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We introduce a model-independent approach to the null test of the cosmic curvature, which is
geometrically related to the Hubble parameter HðzÞ and luminosity distance dLðzÞ. Combining the
independent observations of HðzÞ and dLðzÞ, we use the model-independent smoothing technique,

Gaussian processes, to reconstruct them and determine the cosmic curvature Ωð0Þ
K in the null test relation.

The null test is totally geometrical and does not assume any cosmological model. We show that the cosmic

curvature Ωð0Þ
K ¼ 0 is consistent with current observational data sets, falling within the 1σ limit. To

demonstrate the effect on the precision of the null test, we produce a series of simulated data of the models

with different Ωð0Þ
K . Future observations in better quality can provide a greater improvement to constrain or

refute the flat universe with Ωð0Þ
K ¼ 0.
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I. INTRODUCTION

Whether the space of our Universe is open, flat, or closed
is one of the most fundamental problems in modern
cosmology. The spatial topology of the Universe is also
closely related to other important problems such as the
evolution of the Universe, the property of the dark energy,
etc. The effect of allowing nonzero curvature on dark
energy models has been studied in many papers, see, for
example, Refs. [1–4]. And the detection of a significant
deviation from Ωð0Þ

K ¼ 0 would have profound conse-
quences for inflation models and fundamental physics. A
lot of attention has been attracted to this issue [5–8]. The
ΛCDM model is consistent with all of the data and a flat
universe is preferred even in recent Planck 2015 results [9].
However, almost all of the papers studying and con-

straining the cosmic curvature assume some specific
models for dark energy such as the equation of state
wðzÞ. These are all model-dependent and indirect methods.
Note the fact that there is some degeneracy between the
spatial curvature and the equation of state of dark energy in
these studies. It would be better to detect the space
curvature of the Universe by geometrical and model-
independent methods. In this paper, we use a geometrical

relation among the cosmic curvature Ωð0Þ
K , Hubble param-

eterHðzÞ, and luminosity distance dLðzÞ, by combining the
Hubble rate and luminosity distance, we are able to directly
determine and test whether the cosmic curvature deviates
from 0 [3,10,11]. For this goal, we should focus on two
independent observations that directly giveHðzÞ and dLðzÞ,
respectively. For HðzÞ data, it can be derived from

differential ages of galaxies [“cosmic chronometer (CC)”]
and from the radial baryon acoustic oscillation (BAO) scale
in the galaxy distribution. As for dLðzÞ, we use the SNIa
Union 2.1 data sets. We use the model-independent method
Gaussian processes (GP) for smoothing the observational
data. The advantage of these methods is that they are all
model independent; hence, we need not assume any models
involving dark energy and gravity theory. They are purely
geometrical and are constrained directly by observational
data. However, the precision of the null test is also limited
by the quality of observational data. If we want to detect a
tiny cosmic curvature more precisely, a better quality of the
observational data sets are also required, which will be also
discussed in this paper.
This paper is organized as follows. In Sec. II, we

introduce the theoretical method for the null test of the
cosmic curvature. In Sec. III, we first give a brief intro-
duction of Gaussian processes, and then apply GP method
to the null test of the cosmic curvature using two inde-
pendent data sets: CCþ BAO, Union 2.1. Further, it is
followed by a series of simulated data tests. We give
discussions and conclusions in Sec. IV.

II. THEORETICAL METHOD

In a FLRW universe, the luminosity distance dL can be
expressed as

dL ¼ cð1þ zÞ
H0

ffiffiffiffiffiffiffiffiffi
Ωð0Þ

K

q sinh

� ffiffiffiffiffiffiffiffiffi
Ωð0Þ

K

q Z
z

0

d~z
Eð~zÞ

�
; ð1Þ

where EðzÞ≡HðzÞ=H0, Ωð0Þ
K ≡ −Kc2=ða0H0Þ2, and

K ¼ þ1;−1, 0 corresponds to a closed, open, and flat
universe, respectively.
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Differentiating Eq. (1) and writing DðzÞ ¼ ðH0=cÞð1þ
zÞ−1dLðzÞ as the normalized comoving distance, we can
obtain

Ωð0Þ
K ¼ E2ðzÞD02ðzÞ − 1

D2ðzÞ : ð2Þ

We can see that the cosmic curvature Ωð0Þ
K can be directly

determined by using the Hubble parameter and luminosity

distance from Eq. (2). Thus, the null test of Ωð0Þ
K is

straightforward. Note the fact that Dð0Þ ¼ 0 will bring
about a singularity at z ¼ 0. Therefore for more succinct,
we transform Eq. (2) to

Ωð0Þ
K D2ðzÞ

EðzÞD0ðzÞ þ 1
¼ EðzÞD0ðzÞ − 1: ð3Þ

Since the left-hand side (lhs) of Eq. (3) is a nonzero when

z ≠ 0 if Ωð0Þ
K is nonvanishing, the null test of cosmic

curvature Ωð0Þ
K is equivalent to the null test of the whole

lhs of Eq. (3). If we define

OKðzÞ≡ Ωð0Þ
K D2ðzÞ

EðzÞD0ðzÞ þ 1
; ð4Þ

then a flat universe implies

OKðzÞ ¼ EðzÞD0ðzÞ − 1 ¼ 0 ð5Þ

is always true at any redshift. A deviation from it will
indicate a signal of nonvanishing cosmic curvature. Note
that the theoretical value of OKðzÞ is always zero at z ¼ 0.
So the null test is just to check whether there exists signal of
nonvanishing OKðzÞ at nonzero redshifts.
Thus, we should use current observational data sets to

reconstruct EðzÞ and D0ðzÞ, independently, and combine
these two reconstructions to test whether the relation
EðzÞD0ðzÞ − 1 ¼ 0 holds at arbitrary redshifts. We want
to stress here that the null test is totally geometrical and
cosmological model independent, the reconstructions of
EðzÞ and D0ðzÞ are directly derived from observational
data sets.

III. NULL TEST USING HðzÞ
AND SUPERNOVAE DATA

Given some observational data sets, it is crucial to use a
model-independent method to reconstruct EðzÞ, DðzÞ, and
its derivative D0ðzÞ. There are many different method-
ologies to reconstruct functions from the data. For a brief
analysis, see [12]. Since we should use a nonparametric
approach to smooth the data and to reconstruct the
derivative, the so-called Gaussian processes [13–16] are
very suitable for our purpose.

A. Gaussian processes

The Gaussian processes allow one to reconstruct a
function from data without assuming a parametrization
for it. Here, we use the Gaussian processes in Python
(GaPP) [16]. This GP code has been used in various papers
for different studies [16–24]. The distribution over func-
tions provided by GP is suitable to describe the observa-
tional data. At each point z, the reconstructed function fðzÞ
is also a Gaussian distribution with a mean value and
Gaussian error. The functions at different points z and ~z are
related by a covariance function kðz; ~zÞ, which only
depends on a set of hyperparameters l and σf. Here, l
gives a measure of the coherence length of the correlation
in the x direction, and σf denotes the overall amplitude of
the correlation in the y direction. Both of them will be
optimized by GP with the observational data sets. In
contrast to actual parameters, GP does not specify the
form of the reconstructed function. Instead, it characterizes
the typical changes of the function. The detailed analysis
and description of the GP method can be found in [16,19].

B. Hubble rate data and Union 2.1

Following [17,18], we proceed to an analysis based on
observational Hubble data compiled from several sources,
independent of SNeIa. We combine measurements of HðzÞ
obtained with two methods. One is cosmic chronometers,
which are mainly passively evolving galaxies. There are 21
data points compiled byMoresco et al. [25,26]. The other is
radial baryon acoustic oscillations from galaxy clustering in
redshift surveys, which gives seven data points of Hubble
parameters from different experiments [27–30]. We sum-
marize the total 28 data points in Table I.
We normalize HðzÞ using H0 ¼ 70 km=ðsMpcÞ; thus,

we get the observational data points of EðzÞ. Then we can
use GP method to reconstruct EðzÞ. Note that H0 is just a
normalization factor, whose value will not influence our
null test Eq. (5).
To reconstruct DðzÞ, we use SNeIa Union 2.1 data sets

[31], which contain 580 SNeIa data. We transform the
distance modulus m −M given in the data set to D using

m −M þ 5 log

�
H0

c

�
− 25 ¼ 5 log ½ð1þ zÞD�: ð6Þ

For consistency, here we also use H0 ¼ 70 km=ðsMpcÞ to
normalize dLðzÞ. Obtaining these 580 observational data
points of DðzÞ, we can also use GP method to reconstruct
DðzÞ and its derivative D0ðzÞ. Finally, we combine the
reconstructions of EðzÞ and D0ðzÞ and apply them to the
null test of OKðzÞ in Eq. (5). We stress again that the null
test is model independent, so we need not assume any
cosmological model, and the two data sets of HðzÞ and
supernovae are also independent of each other.

RONG-GEN CAI, ZONG-KUAN GUO, and TAO YANG PHYSICAL REVIEW D 93, 043517 (2016)

043517-2



C. Null test

Having obtained the total 28 data points of EðzÞ and 580
points of DðzÞ, we now use the GP method to reconstruct
them, respectively.
We can see from Fig. 1 that all of the reconstructions of

EðzÞ, DðzÞ, and D0ðzÞ are consistent very well with the flat
ΛCDM model, which we assume for comparison. The
dashed blue line is the mean of the reconstruction and
the shaded blue regions are the 68% and 95% confidence
level (C.L.) of the reconstruction. As expected, at higher

redshifts, the errors become large due to the poor quality
data in that region. Using the reconstructions of EðzÞ and
D0ðzÞ, we apply Monte Carlo sampling to determine the
OKðzÞ in Eq. (5) at each point z, which we want to
reconstruct. In Fig. 2, it is shown that the reconstructed
OKðzÞ is consistent with the vanishing cosmic curvature,
falling in the 1σ limit. It tells us that there is no significant

signal to indicate the deviation of the cosmic curvatureΩð0Þ
K

from 0 at the current observational data [HðzÞ and super-
novae] level. In addition, let us mention that the mean value
of the cosmic curvature is negative in the high redshift
region, which is also consistent with the results from
model-dependent constraints in the literature.

D. Mock data

To demonstrate how a large number of data with what
accuracy of the error will affect our null test when
reconstructing EðzÞ and DðzÞ, we firstly simulate a data
set of 128 points for EðzÞ. Adopting the methodology in
[32], we draw the error from a Gaussian distribution: σE ∼
N ðσ̄; ϵÞ with σ̄ ¼ ðσþ þ σ−Þ=2 and ϵ ¼ ðσþ − σ−Þ=4,
where σþ and σ− are the two straight lines that bound
the uncertainties σðzÞ of the observational EðzÞ data from
above and below, respectively. Then EðzÞsim is sampled
from the Gaussian distribution EðzÞsim ∼N ðEðzÞfid; σEÞ,
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FIG. 1. Gaussian process reconstruction of EðzÞ (left) from CCþ BAO, DðzÞ (middle), andD0ðzÞ (right) from Union 2.1. The shaded
blue regions are the 68% and 95% C.L. of the reconstruction. The flat ΛCDM model (red line) with Ωm0 ¼ 0.27 is also shown.

TABLE I. HðzÞ measurements from different surveys using
passively evolving galaxies and radial BAO.

Index z HðzÞ References

1 0.090 69� 12 [25]
2 0.170 83� 8 [25]
3 0.179 75� 4 [25]
4 0.199 75� 5 [25]
5 0.240 79.69� 2.32 [27]
6 0.270 77� 14 [25]
7 0.350 82.1� 4.9 [28]
8 0.352 83� 14 [25]
9 0.400 95� 17 [25]
10 0.430 86.45� 3.27 [27]
11 0.440 82.6� 7.8 [29]
12 0.480 97� 62 [25]
13 0.570 92.4� 4.5 [30]
14 0.593 104� 13 [25]
15 0.600 87.9� 6.1 [29]
16 0.680 92� 8 [25]
17 0.730 97.3� 7 [29]
18 0.781 105� 12 [25]
19 0.875 125� 17 [25]
20 0.880 90� 40 [25]
21 0.900 117� 23 [25]
22 1.037 154� 20 [25]
23 1.300 168� 17 [25]
24 1.363 160� 33.6 [26]
25 1.430 177� 18 [25]
26 1.530 140� 14 [25]
27 1.750 202� 40 [25]
28 1.965 186.5� 50.4 [26]
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FIG. 2. Reconstruction of OKðzÞ from CCþ BAO and Union
2.1. The shaded blue regions are the 68% and 95% C.L. of the
reconstruction. The red line corresponds to the flat universe
Ωð0Þ

K ¼ 0.
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FIG. 3. Gaussian process reconstruction of EðzÞ, DðzÞ (top), D0ðzÞ, and reconstruction of OKðzÞ (bottom) obtained from a mock data
set of EðzÞ and future DES, assuming the concordance model with Ωð0Þ

K ¼ 0 (red line). The dashed blue line is the mean of the
reconstruction, and the shaded blue regions are the 68% and 95% C.L. of the reconstruction, respectively.
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FIG. 4. Gaussian process reconstruction of EðzÞ, DðzÞ (top), D0ðzÞ, and reconstruction of OKðzÞ (bottom) obtained from a mock data
set of EðzÞ and future DES, assuming the fiducial model with Ωð0Þ

K ¼ 0.16 (green line). The dashed blue line is the mean of the
reconstruction, and the shaded blue regions are the 68% and 95% C.L. of the reconstruction, respectively. The concordance model
Ωð0Þ

K ¼ 0 is also shown (red line).
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where EðzÞfid is the theoretical value from the fiducial
model.
As for simulated DðzÞ data, we create mock data sets of

future SNeIa according to the Dark Energy Survey (DES)
[33]. The DES is expected to obtain high quality light
curves for about 4000 SNeIas from z ¼ 0.05 to z ¼ 1.2.
From Table 14 in [33], we can calculate the errors ofD, σD,
and the corresponding numbers of SNeIa for each redshift
bin. At every redshift point z, DðzÞsim is sampled from the
normal distribution DðzÞsim ∼N ðDðzÞfid; σDÞ.
Having obtained the simulated data sets of EðzÞ and

DðzÞ, we use GP method to reconstruct EðzÞ, DðzÞ, and
D0ðzÞ. Then, we combine the reconstructions of EðzÞ and
D0ðzÞ, using Monte Carlo sampling to determine theOKðzÞ
and check whether GP can recover its theoretical value and

distinguish it from Ωð0Þ
K ¼ 0.

We now simulate the data points for three different
fiducial models: concordance model, namely, ΛCDM
model with Ωð0Þ

K ¼ 0 and Ωm ¼ 0.3; two models with
nonvanishing cosmic curvature, Ωð0Þ

K ¼ �0.16 and
Ωm ¼ 0.3. We want to check whether the GP method
can detect or recover all of them and distinguish them from
each other. The results are shown in Figs. 3–5, respectively.
We can see from Fig. 3 that EðzÞ,DðzÞ, and D0ðzÞ are all

reconstructed very well from the mock data sets assuming
the concordance model Ωð0Þ

K ¼ 0. And the reconstructed

OKðzÞ is also consistent with the concordance model
nicely. As expected, at higher redshifts, the errors become
large due to the poor quality data in that region.
Furthermore, we see from Figs. 4 and 5 that the recon-
structions of model Ωð0Þ

K ¼ �0.16 also recover the fiducial
model very well, falling in the 1σ limit and obviously
deviating from the concordance model Ωð0Þ

K ¼ 0 at
95% C.L. The large errors and not so good reconstructions
at high redshifts (z > 1.0) are due to the poor quality data in
that region for there are no simulated data of DðzÞ at
z > 1.2. Anyway, we can claim that with these quantities
and errors of the observational data for EðzÞ and DðzÞ, the
GP method at least has the ability to detect the cosmic
curvature Ωð0Þ

K ≥ 0.16 and to rule out Ωð0Þ
K ¼ 0 at 2σ C.L.

However, as we have pointed out that the theoretical
value of OKðzÞ is always zero at z ¼ 0. So the theoretical
values of OKðzÞ for these models with different Ωð0Þ

K
deviates from the model withΩð0Þ

K ¼ 0 tiny at low redshifts.
As z increases, the difference becomes large. As a result,
we can see from Figs. 4 and 5 that it is very hard to rule out
Ωð0Þ

K ¼ 0 at low redshifts. Maybe it can work out at a
middle redshift (0.6 < z < 1.0) as Figs. 4 and 5 show, but it
is not always helpful whenΩð0Þ

K is smaller. So, if we want to
detect a model with Ωð0Þ

K < 0.16 or even smaller and can
rule out Ωð0Þ

K ¼ 0 at 95% C.L., a larger number and higher
quality data sets are required.
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FIG. 5. Gaussian process reconstruction of EðzÞ, DðzÞ (top), D0ðzÞ, and reconstruction of OKðzÞ (bottom) obtained from a mock data
set of EðzÞ and future DES, assuming the fiducial model with Ωð0Þ

K ¼ −0.16 (green line). The dashed blue line is the mean of the
reconstruction, and the shaded blue regions are the 68% and 95% C.L. of the reconstruction, respectively. The concordance model
Ωð0Þ

K ¼ 0 is also shown (red line).
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Figure 6 shows the reconstructed OKðzÞ also using the
mock data sets of EðzÞ and DðzÞ but with a quarter of the
errors. The reconstructions are more nice. And the null test
is more precise; it can detect the model with Ωð0Þ

K ¼ 0.05 or
even smaller, ruling out Ωð0Þ

K ¼ 0 at 95% C.L.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have introduced a nonparametric
approach to making a null test of the cosmic curvature.
Using the Gaussian process method, we reconstructed the
Hubble rate and distance-redshift relation [EðzÞ, DðzÞ, and

D0ðzÞ], independently. In the reconstruction, we needed not
to assume any cosmological model. By combining the
reconstructions of EðzÞ and D0ðzÞ, we can determine
OKðzÞ, which is related to the cosmic curvature Ωð0Þ

K .
We have shown thatΩð0Þ

K ¼ 0 is consistent with current data
sets (CCþ BAO, Union 2.1), falling within the 1σ limit,
although the mean of the reconstructed curvature OK is
negative in the high redshift region, which is also consistent
with the results from the model-dependent constraints in
the literature. In addition, note that the mean of the
reconstructed curvature OK in Fig. 3 is positive in the
high redshift region for the fiducial flat ΛCDM model. In
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FIG. 6. Reconstructions of OKðzÞ for models with different Ωð0Þ
K , the errors are a quarter of the original errors of the mock data sets.

(a)Ωð0Þ
K ¼ 0.05, (b)Ωð0Þ

K ¼ −0.05, (c)Ωð0Þ
K ¼ 0.09, (d)Ωð0Þ

K ¼ −0.09, (e)Ωð0Þ
K ¼ 0.16, (f)Ωð0Þ

K ¼ −0.16. The shaded blue regions are the
68% and 95% C.L. for the reconstruction.

RONG-GEN CAI, ZONG-KUAN GUO, and TAO YANG PHYSICAL REVIEW D 93, 043517 (2016)

043517-6



this sense, our result shown in Fig. 2 indicates that there is a
little possibility for a closed universe.
To demonstrate how a large number of data sets with

different accuracies and errors will affect our null test, we
create mock data sets of EðzÞ and DðzÞ using the meth-
odology proposed in Refs. [32] and [33]. We found that
with current quality of simulated data, the GP method can
recover and distinguish models with a different cosmic
curvature with an order of 10−1 from Ωð0Þ

K ¼ 0. However, if
we want to detect even smallerΩð0Þ

K , we should decrease the
uncertainties of the data sets. Making the errors a quarter of
the mock data, it can rule out Ωð0Þ

K ¼ 0 from the cosmic
curvature with an order of 10−2 at 95% C.L.
Based on a one-parameter extension to the six-parameter

ΛCDM model, CMB data [9,34,35] provide a strong
constraint on Ωð0Þ

K . This constraint can be improved dra-
matically by adding BAO data that break the geometric
degeneracy between Ωð0Þ

K and H0. However, the model
assumption and priors on model parameters may bias
estimates of the cosmic curvature. Here, we proposed a
model-independent method for reconstructing the function

OKðzÞ with redshift, which characterizes a deviation from a
flat universe. As we can see from Eq. (5), OKðzÞ is
completely anddirectly determined by theHubble parameter
and luminosity distance. If we can reconstruct the Hubble
parameter and luminosity distance, the reconstruction of the
cosmic curvature is straightforward. GP is suitable for our
purpose because it can smooth data and reconstruct a
function model independently. Therefore, we can test the
cosmic curvature neither assuming models nor imposing
priors. Although current low-redshift data put weaker
constraints on the cosmic curvature than CMB data, this
method provides a new cross-check of the cosmic curvature
using future data from large-scale structure measurements.
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