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We explore two saddle point inflationary scenarios in the context of higher-order corrections
related to different generalizations of general relativity. Firstly, we deal with the Jordan frame Starobinsky
potential, for which we identify a portion of a parameter space of inflection point inflation, which can
accommodate all the experimental results. Secondly, we analyze Higgs inflation and more specifically the
influence of nonrenormalizible terms on the standard quartic potential. All results were verified with the
Planck 2015 data.
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I. INTRODUCTION

Cosmic inflation [1–3] is a theory of the early Universe
which predicts cosmic acceleration and generation of seeds
of the large scale structure of the present Universe. It solves
problems of classical cosmology and it is consistent with
current experimental data [4]. It is instructive to study
minimal models of inflation which have the form of small
modifications of the canonical models describing features
of the visible Universe. The two most prominent examples
of such models are, at the moment, fðRÞ theories of gravity
models of Higgs inflation.
The first theory of inflation was the Starobinsky model

[5,6], which is an fðRÞ theory [7] with Rþ R2=6M2

Lagrangian density. In such a model the acceleration of
space-time is generated by the gravitational interaction
itself, without a need to introduce any new particles or
fields. The embedding of Starobinsky inflation in no-scale
SUGRA has been discussed in Ref. [8]. The Starobinsky
inflation can be described as a special case of the Brans-
Dicke theory [9] and its predictions are consistent with the
so-called Higgs inflation [10], in which inflation is gen-
erated by the scalar field nonminimally coupled to gravity.
Recently the whole class of generalizations of the
Starobinsky and Higgs inflation have been discussed in
the literature [11–18], also in the context of the higher-
order terms in Starobinsky Jordan frame potential [19–21].
On the other hand, Higgs inflation allows one to generate

inflation close to the Higgs sector. The price is the non-
minimal coupling to gravity and often additional inter-
actions which allow one to reproduce all features of
realistic inflationary scenarios. In particular, corrections
to the model can often be represented by higher-order scalar
operators. This reminds one of the situation known from

fðRÞ theories, where higher-order corrections to the f(R)
function seem to be unavoidable. Usually one assumes that
there is a part of the Starobinsky/Higgs inflationary
potential where higher-order terms are subdominant, which
creates an inflationary plateau long enough to support
successful inflation. Nevertheless one can find a part of
parameter space where higher-order corrections give sig-
nificant contribution to the potential for relatively small
values of field, which makes the plateau region too short to
generate cosmic inflation with at least 60 e-foldings. In this
case, a saddle point inflation generated by the higher-order
terms may be the only chance to obtain a successful
inflationary model, which is the issue we investigate in
this paper.
In [21] we proved that the Starobinsky potential with

higher-order corrections (i.e. higher powers of the Jordan
frame Starobisnky potential) can have a saddle point for
some ϕ on the plateau. This requires a certain relation
between parameters of the model and leads to the existence
of the Starobinsky plateau, a steep slope of exponential
potential and a saddle point in between. In this paper, we
perform the detailed analysis of such a model in the context
of low-scale inflation and generation of primordial inho-
mogeneities, especially in the context of very big values of
higher-order terms. We apply the same approach to the
Higgs inflation. In this case the motivation is even more
natural: higher-order corrections to the scalar potential
(such as ψ6 or ψ8, where ψ is a scalar field, but not
necessarily the Higgs field itself) are considered to be
suppressed by the Planck scale. Consequently, for suffi-
ciently high values of field ψ , one has to take into account
the influence of higher-order terms. In particular, higher-
order term coefficients could be fine-tuned to create a
saddle point (or deflation point) in the Einstein frame scalar
potential. In Ref. [22], we have also investigated the saddle
point inflation in fðRÞ theory generated by higher-order
corrections to the Starobinsky model. Note that, in this

*Michal.Artymowski@uj.edu.pl
*Zygmunt.Lalak@fuw.edu.pl
*Marek.Lewicki@fuw.edu.pl

PHYSICAL REVIEW D 93, 043514 (2016)

2470-0010=2016=93(4)=043514(9) 043514-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.043514
http://dx.doi.org/10.1103/PhysRevD.93.043514
http://dx.doi.org/10.1103/PhysRevD.93.043514
http://dx.doi.org/10.1103/PhysRevD.93.043514


paper, we investigate the issue of higher-order corrections
to Jordan frame scalar potentials, not to the fðRÞ function
itself.
In what follows we use the convention 8πG ¼ M−2

p ¼ 1,
where Mp ¼ 2.435 × 1018 GeV is the reduced Planck
mass.
The outline of the paper is as follows. In Sec. II we

introduce the form of the potential in modified Strobinsky
case and we analyze its features. In Sec. III we analyze the
saddle point inflation in this model and the evolution of
primordial inhomogeneities. In Sec. IV we investigate the
saddle point within the Higgs inflation scenario. Finally, we
conclude in Sec. V.

II. STAROBINSKY-LIKE POTENTIAL
WITH A SADDLE POINT

A. Jordan frame analysis

Let us consider a Brans-Dicke theory in the flat FRW
space-time with the metric tensor of the form ds2 ¼
−dt2 þ aðtÞ2ðd~xÞ2. Any fðRÞ theory can be expressed in
terms of the auxiliary field φ ≔ FðRÞ ≔ f0ðRÞ with the
Jordan frame scalar potential U ¼ 1

2
ðRF − fÞ. The Jordan

frame action is of the form

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
ðφR −UðφÞÞ þ Sm; ð2:1Þ

where Sm is the action of matter fields. In the context of
inflation one can assume that the energy density of the
Universe is fully dominated by the inflaton, which gives
Sm ¼ 0. Then, for the homogeneous field φ, the field’s
equation of motion and the first Friedmann equation
become [7],

φ̈þ 3H _φþ 2

3
ðφUφ − 2UÞ ¼ 0; ð2:2Þ

3

�
H þ _φ

2φ

�
2

¼ 3

4

�
_φ

φ

�
2

þ U
φ
; ð2:3Þ

where Uφ ≔ dU
dφ. Let us note that, for φ ¼ 1, one recovers

general relativity (GR). Thus, the φ ¼ 1 will be denoted as
the GR vacuum.
The Starobinsky inflation is a theory of cosmic inflation

based on the fðRÞ ¼ Rþ R2=6M2 action, which can be
generalized into Brans-Dicke theory with general value of
ωBD. The Jordan frame potential of the Starobinsky model
takes the following form,

US ¼
3

4
M2ðφ − 1Þ2; ð2:4Þ

where M is a mass parameter, and its value comes from
the normalization of the primordial inhomogeneities. For

ω ¼ 0 one finds M ≃ 1.5 × 10−5. The Starobinsky poten-
tial is presented in Fig. 1. In this paper, we consider the
extension of this model motivated by Ref. [19] and partially
analyzed in Ref. [21], namely

U ¼ USð1 − λ1US þ λ2U2
SÞ; ð2:5Þ

where λ1, λ2 are numerical coefficients. In order to avoid
U → −∞ for φ → ∞ we assume that λ2 > 0. We want to
keep λi terms as higher-order corrections (i.e. we want to
remain in the perturbative regime of the theory); thus, we
require λ1M2 ≪ 1 and λ2M4 ≪ λ1M2. As we will show, the
assumed range of parameters will satisfy these conditions.

B. Einstein frame analysis

The gravitational part of the action may obtain its
canonical (minimally coupled to φ) form after transforma-
tion to the Einstein frame. Let us assume that φ > 0. Then
for the Einstein frame metric tensor,

~gμν ¼ φgμν; d~t ¼ ffiffiffi
φ

p
dt; ~a ¼ ffiffiffi

φ
p

a; ð2:6Þ

one obtains the action of the form of

S½~gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi−~g

p �
1

2
~R − 1

2
ð ~∇ϕÞ2 − VðϕÞ

�
; ð2:7Þ

where ~∇ is the derivative with respect to the Einstein frame
coordinates, ϕ ¼ ffiffiffiffiffiffiffiffi

3=2
p

logφ, VðϕÞ ¼ U=φ2 at φ ¼ φðϕÞ,
and ~R is the Ricci scalar of ~gμν. The GR vacuum appears
for ϕ ¼ 0. Let us define the Einstein frame Hubble
parameter as

H ≔
~a0

~a
; where ~a0 ≔

d ~a
d~t

: ð2:8Þ
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FIG. 1. VðϕÞ for Starobinsky inflation and for saddle point
inflation (dashed purple line and green lines respectively). Black
points represent ϕ ¼ ϕs for λ1 ¼ 10k, where k ∈ f−5;−4;…; 2g
(smallest ϕs for biggest λ1).
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Then for ρM ¼ PM ¼ 0 the first Friedmann equation and
the equation of motion of ϕ are the following,

3H2 ¼ 1

2
ϕ02 þ VðϕÞ; ϕ00 þ 3Hϕ0 þ Vϕ ¼ 0; ð2:9Þ

where Vϕ ¼ dV
dϕ.

C. Saddle point of the Einstein frame potential

In Ref. [21] we showed that the Einstein frame potential
of the model from Eq. (2.5) has a saddle point at ϕ ¼ ϕs for
λ1 ¼ λs, where

ϕs ≃ 1ffiffiffi
6

p log

�
10

3λ1M2

�
; λ1 ¼ λs ≃ 5λ3=52 M2=5

21=532=5
;

Vs ≃ 3

4
M2

�
1 − 15

8
ð24M4λ2Þ1=5

�
; ð2:10Þ

where Vs ¼ VðϕsÞ. Let us note that, for ϕ≃ ϕs, one
obtains a saddle point inflation, which in principle could
significantly decrease the scale of inflation. For λ1 < λs the
λ1 term is always subdominant as compared to the other
terms of VðϕÞ and it can be neglected in the analysis.
Therefore, the potential has no stationary points besides the
minimum at ϕ ¼ 0. On the other hand, for λ1 > λs one
obtains a potential with a local maximum at the plateau,
step slope for big ϕ and a minimum in between. This case
was analyzed in [21]. Equation (2.10) gives the approxi-
mate value of λs and ϕs, but it predicts all derivatives of V
for ϕ ¼ ϕs and λ1 ¼ λs to be of order of M8=3λ2=31 . This is
not consistent with the saddlelike point condition V 0ðϕsÞ,
V 00ðϕsÞ ≪ V 000ðϕsÞ and, therefore, Eq. (2.10) is not
accurate enough to calculate power spectra of primordial
inhomogeneities.
The analysis presented in this subsection is done under

several assumptions and approximations and therefore its
accuracy is limited by them. For instance one finds
VϕðϕsÞ ∼ λ2=52 M18=5 and VϕϕðϕsÞ ∼ λ2=52 M8=5. We have
assumed that λ1 ≫ M2λ2 and we have obtained
λ1 ∼ λ3=52 M2=5. Thus, the assumption is satisfied for
ðλ2M4Þ2=5 ≪ 1, which is also the condition for
VϕϕðϕsÞ ≪ 1. One can see that the approximation used
in this subsection is far more accurate for the Vϕ ¼ 0

condition than for the Vϕϕ ¼ 0 condition.

III. INFLATIONARY DYNAMICS AND
PRIMORDIAL INHOMOGENEITIES

A. Inflation with and beyond the
slow-roll approximation

In this section we will discuss the slow-roll approxima-
tion and inflation in the Einstein frame. We want to
investigate how nonzero values of λ parameters deviate

the inflation from the Starobinsky model. Let us assume
that ϕ00 ≪ Vϕ. Then one obtains

3Hϕ0 þ Vϕ ≃ 0; 3H2 ≃ V: ð3:1Þ

This approximation holds for nonzero values of Vϕ, so one
cannot use Eq. (3.1) at ϕ ¼ ϕs. Thus, we will use the
slow-roll equations for ϕ ≠ ϕs. The cosmic inflation takes
place as long as the following slow-roll parameters are
much smaller than one:

ϵ ≔
1

2

�
Vϕ

V

�
2

; η ≔
Vϕϕ

V
: ð3:2Þ

The number of e-folds generated during the inflation is in
the slow-roll approximation equal to

N ¼
Z

tf

ti

Hd~t≃
Z

ϕi

ϕf

V
Vϕ

dϕ; ð3:3Þ

where indexes i and f refer to initial and final moments of
inflation, respectively. Namely, ti is the first moment when
both slow-roll parameters are smaller than 1 and tf is the
moment when any of the slow-roll parameters become
bigger than 1. In Fig. 6 of Ref. [21], we showed that during
the saddle-point inflation, it is straightforward to generate
the number of e-folds significantly bigger than 60, even
if the plateau is not present at all.
The power spectra of the superhorizon primordial

curvature perturbations and gravitational waves in the
Einstein frame are the following:

PR ¼
�
H
2π

�
2
�
H
ϕ0

�
2 ≃ V

24π2ϵ
; Ph ¼

�
H
2π

�
2

: ð3:4Þ

The PR needs to be normalized at the horizon crossing of
scales observed in the CMB. Usually one chooses the
normalization moment to be at N⋆ ≃ 50–60 (where the ⋆
denotes the value of the quantity at the horizon crossing),
but in general the scale of normalization strongly depends
on the scale of inflation and reheating. In this paper we set
k⋆ ¼ 0.002 Mpc−1, where k is the Fourier mode of
perturbation, and N⋆ðλ1 ¼ λ2 ¼ 0Þ ¼ 55. The value of
N⋆ decreases for big λ2, since for lower scale of inflation
the comoving Hubble radius will grow less during the post-
inflationary era. This procedure sets P1=2

R ∼ 5 × 10−5.
We have several parameters in the model, namely ϕ⋆, ϕs,

M, λ1 and λ2; however, since we require the existence of the
saddle point, one finds λ2 ¼ λ2ðλ1;MÞ and ϕs ¼ ϕsðλ1;MÞ.
From its definition, ϕ⋆ depends on M, λ1 and λ2. The
normalization is a constraint which we use to calculate the
required M, thus decreasing the amount of free parameters
to just λ1. We will use λ1 to parametrize the deviation from
the Starobinsky inflation.
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Two parameters of power spectra, which connect theory
with the experiment are the tensor-to-scalar ratio r and the
scalar spectral index ns defined by

r ¼ Ph

PR
≃ 16ϵ; ns ¼ 1þ d logPR

d log k
≃ 1 − 6ϵþ 2η;

ð3:5Þ

where k is the Fourier mode. In the saddle point inflation,
one expects ϵ ≪ η, so r⋆ ≪ 1 and ns⋆ ≃ 1þ 2η⋆. Since
ns⋆ > 1 is excluded by the experimental data [4] one needs
η < 0 at the moment of freeze-out. Thus, one requires

ϕ⋆ < ϕs. The total amount of e-folds produced for ϕ < ϕs
strongly depends on the length of the Starobinsky plateau
and therefore on λ1. If the plateau for ϕ < ϕs is long
enough to generate at least 60 e-folds of inflation then the
PR does not significantly deviate from the Starobinsky one.
On the other hand for λ1 ≫ 1 one may decrease the length
of the plateau in order to generate e-folds only via the
saddle point inflation. As we will show, this may be the
way to decrease M and therefore to obtain the low-scale
inflation.
In Fig. 2 we present M, ϕ⋆ and ϕs as a function of λ1.

One can see that for λ1 > 103 the M decreases logarithmi-
cally with λ1 to reach M ∼ 10−6 at λ1 ∼ 108. For λ1 > 106

FIG. 2. Left Panel:Mðλ1Þ for several values of V 0ðϕsÞ. As expected, lower VϕðϕsÞ gives lower scale of inflation. Right panel: ϕ⋆ and
ϕs (dashed and solid lines respectively).

FIG. 3. Left panel: rðϕ⋆Þ as a function of λ1 for several values of VϕðϕsÞ. All obtained values of r are consistent with the Planck data.
For λ1 ≳ 105 one obtains r ≲ 0.002, which gives Δϕ < mp. Right panel: nsðϕ⋆Þ as a function of λ1 for several values of VϕðϕsÞ. One,
two and three σ regimes of the Planck 2015 best fit of ns lay between green lines (solid, dashed and dotted respectively). For λ1 ≲ 103

one obtains correct value of ns even for VϕðϕsÞ ¼ 0. In such a case, the last 60 e-folds of inflation are strongly influenced by the
Starobinsky plateau.
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the normalization of inhomogeneities happens very close to
ϕs. Nevertheless, for all considered values of λ1 we
obtained ϕ⋆ < ϕs. In Fig. 3 we present r and ns for
ϕ ¼ ϕ⋆. For VϕðϕsÞ ¼ 0 (i.e. for a perfect saddle) and
for ϕs ≃ ϕ⋆ one finds ns < 0.96 and the model becomes
inconsistent with the Planck data. The perfect saddle may
still fit the data for λ1 ≲ 103; however, then inflation simply
occurs on the plateau far from the saddle, and the whole
modification is simply irrelevant. Thus, let us consider the
case of Vϕϕ ¼ 0, Vϕ ≠ 0 to check if the inflection point
inflation gives the correct values of ns. The value of the
field at the inflection will also be denoted as ϕs. The results
of numerical analysis for saddle and inflection point
inflation for different λ1 and VϕðϕsÞ are presented in
Figs. 2, 3 and 4. For the inflection point inflation one
finds the maximal allowed λ1 for which the number of e-
folds generated for ϕ ≤ ϕs is equal to N⋆, which is the
number of e-folds at the horizon crossing for the normali-
zation scale k⋆.
The key result is that inflection point inflation satisfies

experimental constraints even for large values of λs. This
means that it remains a valid solution, and one is not limited
to very small modifications of the potential which would
simply mean going back to the Starobinsky model. This
unfortunately is not true for the pure saddle case in which
inflation has to occur on the plateau and the potential can
only be modified for very large field values.

IV. SADDLE POINT HIGGS INFLATION

A. Higher-order terms to Jordan frame potential

The saddle point inflation can be also obtained from
higher-order corrections to the so-called Higgs inflation.
Let us define the action of a real scalar field (which in
particular may be a Higgs field) with nonminimal coupling
to gravity as

S½ψ ; gμν� ¼
Z

d4xL ¼
Z

d4x
ffiffiffiffiffiffi−gp

×

�
UðψÞR − 1

2
ð∂μψÞð∂μψÞ −WðψÞ

�
þ Sm;

ð4:1Þ

where WðψÞ is the Jordan frame scalar potential, R is the
Ricci scalar, UðψÞ is the function of nonminimal coupling
to the gravity and Sm is the action of matter fields, like dust,
radiation, additional scalar fields etc. We assume that all
fields in Sm are minimally coupled to gravity. For U → 1=2
one restores general relativity. In further parts of this
section, we will assume that

UðψÞ ¼ 1

2
þ 1

2
ξψ2; ð4:2Þ

where ξ > 0 is a dimensionless constant.1 Thus, the ψ → 0

limit gives the GR vacuum. In theW ∝ ψ4 model the slow-
roll parameters are proportional to ðξψ2Þ−1, so inflation
happens for ξψ2 ≫ 1. Let us assume that WðψÞ is of the
form

WðψÞ ¼ WH þ λ6
6M2

p
ψ6 þ λ8

8M4
p
ψ8; where WH ¼ λ

4
ψ4;

ð4:3Þ

where λ6, λ8 ¼ const, and WH is a scalar potential which
corresponds to the high energy approximation of the
Mexican hat potential used e.g. to describe self-interaction
of the Higgs field. Terms proportional to λ6 and λ8 are the
higher-order corrections to this potential.2 The λi constants
are dimensionless. As we will show, one needs to
require λ8 > 0 in order to obtain positive energy density
and stability of the potential at very high energies.
Nevertheless, the sign of λ6 remains undetermined.
In order to obtain the canonical form of the action, let us

consider the transformation to the Einstein frame, namely

FIG. 4. The blue region represents the part of the ½λ1; VϕðϕsÞ�
parameter space which fits 2σ constrains on ns from the Planck
2015 data. Smaller VϕðϕsÞ corresponds to the smaller scale of
inflation. One could extrapolate the blue region for λ1 > 108,
which would give M2λ1 ≪ 1 for λ1 < 1020. For λ1 ≲ 103 any
VϕðϕsÞ can fit the data, including the perfect saddle point case,
however this corresponds to inflation on the plateau far from
inflection point.

1ψ is divided by Mp which is equal to one in our units.
2The issue of saddle point Higgs inflation without higher-order

corrections has been partially analyzed in Ref. [23].
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~gμν ¼ 2Ugμν ⇒ ~a ¼
ffiffiffiffiffiffiffi
2U

p
a; d~t ¼

ffiffiffiffiffiffiffi
2U

p
dt; ð4:4Þ

�
dΨ
dψ

�
2

¼ 1

2

U þ 3U2
ψ

U2
; VðΨÞ ¼ W

4U2
ðψ ¼ ψðΨÞÞ;

ð4:5Þ

where Ψ is the Einstein frame field and V is the Einstein
frame potential. For ξψ2 ≫ 1 one finds ψ ≃ expð ffiffiffiffiffiffiffiffi

2=3
p

ΨÞ,
which is the result from the Brans-Dicke theory. The
potential VðΨÞ for several values of λ6 and λ8 parameters
has been presented in Fig. 5. Let us note that, for
λ6 ¼ λ8 ¼ 0, one restores the potential from Ref. [10].
Now the equations of motion take the form

Ψ00 þ 3HΨ0 þ VΨ ¼ 0; 3H2 ¼ 1

2
Ψ02 þ V; ð4:6Þ

where VΨ ¼ dV
dΨ and Ψ0 ¼ dΨ

d~t . The potential V has a
minimum at Ψ ¼ 0, which corresponds to the GR limit
of the theory. In the ξ ≫ 1, ξψ2 ≫ 1 approximation one
finds the following analytical relations, which determine
the existence of the saddle point in the Einstein frame:

λ6 ¼ −λs ∼ 3

�
λλ8
4ξ

�
1=3

; ψ s ≃
ffiffiffiffiffiffiffiffiffiffiffi
− λ6
3λ8

s
þ 9

ffiffiffi
3

p
λλ3=28

2ð−λ6Þ5=2ξ :

ð4:7Þ

For λ6 > −λs the potential has a minimum atΨ ¼ 0 and flat
plateaus, which ends with step, exponential slopes. The
potential VðΨÞ is always growing with jΨj and one finds
no stationary points. For λ6 ¼ −λs the only stationary
points besides the minimum at Ψ ¼ 0 are two saddle
points at Ψ ¼ �Ψs. For λ6 < −λs the potential has addi-
tional minima and maxima at some Ψ ¼ �Ψmin and
Ψ ¼ �Ψmax, respectively.

We start from five free parameters: λ, λ6, λ8, ξ and Ψs.
We have three constraints: VΨ ¼ 0, VΨΨ ¼ 0 and
P1=2

R ≃ 5 × 10−5, which we use to determine λ8, ξ and
Ψs. In Fig. 6 we show the λ and λ6 dependence of r, ns, λ8
and Ψs=Ψ⋆. In Fig. 7 we show weak λ6 dependence of ξ in
the allowed part of the parameter space. The λ parameter is
naturally limited by 4π. In order to preserve perturbativity
of the theory let us assume that jλ6j and λ8 should not be
bigger than Oð1Þ. It is crucial that even including all these
constraints a significant part of the parameter space remains
valid. Even though inflation occurs some distance away
from the saddle (Ψs=Ψ� ≳ 1.26) and so some influence of
the plateau is inevitable, such an extension remains a viable
extension of the standard Higgs inflation scenario.

B. Higher-order corrections to nonminimal coupling

So far we have investigated the issue of higher-order
corrections to the Jordan frame potential, but another
option is considering higher-order terms in the function
of nonminimal coupling to gravity. In the most general case
one could consider

UðψÞ¼ 1

2

�
1þ

X∞
n¼2

ξnψ
n

�
; WðψÞ¼

X∞
n¼2

λ2nψ
2n; ð4:8Þ

where λ4 and ξ2 will be denoted as λ and ξ, respectively.
Note that, for any n, the domination of a particular λ2nψ2n

term can give an inflationary plateau as long as it is
correlated with the ξnψ

n domination in U. Such a gener-
alization of Higgs inflation was already analyzed in [24]
and it is consistent with Planck data in the ξ ≫ 1 limit.
Therefore for certain hierarchy of ξn and λ2n one can
imagine a multiphase inflation, for which the Einstein
frame potential is always dominated by only one pair of
terms, namely byU ∼ ξnψ

n andW ∼ λ2nψ
2n. Increasing the

value of ψ would move us to another flat region dominated
by ξnþ1 and λ2ðnþ1Þ terms, etc.

FIG. 5. Left panel: VðΨÞwith saddle point for λ8 ¼ 1, λ6 ∝ −λ3=2, λξ−2 ∼ 2 × 10−9 and λ≃ f0.15; 0.4; 1g (dotted blue, dashed orange
and solid red lines respectively). Dotted black line represents VðΨÞ for λ6 ¼ λ8 ¼ 0. The saddle point inflation in this scenario will be
analyzed in Sec. IVA. Right panel: V as a function of Jordan frame field ψ for a Higgs inflation with higher-order corrections toW and
U. ξ3 ¼ Ξ3 is an exact saddle. This scenario is briefly analyzed in Sec. IV B.
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Preliminary results of the analysis of this issue are as
follows. For λ2n ≃ Λ2n ≔ λðξn=ξÞ2, one can create a series
of flat regions in the Einstein frame potential; nevertheless,
the model suffers from a problem: flat regions are always
separated from each other by local maxima. Therefore, if
initially higher-order terms are dominating VðΨÞ, the slow-
roll evolution cannot be finished by rolling down to the GR
vacuum. Wewould be trapped in one of the local minima of
V waiting for the quantum tunneling to ψ ¼ 0. In order to
avoid this problem one would have to either assume that
higher-order terms are negligible up to ψ ¼ ψ⋆ or more
interestingly, to consider a saddle point inflation scenario.
In the latter case, one could consider the λ6ψ

6 and ξ3ψ
3

corrections toW and U, respectively. Then the saddle point
does exist for

ξ3¼Ξ3≔
λ6
3λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8λξþ3λ6Þ3=λ6

p
λ

−9λ6
λ

þ72ξ

s
; ð4:9Þ

FIG. 6. Left upper panel: spectral index ns ¼ nsðλ; λ6Þ. One, two and three σ regimes of the Planck 2015 best fit of ns are below green
lines (solid, dashed and dotted, respectively), which correspond to λ6 ¼ −3.5λ3=2, λ6 ¼ −8.8λ3=2 and λ6 ¼ 18λ3=2, respectively. Right
upper panel: tensor-to-scalar ratio r. All values of r presented in the plot are consistent with Planck results. Left lower panel: λ8 as a
function of λ and λ6. In order to obtain perturbative theory one requires λ8 < 10, which gives λ6 < 0.1λ1=4. The allowed region lies under
the red line. Right lower panel: Ψs=Ψ⋆, which determines how close to the saddle point one obtains freeze-out of given scale k⋆.

FIG. 7. The nonminimal coupling parameter ξ with constrains
on λ8 and ns. For λ ≳ 0.3 the λ6 dependence is very weak and
therefore one recovers λ=ξ2 ¼ const. Under the dashed green line
(the Planck 2σ regime of ns) the λ6 dependence is weak for all λ
considered in the plot.
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For ξ3 ≲ Ξ3 one obtains the inflection point, which can also
be used to generate inflation. Like the case of saddle point
Higgs inflation without higher-order corrections to U, we
have four free parameters (λ, λ6, ξ and ξ3) and two
constrains (ξ3 ≃ Ξ3 and normalization of inhomogeneities),
which leaves us with two independent parameters of the
model. The Einstein frame potential has a GR minimum at
ψ ¼ Ψ ¼ 0. We postpone detailed analysis of saddle point
inflation with higher-order corrections to W and U to
future work.

V. CONCLUSIONS

In this paper we investigated the possibility of generating
saddle point inflation from higher-order corrections to
theories of modified gravity, namely the Starobinsky model
and Higgs inflation. It is crucial that even after including all
constraints we discussed, a large portion of the parameter
space in both models remains valid. Even though in
modified Higgs inflation scenario and Starobinsky model
with a pure saddle, inflation has to occur some distance
away from the saddle to achieve correct values of ns, and so
some influence of the plateau is inevitable. Inflection or
saddle point inflation remain a viable extension of the
standard Starobinsky model and Higgs inflation scenarios.
The significant difference between the two is the number

of free parameters which in the Higgs inflation case allows
solutions with pure saddle to be consistent with all
constraints. On the contrary, in modification of the
Starobinsky model we had to resort to inflection point
inflation rather than a pure saddle in order to achieve new
valid results. Note that higher-order corrections do not
change the position of Einstein frame vacuum and therefore
they do not change the consistency between GR and low
energy predictions of discussed theories.
In Sec. II we introduced higher-order corrections to the

Jordan frame potential of the Starobinsky theory. We
presented the analytical analysis of the existence of the
saddle point of the Einstein frame potential.
In Sec. III we analyze features of primordial inhomo-

geneities generated during saddle point inflation. From the
normalization of perturbations and saddle (inflection) point
conditions we obtained all parameters of the model (such as
M, ns, r and ϕ⋆) as functions of λ1. We found the region in

the ½λ1; VϕðϕsÞ� space which fits the 2σ regime of Planck.
We showed how r (and therefore the scale of inflation) can
decrease for big λ1, and we estimated the maximal allowed
value of λ1 to be of order of 1020. The inflation can happen
almost exactly at the inflection point, and no Starobinsky
plateau is needed to obtain correct shape of the power
spectrum. For λ1 ≲ 103, consistency with Planck can be
obtained even for VϕðϕsÞ ¼ 0. In such a case, one obtains
the Starobinsky plateau for ϕ < ϕs, which has significant
influence on the generation of primordial inhomogeneities
during the last 60 e-folds of inflation.
In Sec. IV we investigated the issue of higher-order

corrections to the λψ4 potential. We found conditions for
the existence of a saddle point as well as constrains in the
ðλ; λ6Þ plane, which come from perturbativity of the theory
and consistency with Planck. The result is that the saddle
point inflation is possible in such a model. However, during
the last 60 e-folds of inflation, the interesting part of the
potential is also influenced by the λψ4 term, which
generates a Starobinsky-like plateau. This comes from
the fact that in the allowed region of parameters,
Ψs=Ψ⋆ ≳ 1.26, which means that inflation has to proceed
on the plateau some distance from the saddle in order to
satisfy experimental constraints. We also briefly discuss the
possibility of obtaining the saddle point inflation from
higher-order corrections to U and W (ξ3ψ3 and λ6ψ

6,
respectively). We have derived the analytical relation
between parameters of the model which guarantee the
existence of the saddle or inflection point. Such a model
restores GR in the ψ → 0 limit.
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