
Big brake singularity is accommodated as an exotic quintessence field

Luis P. Chimento1,2,* and Martín G. Richarte3,4,†
1Departamento de Física, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires Viamonte 430, Buenos Aires 1053, Argentina and IFIBA,
CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires 1428, Argentina

2Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Collao 1202,
Casilla 5-C, Concepción, Chile

3Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044,
81531-990 Curitiba, Brazil

4Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria, Pabellón I, Buenos Aires 1428, Argentina
(Received 15 December 2015; published 16 February 2016)

We describe a big brake singularity in terms of a modified Chaplygin gas equation of state
p ¼ ðγm − 1Þρþ αγmρ

−n, accommodate this late-time event as an exotic quintessence model obtained
from an energy-momentum tensor, and focus on the cosmological behavior of the exotic field, its kinetic
energy, and the potential energy. At the background level the exotic field does not blow up, whereas its
kinetic energy and potential both grow without limit near the future singularity. We evaluate the classical
stability of this background solution by examining the scalar perturbations of the metric along with the
inclusion of entropy perturbation in the perturbed pressure. Within the Newtonian gauge, the gravitational
field approaches a constant near the singularity plus additional regular terms. When the perturbed exotic
field is associated with α > 0 the perturbed pressure and contrast density both diverge, whereas the
perturbed exotic field and the divergence of the exotic field’s velocity go to zero exponentially. When the
perturbed exotic field is associated with α < 0 the contrast density always blows up, but the perturbed
pressure can remain bounded. In addition, the perturbed exotic field and the divergence of the exotic field’s
velocity vanish near the big brake singularity. We also briefly look at the behavior of the intrinsic entropy
perturbation near the singular event.
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I. INTRODUCTION

One of the most challenging riddles in the last decades
concerns the lack of understanding of the current state of
the Universe. Supernovae data are compatible with an
accelerating Universe; however, the identity of the mys-
terious fuel which provokes such a speeding up is currently
unknown [1]. This agent is usually dubbed dark energy and
is characterized by a negative pressure which ensures the
violation of the strong energy condition. One of the missing
links in the standard cosmology framework is the lack of a
fundamental theory which can describe the main properties
of dark energy at the microscopic level. So, a somewhat
natural question to ask is, what is the fundamental particle
associated with dark energy?
Another point that should be addressed refers to the final

fate of the Universe: will the Universe expand forever, or
will it slow down in the near future? These questions are
also physically interesting and must be explored exten-
sively at different levels. For instance, one can study what
kind of final fates are compatible with the current state of
the Universe. Historically speaking, the first attempt at

examining the final state of the Universe was carried out by
Barrow et al. many years ago; the authors showed the
existence of an accelerated closed Friedmann-Roberston-
Walker (FRW) universe with a final singularity which
exhibits an infinite pressure [2]. In addition, several authors
explored some accelerating universes within the dark
energy scenario, endowed with a cosmological singularity
in the asymptotic future [3,4]. They also performed a full
classification of the final doomsday by looking at the
behavior of the Hubble rate and its derivatives near the
abrupt event [2–17]. Another reliable method to understand
these new cosmic singularities relies on the existence of
causal geodesics that cannot be extended to arbitrary values
of their proper time (geodesic incompleteness) [18] or the
possibility of showing that geodesic curves can be extended
beyond a cosmic singularity [19,20]. A popular procedure
to examine cosmic singularities is finding the behavior
of curvature invariants near the singular event provided the
strength of these singularities can be determined by
applying the necessary and sufficient conditions discovered
by Tipler [21] and Królak [22].
A complementary tool for exploring the physical nature

of cosmological singularities is based on the behavior of
dynamical variables which enter into the field equations.
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Indeed, analyzing the blowup of the energy density or
pressure singles out a pathological behavior that one may
connect with the physical behavior of the scale factor, the
Hubble function, and its derivatives. Hence, the idea is to
find certain physical properties which help us to distinguish
these kinds of singularities among each other [4–12].
There is a singularity called a big brake which emerges

within the context of a tachyon scalar field [6]. A weaker
extension can be obtained when a dust component is
included in the Friedmann equation provided the Hubble
function does not vanish at the singularity [7]. This
singularity is reached in a finite time with a finite radius
when the derivative of the scale factor vanishes and the
acceleration term becomes unbounded [6]. We are going to
study a viable cosmological scenario where the aforesaid
singularity can appear naturally in order to explore its
physical outcome. We present an interacting dark energy
model [23,24] with a phenomenological interaction that
leads to the existence of a big brake event [25]. We start our
research by focusing on the interacting dark energy model
and its unified counterpart. In order to do that, we apply
the source equation method as it seems to have the virtue
(among others) that it allows us to reconstruct the partial
densities associated with dark matter and dark energy along
with the total energy density in terms of the scale factor
[23,25]. Further, we show that the unified model is related
to the modified Chaplygin gas model, which in turn reveals
the physical nature of our proposal. In order to establish an
interconnection between the particle physics world and the
cosmological setup, we find a unified description in terms
of a new exotic quintessence field [26]. At the background
level, we show that the unified model can be mapped into
an exotic scalar field theory with the bonus that it also
displays the exact behavior of the potential energy, kinetic
energy, and scale factor in terms of the exotic field.
The equation of motion of the exotic field is altered in
relation to the standard one; however, the usual quintes-
sence can be recovered under certain conditions. This
model offers a new alternative to the well-known tachyon
model which attempts to unify dark matter and dark energy.
We introduce a covariant formulation of this new model
by proposing an energy-momentum tensor which is
very similar to the quintessence case. To the best of our
knowledge, the exotic quintessence model cannot (appa-
rently) be obtained from a Lagrangian. We extend our
analysis by considering the cosmological perturbation
around the big brake event with the aim of determining
the classical stability of these solutions. We perform the
perturbations within the Newtonian gauge because there is
no residual gauge freedom and we can obtain the gravi-
tational potential straightforwardly by solving its master
Bessel equation. Once the gravitational potential is known,
we proceed to find the cosmic behavior of the perturbed
exotic field by solving the 0 − 0 perturbed Einstein’s
equation. In dealing with the pressure perturbation, we

take into account two kinds of terms: one represents the
adiabatic contribution, while the other accounts for the
nonadiabatic pressure term which is related to the intrinsic
entropy perturbation. We provide a complete analysis of all
relevant quantities, such as the contrast density, the diver-
gence of the exotic field’s velocity, and the intrinsic entropy
perturbation near the singular event. At this point, we
emphasize that the study of a cosmological singularity in
terms of a fundamental theory was carried out by other
authors as well. Barrow and Graham have recently shown
that a new ultra-weak generalized sudden singularity can be
supported by a scalar field with a simple power-law
potential [27]. In fact, the appearance of a finite-time
future singularity within the context of inflation for a
general noncanonical scalar-tensor theory or a FðRÞ gravity
model was also studied by Nojiri et al. [28]. It turned out
that the generalized sudden singularity can be compatible
with the observational data coming from Planck/BICEP2 if
this event takes place at the end of inflation or afterwards
[28]. This singularity can be described in terms of canonical
and phantom scalar fields [29] or with the help of
generalized equation-of-state fluids [30].
The structure of the paper is as follows. In Sec. II we

present the interacting dark energy model which exhibits
the big brake event, and apply the source equation method
for reconstructing the total energy density, pressure, and
partial densities in terms of the scale factor. We show the
connection between the interacting setup and the unified
model; the latter leads to the modified Chaplygin gas
model. We sketch the link between the unified model and a
new quintessence theory. Section III is devoted to showing
that the new exotic quintessence model can be obtained
from a covariant energy-momentum tensor. In Sec. IV we
review and apply the cosmological perturbation theory to
the big brake event within the Newtonian gauge. We take
into account nonadiabatic pressure perturbations and obtain
the behavior of the gravitational potential, contrast density,
the divergence of the exotic field’s velocity, and the
intrinsic entropy perturbation near the singular event.

II. INTERACTING TWO-COMPONENT MODEL

The metric of spacetime is taken to be an isotropic and
homogeneous FRW universe with zero spatial curvature
(k ¼ 0),

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð1Þ
where aðtÞ is the expansion scale factor. We investigate an
interacting dark sector model where the universe is filled
with two perfect fluids: one serves as a matter component,
while the other represents a variable vacuum energy (VVE)
substratum. Both fluids have energy densities ρm, ρx,
pressures pm, px, and are described by linear equations
of state pm;x ¼ ðγm;x − 1Þρm;x such that the constant bar-
otropic indices γm and γx satisfy the condition 0 < γx < γm.
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The total energy density ρ and the conservation equation
associated with this interacting two-fluid model are

ρ ¼ ρm þ ρx; ð2Þ

ρ0 ¼ −γmρm − γxρx; ð3Þ

where the prime is a derivative with respect to the scale
factor, 0 ≡ d=dη ¼ d=3Hdt ¼ d=d ln ða=a0Þ3, and a0 is
some value of reference for the scale factor. We point
out that the procedure outlined does not rely on the specific
cosmological equations that govern the dynamic of a
homogeneous isotropic flat universe [25]. Differentiating
Eq. (3) and combining with Eq. (2), we get a second-order
differential equation for the energy density,

ρ00 þ ðγm þ γxÞρ0 þ γmγxρ ¼ ðγm − γxÞ½ρx0 þ γxρx�: ð4Þ

Thus the VVE or the matter acts as a source of the last
equation through the term ρx

0 þ γxρx or −ðρm0 þ γmρmÞ
after using the conservation equation (3). In a natural way,
we identify the interaction term with the terms inside the
square bracketQ ¼ ρx

0 þ γxρx, and this identification splits
the conservation equation (3) into two equations. Here Q
produces the exchange of energy between the two fluids
and we assume that it is a function of ρ, ρ0, and η. Hence
Eq. (4) leads to the “source equation”

ρ00 þ ðγm þ γxÞρ0 þ γmγxρ ¼ ðγm − γxÞQ; ð5Þ

which will be a useful tool for obtaining the energy
density for a given phenomenological interaction term.
From the algebraic linear system of equations (2)–(3), we
can reconstruct ρm and ρx as functions of ρ and its η
derivative ρ0:

ρm ¼ −
γxρþ ρ0

γm − γx
; ρx ¼

γmρþ ρ0

γm − γx
: ð6Þ

When the energy density ρ is obtained after solving the
source equation (5) for a given interaction term Q, we are
able to find the matter and VVE energy densities in terms of
the scale factor. Comparing the total pressure pðρ; ρ0Þ ¼
−ρ − ρ0 with the effective equation of state of the dark
sector p ¼ ðγ − 1Þρ, we obtain the effective conservation
equation ρ0 þ γρ ¼ 0, where the effective barotropic index
is given by γ ¼ ðγmρm þ γxρxÞ=ρ.
In dealing with the interacting dark sector, we propose a

phenomenological interaction which is a nonlinear combi-
nation of ρm, ρx, and ρ,

Q ¼ nγm
ρmρx
ρ

; ð7Þ

and whose physical motivation was explored in detail in
our previous article [25]. Taking γx ¼ 0 and leaving γm as a

free parameter in Eq. (6), we obtain the matter energy
density and the VVE density ρm ¼ −ρ0=γm, ρx ¼ ρþ ρ0=γm
as functions of ρ and ρ0. Replacing the latter equations in
the interaction term (7), we see that the source equation (5)
is considerably simplified,

ρρ00 þ γmðnþ 1Þρρ0 þ nρ02 ¼ 0: ð8Þ

We will find the general solution of the source (8) from a
nonlinear superposition of the two basis solutions of a
second-order linear differential equation by changing to the
variable x ¼ ρnþ1,

x00 þ γmðnþ 1Þx0 ¼ 0: ð9Þ

Its first integral and the energy density are given by

ρ0 ¼ −γmðρþ αρ−nÞ; ð10Þ

ρ ¼
�
α

�
−1þ

�
as
a

�
3γmðnþ1Þ��1=ðnþ1Þ

; ð11Þ

where α is one of the integration constants while the other
was set so that the square bracket in Eq. (11) vanishes as the
scale factor reaches the finite value as. This is a necessary
condition to achieve a singularity. In fact, at as ¼ aðtsÞ the
energy density (11), the pressure p, the barotropic index γ,
or the acceleration ä vanishes or diverges at a finite time ts,
as can be seen from the following expressions:

p ¼ ðγm − 1Þρþ αγmρ
−n; ð12Þ

γ ¼ γm½1þ αρ−n−1�; ð13Þ
ä
a
¼ −

1

6
ð3γm − 2Þρ − αγm

2
ρ−n; ð14Þ

ρm ¼ ρþ α

ρn
; ρx ¼ −

α

ρn
: ð15Þ

As a by-product of the nonlinear interaction (7), we are led
to an effective one-fluid model with a modified Chaplygin
gas equation of state [Eq. (12)] [25]. Finally, the η
derivative energy density (11) and the effective barotropic
index expressed as functions of the scale factor are

ρ0 ¼ −αγm
�
as
a

�
3γmðnþ1Þ

ρ−n; ð16Þ

γ ¼ γm
1 − ð aasÞ3γmðnþ1Þ : ð17Þ

Note that the barotropic index always diverges (γ → ∞) in
the a → as limit for any value of n. The remaining
quantities—namely, the pressure, the acceleration, and
the matter and VVE densities—can be obtained as
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functions of the scale factor by combining Eqs. (12), (14),
and (15) along with Eq. (11).
Now, we are in a position to show how the interacting

dark sector can be mapped into an exotic scalar field
scenario. Our idea is to provide a physical interpretation of
the emergence of a sudden future (big brake) singularity by
linking a phenomenological two-interacting fluids model
with a new scalar field model. We will describe the model
in terms of the kinetic variable _ϕ2 of the exotic scalar field
and the potential variable V ¼ VðϕÞ instead of the dark
matter and dark energy densities ρm and ρx.
Our starting point is to note that the conservation

equation (3) can be written as ρ0 ¼ −ðγmρm þ γxρxÞ ¼
−ðρþ pÞ ¼ 2 _H, so it suggests a natural identification with
the kinetic energy in terms of the first derivative of the total
energy density,

_ϕ2 ¼ −ρ0; ð18Þ

which implies that the energy density and pressure of the
interacting two-fluid mixture as well as the matter energy
density,

ρ ¼
_ϕ2

γm
þ γm − γx

γm
ρx; ð19Þ

p ¼ ðγm − 1Þ
γm

_ϕ2 −
γm − γx
γm

ρx; ð20Þ

reproduce the relation

ρþ p ¼ _ϕ2 ð21Þ

of the quintessence scalar field. Substituting the energy
density (19) into the conservation equation (3), we find the
exotic scalar field equation for ϕ generalizing the Klein-
Gordon equation [26],

ϕ̈þ 3γm
2

H _ϕþ ðγm − γxÞ_ρx
2 _ϕ

¼ 0; ð22Þ

which shows that the conservation equation (3) and source
equation (5) both have the same kind of physical informa-
tion. In order to go from the dark energy densities ρm, ρx to
the variables characterizing the exotic scalar field _ϕ2 and
VðϕÞ, we identify the potential VðϕÞ with the VVE density,

VðϕÞ ¼ ρx: ð23Þ

Coming back to our model, in which the barotropic index
of the VVE is γx ¼ 0, Eqs. (19) and (20) can be recast as

ρ ¼
_ϕ2

γm
þ VðϕÞ; ð24Þ

p ¼ ðγm − 1Þ
γm

_ϕ2 − VðϕÞ; ð25Þ

while the dark matter energy density and the exotic scalar
field equation become

ρm ¼
_ϕ2

γm
; ð26Þ

ϕ̈þ 3γm
2

H _ϕþ γm
2
V 0 ¼ 0; ð27Þ

where V 0 ¼ dV=dϕ. In the particular case that the interact-
ing dark components are associated with a scalar field in
the form _ϕ2 ¼ 2ρm and VðϕÞ ¼ ρx, with equations of state
pm ¼ ρm and px ¼ −ρx (namely, stiff matter and VVE,
respectively), the exotic scalar field becomes the quintes-
sence field and the energy-momentum tensor conservation
of the dark sector (as a whole) reduces to the Klein-Gordon
equation. For any other interacting two-fluid mixture, we
are led to an exotic quintessence field ϕ.
By combining the dark matter energy density (15)

with the energy density (11) and Eq. (26), we obtain the
exotic kinetic energy _ϕ2=γm as a function of the scale
factor, so we have

ðϕ0Þ2 ¼ γm
3

ðasa Þ3γmðnþ1Þ

ðasa Þ3γmðnþ1Þ − 1
: ð28Þ

Assuming that the evolution of the homogeneous and
isotropic flat universe is described by the Einstein field
equations and the dynamics of the effective one-fluid model
is governed by the corresponding Friedmann constraint,
3H2 ¼ ρ, we integrate Eq. (28) and find two sets of
solutions. We have two cases to explore, depending on
the sign of α.

(i) α > 0
Under this condition, we find that the potential

and kinetic energies involves hyperbolic functions:

V ¼ −α½α sinh2 ωΔϕ�−n=ðnþ1Þ; ð29Þ
_ϕ2 ¼ γmρ coth2 ωΔϕ; ð30Þ

ρ ¼ ½α sinh2 ωΔϕ�1=ðnþ1Þ; ð31Þ

p ¼ ðγm coth2 ωΔϕ − 1Þρ; ð32Þ

γ ¼ γm coth2 ωΔϕ; ð33Þ

a ¼ as½cosh2 ωΔϕ�−1=3γmðnþ1Þ; ð34Þ

ä
a
¼ 1

2

�
2

3
− γmcoth2ωΔϕ

�
; ð35Þ
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ω ¼ −
ffiffiffiffiffiffiffiffi
3γm

p
2

ðnþ 1Þ; ð36Þ

where Δϕ ¼ ϕ − ϕs and ϕs is an integration
constant.

(ii) α < 0
Under this condition, we find that the potential

and kinetic energies involves trigonometric
functions:

V ¼ −α½−α sin2 ωΔϕ�−n=ðnþ1Þ; ð37Þ
_ϕ2 ¼ −γmρ cot2 ωΔϕ; ð38Þ

ρ ¼ ½−α sin2 ωΔϕ�1=ðnþ1Þ: ð39Þ

p ¼ ð−γm cot2 ωΔϕ − 1Þρ; ð40Þ

γ ¼ −γm cot2 ωΔϕ; ð41Þ

a ¼ as½cos2 ωΔϕ�−1=3γmðnþ1Þ; ð42Þ
ä
a
¼ 1

2

�
2

3
þ γmcot2ωΔϕ

�
: ð43Þ

In both cases, the scale factor reaches its finite value as
and the exotic scalar field also takes a finite value ϕs ¼
ϕðtsÞ where ts is the cosmological time where the finite-
time future singularity occurs. In other words, the case
α < 0 is related to the case α > 0 by means of a Wick
rotation in the exotic quintessence field, as can be noticed
from the next transformations: cosðiωΔϕÞ ¼ coshðωΔϕÞ
and sinðiωΔϕÞ ¼ i sinhðωΔϕÞ.

III. COVARIANT APPROACH

So far, we have shown the appearance of a modified
Chaplygin equation of state associated to the effective fluid
of two interacting dark components. Further, we demon-
strated that such an effective fluid can be mapped into an
exotic scalar field theory by proposing a natural identi-
fication. Our next task is to provide a covariant energy-
momentum tensor associated to the exotic quintessence
model. In doing so, we propose that the energy-momentum
tensor can be recast as

Tμν ¼ ∇μϕ∇νϕ −
ðγm − 1Þ

γm
gμν∇αϕ∇αϕ

−
ðγm − γxÞ

γm
gμνVðϕ;∇αϕÞ; ð44Þ

where the exotic scalar field ϕ is driven by the generalized
potential energy Vðϕ;∇αϕÞ. This is reminiscent of the
situation in generalized scalar-quintessence-type theories.

Now, taking the covariant derivative of the energy-momen-
tum tensor (44) and projecting it along the direction of∇νϕ,
we obtain the ϕ equation of motion

∇α∇αϕ −
ðγm − γxÞ

γm

∇αϕ∇αV
∇αϕ∇αϕ

þ ð2 − γmÞ
γm

ð∇νϕ∇μϕÞ:ð∇ν∇μϕÞ
∇αϕ∇αϕ

¼ 0: ð45Þ

Hence, the equation of motion of the exotic scalar field
differs substantially from the standard quintessence field
provided the kinetic energy contributions which appear in
the last two terms.
From the FRW background (1) and energy-momentum

tensor (44) we can read off the energy density and pressure
of the homogeneous exotic field as −T0

0 ¼ ρ and Ti
j ¼ pδij.

We notice that the generalized potential plays the same role
as the dark energy density ρx. In particular, for a mix of
matter and VVE ðγx ¼ 0Þ, and an exotic scalar field driven
by a potential V ¼ VðϕÞ depending only onϕ, we reproduce
Eqs. (19), (20), and (22). Also, from these equations we note
that the frictional term in the exotic scalar field equation
differs from the standard case as well as the potential term.
From the physical point of view, it is appropriate to point

out certain caveats of our model. One way to present this
issue is by comparing our interacting two-component
model established on the exotic quintessence field [26]
with the well-known big brake scenario based on a tachyon
field [6]. Even though we have presented the new exotic
field from the standpoint of a covariant model, we have not
been able to obtain its Lagrangian representation. This fact
does not mean that such a Lagrangian description does not
exist, given that the exotic quintessence field has not been
sufficiently investigated in the literature, and it appears to
be not as simple as the tachyon model [6]. Our work is a
contribution aimed at understanding the above problem.
Also, we should take into account that our interacting

two-component model includes a matter component that is
not necessarily dust because in general the barotropic index
γm is not equal to unity, indicating that we are dealing with
warm dark matter. Of course, we can take γm arbitrarily
close to unity. Anyway, we should stress that the effective
barotropic index (17) behaves as dust (γ ¼ 1) when the
scale factor takes the value

adust ¼ asð1 − γmÞ1=3γmðnþ1Þ; ð46Þ

meaning that perhaps a dust component should not be too
significant in the construction of the exotic quintessence
scenario.

IV. PERTURBATION EQUATIONS

In order to examine the physical consequences intro-
duced by this model, we will analyze the behavior of
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cosmological perturbations around the big brake singularity
in both of the cases mentioned above. The main reason for
studying this issue is to extract the behavior of the
perturbed exotic field and its potential, as well as the
behavior of the gravitational potential, and by doing so we
will be able to explore the classical stability of these
solutions near the singularity.
In dealing with the cosmic perturbations around the

singular event, we will follow the notation of Ma and
Bertschinger [31]. We will restrict our analysis to the
Newtonian gauge provided we are interested in the scalar
mode of the metric perturbation; namely, vector and tensor
modes are neglected from the beginning. However, we
want to emphasize that the classical stability of another type
of singularities (sudden-type) were examined by Barrow
and Lip a few years ago [32], including an analysis of the
vector and tensor modes using a gauge-invariant formalism
developed by Bardeen. In that work, the authors performed
a generic analysis for perfect fluids that included adiabatic
pressure perturbations and did not make reference to any
scalar field theory.
One of the main reasons for choosing the Newtonian

gauge is that the physical observers are attached to the
unperturbed metric so they measure both the gravitational
and the velocity fields. Besides, this metric tensor becomes
diagonal and this simplifies calculations. Moreover, the
equations have a simple physical interpretation for pertur-
bations inside the horizon and there is no residual gauge
freedom. The perturbations of the FRW metric in the
Newtonian gauge read

ds2 ¼ a2ðτÞf−dτ2ð1þ 2ΨÞ þ ð1 − 2ΨÞδijdxidxjg; ð47Þ

where τ stands for the conformal time and Ψ represents
the analog of the Newtonian gravitational potential.
Equation (47) tells us that we can neglect the shear
perturbation. To linear order, the energy-momentum tensor
is given by

T0
0 ¼ −ðρþ δρÞ; ð48Þ

T0
i ¼ ðρþ pÞvi ¼ −Ti

0; ð49Þ

Ti
j ¼ ðpþ δpÞδij; ð50Þ

where the velocity perturbation is defined as vi ≡ dxi=dτ.
The first-order perturbed Einstein equations can be
recast as

k2Ψþ 3Hð _ΨþHΨÞ ¼ a2

2
δT0

0; ð51Þ

k2ð _ΨþHΨÞ ¼ a2

2
ðρþ pÞθ; ð52Þ

Ψ̈þ 3H _Ψþ
�
2
ä
a
−H2

�
Ψ ¼ a2

6
δTi

i: ð53Þ

Above we defined θ ¼ iklvl ¼ ∇:v̄ and identified
ðρþ pÞθ ¼ iklδT0

l , while the conformal Hubble parameter
is given by H ¼ _a=a. Besides, the perturbed part of the
energy-momentum conservation gives

_δþ 3Hðc2s − wðρÞÞδ ¼ −
ρþ p
ρ

ðθ − 3 _ΨÞ; ð54Þ

_θ þHð1 − 3c2sÞθ ¼ k2c2sδ
1þ wðρÞ þ k2Ψ; ð55Þ

where δ ¼ δρ=ρ, wðρÞ ¼ pðρÞ=ρ, and c2s ¼ δp=δρ stands
for the speed sound of the scalar field. Let us take a closer
look at the pressure perturbations for the exotic scalar field.
As is well known, scalar fields can generate entropic
perturbations, implying that δpjrf ¼ c2srfδρjrf only holds
in the rest frame of the exotic scalar field, where the
perturbed energy momentum looks diagonal for a comov-
ing observer. Thus, we can interpret the quantity c2srf as the
speed at which pressure fluctuations propagate. However,
we notice that for any other frame the link between pressure
and density breaks down. In particular, this means that the
adiabatic sound speed c2a ¼ _p=_ρ is not equal to the sound
speed of the scalar field. In order to establish a general
relation between pressure perturbations and density per-
turbations, we must take into account that the pressure
perturbations have two kinds of contributions, namely,
adiabatic and entropy components. For any given frame,
the intrinsic entropy perturbation of matter is a gauge-
invariant variable Γ:

wΓ≡ δp
p

−
c2a
w
δρ

ρ
¼ _p

ρ

�
δp
_p
−
δρ

_ρ

�
: ð56Þ

Notice that Γ is a dimensionless quantity. Here, we interpret
the intrinsic entropy perturbation as a displacement
between hypersurfaces of uniform pressure and uniform
energy density. Using a gauge transformation between the
density perturbation δρ and the density perturbation in the
rest frame δρjrf ,

δρjrf ¼ δρþ 3H
ðpþ ρÞθ

k2
; ð57Þ

we can determine the pressure perturbation in a general
frame in terms of the rest-frame sound speed,

δp ¼ c2srfδρþ 3H
ðpþ ρÞθ

k2
½c2srf − c2a�: ð58Þ

It is worth noting that we have to use Eq. (58) to obtain c2srf .
As stated earlier, in a general frame, the pressure perturbation
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involves a density perturbation along with an additional
velocity term which accounts for the entropy generation.
Now, using Eqs. (44) and (47) we calculate the perturbed

density and perturbed pressure associated with the exotic
quintessence model as

δρ ¼ 2ð1 − γÞ
a2

ð _δϕ _ϕ−Ψ _ϕ2Þ þ ϵV;ϕδϕ; ð59Þ

δp ¼ 2γ

a2
ð _δϕ _ϕ−Ψ _ϕ2Þ − ϵV;ϕδϕ; ð60Þ

where γ¼ðγm−1Þ=γm and ϵ¼ðγm−γxÞ=γm. Equations (59)
and (60) are quite similar to those expressions associated
with the standard quintessence model. Indeed, the standard
model can be recovered by demanding that the coefficients
which appear in the kinetic energy are both equal; this
choice leads to γm ¼ 2 and γx ¼ 0, so our scheme contains
the quintessence model. The main difference in relation to
the standard model is that now the kinetic energy term does
not appear with the same coefficient in the perturbed
density and perturbed pressure.
The adiabatic sound speed for the exotic scalar field can

be written as

c2a ¼
3γH _ϕ2

ð1−γÞa2 þ ϵ
V;ϕ

_ϕ
γ−1

3H _ϕ2

a2

; ð61Þ

where we have used the equation of motion (22) to
eliminate the second derivative of ϕ in Eq. (61).
In order to obtain the rest-frame sound speed c2srf of the

exotic scalar field, we use Eqs. (19), (20), (58), (59), (60),
and (61). After some manipulation, we find that the rest-
frame sound speed can be recast as

c2srf ¼
γ

ð1 − γÞ : ð62Þ

To avoid the propagation of noncasual perturbations, we
must demand that 0 < c2srf ≤ 1, which implies that
0 < γ ≤ 1=2. The aforesaid constraint can be alternatively
translated as 1 < γm ≤ 2. One comment might be in order
here: the adiabatic sound speed (61) is a background
quantity which should be clearly distinguished from the
speed of sound, which is essentially a perturbative quantity.
Our next task is to determine a master equation for the

gravitational potential. Combining Eqs. (48)–(50) with
Eqs. (51)–(53), we find

Ψ̈þ 3Hð1þ 3c2aÞ _Ψþ f2 _Hþ k2c2srf þ ð3c2a þ 1ÞH2g ¼ 0:

ð63Þ

In this way, the master equation for the gravitational
potential (63) has time-dependent coefficients that involve

only background quantities. As the pressure perturbation
contains adiabatic and entropy contributions for the exotic
scalar field, the master equation for the gravitational
potential Ψ exhibits both contributions encoded in the
distinctive roles played by c2a and c2srf .
After solving Eq. (63), we must use the constraint (51)

again to derive the leading term of the density perturbation
near the singularity; by doing so, we arrive at a first-order
differential equation for the perturbed field δϕ,

ð1 − γÞ _δϕþ a2

2
ϵ
V;ϕ

_ϕ
δϕ

¼ ð1 − γÞΨ _ϕ −
½k2Ψþ 3Hð _ΨþHΨÞ�

_ϕ
; ð64Þ

where the rhs of Eq. (64) is known. Another method is to
solve the perturbed equation of motion for the exotic field,
which can be obtained from Eq. (54) or by explicitly
perturbing the equation of motion (45) around its back-
ground solution as ϕ → ϕþ δϕ,

δ̈ϕþ 2γ þ 1

2ð1 − γÞH
_δϕþ a2

2ð1 − γÞ
�
k2

a2
þ ϵV;ϕϕ

�
δϕ

¼ 5 − 2γ

2ð1 − γÞ
_Ψ _ϕ−

ϵ

ð1 − γÞΨV;ϕ: ð65Þ

Equation (65) suggests that the potential energy is a
function of the exotic scalar field only. Considering the
off-diagonal component of the perturbed energy-
momentum tensor associated with the exotic quintessence
field Ti

0 ¼ _ϕ∂iδϕ=a2 ¼ ðρþ pÞvi, we can derive vi ¼
∂iδϕ=ð _ϕa2Þ and therefore the divergence of the exotic
field’s velocity is given by θ ¼ −k2δϕ=ð _ϕa2Þ. In short,
solving Eq. (64) also leads us to the functional form of θ,
while the contrast density is simply obtained from its
definition, δ ¼ δρ=ρ.
At this point, it is essential to use another time variable

called T to analyze the leading behavior of different
contributions which appear in Eq. (63). To be more precise,
plugging Eq. (34) or Eq. (42) into the Friedmann constraint
leads to ϕ ¼ ϕs þ ωð�αÞ1=2Tν=2, depending on the sign of
α, where ν ¼ ð2nþ 2Þ=ð2nþ 1Þ. Here, the new cosmic
time is a linear redefinition of the standard cosmic
time t, so it can be written as T ¼ c0ðts − tÞ with
c0 ¼

ffiffiffi
3

p
αγm=2ðν − 1Þ. Using this time variable, one can

show that the leading terms of the total density, pressure,
and adiabatic sound speed as T → 0 are given by

ρ≃ T2ðν−1Þ; ð66Þ
p≃ αγmTðν−2Þ; ð67Þ

c2a ≃ αγmðν − 2Þ
2ðν − 1Þ T2ðν−1Þ: ð68Þ

BIG BRAKE SINGULARITY IS ACCOMMODATED AS AN … PHYSICAL REVIEW D 93, 043524 (2016)

043524-7



After changing of time variable in Eq. (63), going from the
conformal time to the new cosmic time T, plugging
Eqs. (66)–(68) into Eq. (63), and retaining the leading
terms, we arrive at a much simpler master equation,

Ψ̈þ ξ1T−1 _Ψþ ξ2Tðν−2ÞΨ ¼ 0; ð69Þ

where ξ1 ¼ κð2 − νÞ=3 and ξ2 ¼ −2νðν − 1Þ=3αγm are two
constants while κ ¼ �1. It is essential to bear in mind that a
big brake singularity is achieved for 1 < ν < 2, corre-
sponding to a nonzero scale factor 0 < aðtsÞ < ∞, vanish-
ing energy density, and infinite pressure, leading to a
cosmic scenario where at finite time the acceleration
diverges, äðtsÞ ¼ −∞.
It is convenient to define T ¼ ðy=cÞs (where s and c are

constants to be determined later) [32] and insert this
relation into the master equation (69),

y2Ψ00 þ ð1 − sþ sξ1ÞyΨ0 þ s2ξ2

�
y
c

�
sν
Ψ ¼ 0: ð70Þ

In order to show that Eq. (70) is analogous to a Bessel
equation we need to propose a useful parametrization.
Hence, we insert Ψ ¼ ymPðyÞ into Eq. (70), which now
reads

y2P00 þ ð1þ 2m − sþ sξ1ÞyP0

þ
�
mðm − s − sξ1Þ þ

s2ξ2
csν

ysν
�
P ¼ 0: ð71Þ

We fix our parametrization by choosing sν ¼ 2,
2m ¼ sð1 − ξ1Þ, and c ¼ s

ffiffiffiffiffi
ξ2

p
[32]. The latter choice

leads to

y2P00 þ yP0 þ ½m2 − y2�P ¼ 0; ð72Þ

whose solution involves the Bessel functions of the first
and second kind, called Jm and Ym, respectively,

P ¼ AJmðyÞ þ BYmðyÞ; ð73Þ

where A and B are two integration constants. By keeping
the leading term of Jm and Ym as y → 0, we arrive at Ψ≃
Ay2m þ B [32]. Coming back to our original time variable,
the gravitational potential reads

Ψ ¼ ATκξ� þ B: ð74Þ

If κ ¼ þ1 then we have ξþ ¼ ðνþ 1Þ=3, while the choice
κ ¼ −1 leads us to ξ− ¼ ð5 − νÞ=3. Notice that the gravi-
tational potential does not depend on the wave number k
explicitly.
Let us first analyze the case with κ ¼ −1,

ξ− ¼ ð5 − νÞ=3, and α > 0. By inserting Eq. (74) into
Eq. (51), we obtain the contrast density

δρ ¼ −2k2B
a2s

þ 2Bffiffiffi
3

p T3ðν−1Þ: ð75Þ

Also, from the equation above we derive that δ ∝ T2ð1−νÞ,
which becomes divergent as T → 0. For purposes of
comparison, let us also give the leading term in the pressure
perturbation,

δp ¼ −2k2Bc2srf
a2s

þ
ffiffiffi
3

p
c0Aαγmð2 − νÞ
ðν − 1Þ T−ðνþ1Þ

3

þ Bαγmð2 − νÞ
ðν − 1Þ Tðν−2Þ: ð76Þ

Thus we have two kinds of power-law terms in Eq. (76)
provided both diverge for ν ∈ ð1; 2Þ but in a different way
for each one; namely, for ν ∈ ð1; νcÞ one term dominates
over the other one (with νc ¼ 5=4), while for ν ∈ ðνc; 2Þ
the situation is reversed. Equation (76) tells us that the
divergent parts of the pressure perturbations are associated
with the intrinsic entropy perturbation.
Inserting Eqs. (29), (66), and (75) into Eq. (64) and

keeping only the leading term, we obtain a first-order
differential equation for the exotic field perturbation,

_δϕþm1Tðν−4Þδϕ ¼ m2T
ν−2
2 ; ð77Þ

with m1 < 0 and m2 > 0 in the case of B > 0. The
perturbed exotic field is

δϕ

δϕ0

¼ e
jm1 j
ν−3T

ðν−3Þ
�
1 − T−ν Dν

δϕ0

Γ
�

ν

2ðν − 3Þ ;
jm1jTðν−3Þ

ν − 3

��
;

ð78Þ

where Γ½d; z� is the incomplete gamma function, whereas
Dν is a constant which depends on ν, jm1j, and jm2j. From
Eq. (78), we obtain that the perturbed exotic field is
exponentially suppressed as T → 0, so near the big brake
the perturbation decays to zero. Further, the divergence θ ∝
Tð2−νÞ=2δϕ also goes to zero near the singularity. Although
the potential energy and kinetic energy at the background
level behave as a negative power law near the singularity,
the perturbed exotic field decays exponentially to zero,
assuring the classical stability of this solution.
We now deal with the other case corresponding to the

options κ ¼ þ1, ξþ ¼ ðνþ 1Þ=3, and α < 0. The contrast
density can be written as

δρ ¼ −2k2B
a2s

þ Aαγmffiffiffi
3

p ðν − 1ÞT
ð7ν−8Þ

3 ; ð79Þ

and therefore the contrast is
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δ ¼ −2k2B
a2s

Tð2−νÞ þ Aαγmðνþ 1Þ
2

ffiffiffi
3

p ðν − 1Þ T
ðν−2Þ
3 : ð80Þ

Then, the density perturbation vanishes for ν ∈ ð8=7; 2Þ but
becomes divergent when ν ∈ ð1; 8=7Þ. Equation (80) tells
us that the contrast variable blows up at the big brake event.
We turn our attention to pressure perturbations,

δp ¼ −2k2Bc2srf
a2s

−
2c0Að1þ νÞffiffiffi

3
p T

ðν−5Þ
3 : ð81Þ

Since ν ∈ ð1; 2Þ, we obtain that the pressure perturbations
(81) always diverge as T → 0.
Inserting Eqs. (37), (66), and (79) into Eq. (64) and

keeping only the leading term, we arrive at a first-order
differential equation for the exotic field perturbation,

_δϕ − jm3jTðν−4Þδϕ ¼ ijm4jTν−2
2 ; ð82Þ

where m3 and m4 are two constants which depend on ν, α,
and γm only. The perturbed exotic field is given by

δϕ

δϕ0

¼ e
jm3 j
ν−3T

ðν−3Þ
�
1 − T−ν Eν

δϕ0

Γ
�

ν

2ðν − 3Þ ;
jm3jTðν−3Þ

ν − 3

��
;

ð83Þ
where Eν is a constant. From Eq. (83), we obtain that the
perturbed exotic field is again exponentially suppressed as
T → 0, implying that θ ∝ Tðν−2Þ=2δϕ goes to zero.
Therefore, we conclude that the kinetic and potential
energies diverge near the big brake event but the perturbed
exotic field decays to zero and θ as well. Our overall
conclusion is that in order to really understand future-like
singularities it is fundamental to explore classical pertur-
bations near background solutions, and when doing so it is
physically useful to approach such cosmological scenarios
from the viewpoint of a microscopic model such as the
exotic quintessence model presented above.
We end this section by looking at the behavior of the

intrinsic entropy perturbation associated with the exotic
quintessence field [31]. Since the intrinsic entropy pertur-
bation of matter is a gauge-invariant variable [33], one can
use this quantity as a useful approach to investigate the
behavior of the exotic quintessence model near the singular
event. Such a quantity can be written in terms of non-
adiabatic pressure perturbations by using Eq. (56) as
Γ ¼ δpnad=p. We focus on the first case associated with
the choice α > 0. Inserting Eqs. (66), (67), and (68) along
with Eqs. (75) and (76) into Eq. (56), we arrive at the
leading terms in the intrinsic entropy perturbation,

ðν − 1ÞΓ ¼ Bð2 − νÞ þ
ffiffiffi
3

p
c0Að2 − νÞT ð5−4νÞ

3 : ð84Þ

Equation (84) tells us that it goes to a constant as T → 0
only for ν ∈ ð1; νcÞ with νc ¼ 5=4, whereas it remains

unbounded for other values of ν. Inserting Eqs. (66), (67),
(68), (79), and (81) into Eq. (56), the intrinsic entropy
perturbation is given by

Γ ¼ −2
ffiffiffi
3

p
c0Að2 − νÞT ð1−2νÞ

3 ð85Þ
in the second case with α < 0. It is therefore clear from this
expression that the aforesaid physical magnitude becomes
divergent near the big brake for all values of ν ∈ ð1; 2Þ.

V. SUMMARY

We have considered four-dimensional cosmological
solutions in which a flat FRW universe exhibits a singular
event at a finite time called a big brake, characterized by a
nonzero finite scalar factor, vanishing Hubble rate, and
infinite acceleration. We have shown that this cosmic
scenario seems to appear when the universe is filled with
two interacting components: one serves as matter, whereas
the other represents a variable vacuum energy; the
exchange of energy between these components corresponds
to a nonlinear function of the total energy density and its
first derivative. A byproduct of this proposal is that the
effective model admits an equation of state corresponding
to a modified Chaplyigin gas model, depending on the sign
of a certain parameter. In solving the field equation, we
applied the source equation approach because it is a useful
method to reconstruct the partial energy densities, pressure,
total density, and barotropic index in terms of the scale
factor. Later, we demonstrated how two interacting dark
components can be mapped into an exotic quintessence
(microscopic) model, which is characterized by the lack of
a Lagrangian function but it can be presented as a model
coming from an energy-momentum tensor. The latter tensor
is reminiscent of a generalized scalar field theory provided
the potential term can also depend on the kinetic energy. In
addition, we obtained the covariant equation of motion for
the quintessence field and showed that additional kinetic
contributions appeared.
We have examined several physical outcomes when the

background solutions associated with the big brake singu-
larity are perturbed. In doing so, we performed our analysis
within the Newtonian gauge, provided the physical observ-
ers are attached to the unperturbed metric so they measure
both the gravitational and the velocity fields. We have
examined only the scalar mode of the metric and included
entropy perturbations in the perturbed pressure. To be more
precise, we have considered a general relation between
pressure perturbations and density perturbations, and by
doing so we took into account the adiabatic and entropy
components in pressure perturbations. We obtained and
solved a master equation for the gravitational Newtonian
potential. Keeping the leading terms in the aforesaid
equation, we showed that the general solution involves
the Bessel functions of the first and second kind, which
near the singular event can be written as power laws.
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Indeed, we found that the Newtonian potential leads to a
constant plus additional regular terms, so it does not blow
up. After that, we solved a first-order equation for the exotic
quintessence field using the 0 − 0 perturbed Einstein
equation and employing the perturbed exotic quintessence
density. We studied two different cases depending on the
effective equation of state associated with the exotic
quintessence field. For the α > 0 case, we have found that
the perturbed exotic field cannot grow without limit near
the singularity; in fact, it is exponentially suppressed,
assuring that the perturbation decays to zero near the big
brake. We calculated other physical magnitudes; for in-
stance, the divergence θ ∝ Tð2−νÞ=2δϕ also goes to zer,
whereas the perturbed pressure and contrast density both
become divergent near the singularity. The other case
corresponding to α < 0 led to a perturbed exotic quintes-
sence field that decays exponentially and the perturbed
pressure is fully regular for certain values of the model
parameter ν. However, the contrast density blows up.
Interestingly enough, the perturbed exotic field and the
divergence of the exotic field’s velocity both vanish near
the big brake event. Regardless of the fact that the kinetic

energy and potential explode near the singular event, the
perturbed exotic field can be controlled which means that
this solution is classically stable. Such a finding showed us
the critical importance of considering a microscopic model
for studying future singularities like the big brake event and
the key role played by the perturbation, which helped us to
explore the stability of the solutions.
We have shown that the intrinsic entropy perturbation

can remain bounded for certain values of ν near the big
brake singularity when α > 0; however, its magnitude
cannot be controlled in the α < 0 case, growing without
limit near the singular event. It is worthwhile to point
out that both cases are not physically equivalent at the
perturbative level given the signature displayed by the
intrinsic entropy perturbation.
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