
Semiclassical momentum representation in quantum cosmology

Antonin Coutant*

Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muhlenberg 1,
14476 Golm, Germany

(Received 5 November 2015; published 10 February 2016)

It is well known that the standard WKB approximation fails to provide semiclassical solutions in the
vicinity of turning points. However, turning points arise in many cosmological scenarios. In a previous
work, we obtained a new class of semiclassical solutions of the Wheeler-DeWitt equation using the
conjugate momentum to the geometric variable. We present here a detailed study of their main properties.
We carefully compare them to usual WKB solutions and turning point resolutions using Airy functions.
We show that the momentum representation possesses many advantages that are absent in other
approaches. In particular, this framework has a key application in tackling the problem of time. It allows
us to use curvature as a time variable, and control the corresponding domain of validity, i.e., under which
conditions it provides a good clock. We consider several applications, and in particular show how this
allows us to obtain semiclassical solutions of the Wheeler-DeWitt equation parametrized by York time.
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I. INTRODUCTION

Despite our lack of a complete theory of quantum
gravity, quantum fluctuations of the gravitational field
can still be tracked down in some approximate regimes.
For this reason, semiclassical approximations play a key
role in attempts to characterize quantum gravitational
effects, and WKB methods were developed early on in
canonical quantum gravity studies [1]. Such methods are
not only useful to obtain corrections to classical general
relativity [2], they are also a crucial tool for tackling
conceptual problems such as the problem of time [3,4]
or the emergence of a classical background metric [5–8].
Unfortunately, standard WKB techniques fail drastically
near a turning point.
Surprisingly, despite their occurrence in many scenarios,

the generic structure of turning points in quantum gravity
has not attracted the attention it deserves [9–11]. But
turning points are not exotic. They arise in many cosmo-
logical models, when the Universe undergoes a bounce
[12,13], or recollapses due to its spatial curvature [14], but
also in black hole evaporation scenarios such as in 1þ 1
dimensions [9,15]. One way to remedy the problem of
turning points is to use a different set of variables to build
semiclassical solutions. In standard approaches the wave
function takes the spatial metric and matter degrees of
freedom as arguments. Instead of this metric representa-
tion, one can work in a momentum representation. Since
metric variables are canonically conjugated to extrinsic
curvature variables, the wave function will now take
curvature degrees of freedom as arguments. The idea to
use such a momentum representation has recently attracted
more attention [16–19]. While most of these works

followed a reduced phase space quantization procedure
(the “identify time before quantization” of Isham’s classi-
fication [3]), our aim is to start from the fully quantized
Wheeler-DeWitt constraint and control the validity of the
semiclassical momentum representation. In a previous
work [19] we were concerned with the dynamics of matter
fields (“light degrees of freedom”) near a turning point.
Here instead, we focus on the properties of the gravitational
part (the “heavy degrees of freedom”). The objective is to
derive the main properties and demonstrate the usefulness
of the momentum representation in quantum cosmology.
We shall compare these solutions of the Wheeler-DeWitt

equation, and their validity condition, with standard WKB
solutions, and usual resolutions of a turning point singu-
larity. The momentum representation provides much inter-
est compared to the alternatives, which we derive and
discuss carefully. To start with, it is the most semiclassical
variable in the vicinity of a turning point, but it is also well
defined far from it. As we argue, there is no necessity to go
back to the geometric representation. Moreover, it is well
known that an internal variable can play the role of time
efficiently only if it behaves semiclassically enough (this
has been obtained from a variety of approaches: internal
correlations [20], effective techniques [21], and matter
transitions [22,23]). The semiclassical solutions we study
are parametrized by the momentum, and therefore, they
allow us to use it as a time variable. We apply this to several
examples, and in particular, we show how to apply our
framework to the York construction of “extrinsic time.”
York time played a key role in the demonstration of the well
posedness of the Cauchy problem in general relativity
[24,25]. It is also a central ingredient in some recent
modified gravity theories [26], and was recently used in
cosmological settings [17,18]. Here we show that our
method exactly allows us to control the approximation*antonin.coutant@aei.mpg.de
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necessary for York time to be a good time variable at the
quantum level. In the last part of this work, we show that,
despite their semiclassical character, these solutions also
allow us to access nonclassical quantities, such as tunneling
amplitudes.
In the first section, we review the construction of the

(semiclassical) momentum representation, together with
the standard (WKB) semiclassical approximation. In the
second section, we discuss the key points of our con-
struction, namely its link with the metric representation and
the generic structure near a turning point. We then present
applications of our framework. In the last section, we show
how tunneling amplitudes can be obtained from our
framework.

II. WHEELER-DeWITT EQUATION AND
MOMENTUM REPRESENTATION

A. Minisuperspace Wheeler-DeWitt equation

When we restrict ourselves to cosmological systems
(homogeneous and isotropic), gravitational degrees of
freedom reduce to a single one. The set of possible metrics
in this minisuperspace sector is then given by

ds2 ¼ N2ðtÞdt2 − a2ðtÞdΩ2
K; ð1Þ

where dΩ2
K is a fixed spatial metric of constant curvatureK.

The coupled system of matter and gravity is then governed
by the minisuperspace action1

S ¼ VU

2G

Z �
−
a _a2

N
−
VðaÞN

a

�
dt

þ VU

Z �X
j

πj _ϕj −Hmatða;ϕjÞ
�
dt; ð2Þ

where Hmatða;ϕjÞ is the Hamiltonian density of matter
fields, and VU the volume of the Universe.2 VðaÞ ¼
−Ka2 þ Λa4 is the Wheeler-DeWitt superpotential. In this
setup, it is well known that if the Universe is closed and has
a nonzero cosmological constant, there is a turning point
[10,11,14]. However, a turning point may arise for a large
variety of reasons. It appears when the Universe contains
classical exotic matter fields (see e.g. [12]), or quantum
matter with negative energy density (e.g. [28]) or also in

loop quantum cosmology, where quantum effects forbid the
Universe from having a volume smaller than a minimum
value [13]. Our analysis aims at staying rather general, and
for this reason, we shall replace the superpotential by an
“effective” potential VeffðaÞ that contains quantum effects
or a contribution from fields at equilibrium one wishes to
include.
After canonical quantization, the quantum dynamics of

the system defined in (2) is given by a single Hamiltonian
constraint: the Wheeler-DeWitt equation,�

G2

aV2
U
∂aa∂a þ VeffðaÞ þ 2GaĤmat

�
Ψða;ϕjÞ ¼ 0: ð3Þ

Again, to keep the discussion general, we consider a large
class of possible matter Hamiltonians, containing all matter
degrees of freedom, but also gravitational perturbations
[29]. However, for pedagogical purposes, it is instructive to
have in mind specific and simple examples. For instance, in
a Universe filled with a single scalar field in a potential
Vscal, the matter Hamiltonian reads

Ĥmat ¼
1

2a3
ð−∂2

ϕ þ a6VscalðϕÞÞ: ð4Þ

In this work, we shall make the (drastic) assumption that
the Universe is filled with fields at equilibrium. This means
that we assume the wave function to factorize as
jΨðaÞi ¼ ΨðaÞjmati, where jmati is the state of matter
fields in equilibrium (we shall relax this assumption in
Sec. II C). Doing so, we can replace Ĥmat by its mean value
hĤmati [6,7]. For instance, when we consider several massive
and massless fields at equilibrium, we have approximately

hĤmati ¼ ρm þ ρr
a
: ð5Þ

ρm is the energy density of nonrelativistic matter and ρr that
of massless (radiation) fields. This applies at equilibrium,
when equipartition is valid. On the contrary, during inflation,
under slow roll conditions, the main contribution of the
inflaton comes from the potential part, i.e., hĤmati ¼
a3VscalðϕÞ=2 (and ϕ ∼ const), giving a cosmological con-
stant contribution [30].
In the sequel, we assume a general parametrization of

gravitational degrees of freedom. The geometry is governed
by a single metric variable h, such that a ¼ aðhÞ in Eq. (1).3
In terms of h, the Wheeler-DeWitt equation takes the very
general form

½−∂2
h þWðhÞ�ΨðhÞ ¼ 0: ð6Þ

1To lighten the notations, we have redefined the gravitational
coupling constant G ¼ 4πGN

3
, where GN is the standard Newton

constant, and Λc ¼ 3Λ the standard cosmological constant.
2VU appears as a global factor in the classical action (2), and,

therefore, does not affect the classical trajectories. At the quantum
level, as we shall see, the volume changes the regime of validity
of the semiclassical approximation: the bigger the Universe, the
more classical it is. In fact, all the error bounds we provide in this
work scale as V−1

U . This fact was used in a different context to
advocate for the efficiency of the effective equation of loop
quantum cosmology [27].

3Some standard choices would be to use a itself, but also
h ¼ α ¼ lnðaÞ. Choosing a different function aðhÞ means that
one uses different coordinates on the metric superspace. We shall
exploit this for instance in Sec. IV B.
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For this, we first notice that ∂aa∂a ¼ ða;hÞ−1∂haða;hÞ−1∂h.
Then, we redefine the wave function as

ΨðaÞ → ΨðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðhÞ=a;hðhÞ

p : ð7Þ

By applying this change of wave function to Eq. (3), we
obtain the pseudopotential

WðhÞ ¼ −a2;h
V2
U

G2
ðVeffðaÞ þ 2GahĤmatiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

WclðhÞ

þ V2
U

3a2a;ha2;hh − 2a2a2;ha;hhh − a5;h
4G2a2a3;h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
WqðhÞ

: ð8Þ

We see that the pseudopotential contains two contributions.
The first one is the classical pseudopotentialWcl, written in
terms of the general metric variable h. The second is the
“quantum pseudopotential” Wq. This contribution directly
comes from the noncommuting character of a and ∂a.
WhileWcl is insensitive to a specific choice of ordering for
the Wheeler-DeWitt equation, Wq is directly affected. In
Eq. (3), we have chosen the Laplace-Beltrami ordering.
This possesses the interesting property that the Wheeler-
DeWitt equation is independent of the way we parametrized
the geometry in Eq. (1). However, there exist many other
legitimate choices for the ordering. Again, for the sake of
generality, we shall simply keep Wq unspecified, and
therefore our results will be valid for any choice, provided
that one uses the appropriate Wq.

B. The momentum-WKB approximation

We shall now analyze the Wheeler-DeWitt equation
under its very general form (6) so as to build semiclassical
solutions. The standard procedure consists of obtaining
WKB modes. Those are given by

χðhÞ ¼ ei
R

pclðh0Þdh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pclðhÞ

p : ð9Þ

We denote the WKBmodes by χ rather thanΨ so as to keep
in mind that χ constitutes an approximate solution. pcl is
the (classical) conjugate momentum of h, and obeys the
Hamilton-Jacobi equation

pclðhÞ2 þWðhÞ ¼ 0: ð10Þ
Equation (9) provides a semiclassical solution of the
Wheeler-DeWitt equation (6), and has been extensively
studied in the literature (see [2,3] and references therein).
However, Eq. (9) is not an exact solution. It provides a good
approximation when

ErhðhÞ ¼
���� ∂hpcl

p2
cl

���� ≪ 1: ð11Þ

The error function Erh gives a bound on the local error due
to the WKB approximation [31]. However, when consid-
ering a scattering problem, the accumulated error might
be much smaller, due to destructive interference effects
[22,31]. As far as scattering is concerned, the criterion (11)
is rather conservative. In order to keep the discussion
general, we shall stick to this criterion, which guarantees
that the error is at most of the order of Erh.
Unfortunately, theWKB approximation of Eq. (9) breaks

down in many physically relevant situations. In particular, it
fails dramatically near a turning point [3,32], where
pcl ¼ 0, or equivalently, WðhÞ ¼ 0. Notice that the notion
of a turning point is classically independent of our choice of
metric variable h, i.e., of the function aðhÞ. Indeed, we see
from Eq. (8) that if Wcl vanishes at some point, it does for
any function aðhÞ, since differentWcl’s for different aðhÞ’s
are proportional. Wq on the other hand might affect the
location (or presence) of a turning point, although its
contribution is often subdominant with respect to Wcl.
When switching to the momentum representation, turn-

ing points will no longer be a singular point of our
approximate solutions. In the following, we shall present
a slightly generalized version of the framework developed
in [19]. In the next sections, we will study in detail its
properties and some applications. To proceed, we take the
Fourier transform of the wave function

~ΨðphÞ ¼
Z

ΨðhÞe−ihph
dhffiffiffiffiffiffi
2π

p : ð12Þ

Assuming that this Fourier transform is well defined has
nontrivial consequences.4 First, we assumed that we
integrate over all real values of h. This creates difficulties
if one wishes to use a itself as the metric variable (we shall
return to that point in Sec. III B). Second, Eq. (12) implies
that we discard the growing mode in the classically
forbidden side of the turning point. As shown in [16], a
well-defined momentum representation necessarily implies
such a selection rule. It is also necessary to recover the
background field approximation near a turning point, see
the discussion in Sec. II C. After the Fourier transform, the
wave function obeys the Wheeler-DeWitt equation in the
momentum representation, i.e.,

½p2
h þWði∂ph

Þ� ~ΨðphÞ ¼ 0: ð13Þ

To obtain semiclassical solutions for this equation, we
assume a semiclassical ansatz

4It is also instructive to notice that Eq. (12) [combined with
Eq. (7)] is the unitary implementation of the canonical trans-
formation ðα; pαÞ → ðph; hÞ, where α ¼ lnðaÞ, as is described in
[16] in a similar context.
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~ΨðphÞ ¼ AðphÞ exp
�
−i
Z

ph

hclðpÞdp
�
: ð14Þ

The key point is that this expression gives a good
approximation when the amplitude is a slowly varying
function of ph. Therefore, we shall solve Eq. (13) using a
gradient expansion. The phase of Eq. (14) is the classical
action, and is obtained from the Hamilton-Jacobi equation

p2
h þWðhclðphÞÞ ¼ 0: ð15Þ

This is the same equation as (10), except that we now solve
for h as a function of ph instead of the converse. If the
pseudopotential is monotonic, the solution hclðphÞ is
unique. If WðhÞ vanishes, say at h ¼ htp, there is a turning
point. The region where WðhÞ is positive (without loss of
generality, we assume it for h < htp) is classically for-
bidden. Hence, when ph runs from −∞ to þ∞, hclðphÞ
goes from þ∞ to htp and back again.
Before using any approximation, the ansatz (14) simply

defines the amplitude AðphÞ. When applied to Eq. (13), it
gives

½p2
h þWðhclðphÞ þ i∂ph

Þ�AðphÞ ¼ 0: ð16Þ

Since the amplitude is assumed to vary slowly, we expand
the operator in Eq. (16) in powers of i∂ph

. For this, as we
detail in the Appendix, one must use a Taylor expansion of
functions of noncommuting arguments. Here, the first order
expansion reads

WðhclðphÞ þ i∂ph
Þ ¼ WðhclðphÞÞ þW0ðhclðphÞÞi∂ph

þ i
2
W00ðhclðphÞÞh0clðphÞ þOð∂2

ph
Þ:
ð17Þ

(By convention, W0 ¼ ∂hW and h0cl ¼ ∂ph
hcl.) Using this,

Eq. (16) becomes�
p2
h þWðhclðphÞÞ þW0ðhclðphÞÞi∂ph

þ i
2
W00ðhclðphÞÞh0clðphÞ

�
AðphÞ ¼ 0: ð18Þ

When sorting these terms in gradients, we see that the first
order one is nothing other than the classical Hamilton-
Jacobi equation (15). The second order part of Eq. (18)
gives the amplitude

AðphÞ ¼ jW0ðhclðphÞÞj−1=2: ð19Þ

We then deduce the semiclassical solution of the Wheeler-
DeWitt equation

~χðphÞ ¼
e−i
R

hclðp0
hÞdp0

hffiffiffiffiffiffiffiffiffijW0jp : ð20Þ

Postulating (20) as an exact solution corresponds to the
reduced phase space quantization approach [16], or
identify time before quantization [3]. In other words, this
is what one obtains if one first solves the Hamilton-Jacobi
equation for hcl and then quantizes. This is not what we
obtain starting from the Wheeler-DeWitt equation (3). As
we show in the Appendix, (20) is a good approximation if
we have

ErhðphÞ ¼
����W002h0clðphÞ

W02

����≪ 1; ð21Þ

where W and its derivatives are evaluated at h ¼ hclðphÞ.
It is remarkable that this condition cannot be guessed from
the somewhat naive statement that the WKB approximation
is valid when the phase varies much more slowly than the
amplitude, which would lead to an analog of Eq. (11) like
jW00=ðhclW0Þj ≪ 1. In addition, Eq. (21) shows that the error
vanishes on the turning point. Of course a statement like
“momentum WKB is exact on a turning point” has no
meaning; the error must be small for a sufficiently large
interval. But in close vicinity to the turning point, momen-
tum WKB is always a good approximation.
In the above construction, the prefix “semi-” of “semi-

classical” should not be taken lightly. Indeed, semiclassical
solutions of Eq. (20) still encode many quantum features of
the gravitational field. In particular, no classical back-
ground metric exists at the level of Eq. (20). In fact, the
validity of our construction, governed by Eq. (21), is
independent of internal (i.e., matter fields) degrees of
freedom. As we shall now see, this is not the case when
considering the classical background limit. In order to
recover a classical space-time, we shall use matter fields as
probes. They will experience a classical background as
long as energy changes are small.

C. The background as perceived by matter fields

To physically interpret the semiclassical solutions
obtained in Eq. (20), we use a matter field as a probe. In
other words we ask, how do matter fields perceive the wave
function of the gravitational degrees of freedom? For this we
consider a massive field, i.e., VscalðϕÞ ¼ Mϕ2 in Eq. (4). To
simplify the discussion, we assume that this field evolves
adiabatically, that is, no particle production occurs while the
Universe expands. This might be a bad approximation in
realistic scenarios. However, it drastically simplifies the
discussion, without altering the main conclusions. In [19],
we considered particle production due to interactions and the
conclusions we shall draw are maintained. In the adiabatic
limit, matter states are adequately described by their decom-
position in the adiabatic Fock basis [33,34]. To build this
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basis, we consider the instantaneous eigenvectors of the
matter Hamiltonian

Ĥmatjni ¼ Mnjni: ð22Þ

The quantum number n is conserved in the adiabatic limit.
Hence, the Wheeler-DeWitt equation (3) decouples into
several second order ordinary differential equations, one for
each value of n. We then apply all the preceding results using
several pseudopotentials:

WnðhÞ ¼ −a2;h
V2
U

G2
ðVðaÞ þ 2GaMnÞ þWqðhÞ: ð23Þ

For each pseudopotential, we construct the semiclassical
solution ~χnðphÞ using Eq. (20) and the corresponding
Hamilton-Jacobi solution hnðphÞ. We then obtain the general
semiclassical solution of the Wheeler-DeWitt equation as

~ΨðphÞ ¼
X
n

cn
e−i
R

hnðp0
hÞdp0

hffiffiffiffiffiffiffiffiffijW0
nj

p jni; ð24Þ

where cn’s are constants. Such a solution is an arbitrary
superposition of matter eigenstates associated with a semi-
classical state for the gravitational degrees of freedom.When
adopting the point of view of matter, the interpretation of this
solution is rather clear. The semiclassical wave function for
gravity is analogous to e−iEnt, i.e., it describes the “time
evolution,” where ph plays the role of time. From this point
of view, there are several crucial advantages with respect to
standard discussions of the WKB interpretation of quantum
cosmology [2,3,35]. First, since we obtained semiclassical
solutions in the momentum representation, they are perfectly
adequate to describe physics near a turning point [as shown
in Eq. (21)]. Second, we can consider not only one semi-
classical solution, but a superposition of several of them. In
other words, Eq. (24) does not describe matter in a single
background. Each matter state perceives its own back-
ground. Third, one is not restricted to consider one matter
eigenstate, but any superposition of eigenstates. In the
presence of interactions or nonadiabaticities, quantum tran-
sitions occur between these matter states. Quantum tran-
sitions were discussed in [22,23] in the metric representation
and in [19] in the momentum representation. The notion of a
single background metric emerges from Eq. (24) only when
the spread in matter energy is small, i.e., ΔE ≪ Ē. As in
[19,22,23], we consider energy changes at first order around
its mean value. We then have

hnðphÞ≃ h̄ðphÞ þ ∂EhðphÞðEn − ĒÞ; ð25Þ

where h̄ðphÞ is the solution of the Hamilton-Jacobi equa-
tion (15) for E ¼ Ē. The first factor in the second term gives
rise to the background notion of time via the Hamilton-
Jacobi relation

tðphÞ ¼
Z

∂Ehðp0
hÞdp0

h: ð26Þ

This is exactly what is needed to change the phase of
Eq. (24) from

R
dp0

h into
R
dt0. Therefore the solution (24)

becomes

~ΨðphÞ ¼
e−i
R

h̄ðp0
hÞdp0

hþi
R

Ēðt0Þdt0ffiffiffiffiffiffiffiffiffijW 0̄
nj

p X
n

cne
−
R

Enðt0Þdt0 jni:

ð27Þ
This now corresponds to a superposition of matter eigen-
states living in a background metric characterized by p̄hðtÞ
from Eq. (26), where the geometry is sourced by the mean
value of matter energy Ē [6]. The time t that emerges from
Eq. (26) coincides with the “WKB time” [2,3,35] and our
procedure is perfectly valid near a turning point. Indeed,
we recognize in Eq. (27) the standard from of a Born-
Oppenheimer approximation, where ~Ψ ¼ ~χðphÞψðϕ;phÞ,
i.e., the wave function of the heavy part factorizes. A key
aspect of this approach is that t is really the time as perceived
by the matter field. It arises as the conjugate momentum of
matter energy.5 We underline once more that no background
time (or metric) exists at the level of Eq. (24). Hence using
ph as a time variable is more fundamental than using the
WKB time t of (26). However, one still needs to consider a
semiclassical approximation to have a sensible notion of
evolution, as a phase for each matter state. This is even
clearer when considering quantum transitions, as Eq. (24)
induces a unitary evolution for these transitions. In [19] it
was obtained that the evolution is unitary when the momen-
tum-WKB approximation is valid and the various hnðphÞ’s
describing semiclassical trajectories have the same monot-
onicity in ph.
At this point,we emphasize thatwedonot claim thatph is a

fundamentally better variable, or time. Very similar conclu-
sions to that drawn in Sec. II C were obtained using WKB
methods in metric representation [2,5,7,23,35]. However, the
validity conditions in both representations are quite different,
as shown by comparingEqs. (11) and (21). In particular, close
to a turning point, ph is the most semiclassical variable, and
hence gives the best time variable.
We now discuss the validity of the background field

approximation, i.e., of Eq. (25). Since the matter
Hamiltonian appears linearly in the total Hamiltonian
constraint, so does the matter energy in the pseudopotential
of Eq. (8). Using the definition of the Hamilton-Jacobi
solution hcl, we compute the condition for the first order
expansion in the energy change ΔE:

5Of course, even in a fixed background, there are many choices
for a time coordinate. The choice comes here from the identi-
fication of matter energy in the Hamiltonian constraint. By
defining for instance aĤmat instead of Ĥmat, one obtains the
conformal time instead of the comoving time [19,36].
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ΔE∂2
Ehcl

∂Ehcl
¼ ΔEjW00∂EW −W0ð∂EWÞ0j

W02 ≪ 1: ð28Þ

Unlike Eq. (21), this condition depends on the matter
degrees of freedom through the energy fluctuations ΔE.
In a large Universe, the total inertia of gravity, governed by
Ē is much larger than energy changes, since the former is
proportional to the total mass of all the particles and the
latter of the mass of a single particle. Therefore, there is
generally a hierarchy between the two approximations
encoded in Eqs. (21) and (25). The semiclassical approxi-
mation is in general much better than the (more drastic)
classical background approximation. This means that the
solutions of Eq. (20) are not only useful to recover quantum
field theory in curved space-time, but they also encode
some quantum corrections.

III. METRIC REPRESENTATION AND
BOUNDARY CONDITIONS

A. Inverse Fourier transform at the saddle
point approximation

Having obtained semiclassical solutions in the momen-
tum representation, it is instructive to relate them to
semiclassical solutions in the metric representation. For
this, we start from ~χðphÞ of Eq. (20) and compute its
Fourier transform,

ΨðhÞ ¼
Z

e−i
R

hclðp0
hÞdp0

hþihphffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjW0jp dph: ð29Þ

This integral gives a (semiclassical) solution in the metric
representation, but one whose validity is controlled by
Eq. (21) rather than Eq. (11). In particular, it is valid across
a turning point. As we shall now see, when both (21)
and (11) are valid, this integral coincides with usual WKB
solutions as in Eq. (9). To show this, we evaluate the
integral using the saddle point method [37]. This method
precisely requires (11) to be accurate. At each value of h,
the value of the saddle point ph ¼ p�ðhÞ solves the
equation

h ¼ hclðp�ðhÞÞ: ð30Þ

Hence, p�ðhÞ is nothing other than the classical momentum
function p�ðhÞ ¼ pclðhÞ solution of the Hamilton-Jacobi
equation (10). Moreover, the phase evaluated at the saddle
point gives the Legendre transform of the actionR
hclðp0

hÞdp0
h; that is, the action in the metric representa-

tion. Indeed, from a change of integration variable p0
h ¼

pclðh0Þ and an integration by parts follow the identity

−
Z

pclðhÞ
hclðp0

hÞdp0
h þ hpclðhÞ ¼

Z
h
pclðh0Þdh0: ð31Þ

The result of the integration (29) at the saddle point
approximation then gives

ΨðhÞ ¼ ei
R

h pclðh0Þdh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijh0clW0ðhÞjp ; ð32Þ

where the irrelevant global phase has been discarded.
Moreover, deriving Eq. (15) with respect to ph shows that
h0clW

0 ¼ −2ph. Therefore, the prefactor arising from the
saddle point approximation is exactly what is needed to
obtain the WKB amplitude in metric representation and
Eq. (32) simply becomes ΨðhÞ ¼ χðhÞ. This is a particular
case of the fact that different Dirac represenations that are
classically related by a canonical transformation are semi-
classically unitarily equivalent [16,38]. Our method allows
us to control the validity of this equivalence, which requires
both Eq. (11) and Eq. (21).
When there is a turning point, there are two solutions of

the Hamilton-Jacobi equation (30) and therefore one must
sum over these two saddle point contributions. Moreover,
the Hamilton-Jacobi equation (15), equivalent to (30), is
invariant under pcl → −pcl. Hence if pclðhÞ is one solution,
the other is −pclðhÞ. The result for the wave function
becomes

ΨðhÞ ¼ ei
R

h pclðh0Þdh0−iπ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2pclðhÞj
p þ e−i

R
h pclðh0Þdh0þiπ

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2pclðhÞj
p : ð33Þ

One solution represents a contracting Universe, the other
an expanding one. Of course, one can only obtain this
expression far away from the turning point. Indeed, the
validity condition for the saddle point approximation
basically reduces to Eq. (11), which is valid away from
the turning point.

B. Behavior of the wave function near the
singularity a ¼ 0

A standard choice to parametrize the metric is α ¼ lnðaÞ
[32], which presents several advantages. First, the quantum
potential of Eq. (8) vanishes, and second, while the wave
function is only defined for positive values of a, α runs
from −∞ to þ∞. However, one could be willing to work
directly with the scale factor a, as it allows several
simplifications (such as the superpotential becoming poly-
nomial). Classically, the scale factor is restricted to a > 0.
Quantum mechanically, it is an open issue whether one
would like to keep this constraint or not [3]. This question
is the minisuperspace manifestation of a more general issue
in quantum gravity, and is referred to as the spatial metric
reconstruction problem [3]. When constructing the
momentum representation in Eq. (12), we had to consider
all real values of a and this question appears to be important
for our construction.
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The main problem of considering negative values of a is
an interpretational one. What meaning should one give to
a < 0? As emphasized in Sec. II C, we adopt here the point
of view of matter. In particular, we are not trying to answer
a question such as, what is the probability of a having such
value? Hence, a should not necessarily be interpreted as
part of a metric at the fundamental level, but only in the
regime where matter fields approximately propagate as in a
classical background. Since we considered scenarios with a
turning point, we always have a > 0 in the semiclassical
limit. To further support this, we evaluate the semiclassical
wave function obtained in the momentum representation at
a ¼ 0. From Eq. (29), it follows that

Ψa¼0 ¼
Z

e−i
R

aclðp0Þdp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjW0jp dp: ð34Þ

Because a ¼ 0 is within the classically forbidden region,
the saddle point p� is complex. As a consequence, the value
of the wave function is exponentially small:

jΨa¼0j2 ∼
e−Im

R
p� aclðp0Þdp0

2πjW�0j
: ð35Þ

This means that whether we want to impose thatΨ only has
support on a > 0 or not, the difference between the two
choices is exponentially suppressed. Of course, the above
equation is valid only if the turning point lies “far enough”
from a ¼ 0, more precisely, if Eq. (11) is valid near a ¼ 0.
If this is not the case, then imposing boundary conditions
such as Ψa¼0 ¼ 0 will deform the wave function and make
the momentum semiclassical solution of Eq. (20) a bad
approximation. In such a case, the most reasonable method
is presumably to use a different metric variable such as α.

C. Turning point vicinity

In a small neighborhood of a bounce, the pseudopoten-
tial is well approximated by a linear function

WðhÞ ¼ −κðh − htpÞ; ð36Þ

where the bounce occurs at h ¼ htp. With this pseudopo-
tential, the Wheeler-DeWitt equation (13) becomes

½p2
h − iκ∂ph

þ κhtp� ~ΨðphÞ ¼ 0: ð37Þ

Since it involves only a first order derivative in ph, the
momentum-WKB approximation is exact. The solution of
Eq. (37) is given by

~ΨðphÞ ¼ κ−1=2 expð−iðp3
h=ð3κÞ þ htpphÞÞ; ð38Þ

where the normalization constant is chosen to be the same
as in Eq. (20). It is now instructive to use the procedure of

Sec. III and relate this solution to WKB solutions in metric
representation. From Eq. (29), we write the wave function
in the metric representation as

ΨðhÞ ¼
Z

expð−iðp3
h=ð3κÞ þ htpphÞ þ iphhÞ

dphffiffiffiffiffiffiffiffi
2πκ

p :

ð39Þ
This is the integral representation of an Airy function [37].6

Hence,

ΨðhÞ ¼
ffiffiffiffiffiffiffiffi
2π

κ1=3

r
Aið−κ1=3ðh − htpÞÞ: ð40Þ

On the right side (h − htp > 0), when going far from the
turning point, the Airy function reduces to a sum of
oscillatory terms:

ΨðhÞ ∼ ei
2
3
κ2jh−htpj3=2−iπ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κ1=2jh − htpj1=2
q þ e−i

2
3
κ2jh−htpj3=2þiπ

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ1=2jh − htpj1=2

q : ð41Þ

We recognize the sum of two semiclassical solutions,
obtained from Eq. (9). As in Eq. (33), one describes a
contracting Universe and the other an expanding one. On
the other side of the turning point, for h − htp < 0, the wave
function decays exponentially. This corresponds to the
classically forbidden region, i.e., the Universe undergoes a
bounce and hence never reaches very small densities. Note
that in the scenario of a recollapsing Universe, the
discussion above is the same modulo the replacement
W → −W, that is, the classically forbidden region lies at
large volumes. What we learn here is that close to the
turning point, the wave function cannot be approximated by
semiclassical solutions in the metric representation. Far
from the turning point, when jh − htpj≳ κ1=3, Eq. (41)
becomes valid and one can interpret the solution as a
superposition of two semiclassical solutions. (κ1=3 corre-
sponds to the “region of validity of WKB” of [9].7)
The resolution of the singular character of the WKB

approximation near a turning point with an Airy function,
as in Eq. (40), is a standard method which can be
generalized using the Green-Liouville approach [10,11].
We showed here how the momentum representation is

6It is noticeable that in [19], we also found that the matter part
of the wave function is described by an Airy function in the
vicinity of the turning point. However, the two Airy functions are
very different. Here, it describes the wave function of the
geometric degrees of freedom, while in [19], it described the
probability amplitude of creating particles close to a turning
point. In particular, both define a region of “close vicinity of
the turning point” [see the discussion after Eq. (41) here and
after (44) in [19]], but the characteristic sizes are different.

7Our solution (40) corresponds to the function vλ of Ref. [9],
and described in their Sec. II.3, but it was not identified as an Airy
function.
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directly related to it. However, in many cases, it is
advantageous to stay in momentum representation, and
not make use of Airy functions or the geometric repre-
sentation. First, the momentum representation is not
restricted to a linear potential, as shown in Sec. II B, unlike
Eq. (40). Second, the solution in the momentum repre-
sentation (38) is valid everywhere, unlike Eq. (41). As
discussed in Sec. II C one can then use this representation
to follow the evolution of matter states all along, i.e., use ph
as a time variable. This comparison with the Airy function
also illustrates the limitations of the proposal to extend the
WKB notion of time beyond the condition (11). In this
approach [39], one uses the phase of the wave function as a
time. But Eq. (40) is purely real, and no such construction is
possible in this case. On the contrary, in the momentum
representation, the wave function is semiclassical and ph is
a perfectly viable time variable.

IV. APPLICATIONS

A. An exactly solvable example

We now apply the preceding results in several simple
examples. This illustrates how the procedure is imple-
mented, and what are the ingredients that make the semi-
classical solution (20) valid. We consider a Universe with a
positive cosmological constant and filled with nonrelativ-
istic quantum matter at equilibrium. The energy density of
the quantum matter is assumed to be negative. This induces
a repulsive gravitational force that will generate a bounce.
Using the metric variable h ¼ α ¼ lnðaÞ, the potential then
becomes

WðαÞ ¼ −
V2
U

G2
ðΛe6α − 2Gρqe3αÞ; ð42Þ

where ρq > 0 so that −ρq is the energy density of quantum
matter. To build semiclassical solutions, we first solve the
Hamilton-Jacobi equation (15). We obtain

αclðpαÞ ¼
1

3
ln

 
Gρq
Λ

þGρq
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λp2

α

V2
Uρ

2
q

s !
: ð43Þ

We see that αcl decreases fromþ∞ to αtp ¼ ln ð2Gρq=ΛÞ=3
where the bounce occurs, and then increases back to þ∞.
We then directly obtain the semiclassical solution of the
Wheeler-DeWitt equation using our momentum-WKB
expression (20). Note that with the pseudopotential (42),
the Hamilton-Jacobi equation (15) possesses an infinite
number of solutions. However, we easily see from the
variations of W that there is a unique solution such that
αclðpαÞ is real. Similarly, at the quantum level, Eq. (13)
possesses derivatives in pα at all orders. However, by using a
semiclassical treatment, we basically neglect all other
solutions except the one corresponding to the unique real
solution of the Hamilton-Jacobi equation (15).

We now discuss the validity of the semiclassical
approximation. For this we use the error function of
Eq. (21) with the pseudopotential (42). It is easy to see
that ErhðphÞ → 0 for both pα → 0 and pα → ∞.
Therefore, the semiclassical solution equation (20) is a
very good approximation both near the bounce and far
from it. The error thus grows from the vicinity of the
bounce to a maximum value and then decreases to zero. A
quick computation shows that the maximum error is, up to
a numerical factor of order 1, given by

Erhmax ¼
Λ1=2

VUρq
; ð44Þ

see Fig. 1. On can also consider the fluctuations of matter
energy δρ around the mean value ρq. Using Eq. (28), we
see that the background field approximation is valid all
along if

δρΛ
ρq

≪ 1: ð45Þ

We point out that, modulo the discussion of Sec. III B, the
same error bounds are obtained when using a instead of α
as a geometric variable.

B. Cosmology with York time

In canonical general relativity, one can define a “canoni-
cal” notion of time using the trace of the extrinsic curvature
[24,25]. The obtained time parameter, known as York time,
is the conjugate momentum to the volume element

ffiffiffi
g

p
. In

minisuperspace,
ffiffiffi
g

p ¼ a1=3, and hence we apply our results
using h ¼ a3, ph giving York time. Indeed, using the action
Eq. (2) written in terms of h ¼ a3, one finds

ph ¼ −
VU _a
3GNa

; ð46Þ

-3 -2 -1 0 1 2 3
0
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FIG. 1. Plot of the error function Erp=Erpmax as a function of
P ¼ Λ1=2pα

VUρq
.
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and therefore, ph ¼ VUT. From the results of the preceding
sections, this means that at the quantum level, York time
becomes a good time variable only if Eq. (21) is satisfied.
From Eq. (8), we deduce the pseudopotential

WðhÞ ¼ −
V2
U

9G2

�
Λ −

K

h2=3
þ 2Gρm

h
þ 2Gρr

h4=3

�
−

V2
U

4G2h2
:

ð47Þ

A peculiarity of cosmology with York time is that the
pseudopotential becomes flat for large h. Hence, T will
vary slowly and one expects the semiclassical approxima-
tion (20) to become inaccurate. This can be confirmed
using the validity condition of Eq. (21). York time might be
a good time variable to follow the evolution of the state
through the turning point, but it will eventually become a
bad time variable. On the contrary, the volume, or h, will
asymptotically be better and better, since WKB in the
metric representation becomes exact for h → ∞. Therefore,
an accurate description will in this case involve a mix
between representations. To illustrate this, we investigate
again the preceding example, i.e., a cosmological constant
and ρm ¼ −ρq (and neglecting Wq ∝ h−2). Once again, the
Hamilton-Jacobi equation (15) is fairly simple to solve, and
we obtain

hclðTÞ ¼
2Gρq

Λ − ð3GTÞ2 : ð48Þ

As in the preceding example, the Universe contracts,
bounces at T ¼ 0, and expands again. However, we see
here that hcl → ∞ at a finite value of T (a behavior that was
previously noticed in [18]). This is simply due to the fact
that the extrinsic curvature is given by _a=a, which is
constant in a De Sitter space-time. This means that the
Universe reaches a state of infinite volume in a finite York
time. However, this should not be interpreted literally. As
one can see from the results of Sec. II C, any matter field
will experience its proper time, at least in the background
field limit. In other words, it will oscillate an infinite
number of times before h reaches ∞.
We now analyze the validity regime of the semiclassical

approximation. Near the turning point (hcl ¼ 2Gρq=Λ), the
momentum representation is accurate. When increasing T2,
Erh grows until the approximation breaks down. On the
contrary, Erh is very large close to the turning point, but
decreases with increasing values of T2. At some value Tcr,
or equivalently, hcr ¼ hclðTcrÞ, the two error bounds cross
(see Fig. 2). On one side of this crossing, the momentum
representation offers the best approximation, on the other
side, the metric one is more accurate.
To obtain a globally defined solution, valid for all values

of T, we construct a combination of both representations,
so as to exploit the most accurate one in each range of T.
For this, we build

~ΨðTÞ ¼ ΘðT2 − T2
crÞ
Z

χðhÞe−ihT dhffiffiffiffiffiffi
2π

p

þ ΘðT2
cr − T2Þ~χðTÞ; ð49Þ

where ~χ is given by Eq. (20) and χ by Eq. (9). Now two
remarks are in order. First, by construction, the error made
in this approximate solution is bounded by the minimum of
the error functions (11) and (21). A short computation
shows that Ermax ∝ Λ1=2

VUρq
. When Ermax ≪ 1, Eq. (49) is a

good approximation everywhere, i.e., close to the turning
point and asymptotically. Second, from the results of
Sec. II C, we conclude that, up to OðErmaxÞ, ~Ψ is smooth,
and the precise value of Tcr does not matter. Indeed, both
expressions coincide when both error terms are small,
which is the case in a vicinity of Tcr.
It is noticeable that the maximum error obtained using

Eq. (49) coincides with the one of Sec. IVA. This suggests
that there exists a more general framework, allowing us to
obtain semiclassical states in a representation independent
manner, i.e., irrespectively of aðhÞ or momentum vs metric
representation. The natural direction to obtain such a
framework would be to use a covariant approach, i.e., path
integral methods. Unfortunately, if semiclassical solutions
can be obtained via saddle point methods, to obtain precise
characterizations of their validity is a very difficult task. In
molecular physics, where similar questions arise, this point
seems to remain unclear (see [40] and the discussion in
Sec. IVA of [41]).

C. Tunneling amplitude from the momentum
representation

As we have seen in Sec. IVA, it is not necessary to go
back to the geometric representation. Depending on the
problem at hand, one might want to stay in the momentum
representation all along, so as to use ph as a time variable to
parametrize the rate of events (such as particle production
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FIG. 2. Plot of the error functions Erp=Ermax and Erh=Ermax as a
function of P ¼ GT=Λ1=2. As in Fig. 1, the functions are
symmetric about P ¼ 0, so we only plotted P > 0.
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[19]). However, in certain cases, going back to the geo-
metric representation from the momentum allows one to go
beyond the semiclassical approximation. This is the case
when there are two distinct classically forbidden regions,
and the Universe can tunnel from one to another. As we
now show, the integral expression obtained from the
momentum representation, i.e., Eq. (29), naturally gives
the tunneling amplitude. To illustrate this, we shall inves-
tigate in detail the simplest potential barrier: the harmonic
one. We consider the Wheeler-DeWitt equation (6) with the
potential

WðhÞ ¼ Wmax − λh2: ð50Þ

Using this expression in the Hamilton-Jacobi equation (15),
the solutions read

hclðphÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2

h

λ

r
: ð51Þ

By picking a sign, one selects one semiclassical branch,
living either on the left or right side of the turning points
h ¼ �htp ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wmax=λ
p

. Without loss of generality, we
shall choose the left branch. As we shall see, the Fourier
transform of momentum semiclassical solutions gives us
the amplitude to tunnel on the other side. From Eq. (51) we
directly deduce the momentum semiclassical solution (20)

~ΨðphÞ ¼
exp

	
iλ−1=2

R
ph
p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2

p
dp



ð4λðWmax þ p2
hÞÞ1=4

; ð52Þ

where p0 is a conventional reference momentum value,
chosen to be 0 for convenience. We can now build the
inverse Fourier transform as a solution in geometric
representation:

ΨðhÞ ¼
Z exp

	
iphhþ iλ−1=2

R ph
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2

p
dp



ð4λðWmax þ p2
hÞÞ1=4

dph:

ð53Þ
We directly see that when h < −htp, we may use the saddle
point approximation directly as in Sec. III A, and obtain a
semiclassical solution reflected on the potential barrier [as
in Eq. (33)]. For h > htp, the wave function in Eq. (53) is
a priori nonzero. In fact, its asymptotic for h → þ∞ gives
the amplitude of the wave that has to tunnel across the
potential barrier. However, this asymptotic is slightly
delicate to obtain, as the saddle point equation seems to
have no solution for h > htp. In fact, if we analytically
continue hclðphÞ, the saddle point p� lies on the other side
of the branch cut of the square root. Therefore, to pick it up,
one must first deform the contour across the branch cut so
as to go to the second Riemann sheet, where the square root
flips signs (see Fig. 3). Hence, we use the identity

Z
p�

01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2

q
dp ¼

Z
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2C

q
dp

−
Z

p�

02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2

q
dp; ð54Þ

where the contour C is defined in Fig. 3. We can now use
the saddle point method to evaluate (53) and we find

Ψðh ≫ htpÞ ∼ AT
ei
R

h pclðh0Þdh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2pclðhÞj
p ; ð55Þ

where pclðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λh2 −Wmax

p
. This describes the part of

the wave function that has tunneled across the potential
barrier. AT is the tunneling amplitude given by

AT ¼ eiλ
−1=2
R
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmaxþp2C

p
dp: ð56Þ

The tunneling amplitude is thus governed by the
contour integral

R
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2C

p
dp. A short calculation

then showsZ
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wmax þ p2C

q
dp ¼ 2Wmax

Z
i

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2C

p
dt; ð57aÞ

¼ i
π

4
Wmax: ð57bÞ

Hence, the tunneling amplitude reads

jAT j2 ¼ e−πWmax=
ffiffi
λ

p
: ð58Þ

This is the same result as one would have obtained by
working directly in the geometric representation and using
connection formulas. More generally, the fact that analytic
continuations of semiclassical solutions give tunneling
amplitudes is a well-known feature of the semiclassical
method [42], but to our knowledge, it has never been
obtained from semiclassical solutions in momentum rep-
resentation. This provides an alternative derivation. The
interest is that one can keep working in momentum
representation to investigate “local” phenomena, such as
particle creation near the turning point [19], but the solution
will still keep track of the tunneling across the potential
barrier, and the amount of tunneling can be obtained in
fine.

V. CONCLUSION

In this work, we analyzed the general framework of [19],
which gives semiclassical solutions of the Wheeler-DeWitt
equation in the momentum representation. The aim was to
establish the key advantages of working in momentum
representation. First, it provided solutions whose domain of
validity are orthogonal to the standard WKB approxima-
tion, and in particular, are valid around turning points.
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This was shown by providing a bound for the error made by
our semiclassical approximation and comparing it with the
WKB one, see Eqs. (21) and (11). When both approx-
imations hold, we showed that they give equivalent results
(see Sec. III A). Second, one needs not to go back in
geometric representation. Indeed, when (21) is satisfied, the
momentum semiclassical solutions not only provide accu-
rate solutions, but the momentum becomes a good time
variable that can be used to investigate the effective
dynamics of matter, something impossible with other
turning point resolutions based on Airy functions. Third,
despite its semiclassical character, a proper analytic con-
tinuation of these solutions gives access to nonclassical
quantity, such as tunneling amplitudes (see Sec. IV C).
Fourth, we presented this method in a very general
framework (for any choice of ordering of the Wheeler-
DeWitt constraint, and any choice of parametrization of the
metric, see Sec. II B), allowing for numerous applications.
In particular, in Sec. IV B, we showed how to apply our
framework to the use of York time starting from the
Wheeler-DeWitt equation. Unlike in the “choosing time
before quantization” approach [3], where one first solves
the Hamiltonian constraint for the desired variable and then
quantizes, we control here under which conditions this
ad hoc procedure is a good approximation to the general
Wheeler-DeWitt equation. Since York time is the conjugate
momentum to the volume element [25], our framework
directly gives semiclassical solutions parametrized by York
time, and allows us to control their validity regime. The
study of our examples also hints toward the existence of a
unified framework, allowing us to minimize the error of the
semiclassical approximation. We also believe our results
are directly applicable to loop quantum cosmology, in the
so-called b representation [43].
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APPENDIX: GRADIENT EXPANSIONS

1. Noncommutative Taylor expansion

In this appendix, we shall give a proof of the non-
commutative expansion used in Sec. II B. [To simplify, we
drop the indices used in the core of the text, i.e., ph ¼ p
and hclðpÞ ¼ hðpÞ.] The aim is to expand the operator
WðhðpÞ þ i∂pÞ in powers of i∂p. Note that this operator is
perfectly well defined. It can be built rigorously as the
composition of the multiplication operator MW∶ ψðzÞ →
WðzÞψðzÞ, with the Fourier operator F and the (unitary)
multiplication operator Mexp∶ ψðzÞ → expð−i R hðzÞdzÞ
ψðzÞ. We then define

WðhðpÞ þ i∂pÞ ¼ M†
expFMWF †Mexp: ðA1Þ

To obtain its Taylor expansion, we assume that the function
WðzÞ is analytic, and possesses the following series
representation:

WðzÞ ¼
X
n∈N

αnzn: ðA2Þ

The operator we wish to expand is therefore given by

WðhðpÞ þ i∂pÞ ¼
X
n∈N

αnðhðpÞ þ i∂pÞn: ðA3Þ

Expanding this equation in powers of i∂p is a well-defined
procedure. By expanding the series term by term, we shall
see that it is rather easy to sort out the various powers of
i∂p. The delicate point however, is to understand the
validity of a truncation of the series, as being a “good
approximation” of the full operator. In the next subsection,
we return to that point and characterize the error made by
such a truncation using a next-to-leading order computa-
tion. Back to Eq. (A3), its nth term gives

FIG. 3. Contours in the complex plane of ph. (Left panel) The real line is deformed into the represented contour, in order to evaluate
(53) with the saddle point method. The new contour goes across the branch cut to pick up the saddle point p�. (Right panel) Contour
going from 0 to 0 on the other Riemann sheet, and used to obtain the tunnel amplitude in Eq. (56).
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ðhðpÞ þ i∂pÞn ¼ hðpÞn þ
Xn−1
m¼0

hðpÞn−1−mi∂phðpÞm

þOð∂2
pÞ: ðA4Þ

The second term contains all the possible orderings of i∂p
and hðpÞ. To simplify it, we notice that

Xn−1
m¼0

hðpÞmi∂phðpÞn−1−m

¼
Xn−1
m¼0

ðhðpÞn−1i∂p þ imhðpÞn−2h0ðpÞÞ; ðA5aÞ

¼ nhðpÞn−1i∂p þ
i
2
nðn − 1ÞhðpÞn−2h0ðpÞ; ðA5bÞ

where the well-known identity
P

n−1
m¼1m ¼ nðn − 1Þ=2 has

been used. Plugging this result into Eq. (A3) and summing
up, we directly obtain

WðhðpÞ þ i∂pÞ ¼ WðhðpÞÞ þW0ðhðpÞÞi∂p

þ i
2
W00ðhðpÞÞh0ðpÞ þOð∂2

pÞ: ðA6Þ

This can also be written in a more symmetric way as

WðhðpÞ þ i∂pÞ ¼ WðhðpÞÞ þ 1

2
ðW0ðhðpÞÞi∂p

þ i∂pW0ðhðpÞÞÞ þOð∂2
pÞ: ðA7Þ

This form shows that the first order term is simply the only
ordering that preserves the Hermitian character of the
operator WðhðpÞ þ i∂pÞ.

2. Next-to-leading order and error function

By using the same method as before, a lengthy but
straightforward calculation gives the second order expan-
sion of Eq. (A7):

Oð∂2
pÞ ¼

1

4
i∂pW00ðhðpÞÞi∂p þ

1

8
ðði∂pÞ2W00ðhðpÞÞ

þW00ðhðpÞÞði∂pÞ2Þ þOð∂3
pÞ: ðA8Þ

From this, one can obtain an estimation of the error due to
the semiclassical approximation,8 that is, the validity
condition (21). For this, we decompose a solution of the
Wheeler-DeWitt equation (13) as

~ΨðpÞ ¼ ~χðpÞð1þ ϵðpÞÞ: ðA9Þ
~χ is the semiclassical solution (20), and ϵ encodes the
corrections. A next-to-leading order gradient expansion of
the Wheeler-DeWitt equation (13) gives an equation on the
error function,

W0AðpÞiϵ0ðpÞ þ 1

4
i∂pW00i∂pAðpÞ

þ 1

8
ðði∂pÞ2W00 þW00ði∂pÞ2ÞAðpÞ ¼ 0; ðA10Þ

where A is the semiclassical amplitude of Eq. (20) and W
and its derivatives are evaluated on h ¼ hðpÞ. To ease the
discussion, we assume W0 > 0 and since AðpÞ ¼
W0ðpÞ−1=2, we directly obtain ϵ0ðpÞ in terms of W and
its derivatives:

ϵ0ðpÞ

¼ i
48W0W00W000h02 þ 6W0W00h00 − 9W003h02 − 4Wð4ÞW02

32W03 :

ðA11Þ

Although ϵ is a local function of p, what is relevant to
characterize the semiclassical approximation is the accu-
mulated error. Starting at a point p ¼ p0, χ always matches
an exact solution of the Wheeler-DeWitt equation (with
appropriate initial conditions). At a later point p1, the
relative error is then bounded by

R
p1
p0

jϵ0ðpÞjdp (see for
instance [31,37] for the standard WKB approximation, and
the appendix of [44] in a context of higher order differential
equations). If the variations of ϵ0 are smooth enough, this
integral is bounded by the maximum value of ϵ. In addition,
if the derivatives of the potential are well sorted, all terms in
Eq. (A11) contribute to the same order. The numerical
factors of the various terms above are thus irrelevant, and
one can tune them to integrate ϵ0ðpÞ in a simple manner.
Doing so, we obtain the estimate for the error function as

ϵðpÞ≃ i
W002h0

W02 : ðA12Þ

The criterion of Eq. (21) is then simply jϵj ≪ 1. Note that
this condition is very general. In fact it would still apply if
the constraint were of the form QðpÞ þWðhÞ ¼ 0 rather
than p2 þWðhÞ. In our case, one can use the Hamilton-
Jacobi equation p2 þWðhðpÞÞ ¼ 0 to rewrite (A12) and
eliminate h0. This gives alternative forms,

ϵðpÞ≃ −i
2W002p
W03 ≃ −i

2W002W1=2

W03 : ðA13Þ

The last form presents the advantage to expressing the error
function only in terms of W and its derivatives.

8We present here an improved version of the proof of
Appendix C in [19].
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