T models are generalizations of (not alternatives
to) the Friedmann models used in astrophysical cosmology
to describe our actual Universe. The relation between these
two classes is explained in Sec. VII.
The following equations that hold in an L–T model with

E ≠ 0 [7] will be useful further on:

R;r ¼
�
M;r
M

−
E;r
E

�
R

þ
��

3

2

E;r
E

−
M;r
M

�
ðt − tBÞ − tB;r

�
R;t; ð3:9Þ

R;tr ¼
E;r
2E

R;t

−
M
R2

��
3

2

E;r
E

−
M;r
M

�
ðt − tBÞ − tB;r

�
: ð3:10Þ

IV. LIGHT RAYS IN AN L–T MODEL

The general equations defining the tangent vectors
kα ¼ dxα=dλ to geodesics of the metric (3.1), with λ being
the affine parameter, are

dkt

dλ
þ R;r R;tr

1þ 2E
ðkrÞ2

þ RR;t ½ðkϑÞ2 þ sin2ϑ ðkφÞ2� ¼ 0; ð4:1Þ
dkr

dλ
þ 2

R;tr
R;r

ktkr þ
�
R;rr
R;r

−
E;r

1þ 2E

�
ðkrÞ2

−
ð1þ 2EÞR

R;r
½ðkϑÞ2 þ sin2ϑ ðkφÞ2� ¼ 0; ð4:2Þ

dkϑ

dλ
þ 2

R;t
R

ktkϑ þ 2
R;r
R

krkϑ − cosϑ sin ϑðkφÞ2 ¼ 0;

ð4:3Þ
dkφ

dλ
þ 2

R;t
R

ktkφ þ 2
R;r
R

krkφ þ 2
cosϑ
sin ϑ

kϑkφ ¼ 0. ð4:4Þ

The geodesics determined by (4.1)–(4.4) are null when

ðktÞ2 − R;r2ðkrÞ2
1þ 2E

− R2½ðkϑÞ2 þ sin2ϑðkφÞ2� ¼ 0: ð4:5Þ

Using R;tktþR;rkr¼dR=dλ and recalling that kϑ¼dϑ=dλ,
the general solution of (4.4) is

R2sin2ϑkφ ¼ J0; ð4:6Þ
where J0 is constant along the geodesic. The special case
J0 ¼ 0 corresponds to two situations:
(a) kφ ¼ 0, i. e. φ being constant along the ray, with ϑ

being, as yet, unspecified, or
(b) ϑ ¼ 0, i.e. the ray proceeding along the axis of

symmetry, with φ being undetermined.
Using the above, the general solution of (4.3) is

R4ðkϑÞ2sin2ϑþ J02 ¼ C2sin2ϑ; ð4:7Þ
where C2 is another constant along the geodesic. When
C ¼ 0, the geodesic is radial. Then J0 ¼ 0 and either (a)
ϑ ¼ 0 with φ being undetermined or (b) ϑ has any constant
value along the ray and φ is constant in consequence
of (4.6). When C ¼ �J0 ≠ 0, the geodesic remains in
the equatorial plane ϑ ¼ π=2. Along any single geodesic,
ϑ ¼ π=2 can be achieved by a transformation of the ðϑ;φÞ
coordinates.
For rays with J0 ≠ 0, Eq. (4.6) implies in addition:

kφ ≡ dφ
dλ

→ ∞ when R → 0: ð4:8Þ

Thus, if such a ray has jdr=dλj < ∞ at the intersection with
the BB, then dφ=dr⟶t→tB

∞, i.e. each of these rays meets the
BB being tangent to a surface of constant r.
From (4.6) and (4.7) we get

ðkϑÞ2 þ sin2ϑðkφÞ2 ¼ C2=R4; ð4:9Þ
and then (4.5) becomes

ðktÞ2 ¼ R;r2ðkrÞ2
1þ 2E

þ C2

R2
: ð4:10Þ

Using (4.6)–(4.10), Eqs. (4.1)–(4.4) simplify to

dt
dλ

¼ kt; ð4:11Þ

dkt

dλ
¼

�
C2

R2
− ðktÞ2

�
R;tr
R;r

−
C2R;t
R3

; ð4:12Þ

kr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

R;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðktÞ2 − C2

R2

r
; ð4:13Þ

dr
dλ

¼ kr: ð4:14Þ

COSMOLOGICAL BLUESHIFTING MAY EXPLAIN GAMMA … PHYSICAL REVIEW D 93, 043525 (2016)

043525-3



The initial data for (4.11)–(4.14) are ðt; rÞ ¼ ðto; roÞ—the
coordinates of the observation point. The values of λ will
not appear in the numerical calculations; in all graphs the
independent variable will be r, so no value for λðtoÞ has to
be assumed.
The sign in (4.13) is þ on those segments of the rays, on

which r is increasing, and − where r is decreasing. Care
must be taken in numerical calculations at those points
where r changes from increasing to decreasing or vice
versa; there kr goes through zero and changes sign.
Since the affine parameter is defined up to a constant

factor, one more initial condition is usually assumed; it can
be achieved by rescaling λ:

ktðtoÞ ¼ �1 ð4:15Þ

(þ for future-directed, − for past-directed rays). Why this is
convenient will be seen in Sec. V.
With (4.15) we have from (4.10),

C2 ≤ R2ðto; roÞ¼defCo
2; ð4:16Þ

the equality occurs when kor ¼ 0, i.e. when the ray is
tangent to an r ¼ constant sphere at ðt; rÞ ¼ ðto; roÞ.
Given an initial point ðto; roÞ and an initial direction

coded in C, (4.11)–(4.14) determine kt and kr all along the
ray.3 To find kϑ and kφ, one has to specify J0, then solve
(4.7) to find ϑðλÞ, and finally calculate kφðλÞ from (4.6).
Note that, given C, there is a whole bundle of rays (labeled
by J0) that have the same ktðλÞ and krðλÞ.
In the graphs, only the rays lying in the subspace

ϑ ¼ π=2 (on which J0 ¼ �C) will be shown. To calculate
them, in addition to (4.11)–(4.14) one has to integrate (4.6),
which becomes

dφ
dλ

¼ � C
R2

; ð4:17Þ

with the initial value φo ¼ 0. The “−-rays” are mirror
images of those with þ, and will not appear in the graphs.
On past-directed radial rays, on which C ¼ 0, using

(4.10), the equations to be integrated numerically are

dt
dλ

¼ kt; ð4:18Þ

dkt

dλ
¼ −ðktÞ2 R;tr

R;r
; ð4:19Þ

kr ¼ ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

R;r
kt; ð4:20Þ

dr
dλ

¼ kr; ð4:21Þ

with the initial condition (4.15). The sign in (4.20) is
ε ¼ þ1 on past-inward and future-outward rays and −1 on
other rays.

V. THE REDSHIFT

The general formula for redshift is [16]

1þ z ¼ ðuμkμÞe
ðuνkνÞo

; ð5:1Þ

where kμ is an affinely parametrized vector field tangent to
a ray connecting the light source and the observer, both
comoving with the cosmic medium. The subscript “e”
means “at the emission event,” “o” means “at the obser-
vation event.”
Consider a ray proceeding from a spacetime point P1 to

P2 and then from P2 to P3. Denote the redshifts acquired in
the intervals ½P1; P2�, ½P2; P3� and ½P1; P3� by z12, z23 and
z13, respectively. Then

1þ z13 ¼ ð1þ z12Þð1þ z23Þ: ð5:2Þ

On past-directed rays, with uα being given by (3.2) and
using (4.15), we have

1þ z ¼ −kt: ð5:3Þ

On future-directed rays, (4.15) and (5.3) change to

ktðtoÞ ¼ þ1; 1þ z ¼ kt: ð5:4Þ

The conditions (5.3) and (5.4) are compatible with (5.2).
For nonradial rays, on which C ≠ 0, the last term in

(4.10) will go to infinity when R → 0. Thus, at the BB,
independently of whether the second term in (4.10) stays
finite or becomes infinite

lim
R→0

jktj≡ lim
R→0

z ¼ ∞: ð5:5Þ

Now imagine a bundle of rays originating at an off-center

event P0¼defðt0; r0; ϑ0;φ0Þ, and going off from P0 to the past
in all directions. Within this bundle, there will be a ray
going radially away from the center and another one going
radially toward the center; for both of them C ¼ 0.
Calculating the redshift in a vicinity of the BB for these
two rays is a complicated thing, but power expansions of
the redshift formula in R [4] and numerical integrations [5]
both indicate that, for radial rays, z → −1 as R → 0 when

3The initial values of ϑ and φ are irrelevant for (4.11)–(4.14) in
consequence of (4.9): all rays originating on the same sphere
ðt; rÞ ¼ ðto; roÞwith the same value ofC have kt and kr expressed
by the same formulae. The value of ϑo is needed if we want to
know kϑ and kφ as well. Even then, φo is not needed because
of spherical symmetry. It becomes needed when the equations
kα ¼ dxα=dλ are integrated to find the path of the ray.

ANDRZEJ KRASIŃSKI PHYSICAL REVIEW D 93, 043525 (2016)

043525-4



dtB=dr ≠ 0 at the intersection of the ray with the BB, and
z → ∞ when dtB=dr ¼ 0. The value z ¼ −1 implies that
the observed frequency would be infinite (which means:
very large for rays emitted close to, but later than the BB).
The property z < 0 goes by the name blueshift, and z ¼ −1
means that the blueshift is infinite. Note that by the very
definition of redshift,

1þ z ≥ 0 ð5:6Þ

must always hold.

VI. THE EXTREMUM-REDSHIFT
HYPERSURFACE

Along a radial ray, dr=dλ≡ kr ≠ 0 [except possibly at
the BB, where kt → 0, see (4.20)]. Therefore, using (5.3)
and (4.20), Eq. (4.19) may be written as [17], [7]

1

1þ z
dz
dr

¼ −ε
R;trffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p : ð6:1Þ

Thus, R;tr ¼ 0 is the locus of extrema of z along radial rays,
called the extremum-redshift hypersurface (ERH).
Further in this paper, we will consider an L–T model

with 2E ¼ −kr2, where k ¼ constant. The way of deter-
mining the ERH in such a model was described in Ref. [5],
and we only copy the results. The value of η [defined in
(3.4)] on the ERH is determined by

x4 þ x3 þ k3
�
rtB;r
4M0

�
2

¼ 0; ð6:2Þ

where

x ¼def sinh2ðη=2Þ: ð6:3Þ

Having found (numerically) xðrÞ, and thus also ηðrÞ from
(6.3), we find tðrÞ on the ERH from (3.4):

tERHðrÞ ¼ tBðrÞ þ
M0

ð−kÞ3=2 fsinh½ηðrÞ� − ηðrÞg: ð6:4Þ

The ERH does not exist along those rays that hit the BB
where tB;r ¼ 0 and is not determined at r ¼ 0 [5], but the
limits at r → 0 and at tB;r → 0 of the solution found at
r × tB;r ≠ 0 may exist. In particular, (6.2)–(6.4) imply that
η → 0 (i.e. tERH → tB) at all points where tB;r → 0, and also
at r → 0 if limr→0tB;r is finite. This means that on
approaching all those points, the ERH and the BB become
arbitrarily close to each other.
Equation (6.2) makes no reference to the initial point of

the geodesic arc. Consequently, the ERH is observer-
independent. The extremum value of redshift will depend
on the initial point, but the location of the extremum will

not: the extremum of z along a given geodesic will occur
always at the same r.
Consider a radial ray proceeding to the past from an

initial point that lies later than the ERH. The redshift on it
increases from 0 to a local maximum, achieved at the ERH.
Further down the ray, z initially decreases.4 If the ray could
continue to the BB, z would either decrease to −1 (if
dtB=dr ≠ 0 at the intersection) or increase to infinity
(if dtB=dr ¼ 0 there). However, the L–T model does not
apply at times earlier than the LSH. Can z become, before
the ray crosses the LSH, sufficiently negative to shift the
optical frequencies to the gamma-ray range? It is shown in
Sec. IX that this is possible when the functions EðrÞ and
tBðrÞ are suitably chosen, and the observer is put in the
right spacetime region.

VII. THE FRIEDMANN LIMIT OF THE
L–T MODEL, THE ΛCDM MODEL AND

THE LAST-SCATTERING INSTANT

The Friedmann limit of (3.1) follows when tB and
E=M2=3 are constant. With the coordinate choice (3.6) this
means 2E ¼ −kr2, where k is the Friedmann curvature
index. Then (3.4) imply R ¼ rSðtÞ, and

ds2¼dt2−S2ðtÞ
�

1

1−kr2
dr2þr2ðdϑ2þsin2ϑdφ2Þ

�
; ð7:1Þ

while (3.4) reduce to

SðtÞ ¼ M0

ð−kÞ ðcosh η − 1Þ;

sinh η − η ¼ ð−kÞ3=2
M0

ðt − tBÞ: ð7:2Þ

Since the Friedmann models are isotropic around every
observer world line, every null geodesic is radial, so (6.1)
can be used. It is then easily integrated to give

1þ z ¼ SðtoÞ=SðteÞ; ð7:3Þ

where to and te are the instants of, respectively, the
observation and emission of the light ray [note that (7.3)
trivially obeys (5.2)].
The ΛCDM model, now most often used as the

“standard” cosmological model, is a solution of Einstein’s
equations for the metric (7.1) with dust source and
k ¼ 0 > Λ [15]:

4In the models considered further on, the ERH will have the
topology of a thick-walled tea cup, and the radial rays will
intersect it up to four times. The z along them will thus have up to
two local maxima and up to two local minima.
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SðtÞ ¼
�
−
6M0

Λ

�
1=3

sinh2=3
� ffiffiffiffiffiffiffiffiffi

−3Λ
p

2
ðt − tBΛÞ

�
; ð7:4Þ

where t ¼ tBΛ is the instant of the BB. It is characterized by
the Hubble parameter,

H0 ¼ S;t =Sjt¼to ð7:5Þ

and two dimensionless constants: the density parameter and
the cosmological constant parameter

ðΩm;ΩΛÞ¼def
1

3H0
2

�
8πGρ0
c2

;−Λ
�����

t¼to

ð7:6Þ

that obey Ωm þ ΩΛ ≡ 1; ρ0 is the present mean mass
density in the Universe. The Hubble parameter H0 in (7.5)
is related to the Hubble constant H0 by

H0 ¼ H0=c: ð7:7Þ

The current observations imply [18]

ðΩm;ΩΛÞ ¼ ð0.32; 0.68Þ; H0 ¼ 67.1 km=ðs × MpcÞ:
ð7:8Þ

The above, via (3.7)–(3.8), (7.6) and (7.7), leads to

½H0;−Λ� ¼ ½6.71 ðNLUÞ−1; 91.849164 ðNLUÞ−2�: ð7:9Þ

The age of the ΛCDM Universe is [18]

T ¼ 13.819 × 109 y ¼ 0.141 NTU: ð7:10Þ

The end of the recombination epoch (the last scattering
instant) occurs when the temperature of the cosmic matter
drops below the one needed for ionizing the hydrogen
atoms. It will be assumed that this temperature is uniquely
determined by the local mass density, ρLS. Consequently, it
will be the same along every matter world line and in every
L–Tmodel. At larger densities, the L–Tand ΛCDMmodels
do not apply.
In the ΛCDM model the last scattering occurs at the

redshift [18,19]

zLS ¼ 1090: ð7:11Þ

Using this value and (7.4), one can calculate the corre-
sponding instant tLS in the ΛCDM model from [7]

1þ zLS ¼ SðTÞ=SðtLSÞ; ð7:12Þ

where T is given by (7.10). Namely, using (7.9) and (7.10)
in (7.4) one finds

SðTÞ ¼ 0.51743812113024401: ð7:13Þ

Next, using (7.4) and (7.12) one finds

tLS ¼
2ffiffiffiffiffiffiffiffiffi
−3Λ

p ln ðY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ 1

p
Þ; ð7:14Þ

where

Y¼defð1þ zLSÞ−3=2 sinh
�
1

2

ffiffiffiffiffiffiffiffiffi
−3Λ

p
T

�
: ð7:15Þ

Then, using (7.9), (7.10) and (7.11), one finds5

tLS ¼ 4.86905016470083480 × 10−6 NTU

¼ 4.7716691614068183 × 105 y: ð7:16Þ

The value of SðtÞ at t ¼ tLS is now calculated from (7.4):

SLS ¼ 0.000474278754473001721: ð7:17Þ

From (7.9), (7.8) and (7.6) using c ¼ 3 × 108 m=s
and (3.7)–(3.8) we obtain for the present mean mass
density6

κρ0 ¼ 3ΩmðH0=cÞ2 ¼ 43.223136 ðNLUÞ−2: ð7:18Þ

Then, the density at last scattering is

κρLS ¼ κρ0½SðTÞ=SLS�3 ð7:19Þ

¼ 56.1294161975316 × 109 ðNLUÞ−2: ð7:20Þ

VIII. THE BACKGROUND MODEL

Each cosmological model in this paper will consist of a
Friedmann background with an L–T island matched into it.
The background model will be different from ΛCDM. For
this preliminary study it is preferable to set the cosmo-
logical constant zero in order to be able to do exact
calculations as much as possible. Our Friedmann back-
ground will have the following parameters:

Λ ¼ 0; ð8:1Þ

k ¼ −0.4; ð8:2Þ

tB ¼def tBf ¼ −0.13945554689046649 NTU

≈ −13.67 × 109 years: ð8:3Þ

5See Appendix A for a clarification of the possible confusion
connected with zLS vs the age of the Universe at last scattering.

6This value is corrected with respect to Ref. [20].
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The tBf is taken from Ref. [5], where it was the asymptotic
value of the function tBðrÞ in an L–T model that mimicked
accelerating expansion (presented in Ref. [15]); it differs
from (−T) given in (7.10) by ∼1.6%. The value of k
emerged in numerical experiments.
For comparing the predictions of our models with the

CMB data, we will need the redshift at last scattering in this
background model. The density at last scattering ρLS given
by (7.20) must be the same as before, so SLS must be the
same, too. This time, however, the present value of S must
be calculated for the background model with the parameters
(8.1)–(8.3). It is, using (7.2)

S̄now ¼ 0.45180345033414671: ð8:4Þ

The resulting redshift between the LSH and t ¼ 0 in the
background model, S̄now=SLS, comes out to be

1þ zbLS ¼ 952.611615159: ð8:5Þ

This differs from (7.11) by ∼12.7%. The present temper-
ature of the CMB radiation is directly measured, so if (8.5)
were taken for real, it would imply that the temperature of
the background radiation at emission was higher by 12.7%
than current knowledge tells us (i.e. ∼3380 K instead of
∼3000 K). But a more appealing way to cure this discrep-
ancy would be to change tB or k (or both) so as to make
S̄now larger. This would require increasing jtBj or increasing
jkj (to produce larger S at a given t − tB with k < 0, larger
jkj is needed, see Fig. 17.1 in Ref. [7]). However, these
changes would have to be accompanied by changes
in other parameters of the models presented further on,
and such changes would require laborious recalculations.
Therefore, for the beginning, we will show how the present
model deals with some properties of the GRBs exactly,
and with others only qualitatively, just to explore the
existing possibilities. See Sec. XVI for a discussion of
improvements.

IX. FITTING THE L–T MODEL TO THE GRB
FREQUENCIES [PROPERTY (1) IN SEC. II]

As already explained, we assume that the last scattering
in any model occurs at the density given by (7.20). The
density along a ray is calculated using (3.5), and the value
of z at the moment when ρ ¼ ρLS emerges from (5.3)
during numerical integration of (4.18)–(4.21).
The spectra of the GRBs do not have the black-body

forms [21], so, if the GRBs arise by the mechanism
described below, then different frequencies must be blue-
shifted independently; see Appendix B.
As the cosmological model we take a Friedmann back-

ground, with k and tB given by (8.2) and (8.3), into which
several L–T regions are matched. Each L–T region has a
nonconstant tBðrÞ, and, being spherically symmetric,
defines its own radial directions, independent of the other

L–T regions. The BB in such a model consists of flat parts
that give rise to the Friedmann background, and spherical
humps of delayed BB that evolve into the L–T regions.
In this section we consider three examples of single L–T
regions surrounded by a Friedmann spacetime. The pres-
ence of other L–T regions would not perturb the evolution
of any single one, but of course would influence the
propagation of light passing through them. The calculations
presented here assume that there is no such intervening
L–T region between the one that emitted the ray and
the observer sitting in the Friedmann background. The
perturbations caused by intervening L–T regions may be
investigated separately. The central theme of this paper is
the existence of the mechanism producing sufficiently
strong blueshifts.
We assume that the gamma rays in the GRBs originate as

emission radiation of hydrogen and helium, the only
elements present in large amounts during the recombination
epoch, together with the radiation that will later become
the CMB. The rays emitted in the Friedmann background
and rays emitted nonradially in the L–T region become
redshifted and evolve into the CMB. The rays that are
emitted radially in the L–T region become blueshifted and
become the GRBs.
The emission frequencies of hydrogen lie between

νHmin ¼ 4.054 × 1013 Hz; ð9:1Þ

corresponding to the wavelength of 7400 nm, and

νHmax ¼ 3.2 × 1015 Hz; ð9:2Þ

corresponding to 93.782 nm [22], with the frequency of the
most intense line being

νHint ¼ 2.1876 × 1015 Hz; ð9:3Þ

corresponding to 656.2852 nm. The most intense
helium emission lines have wavelengths between 388 nm
and 846 nm, i.e. within the range of the hydrogen
spectrum [23].
The maximum intensity of the CMB radiation by today

is at the frequency of ∼200 GHz [24]. Using (7.11) and
Wien’s law it is easy to calculate that the frequency of
maximum intensity at the time of emission must have been
2.18 × 1014 Hz. This falls between νHmin and νHmax.
The z needed to shift the νHmin to the lowest observed

frequency of the gamma-ray bursts [9],

νγmin ≈ 0.24 × 1019 Hz; ð9:4Þ

is

1þ zmax ≈ 1.689 × 10−5: ð9:5Þ
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The z needed to shift the νHmax to the maximum recorded
cosmic gamma-ray frequency [9],

νγmax ≈ 1.25 × 1023 Hz; ð9:6Þ

is

1þ zmin ≈ 2.56 × 10−8: ð9:7Þ

Consequently, z in the GRB models has to obey

zmin < z < zmax: ð9:8Þ

Actually, if a model that accounts for a given 1þ z is
already constructed, then there is no problem with making
1þ z larger; the challenge is to account for a sufficiently
small 1þ z. Therefore, we will aim at constructing models
that have z < zmin and z < zmax at the LSH.
The notation may be confusing here: the zmax (so denoted

because it is the greatest value of z that will be needed in
GRB models) is associated with the minimum values of the
emission and GRB frequencies; similar confusion exists for
the zmin.
The shape of the hump in the BB has to be chosen such

that it makes 1þ z as small as indicated by (9.5) or (9.7),
but at the same time the hump is not too wide (to avoid
large perturbations of the CMB) or too high (so that many
humps can be in the field of view of the observer, to account
for the ubiquity of the GRBs). The connection between the
shape of the hump and the other quantities will become
clear in Secs. XII D and XV.
The 5-parameter family of profiles shown in Fig. 1

emerged in numerical experiments. (For remarks on how
this shape was arrived at see Appendix C.) Each profile
consists of two curved arcs and of a straight line segment
joining them. The upper-left arc (shown in thicker line) is a
segment of the 4-th degree curve

r4

B1
4
þ ðt − tBf − A0Þ4

B0
4

¼ 1; ð9:9Þ

where tBf is given by (8.3). The lower-right arc (also shown
in thicker line) is a segment of the ellipse

ðr − B1 − A1Þ2
A1

2
þ ðt − tBf − A0Þ2

A0
2

¼ 1: ð9:10Þ

The straight line segment passes through the point
ðr; tÞ ¼ ðB1; tBf þ A0Þ where the full curves would be
tangent to each other; the dotted arcs show the parts of
the curves that are not included in the hump profile.
The profile in Fig. 1 has five parameters: A0, A1, B0, B1,

and x0 which determines the slope of the straight segment.
The other quantities are determined by these five. Figure 1
is not drawn to scale with respect to the values used in

actual numerical calculations. In particular, x0 and A1 are
greatly exaggerated.7

This exemplary class of profiles is meant to provide a
proof of existence of the blueshifting mechanism. Other
profiles may emerge when modeling the actually observed
GRBs; see one example in Sec. IX C.
The function EðrÞ obeys

2E=r2¼def − k ¼ 0.4 ð9:11Þ

and is the same as in the background model; see Sec. VIII.
A general E would have the form 2EðrÞ ¼ r2½−kþ F ðrÞ�,
where F ð0Þ ¼ 0, but otherwise is arbitrary [7].
One more adjustable parameter defines the path of the

ray. It is Δtc—the time-difference between tBð0Þ and the
instant when the ray intersects the axis r ¼ 0. The Δtc
determines the coordinate r of the observer who receives
the ray at t ¼ 0; this way of specifying the initial conditions
led to a greater numerical precision.

A. Model 1

Three models were constructed. Model 1 is adapted to
the GRBs of the highest frequency, and satisfies (9.7) with
some excess. The values of its parameters are

0
BBBBBB@

A0

B0

A1

B1

x0

1
CCCCCCA

¼

0
BBBBBB@

0.00045 NTU

0.001 NTU

1 × 10−8

0.03

2 × 10−13

1
CCCCCCA

ð9:12Þ

(the last three parameters are dimensionless). The values of
A0 and B0 imply the time difference between the maximum

B0

B1

x0

y0

A0

A1

x1

y1

r = 0 t = tBf

r

t

FIG. 1. Parameters of the bang-time profiles (the profile is
drawn not to scale for better readability). See (9.12) for the actual
values in Model 1 and (9.19) for the values in Model 2.

7The straight segment of the BB is invisible in most of the next
figures in consequence of x0 being extremely small. It was
introduced to keep dtB=dr finite between the curved arcs.
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of tB and its flat part 0.00145 NTU ¼ 1.421 × 108 years
[∼0.0103T, with T given by (7.10)].
The value of Δtc in Model 1 that ensured compatibility

with (9.7) is

Δtc ¼ 1.9949248 × 10−5 NTU ≈ 1.955 × 106 y: ð9:13Þ

This ray reaches the present time t ¼ 0 at

r ¼def robs1 ¼ 0.76218478306089776: ð9:14Þ

With (9.12) and (9.13), the blueshift is

1þ zminb ≈ 2.5191965 × 10−8 ð9:15Þ

between the LSH and now. This is slightly better than
required by (9.7). In this way, the upper limit of GRB
frequencies in • Property (1) from Sec. II is accounted for.
Values of 1þ z obeying (9.7) could possibly be obtained
with an even smaller height of the BB hump (i.e. with
smaller A0 þ B0). However, no precise optimization was
attempted: this model was meant to be only a proof of
existence of the blueshifting mechanism accounting for the
highest GRB frequencies. More precise modeling was done
for Model 3; see Sec. IX C.
The value (9.15) was calculated in two steps, using (5.2).

First, 1þ z between the LSH and the point Pa of
coordinates ðr; tÞ ¼ ð0; tBð0Þ þ ΔtcÞ was calculated; it is

1þ zals1 ¼ 9.1144891634 × 10−10: ð9:16Þ

Then, the redshift between Pa and the observer sitting at
t ¼ 0 was calculated with the result

1þ zoa1 ¼ 27.63947: ð9:17Þ

The number in (9.15) is the product of the two.
The main panel of Fig. 2 shows the radial cross section

through the hump in the BB in Model 1, and the ray defined
by (9.13). The inset shows a closeup view of the neighbor-
hood of tBð0Þ (top of the hump). The LSH and the BB lie so
close to each other that they would coincide in all the
figures, so the LSH is not marked.
The line that looks vertical in the main panel is part of the

profiles of the ERH and of the BB that coincide only
spuriously, because of the scale of the figure. It is so close
to vertical in consequence of the very small values of x0 and
A1. Another consequence of the small value of A1 is that the
lower (ellipse) arc from Fig. 1 is invisible here. The dot near
the horizontal part of the BB shows the point where the ray
hits the LSH; see Eq. (D2) in Appendix D for the exact
value of t there [and compare (D3) to see how close that
point is to the BB]. The two (seemingly coincident)
horizontal strokes above the dot show the positions of
the ends of the straight segment of the BB. The ERH is

spherically symmetric around the center, so its profile is
mirror-symmetric with respect to the r ¼ 0 line, but the left
part of the profile is omitted in the inset, for clarity of the
picture.

B. Model 2

Model 2 was obtained fromModel 1 by combining a few
actions: making the hump lower (by decreasing A0 and B0),
changing the slope of its straight part (by increasing or
decreasing x0), and replacing (9.9) with an analogous curve
of still higher degree. Each change in A0 or x0 had to be
accompanied by adjusting A1 (to avoid making x1 larger
than A1, see Fig. 1) and Δtc (to keep the ray in the range of
minimum 1þ z).
In Model 2, the upper-left arc from Fig. 1 is replaced by

an arc of the 6-th degree curve,

r6

B1
6
þ ðt − tBf − A0Þ6

B0
6

¼ 1; ð9:18Þ

and its parameters are

0
BBBBBB@

A0

B0

A1

B1

x0

1
CCCCCCA

¼

0
BBBBBB@

0.000026 NTU

0.0001 NTU

1 × 10−10

0.015

2 × 10−13

1
CCCCCCA
; ð9:19Þ

Compared to (9.12), A0 is decreased by a factor of ∼17, B0

by the factor 10, A1 by the factor 100 and B1 by the factor 2.
The height of the hump in the BB is thereby decreased from

-0.1396
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-0.1382
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t

r

-0.1381

-0.13808
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-0.13802
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03

the ray
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FIG. 2. Main panel: A radial cross section through the BB
hump in Model 1. It is of the type shown in Fig. 1, with the
parameter values given by (9.12). At this scale, the ray defined by
(9.13) nearly coincides with the BB. See text for more explan-
ation. Inset: A closeup view of the neighborhood of the maximum
of the BB. The dotted line is r ¼ 0. The difference in t between
the ray and the BB at r ¼ 0, marked by the double arrow, is the
value of the parameter Δtc given by (9.13).
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0.00145 NTU to 0.000126 NTU, i.e. by a factor of ∼11.5.
The ray that has the smallest 1þ z is here defined by

Δtc ¼ 8.83425 × 10−6 NTU ¼ 8.657565 × 105 y; ð9:20Þ

and the blueshift on it is given by

1þ zmaxb ¼ 1.36167578 × 10−5; ð9:21Þ

being the product of two factors analogous to those in
(9.16) and (9.17). This time they are

1þ zals2 ¼ 1.07858890707746014 × 10−7; ð9:22Þ

1þ zoa2 ¼ 126.246039921: ð9:23Þ

The 1þ zmaxb is smaller than the 1þ zmax given by (9.5),
and thereby Model 2 accounts for the lower limit of
frequencies in • Property (1) from Sec. II. This ray reaches
the present time at the radial coordinate

r ¼def rO2 ¼ 0.88705643159726955: ð9:24Þ

The picture corresponding to Fig. 2 is qualitatively similar
here; it is shown in Fig. 3 to visualize the changes caused by
replacing the curve (9.9) with the curve (9.18).
Models 1 and 2 are compared in Fig. 4. The BB profiles

consist of the humps from Figs. 2 and 3 surrounding the
center; further away from the center tB is constant, and so
the geometry is Friedmannian. The present time is t ¼ 0,
and the flat part of tB is at t ¼ tBf given by (8.3). The
observer lies farther from the hump in Model 2 than in
Model 1. The humps are almost invisible here, so they are
shown in closeup view in Fig. 5.
Some details of the numerical calculations for both

models are described in Appendix D.

C. Model 3

Models 1 and 2 account for the range of frequencies of
the GRBs, but, as will be seen in Sec. X, do not correctly
account for their short duration. Model 3 that will be
presented now is a modification of Model 2 made in order
to allow us to choose this time interval.
The modified profile of the BB hump is shown in

Fig. 6—again not to scale. Now the ellipse arc is truncated
at r ¼ rge ¼ B1 þ xge (ge for gamma-burst end), and is
replaced by a parabola arc going from r ¼ rge to r ¼
rge þ xag (ag for afterglow) achieved at t ¼ tBf given by
(8.3). In the special case xag ¼ yag ¼ 0 the parabola arc is
absent, and the ellipse goes over (nondifferentiably) into
the straight line t ¼ tBf . The parameters yge, xag and yag are
adjustable, xge is determined by yge. The net effect
compared to Fig. 1 is that the whole hump is moved down
with respect to the flat part of the BB, by

toff ¼def A0 − yge − yag; ð9:25Þ

and the parabola arc interpolates between the ellipse and
the straight line. The value of xge will be given in Sec. X,
while xag ¼ yag ¼ 0 will be assumed in all models.

-0.13946

-0.13944

-0.13942

-0.1394

-0.13938

-0.13936

-0.13934

-0.13932

-0.1393

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

ERH
ERHthe ray

the ray + BB + ERH

BB

BB
BB + ERH

t

r

ERH
ERHthe ray

the ray + BB + ERH

BB

BB
BB + ERH

t

r

FIG. 3. This figure is the analogue, for Model 2, of the main
panel in Fig. 2. The meaning of the symbols is the same here.
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FIG. 4. Comparison of Models 1 and 2. The right-hand half of
the ERH profile is shown only for Model 1.
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FIG. 5. Comparison of the BB profile in Model 1 (upper curve,
the same as in Fig. 2) with the BB profile in Model 2 (lower
curve, the same as in Fig. 3).
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X. ACCOUNTING FOR THE LIMITED LIFETIMES
OF THE GRBs [PROPERTY (2) IN SEC. II]

A. Adapting the model to the observed durations
of GRBs

We recall from Sec. II that the observed GRBs typically
last from less than a second to a fewminutes [6]. Let us take
10 minutes as the reference value.
If two rays in Model 2 are emitted at r ¼ 0 close to the

BB, the second one later than the first by 10−16 NTU
(≈5.15 minutes), then observer O2 sitting at the rO2 given
by (9.24) will receive the second ray 1565.56 × 10−16 NTU
(≈5.6 days) later than the first. Consequently, to get a time
interval of 10 minutes ¼ 1.9414 × 10−16 NTU between the
received rays at the observer, the time difference between
their emission events at the center would have to be
∼1.24 × 10−19 NTU. But rays separated by such a short
interval of t at r ¼ 0, when sent back in time, become
indistinguishable for a Fortran90 program at double pre-
cision: they (numerically) reach the LSH at the same instant
with the same 1þ z. So, a much higher numerical accuracy
is needed to trace such tiny intervals backward in time.
Lacking this, we will only show that the duration of a GRB
in Model 3 can be controlled via the parameter yge.
Numerical experiments with Model 2 showed that the

program begins to see the difference between past-directed
rays all the way down to the BB when their initial points at
r ¼ 0 are separated by

ΔT ≈ 1.24 × 10−13 NTUð≈ 4.4 daysÞ: ð10:1Þ

The earlier of the two rays was chosen such that the
observer O2 sees it as (approximately) the first in the
gamma-ray frequency range. It crossed the LSH at

tgb2 ¼ −0.13944465218439359 NTU: ð10:2Þ

The ray that crossed the center later by ΔT, hit the LSH at

tge2 ¼ −0.13944465708554910 NTU < tgb2: ð10:3Þ

(The ray that crosses the LSH earlier reaches the symmetry
axis and the observer later; see the figures.)
For the first set of numerical experiments with Model 3,

called Case I below, we assumed xag ¼ yag ¼ 0 and took
the difference tge2 − tBf as the toff of (9.25). Thus

yge3I ¼ A0 þ tBf − tge2

¼ 1.511019508261 × 10−5 NTU: ð10:4Þ

For the ray that defines the beginning of the GR flash in
Case I, we took the one with

Δtc ¼ qi¼def8.832869 × 10−6 NTU ð10:5Þ

(see Fig. 2 for the definition of Δtc). With yge ¼ yge3I given
by (10.4), it reached the LSH at

tLSH3I ¼ −0.13945554226395207 NTU; ð10:6Þ

and the present time t ¼ 0 at

r ¼ rO3 ¼ 0.89000433423592207: ð10:7Þ

Observer O3 residing at r ¼ rO3 will be the new reference
observer. The redshift on the ray defined by (10.5) between
the LSH and the O3 world line is

1þ zIb ¼ 1.67354 × 10−5; ð10:8Þ

and satisfies (9.5) with a little excess.
For the later rays, Δtc was increased in quanta of

qt ¼ 10−13 NTU: ð10:9Þ

The two rays that had Δtc ¼ qi þ qt and Δtc ¼ qi þ 2qt
were still in the gamma-ray frequency range when
observed, but the one with Δtc ¼ qi þ 3qt was already
in the X-ray frequency range; see Table I.
In units of NTU, in Case II the value of yge is

yge3II ¼ yge3I þ 2qt ¼ 1.511019528261 × 10−5; ð10:10Þ

and in Case III it is

yge3III ¼ yge3I þ 4qt ¼ 1.511019548261 × 10−5: ð10:11Þ

The values of these and other parameters for all cases are
given in Table I. Assuming that all rays in the table were
emitted in the visible range, in each case the ray with
1þ z ≈ 10−5 is observed in the gamma-ray range, while
the one with 1þ z ≈ 10−3 is observed in the X-ray range
[25], i.e. after the end of the GRB. The parameter T is the
t-coordinate of the instant when O3 sees the ray. Values of
T are given both in NTU (the first one) and in y. The first
line of T in each case provides the lower limit; the second

yge

xge

xag

yag

A0

B1

t = tBf

x1

y1

r

t

FIG. 6. The bang-time profile of Model 3 and its parameters.
See text for explanations.
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one provides the upper limit on the duration of the GRB.
By this criterion, Table I shows that the duration of the
GRB in Model 3 increases when yge increases, so it is
controlled by yge. (In Model 2, which is the limit yge ¼ A0

of Model 3, the gamma-ray “burst” would last more than
104 years.)
The values in Table I are only rough estimates of the

GRB duration because they assume that in all three cases
the GRB begins at t ¼ 0, while in fact the observed
frequency might have entered the gamma range earlier.
Without a precise identification of the onset of a GRB in a
model, no better estimate is possible.
The estimates given here ignore one more problem that is

important for detecting the GRBs, namely their intensity.
For a GRB to generate a signal in a detector, it must not
only be in the gamma range, but also must be sufficiently
strong. The problem of calculating the intensity of a GRB is
left for future consideration.

B. The time-profile of observed frequencies
in case I of Model 3

We will now follow the sequence of radial rays received
by observer O3 in case I of Model 3, from the (approx-
imately estimated) moment when the BB hump first
appears in her field of view up to the moment (also
approximate) when it disappears. The parameters of several
rays emitted at characteristic points of the LSH are given in
Table II. The values of t are given in NTU unless specified
otherwise.
Selected rays are shown in Fig. 7 along their whole

paths, and in Fig. 8 in the neighborhood of the BB. Note
how the rays abruptly change their slopes when crossing
the steep wall of the ERH but remain smooth on inter-
section with the other branch of the ERH. This is because
the near-vertical part of the BB hump creates a quick rise in
the ERH from t ¼ 0 to a large value above the upper margin
of the figure. This is not a general property of all ERH, but
only of this particular model.
The spurious intersections of different rays in Fig. 8 are

caused by a limited resolution of the figure; in reality the
rays do not intersect.
Ray R1 is emitted at the LSH at nearly the same r that is

marked with a dot in Fig. 3. This is one of the earliest

signals from the neighborhood of the hump that crosses the
world line of observer O3. At a short initial segment of its
path this ray acquires some blueshift. However, on exit
from the ERH the accumulated blueshift is not sufficiently
strong to survive and is completely obliterated by later-
acquired redshifts. In the end, as seen in Table II, ray R1
reaches observer O3 with a redshift sufficient to shift
the lowest-frequency visible light to the high-frequency
segment of microwaves, and the highest-frequency visible
light to infrared.
The 1þ z at O3 decreases from R1 to R3. This is

because, when the emission point of the ray is moved up the
hump, the ray travels a longer distance inside the ERH,
so it acquires more blueshift. Moreover, the travel time of
the ray outside the ERH becomes thereby shorter, so the
accumulated redshift becomes smaller.
On rays received after R3, the observer sees increasing

1þ z until long past ray R5, emitted at the center of the
hump. This happens so because somewhere between R3
and R4 the rays begin to stay within the ERH for shorter
and shorter times. At r ¼ 0, where R5 has its origin, the
ERH is tangent to the BB. Consequently, the initial point
of R5 is outside the ERH and the ray builds up positive
redshift from the very start.8 On rays later than R5, 1þ z
at O3 still increases for a while. This is because with
increasing difference in r between the light source and the
observer, the redshift acquired outside the ERH outbalances
the blueshift acquired inside the ERH.
Somewhere between R6 and R7 1þ z at O3 achieves

a maximum and then begins to go down. Between
these two rays there is a discontinuity that makes it
extremely difficult (perhaps impossible) to hit, with
past-directed rays originating at r ¼ 0, the middle of the
arc between the points marked R6 and R8. The rays hit
the LSH either above that middle point, with 1þ z ≈ 1.5 at
O3, or below it, with 1þ z ≈ 0.02 at O3. This is where
observer O3 begins to see blueshifts. If this is not a
numerical effect, but a reflection of a real discontinuity
in the model, then blueshifts appear abruptly, and are

TABLE I. Limits on duration of GRBs in Model 3 with different values of yge and Δtc.

Case Value of yge Value of Δtc Value of T 1þ z at O3

I ygeI
qi þ 2qt 9.80519016282838448 × 10−9 ≈ 960.90 y 1.67815 × 10−5

qi þ 3qt 9.94424450172667973 × 10−9 ≈ 974.54 y 5.05133912545 × 10−3

II ygeII
qi þ 2qt 9.86541227093332829 × 10−9 ≈ 966.81 y 1.676761 × 10−5

qi þ 3qt 1.00044488426559296 × 10−8 ≈ 980.44 y 5.051339211 × 10−3

III ygeIII
qi þ 2qt 9.92591136595910132 × 10−9 ≈ 972.74 y 1.67476 × 10−5

qi þ 3qt 1.00649385349405952 × 10−8 ≈ 986.36 y 5.051339288 × 10−3

8The redshift decreases locally on all rays when they pass
through the wall of ERH, seen in Fig. 4. But this has little effect
on the final value of 1þ z.
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initially moderate: 1þ z ¼ 0.02 takes the visible range into
the UV.
A similar instability exists between rays R8 and R9: the

change in 1þ z measured by O3 from the order of 10−2 to
10−5 occurs abruptly. If both rays are emitted as visible
light, then ray R8 is observed still in the UV range, wile R9
is already in the gamma range. Ray R9 is received by
observer O3 at t ¼ 0, i.e., now.
Again, if this is a reflection of a real discontinuity in the

model, then the gamma-ray flash would appear suddenly,
without a continuous transition from the UV range. This
seems to agree with the observations of the real GRBs [6].

The asterisk (*) in Table II, in row R8 and column
“t at O3,” indicates that the t at O3 for ray 8 had to be
hand-corrected. The time difference between rays R8 and
R9 at O3 is so small that numerical roundoff errors interfere
with it. The numerically integrated ray R8 overshot the rO3
given by (10.7), and the final t reported by the program was
greater than zero, which is impossible (if this were true,
then R8 and R9 would have to intersect somewhere).
So, the t corresponding to r ¼ rO3 on ray R8 had to be
estimated by comparing the differences in t between
R8 and R9 at other values of r. Near O3 they were
∼2 × 10−8 NTU.

TABLE II. Parameters of the rays shown in Figs. 7 and 8.

Ray label ðt; rÞ at the LSH t at O3 1þ z at O3

R1
−0.13944546999999999 −0.02621663 NTU

445.36
0.0150000000139671984 ≈ 2.569 × 109 y ago

R2
−0.13941000000000001 −0.01342874 NTU

130.439
0.0149998605746265272 ≈ 1.316 × 109 y ago

R3
−0.13935 −3.4317801 × 10−3 NTU

75.9982
0.0142870667194671501 ≈ 3.363 × 108 y ago

R4
−0.13933632431674814 −1.054319 × 10−3 NTU

92.142
0.0075 ≈ 1.033 × 108 y ago

R5
−0.13933556296232263 −5.50955769 × 10−4 NTU

143.9397
0.0 ≈ 5.399 × 107 y ago

R6
−0.13933607609165491 −6.484649 × 10−5 NTU

203.5369
0.00700320078026953671 ≈ 6.3549559 × 106 y ago

R7
−0.13937350162416995 −6.113304 × 10−5 NTU

1.6002
0.0147673852333973319 ≈ 5.991 × 106 y ago

R8
−0.13939833897747514 ≈ 2 × 10−8 NTUð�Þ

0.097862
0.0149860617889288825 ≈ 1960 y ago

R9
−0.13945554226395207

0 (now) 1.67354 × 10−5
0.0150000000186084614

(*)—see remarks in text.
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For rays received by O3 later than R9, the familiar
instability shows up once more9: the transition from the
gamma-ray range to the X-ray range occurs abruptly when
Δt is increased by 10−13 NTU; see Sec. X A. This is the
transition from the GRB to the afterglow.
In addition to the abovementioned discontinuities that

are justified by the properties of the BB profile, there is one
more instability that seems to be of purely numerical
character, and which this author was not able to explain
or remove. Namely, when the rays from Fig. 8 are retraced
back in time from the observer, they coincide satisfactorily
with the original rays only up to the ERH. A numerical
instability at the very high and steep wall of ERH causes
that the change of position of the end point (in the past) of
the ray is a discontinuous function of the initial position.
The (so far irremovable) discrepancies between the initial
point of the future-directed ray and the end point of the
past-directed ray were of the order of 10−6 NTU at r ¼ 0.

XI. ACCOUNTING FOR THE AFTERGLOWS
[PROPERTY (3) IN SEC. II]

For this section, we use Case I of Model 3.
In this model, the afterglow appears necessarily. The first

ray in the afterglow is the one listed in the second line of
Table I. (Figure 9 does not show it; it would mostly
coincide with the BB at this scale.) If it was emitted in the
visible range, then it is observed in the X-ray range.
As time goes by, the observed frequency goes down. For

example, the earlier of the two rays shown in Fig. 9 reaches
observer O3 with z ¼ −0.0008107, thus its observed
frequency is nearly the same as the emitted one. The later
ray reaches O3 with z ¼ 0.598, which shifts nearly the
whole visible range into the infrared. The points marked
“1” and “3” in the figure are at the locations where the
earlier ray hits the LSH and the BB, respectively; the points
“2” and “4” show the corresponding events for the later ray.
However, this frequency drift occurs at the cosmological
time scale and would not be observable with the current
technology [26]. So, it cannot be responsible for the gradual
fading of the afterglow.
The factor that is responsible for the fading of the signal

is the intensity of the received radiation. When it drops
below the sensitivity of the detector, the afterglow is, in the
technical sense, ended. The question of calculating the
intensities of the afterglows in this model is left for a
separate investigation.
Model 3 does not account for the duration of an after-

glow quantitatively, and does not contain any parameter
that could control this period. As can be seen from
Table I, observer O3 in Case I would begin to see the
afterglow at t ∼ 974.54 y after now. The later ray in Fig. 9

is still well within the afterglow, and reaches O3 at
3.5714 × 10−6 NTU ≈ 3.5 × 105 y after now. So, assum-
ing that the intensity of the ray would still be sufficient for
detection, this model afterglow would remain visible for
observer O3 for nearly 350 000 years, while the longest-
lasting afterglows observed in reality are visible only for
several hundred days [27]. Thus • Property (3) from Sec. II
is accounted for only qualitatively.
The blueshifts in the afterglow of Model 3 arise when

the rays pass through the ERH wall seen in Fig. 9.
Consequently, in order to reduce the duration of the
afterglow one should force the ERH to stay nearer to the
BB hump, so that the observed rays begin to bypass
the ERH as early as possible. This should be possible
with BB profiles having more parameters, but is not
possible in Model 3. Other BB profiles would also be
needed to account for lower-frequency afterglows. With
those profiles, the path of the ray inside the ERH should be
suitably short so that the ray would acquire less blueshift.

XII. NONRADIAL RAYS

A. An exemplary nonradial ray hitting the BB

As an illustration to the remark under (4.8), Fig. 10
shows the behavior of a nonradial ray that hits the BB
where dtB=dr ≠ 0. This is a projection of the ray and of the
edge of the BB hump from Fig. 8 on a surface of constant t
along the flow lines of matter (in comoving coordinates the
image is the same at every t). For brevity, from now on we
will use just the word “projection” to denote this kind of
image. The coordinates in the figure are related to ðr;φÞ by

x ¼ r cosφ; y ¼ r sinφ: ð12:1Þ

The outer edge of the hump is marked with the big circle, its
center with the cross. The ray is emitted toward the past at a
point slightly off-center (r ¼ 0.0001), in a direction tangent
to r¼constant, at the same t¼−0.13933160382638388NTU
as ray R9. It meets the BB at the steep slope of the hump.
As predicted, it becomes nearly tangent to an r ¼ constant
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FIG. 9. Two characteristic rays in the afterglow sector of Model
3. See explanation in the text.

9The discontinuities in 1þ z might be caused by the non-
differentiability of the BB profile at r ¼ B1 − x0, r ¼ B1 þ x1
and r ¼ B1 þ xge; see Figs. 1 and 6.

ANDRZEJ KRASIŃSKI PHYSICAL REVIEW D 93, 043525 (2016)

043525-14



surface before hitting the BB. The dot # 1 marks the
point where the ray crosses the LSH (with 1þ z ¼
0.71003236199623432 relative to the initial point at
r ¼ 0); the dot # 2 marks the point where it crosses the
BB. Somewhere between these two points the calculation
becomes unreliable because of numerical errors (see
Appendix E). The inset is a closeup view on the initial
point of the ray; it shows how far off the center the ray
begins.

B. Angular size vs C

The constant C that first appeared in (4.7) is a measure of
nonradialness of a ray. It can be related to the angular size
of an object grazed by the ray. It follows from (4.13) using
(5.3) that at the point where dr=dλ ¼ kr ¼ 0 (i.e. where the

ray becomes tangent to an r ¼ constant sphere), C, R ¼def R0

and z ¼def z0 obey

R ¼def R0 ¼ jCj=ð1þ z0Þ: ð12:2Þ

The R0 determines the impact parameter, see Fig. 11.
Figure 11 shows the projection of a ray, similar to

Fig. 10. O is the position of the observer, D is the center of
the BB hump, the dotted circle is the edge of the hump and
the smaller solid circle represents the object whose angular
size we wish to calculate. The point P is the event where
(12.2) holds, P0 is the intersection of the solid circle with the
circle that has the center at O and radius OD, and B is
where the (past-directed) radial ray OD would enter the
L–T region. This is an illustration only; inside the L–T
region the projection of a real nonradial ray would not be
straight—see next pictures.

To calculate the angular radius α of the solid circle in
Fig. 11 as seen by the observer at O, two approximations
must be made. In a flat space, α would be the length of the
arc DP0 (call it lA) divided by the length of the straight
segment OD (call it lR). In the cosmological context, for lR
we can take the angular diameter distance (ADD). In the
L–T model (3.1), for an observer at the center of symmetry,
ADD is the value of R taken at the location ðt; rÞ of the
observed object. In the Friedmann limit (7.1), R becomes
rSðtÞ, and every point is a center. The difficulty in the
present case is that the spacetime is not spherically
symmetric around O, and there is no operational definition
of the angular diameter distance in a general cosmological
model. So, the two approximations to make are these:

1. We take R0 for lA. In a flat space, the difference
between R0 and lA would be lRðα − sin αÞ, so
the relative error at α0 ¼ 1 degree ¼ 0.01745 rad
(the actual angular radius of the BB hump for O, see
below) would be 1 − ðsin α0Þ=α0 ≈ 5 × 10−5.

2. To calculate lR we assume that the ray OD prop-
agates in the Friedmann background all the way
from r ¼ rO3 to r ¼ 0. The error induced by this
assumption can be estimated in two ways:
(a) As measured by the values of the r-coordinate

the segment BD is ∼0.017 of OB.
(b) The center r ¼ 0 is reached by a ray in Model 3

at

tM3 ¼ −0.13932806655865945 NTU; ð12:3Þ

and in the Friedmann model at

tF ¼ −0.13934135010087942 NTU; ð12:4Þ
so the difference is

tM3 − tF ¼ 0.00001328354221997 NTU; ð12:5Þ
which is ∼0.0095% of jtM3j.

Under assumptions 1 and 2, the ADD from O to D is

lR ¼ 3.45912604264922777 × 10−3 NLU; ð12:6Þ

see Appendix F for derivation. The angular radii in
column 3 of Table III were calculated as R0=lR, where
R0 was a by-product in computing the path of the ray.
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C. Nonradial rays received by
observer O3 in Model 3

Now we will display several nonradial rays received by
observer O3 at the present time from different directions.
We will follow them back in time from the initial point at
O3. Table III lists their parameters. The angular radius is
calculated as explained above. In Figs. 12 to 15 the
horizontal coordinate x is r cosφ and the labels of the
rays are the same as in Table III. Note that the redshifts at
the LSH increase when the impact parameter increases. The
radial ray would have the strong blueshift given by (10.8);
the changeover to redshift occurs abruptly as soon as the
ray ceases to be radial. Ray 6 has larger redshift than the
background (8.5); this is probably a peculiarity of Model 3
caused by the steep rise of the BB hump profile.
Figure 12 shows the projection of the rays from Table III

in a vicinity of their end points; Fig. 13 is a closeup view on
the L–T region over the BB hump. The labels of the rays are
printed at their end points; at the left margin of both figures
rays 1–8 are ordered from bottom to top. The dotted circle
is the edge of the BB hump; the cross marks the center
r ¼ 0. The large dots in Fig. 12 mark the points where the

rays intersect the LSH. The end points of the rays are where
the numerical calculation determined that the ray crossed
the BB.
The rays abruptly change their direction every time they

intersect the steep wall of the ERH (see Figs. 2 and 3).
The change is sharper when the ray is closer to the BB;
this happens on the final exit from the ERH. The gentle
deflections take place when the rays travel between the two
branches of the ERH. (The ERH cannot be shown in these
figures: in such a projection the steep wall would coincide
with the hump circle, and the other branch projects onto the
whole disk inside the circle.)
The angle of deflection of a ray depends on the interval

of t that the ray spends between the two branches of
the ERH. Ray 1 meets the ERH nearly head-on and does
not strongly change direction on first encounter (after the
first encounter with the ERH ray 1 stays between the two
branches only briefly, similarly to ray R9 in Fig. 8).
However, after the second encounter, it stays between
the two branches for a longer interval of r (cp. Fig. 3).

TABLE III. Parameters of nonradial rays.

Ray C Angular radius (°) r at LSH 1þ z at LSH r at BB

1 0.0001 0.0126947 5.06068826958865417 × 10−2 287.16608259998554 7.95216518223493263 × 10−2

2 0.0005 0.064259 4.85198622293232865 × 10−2 334.76688994090046 7.93592114807387117 × 10−2

3 0.001 0.1337447 4.52659901407877416 × 10−2 460.87136026281968 7.45576021007735151 × 10−2

4 0.0016 0.226233 4.79104086556434161 × 10−2 703.10147012965876 7.66030728333577382 × 10−2

5 0.0032 0.4743 5.45954223781688272 × 10−2 945.43487410592388 8.45197957881479167 × 10−2

6 0.0045 0.6726575 5.76620501069033120 × 10−2 970.10190933005345 8.60372698978428968 × 10−2

7 0.007 1.00097 5.95657733949151447 × 10−2 951.91469714961829 8.96185695386919057 × 10−2

8 0.008 1.1452 6.02258192362461128 × 10−2 951.91132098857997 8.86836611484453224 × 10−2
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Then it is close to the BB, where R is small, and is forced to
bend around in agreement with (4.8).
The other rays meet the ERH at smaller angles than ray

1, so they stay between the ERH branches for longer times.
For rays 2 and 3 this gives the effect that they are deflected
much stronger than ray 1. For ray 4 and the other ones, a
different effect prevails: they stay farther from the BB, so
approach the BB later and stay within its influence for a
shorter time, therefore the deflection angle decreases again.
Rays 7 and 8, which do not enter the L–T region, do not feel
its influence and propagate just as in a pure Friedmann
spacetime.
Figure 14 shows the projections of the rays from Fig. 12

on the plane y ¼ 0. The intersections of the BB and of the
ERH with this plane are also shown (the right part of the
ERH profile is suppressed to avoid clogging the image). In
this projection, rays 1 to 4 very nearly coincide from the left
margin of the figure up to the neighborhood of the right
shoulder of the BB hump, and then they split in conse-
quence of the different deflection angles. Rays 7 and 8
nearly coincide all the way. Ray 6 is clearly visible only
between the “knot” where the projections of all the rays
intersect and the right wall of the BB hump; elsewhere it
nearly coincides with 7 and 8. Ray 5 is visible on both sides
of the knot, and to the right of the BB hump, where it stays
close to 7 and 8.

D. Relation between the GRBs and the CMB

Redshifts at the LSH listed in Table III must be compared
with the redshift in the background model. The result (8.5)
was obtained by substituting numerical values of model
parameters into exact formulae. Numerical integration of
the null geodesic equation gives, for ray 7, a result differing
by ∼0.07%:

1þ zcomp ¼ 951.91469714961829 ð12:7Þ

(see Table III for ray 8). Improving the consistency between
(12.7) and (8.5) would require a higher numerical accuracy,

and the integration time would become prohibitively long.
The value (12.7) was found with the step in the affine

parameter being Δλ ¼ 10−9 up to x ¼ xb¼def − 0.03, and
10−13 for x > xb.
As Figs. 13 and 14 show, ray 7 nearly grazes the BB

hump. Column 3 in Table III then implies that the area of
the sky with redshifts different from the background would
fill a cone of angular radius ∼1° for observer O3. This is
twice the resolution of current GRB detectors.10 Thus, rays
1 to 5 would be hidden within this circle. Checking for their
presence would require aiming a detector at this area while
the GRB is still on.
With the redshifts given in column 5 of Table III, all

those rays, if emitted in the visible range, would be seen by
the observer in the microwave range [25]. It must be
recalled here that in Model 3 (and also in Models 1 and 2)
blueshifts visible to the observer are generated only on
radial rays, so the gamma-ray signal, including the after-
glow, would have a strictly point source.
The only reason to worry are rays between 5 and 7, on

which the redshift is different from that of the CMB, and
which would be visible around the GRB signal in the
present version of Model 3. This shows that Model 3 would
need a modification of its parameters (which is necessary
also for other reasons) to hide the lower-redshift signal
within the unresolved patch of gamma radiation. With that
improvement done, the model will not predict perturbations
of the observed CMB larger than the GRBs actually
cause. If more-exact measurements in the future detect
some variability within the presently unresolved gamma-
ray dots, then it will be possible to compare it with the
model prediction and improve the model accordingly (or
discard it).

XIII. DEALING WITH THE COLLIMATION
OF THE GRBS [PROPERTY (4) IN SEC. II]

The blueshifts that account for the GRB frequency range
occur on radial rays, and these are emitted isotropically by
the L–T region. Thus, there is no real collimation of the
GRBs in our models. However, an observer may have an
illusion that they are collimated. Namely, as seen from
Table III, rays reaching the observer at angle β away from
radial are seen with large redshifts down to less than
β ¼ 0.0127°. So, the GRB source appears to the observer as
nearly pointlike.
To account for anisotropy and possibly for the collima-

tion, one would have to use an anisotropic model for the BB
hump.11 A good candidate is the quasispherical Szekeres
(QSS) metric [28,29], [7]. It contains the L–T model as a
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y ¼ 0. See explanation in the text.

10The sources of the GRBs are seen as fuzzy circles of about
1 degree in diameter (private communication from Linda Sparke).

11But the collimation of the real GRBs is a hypothesis, not an
observationally verified fact [6].
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subcase, but in general has no symmetry. Nevertheless, it
can be matched to any Friedmann background just as well.
Blueshifts visible to the observer are generated in an L–T

region only on radial rays, but there is no obvious definition
of a radial direction in a QSS spacetime. However, this
spacetime contains a flow line of matter that is a natural
generalization of the center of symmetry existing in the
L–T models; it was called origin in Ref. [30]. So, light rays
passing through the origin in a QSS spacetime should share
some properties with the radial rays of the L–T models.
Consequently, it has to be verified what happens with
blueshifts when a QSS model is employed (a problem that
deserves an investigation independently of the GRB con-
text), and then the question of collimation of the GRBs can
be reconsidered.

XIV. ACCOUNTING FOR THE LARGE
DISTANCES TO THE GRB SOURCES

[PROPERTY (5) IN SEC. II]

The distances to the GRB sources are inferred by
measuring the redshifts in the afterglows [31] and assuming
that the redshift-distance relation that holds in the
Robertson–Walker models applies to them. However, blue-
shifting renders the redshift-distance relations multivalued
(see below and also Ref. [20]), so when blueshifts are
present along the ray, redshift fails to be an indicator of
distance.
In the models hitherto presented, the sources of the

GRBs lie close to the Big Bang, so they are ∼13 × 109

years to the past from the present observers—still farther
than the redshift measurements imply, and in this way

• Property (5) is accounted for.
Figure 15 shows the relation between the redshift z along

the rays from Table III measured by observer O3 [who is
placed at x ¼ −rO3 given by (10.7)] and the coordinate
x ¼ r cosφ of the light source. The different values of z at
which the curves have their end points result from different
levels of numerical “approximation to infinity”—on every
nonradial ray the redshift between the BB and any observer

must be infinite. The background redshift at the LSH given
by (12.7) is marked with the horizontal line; the large dots
mark the value of z between the LSH and O3 on each ray.
The redshift profiles on rays 6, 7 and 8 coincide at the scale
of the figure, except for the end points. Profile 6 ends at
ðr; zÞ ≈ ð0.086;122303.73Þ; profiles 7 and 8 end at ðr; zÞ ≈
ð0.0896; 299 116.45Þ and ðr; zÞ ≈ ð0.0887; 166 586.96Þ,
respectively. The graph begins at x ¼ −0.5 because at
x < −0.5 all the curves very nearly coincide and behave in
the standard way: z just increases along each ray.
The main panel in Fig. 16 shows a closeup view on

the neighborhood of ðx; zÞ ¼ ð0; 100Þ in Fig. 15, where the
redshift behaves in complicated and untypical ways. The
dotted vertical lines mark the values of x at which the outer
ERH intersects the plane y ¼ 0. The two insets show details
of the main panel in two regions where the curves form
particularly complicated knots.
In order to understand these graphs, one has to read them

in the correct way. The observer is at x ¼ −rO3 given by
(10.7), beyond the left margin. One has to follow the curves
beginning at the position of the observer in the direction of
increasing affine parameter. As long as the rays are away
from the BB hump (which has its edges at x ≈�0.015), all
curves very nearly coincide and z increases along them.
When a ray goes more than halfway around the hump
center (cf. Fig. 13), x begins to decrease. This is why each
of the curves 2, 3 and 4 turns back at a certain point (and
so does curve 1 near its final exit from the ERH, but
inconspicuously).
Let us follow ray 2 as an example. Redshift along it

increases until the ray crosses the outer branch of the ERH
for the first time. At that crossing, z has a local maximum
(z ≈ 84, see left inset) and begins to decrease. It decreases
until the ray crosses the inner branch of the ERH for the
first time (at x ≈ −0.014 with z ≈ 79, left inset). Then z
goes up until the ray crosses the inner ERH for the second
time (at x ≈ 0.0118 with z ≈ 212, right inset; the graph
should be viewed in color and magnified). From here,
z decreases down to the minimum achieved when the ray
crosses the outer ERH for the second and last time (at
x ≈ 0.007 with z ≈ 80, the main panel). Beyond that point,
z keeps increasing until the ray crosses the LSH; the
coordinates of that point are given in Table III; see also
Fig. 15.
Two local maxima and two local minima can be seen

along each of rays 1–5. Ray 6 does not intersect the ERH,
so has no local extrema, but redshift along it shows slight
departures from the background profile. Rays 7 and 8 that
propagate in the Friedmann background do not feel the
presence of the ERH.
Figure 17 shows the ðz; rÞ relation in a neighborhood of

the value of r ¼def rERH, at which the rays intersect the outer
branch of the ERH. The observer is at r ¼ rO3 beyond the
right margin. This figure has to be read in the same way as
Fig. 16, i.e., beginning at the observer and going in the
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FIG. 15. The relation between the redshift along the rays from
Table III registered by observer O3 and the coordinate x ¼ r cosφ
of the light source. See explanation in the text.
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direction of increasing affine parameter. Outside the ERH,
z increases with decreasing r for rO3 > r > rERH, and
increases with increasing r when r again becomes greater
than rERH, going to infinity at the intersection of the ray
with the BB. The radial ray (labeled “0”) is also included;
it is the only one on which the observer sees z < 0 for a
source at the LSH. The small inset in the main panel
shows zðrÞ on the radial ray near the BB, where z → −1;
the vertical stroke marks r ¼ rERH. The lower panel
shows a further-magnified closeup on the near vicinity of
r ¼ rERH.
These graphs demonstrate that the ERH, which was

determined using only radial rays (see Sec. VI and
Ref. [5]), is the locus of extrema of z also on nonradial rays.
Finally, Fig. 18 shows an example of a deception that

may befall an observer when she uses a Friedmann model
to interpret the redshift that was generated in an inhomo-
geneous Universe. This is the zðrÞ graph along the later of
the two (radial) rays shown in Fig. 9. The r-coordinate of
observer O3 is marked with the right dot in the main panel.
The r-coordinate of the LSH is marked with the left dot.
The redshift measured by O3 for light emitted at the LSH is
zd ≈ 0.598. When interpreted against the standard ΛCDM
model with the parameters given in (7.8), this leads to the
conclusion that the ray was emitted 5.9 × 109 years ago
[32]. The observer would not suspect that between the LSH
and herself (i.e., closer than the dot in the graph) there are
sources of light for which the redshift would be much
larger, up to ∼230. In our model this ray was emitted at the
LSH 0.13945 NTU ¼ 1.3666 × 1010 years ago. The red-
shift for a ray emitted that early in the ΛCDMmodel would
be between 25 and 26 according to the same “cosmology
calculator” [32].

XV. ACCOUNTING FOR THE MULTITUDE
OF THE GRBs

So far, we discussed models of a single GRB. A model
that would account for the multitude of observed GRBs
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should be imagined as a Friedmann background containing
many humps like the ones in Figs. 2 or 3 of different
shapes, spatial extents and heights above the flat part of
tBðrÞ, placed at different comoving positions.
For estimating how many GRB sources in the sky our

model could accommodate, let us assume that all sources
are described by Model 3. As explained in Sec. XII, the
GRB generator in Model 3 would fill the angular diameter
of 2 degrees for observer O3. Consider a unit sphere and a
cone with the vertex at the center of the sphere that has the
opening angle 2ϑ0. This cone subtends the solid angle
2πð1 − cos ϑ0Þ. The full solid angle is 4π. So, counting
naively, with ϑ0 ¼ 1° ¼ 0.01745 radians, the number of the
corresponding solid angles in the full solid angle would be

~N γ ¼ 2=ð1 − cosϑ0Þ ¼ 13 131: ð15:1Þ

However, to get a more realistic estimate we have to
consider each circle on the unit sphere being inscribed
into a square, and then calculate the ratio of the full solid
angle to the area of that square. On a plane, the surface area
ratio between a square of edge a and a circle of diameter a
is 4=π. So, the number above must be multiplied by π=4,
and then the (approximately estimated) number of GRBs
that could be visible in the sky at the same time comes out
to be

N γ ¼ 10 313: ð15:2Þ

This is probably too few to be realistic. However, with the
angular size of the GRB generator reduced by the factor f,
the number N γ would be multiplied by f2, and Model 3
needs such an improvement anyway.

XVI. POSSIBLE WAYS OF IMPROVING
THE MODEL

The influences on 1þ z of the various parameters of
Models 1, 2 and 3 are interconnected. For example,
decreasing x0 alone (see Fig. 1) has the immediate result
of increasing 1þ z (because the past-directed ray then hits
the BB behind the hump and displays larger z to the
observer). A decrease in 1þ z is achieved when this change
in x0 is accompanied by decreasing A1 (to make the steep
straight segment longer) and decreasing Δtc (to make the
ray hit the hump where it is steep, and at t being as early as
possible). But if the straight segment is too steep, then the
ray and the LSH become nearly parallel and the numerical
program has difficulty locating their intersection. In con-
sequence of such interdependences between parameters,
decreasing the height and width of the BB hump while
keeping 1þ z sufficiently small is an extremely tedious
process that requires a great number of long-lasting
numerical experiments. [This is why the background model
was left in an imperfect form, in which the value of z at the
LSH, Eq. (8.5), does not agree with (7.11). This point needs

to be improved, too.] Thus, the whole optimization should
best be done by a computer program. Optimization by
hand, applied in this paper, already allowed for a radical
decrease in the size of the BB hump,12 but it is not known
how much smaller the hump can still be made.
With a lower BB hump, also the duration of the GRB

would be reduced, and the hump would be further away
from the observer, automatically making the angular size of
the GRB generator smaller. With narrower humps, more of
them could be fitted into the full solid angle.
One way of improving the model is to put more

parameters into the BB profile. However, some of the
improvements were achieved by nontrivial means. For
example, surprisingly good results were achieved by taking
higher-degree curves instead of ellipses in the profile
shown in Fig. 1; see Appendix C for more on this.
Computerized optimization could help also here.
Higher numerical accuracy will be needed for controlling

the duration of the GRBs and of the afterglows in the
model. The discontinuities reported in Sec. X are clearly
related to insufficient accuracy. However, a higher accuracy
will result in longer run times of the programs, and this
is one more reason why optimization by computer would
be useful.
The observed durations of the GRBs are determined by

the intensities of the gamma-ray flashes. The ways of
calculating the intensities must still be found.
It would be desirable to have a hump profile whose

ERH would not include a wall as high and wide as that in
Models 1–3; see Figs. 2–4, 8–9 and 14. As can be seen
from (6.2) and (6.3), t on the ERH is large where jdtB=drj is
large. Thus, the ERH wall is narrower when the segment of
large jdtB=drj is shorter, and is lower when the value of
jdtB=drj is smaller. A lower and thinner wall would result
in reducing the duration of the GRB, and could help in
controlling the duration of the afterglow, both of which are
too long-lasting in the current models. However, a smaller
width of the ERH wall reduces the build-up time of the
blueshift, and thus would increase the final 1þ z. So, the
difficulty here is in achieving a compromise between two
contradictory goals: making the minimum of 1þ z on rays
within the GRB sufficiently small, and the increase in 1þ z
on rays within the afterglow sufficiently fast.
As already stated in Sec. XIII, going over to the more

general Szekeres metrics [28,29], [7] may help in achieving
the collimation of the GRB flashes. This is not a particu-
larly pressing problem (the collimation is only a hypothesis
[6]), but employing the Szekeres model could also modify
the results of Sec. XII in interesting ways. For example, an

12The crucial parameters are A0, B0 and B1 that determine the
height and width of the hump; A1 is also important, but it is
already small; see (9.19). Obtained by the hand-optimization
process, their values given in (9.19) are much smaller than the
first ones that produced 1þ z consistent with (9.5); they were
ðA0; B0; B1Þ ¼ ð0.016; 0.01; 0.09Þ.
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anisotropic BB hump might result in reduced angular size
of the GRB generator when viewed from certain directions.
Throughout this paper, an ambitious approach was taken,

trying to explain the observed GRBs as if they all arose by
blueshifting the relic radiation. This was to avoid the
accusation that the author made his task unduly easy.
Therefore, it was assumed that the lowest-frequency GRBs
originate as the lowest-frequency emission radiation of
hydrogen atoms, and correspondingly for the highest
frequencies. But it is possible that there are several
mechanisms of producing the GRBs, and that blueshifting
from the last scattering is only one of them. In that case, one
can also consider shifting high emission frequencies to low
GRB frequencies. For example, the blueshifts needed to
shift the νHint and the νHmax given by (9.3) and (9.2) to
the minimum gamma-ray frequency given by (9.4) are,
respectively, 1þzint≈9.1×10−4 and 1þzopt≈1.33×10−3.
These values would be much easier to achieve than those
considered in this paper. It would suffice to make the hump
lower by reducing A0 and B0, and then suitably reducing
Δtc. The result would be as described in paragraph 2 of this
section.

XVII. CONCLUSIONS

The cosmological model employed here is a spatially
homogeneous Friedmann background (see Sec. VIII) into
which a suitable number of Lemaître–Tolman regions (see
Secs. III and IV) is matched. Use was made of the long-
known property of the L–T model that light rays emitted
radially near those points of the Big Bang where the bang-
time function is nonconstant (dtB=dr ≠ 0) display arbitrar-
ily large blueshifts instead of redshifts [3–5]. The present
paper tested the hypothesis that the gamma-ray bursts (or at
least some of them) arise by this mechanism. The blueshifts
are generated only in the initial segments of the rays, before
they exit the extremum-redshift hypersurface (see Sec. VI).
In the further part of the rays’ journey, redshifts are
generated that can wipe out with excess the earlier-acquired
blueshifts. The technical problem to solve was this: Can the
parameters of the model be chosen so that a substantial part
of the blueshift survives the journey to the present observer
and the observed frequency of the ray is in the gamma-ray
range? Section IX answers this question in the positive.
The models discussed here satisfactorily reproduce the

GRB frequency range [property (1) in Sec. II; see Sec. IX]
and account for the large distances to the GRB sources
[property (5); see Sec. XIV]. However, if the mechanism of
generating the GRBs is such as discussed here, then the
distances reported in the literature are calculated by an
incorrect method and are heavily underestimated; see
Sec. XIV.
The other properties listed in Sec. II are accounted for

only qualitatively, with varying degrees of success. The
duration of the GRBs [Property (2)] comes out too long, but
Model 3 of Sec. IX contains a free parameter that can

control this quantity; see Sec. X A. To actually carry out the
control a much higher numerical accuracy would be
necessary than was available to this author.
The afterglows [Property (3)] necessarily exist in these

models, but they last longer than observed and no way of
controlling their duration was provided (see Sec. XI). As
stated in the previous section, the observed durations are
determined by the varying intensity of the radiation, which
was not calculated in this paper.
In Sec. XII, rays that are nonradial with respect to the

L–T region were discussed. It was shown that the angular
size of the GRB generator implied by Model 3 of Sec. IX is
about twice as large as the resolution of the GRB detectors.
So, with moderate improvements in the model that are
anyway needed for other purposes (see Sec. XVI), the
perturbations in the CMB radiation implied by our model
will not be larger than those actually caused by the GRBs.
The collimation of the GRBs into narrow jets

[property (4)] appears to the observer as an illusion, as
explained in Sec. XIII. This property is not directly implied
by observations, it is just a hypothesis. However, it may be
possible to deal with it when the quasispherical Szekeres
(QSS) metric [28,29], [7] is employed instead of L–T.
In Sec. XVI the improvements needed in the model were

discussed.
Even if the models presented here prove to be unsatis-

factory explanations of the GRBs, they say new interesting
things about the physics (in particular, optics) in the L–T
models.

ACKNOWLEDGMENTS

I am grateful to Krzysztof Bolejko for a helpful dis-
cussion on last scattering and to Linda Sparke from NASA
for several bits of information about the properties of the
GRBs and their detection techniques.

APPENDIX A: THE AGE OF THE UNIVERSE
AT LAST SCATTERING VS REDSHIFT

There is a spurious discrepancy between the data on the
age of the Universe at last scattering, τLS, and the redshift of
CMB. Namely, once k ¼ 0 and ΩΛ ¼ 0.68 have been
specified for the ΛCDM model, the metric is uniquely
defined, and then, given redshift, τLS can be computed or
vice versa. The value of the redshift of the CMB radiation
is currently given as zLS ¼ 1090 [18,19], and then the
calculation based on the ΛCDM metric (7.4) leads to
τLS ¼ 4.77 × 105 y given by (7.16). On the other hand,
the most-often cited value is τLS ¼ 3.8 × 105 y [33]
(which, by the same method, would imply z̄LS ¼ 1269.3).
The solution of this seeming contradiction is this: the

ΛCDM model of (7.4) does not apply before the last
scattering because it implies zero pressure via the Einstein
equations. For that epoch, the pressure of radiation and
matter cannot be neglected, and a more general model must
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be used, which, given zLS ¼ 1090 implies a τLS value close
to that given above [34]. The redshift at last scattering is
calculated by sophisticated methods of particle physics—
see Ref. [35] for a readable account.

APPENDIX B: BLUESHIFTING THE
BLACK-BODY SPECTRUM

The maximum observed intensity of the CMB

radiation by today is Imax ≈ 5 × 10−15 IU, where IU ¼def
W=ðcm2 × sr × HzÞ, at the frequency νmax ≈ 2 × 1011 Hz
[24]. Since T=νmax is constant (Wien’s law), it follows from
Planck’s formula IðνÞ¼2h

c2×
ν3

exp½hν=ðkTÞ�−1 that Imax∝νmax
3.

The radiation frequency obeys νemitted ¼ νreceivedð1þ zÞ, by
the definition of z. The redshift between the instant of
emission of the CMB radiation and the present time is
1þ zLS ≈ 1091 by (7.11), so the maximum intensity of
the relic radiation at the time of emission must have been
Imax × ð1þ zLSÞ3 ≈ 6.49 × 10−6 IU. If this were blue-
shifted by 1þ z ¼ 105 to the gamma-ray frequency range,
the resulting black-body radiation would have the temper-
ature 3 × 108 K and peak intensity equal to 6.49 × 109 IU.
This is many times more than observed—exemplary GRBs
have intensities below 10−24 W=ðcm2HzÞ [36]. Thus, the
GRBs cannot arise by blueshifting the thermal radiation
with the black-body spectrum preserved—and indeed the
spectra of the GRBs are not thermal [21].

APPENDIX C: REMARKS ON CHOOSING
THE SHAPE OF THE BB HUMP

As the first Ansatz for the shape of the BB hump, the
Gauss-type family of curves was chosen

tBðrÞ ¼ tBf þ Ae−Br
2

; ðC1Þ

with A and B being adjustable constants and tBf given by
(8.3). However, the two free parameters did not provide
sufficient flexibility. The rays (integrated backward in time)
either hit the LSH with insufficient blueshift, or escaped
back out through the ERH and acquired large redshift at the
LSH. The strongest blueshifts were of the order of 1þ z ≈
10−3 instead of the desired 10−5 or less.
The next shape that was tested was similar to that in

Fig. 1, except that the upper left curve was also an ellipse.
With this, the range of blueshifts given by (9.5)–(9.8) was
achieved, but the humps were rather high and wide. In one
model, which accounted for (9.7), the time difference
between the maximum of tB and its flat part was 0.21T,
with T given by (7.10), and the comoving radius of the
hump was rh ¼ 0.09, with the observer sitting at r ∼ 0.39.
In the other model the hump was only 3 times lower, and
just as wide.
The shapes of the humps that were finally used (see

Sec. IX) emerged as the next corrections with respect to the

one with two ellipses. They resulted in a radical reduction
of both the height and width of the hump.

APPENDIX D: CALCULATING
1þ z AT THE LSH

In the neighborhood where the rays from Figs. 2 and 3
cross the LSH, it lies extremely close to the BB. In Model 1
the difference in t between them along the ray defined by
(9.13) is ∼5.54 × 10−13 NTU ≈ 5.43 × 10−2 y ≈ 20 days.
Therefore, determining the instant when the ray crosses the
LSH, and the value of 1þ z at that moment, requires a
suitably small numerical step Δλ in the affine parameter λ.
With too large a step the integration jumps over the LSH,
and crosses the BB without noting that it had crossed the
LSH in the same step. Avery small step along the whole ray
would make the calculation prohibitively long. Sometimes
the same problem appeared in a vicinity of other locations,
for example, in crossing the ERH or in determining the
instant of observation of a ray. In such cases, the step in λ
was changed in flight to either increase the precision near to
critical locations, or relax it to accelerate the calculation.
For example, in Model 1, Δλ was

Δλ1 ¼ 2.5 × 10−6; ðD1Þ

all along the ray displayed in Fig. 2, which crossed the LSH
in step # 31,184,648, with

�
1þ z

t

�
LSH1

¼
�
9.11448916340873438 × 10−10

−0.13941448281939275 NTU

�
;

ðD2Þ

and it crossed the BB in step # 31,184,684 at

tBB1 ¼ −0.13941448281944963 NTU ðD3Þ

with 1þ z at the level of 10−11. The exact value was not
captured by the program (the last 1þ z that was reported
was negative, i.e. arose after crossing the BB).
For Model 2, the increments in λ were

Δλ2 ¼ 2.5 × 10−8: ðD4Þ

The ray from Fig. 3 crossed the LSH in step # 5,175,194
with

�
1þz

t

�
LSH2

¼
�
1.07858890707746014×10−7

−0.13945300368712291NTU

�
; ðD5Þ

and it crossed the BB in step # 5,175,204 with

tBB2 ¼ −0.13945300368714261 NTU ðD6Þ
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and 1þ z ≈ 5 × 10−9. The problem with capturing the last
1þ z, mentioned under (D3), recurred also here.

APPENDIX E: PROBLEMS WITH
CALCULATING kr FROM (4.13)

Close to the BB, where R ≈ 0, the expression under the
square root in (4.13) (call it E413) becomes a difference of
two very large numbers. This follows from (4.10): where
R→0 with C≠0, necessarily ðktÞ2→∞. E413 must be
positive, but sometimes the program could not ensure
E413 > 0 at small R. In calculating the paths of the rays
in Figs. 10 and 12–14, whenever E413 was negative, the
program would replace it by jE413j, on the assumption that
E413 < 0 resulted from numerical errors in calculat-
ing E413 ≈ 0.
Along every ray in Figs. 12–14, kr was expected to

change sign from − to þ at a certain point. In those cases,
E413 < 0 was a signal that kr was near zero, and from that
point on the program changed the sign of kr.

APPENDIX F: DERIVING (12.6)

The equation of a radial null geodesic for (7.1), using
(7.2) and r ¼ 0 at the observer O, has the solution

η ¼ ηO − ln ð
ffiffiffiffiffiffi
−k

p
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
Þ: ðF1Þ

The value of ηO is calculated from (7.2), taking (8.3) for tB
and t ¼ 0 for the observer; it is

ηO ¼ 0.59249644326164175: ðF2Þ

With r ¼ 0 assumed for the observer, r at D is the rO3 from
(10.7), and then, from (F1)

ηD ¼ 5.57539803067893525 × 10−2: ðF3Þ

Using this in (7.2) we find

tD ¼ tB þ M0

ð−kÞ3=2 ðsinh ηD − ηDÞ

¼ 1.14196789587062714 × 10−4 NTU; ðF4Þ

SD ¼ 3.886639547232007 × 10−3; ðF5Þ

and from here (12.6) follows.
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