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We explore the physics and observational consequences of tidal compression events (TCEs) of
dark-matter clumps (DMCs) by supermassive black holes (SMBHs). Our analytic calculations show that
a DMC approaching a SMBH much closer than the tidal radius undergoes significant compression along
the axis perpendicular to the orbital plane, shortly after pericenter passage. For DMCs composed of
self-annihilating dark-matter particles, we find that the boosted DMC density and velocity dispersion lead to a
flaring of the annihilation rate, most pronounced for a velocity-dependent annihilation cross section.
If the end products of the annihilation are photons, this results in a gamma-ray flare, detectable (and possibly
already detected) by the Fermi telescope for a range of model parameters. If the end products of dark-matter
annihilation are relativistic electrons and positrons and the local magnetic field is large enough, TCEs of
DMCs can lead to flares of synchrotron radiation. Finally, TCEs of DMCs lead to a burst of gravitational
waves, in addition to the ones radiated by the orbital motion alone, and with a different frequency spectrum.
These transient phenomena provide interesting new avenues to explore the properties of dark matter.
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I. INTRODUCTION

In the quest for the nature of dark matter (DM),
cosmologists have set increasingly stringent limits on its
properties, shrinking ever further the parameter space in
which it is allowed to exist. Yet, despite decades of
research, the only characteristics of DM that are robustly
measured to date are its mean cosmological abundance and
the amplitude of primordial density perturbations on scales
larger than a few comoving Mpc. Identifying the DM is a
fundamental problem of modern physics; it is therefore
important to explore every possible phenomenon that could
help characterize it.
Dark matter is expected to be clumpy on small scales

[1,2], even in the simplest scenario where one extrapolates
to very small scales the primordial power spectrum mea-
sured on large scales by cosmic microwave background
(CMB) experiments [3]. Since the amplitude and character
of primordial fluctuations on scales smaller than a few Mpc
are very poorly constrained, it is also possible that there
exists a population of very dense dark-matter clumps
(DMCs). These could have formed shortly after matter-
radiation equality from adiabatic perturbations with over-
density δ≲ 0.3. They could also have formed earlier on as a
result of accretion onto primordial black holes [4], the
collapse of primordial isocurvature perturbations [5],
topological defects, or phase transitions [6]. Analytic
self-similar solutions for radial infall predict a cuspy
power-law density profile [4,7]. Of course, the collapse
is never perfectly radial and the density does not increase to
arbitrarily large values in the center, so DMCs are expected

to have cores of a small fraction of their virial radii [8]. If
they are sufficiently dense and gravitationally bound, these
cores can survive destruction due to interactions with stars
and the tidal field of the galaxy that harbors them [8,9].
Various predicted signals have been proposed to test the

properties of DMCs, such as the gamma ray emission
resulting from annihilating DM [10,11] or microlensing
events [12]. In this paper, we explore for the first time the
observational consequences of a phenomenon that is likely
to bring the demise of some DMCs: strong tidal interaction
with a supermassive black hole (SMBH).
The centers of most galaxies are believed to harbor a

SMBH; cf. [13]. It is well known that stars whose trajectories
pass close enough to a SMBH can be tidally disrupted,
leading to bright transient events that are actively being
studied [14]. A perhaps less known phenomenon is the tidal
compression of stars by SMBHs [15,16]. The physical
mechanism is rather simple: while tidal forces stretch the
star along the axis joining its center of mass to the SMBH,
they compress it along the two perpendicular directions.
In this paper, we study, for the first time, the consequences

of the equivalent phenomenon for DMCs. We compute the
net compression of a DMC approaching a SMBH beyond
the Roche radius. We find that for orbits penetrating deep
inside the Roche radius Rt, the DMC is compressed shortly
after pericenter passage by a factor of order β ¼ Rt=Rp ≫ 1,
where Rp is the distance to the black hole at pericenter. The
compression takes place on a time scale of order β−2 times
the DMC dynamical time scale. Tidal compression events
(TCEs) of DMCs therefore lead to flares, either of gamma
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rays if the final products of DM annihilation are photons or
of synchrotron radiation if DM particles annihilate via
leptonic channels into relativistic electrons and positrons
and the local magnetic field is strong enough. Such events
also lead to bursts of gravitational waves.
A prediction of the rate of TCEs of DMCs from first

principles is highly model dependent and would require
treating a chain of complex processes. First, one would
need to predict or parametrize the abundance, mass
function, and profiles of primordial DMCs. Second, one
would have to compute the survival rates of DMCs through
hierarchical structure formation and tidal interactions with
the galactic field and passing stars. Finally, one would need
to estimate the rate at which their orbits are deflected into
the SMBH “loss cone,” i.e. close enough that they can be
tidally compressed [17,18]. This problem may be compli-
cated by the fact that DMCs may be less dense than stars,
and more likely to be disrupted by close interactions than to
be deflected. In this first exploratory study, we study TCEs
from a phenomenological point of view, taking the DMC
mass, density, and pericenter distance as free parameters,
and defer an estimation of the event rate to future work. We
hope that our results motivate more detailed follow-up,
especially using appropriate numerical simulations.
The structure of this paper is as follows. In Sec. II, we lay

out our model for DMCs and compute their net compression
during a TCE. In Sec. III, we calculate the predicted flux and
duration of gamma-ray or synchrotron flares resulting from
dark matter annihilation, and compare them with some
existing observations. We also estimate the gravitational
wave signal. In Sec. IV we discuss possible improvements
and generalizations of the model. We conclude in Sec. V.

II. THEORY

A. Dark matter clump properties

The density profile of a DMC depends on the details of
its formation process [5,19]. As shown, for example, in
Ref. [5], if the DMC forms from a primordial adiabatic
density fluctuation with δ≲ 0.3 (larger adiabatic fluctua-
tions would form primordial black holes [20]), and then
collapses at the earliest at matter-radiation equality, its final
density is typically ∼100 times the background density at
collapse, ρDM ≲ 10−18 g=cm3, which is rather small.
However, a generic outcome of analytic and numerical

calculations is that DMCs have a cuspy power-law profile
[4,7]. This power law does not continue to arbitrarily small
radii: at some point the density is expected to flatten out to a
constant value, which we denote by ρcl. Existing dark-
matter-only1 simulations do not have sufficient resolution
to capture the transition from a cuspy power-law profile to

the core (see e.g. [21,23]). The core size and central density
are therefore highly uncertain [24]. Several processes can
prevent the density from reaching arbitrarily high values at
the center [19]. If the DM particles have some initial
random velocities, either thermal or turbulent, the decrease
of the coarse-grained phase-space density imposes a lower
bound on the core radius [25]. If the dark matter self-
annihilates, one can set an upper limit to the core density by
requiring that it does not entirely self-annihilate within a
Hubble time [26] or, more realistically, within a dynamical
time as the core should be refilled on that time scale [2].
The latter requirement implies

ρcl
hσvi
mχ

≲ T−1
cl ; ð1Þ

where hσvi is the velocity-averaged annihilation cross
section times velocity, mχ is the mass of the DM particle,
and Tcl is the dynamical time scale of the self-gravitating
DMC,

Tcl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

4πGρcl

s
≈ 0.5 h

�
ρcl

1 g cm−3

�
−1=2

: ð2Þ

The maximum clump density for self-annihilating DM is
therefore

ρcl ≲ 4πG
3

�
mχ

hσvi
�

2

≈ 10 g cm−3
� hσvi
3 × 10−26 cm3 s−1

�
−2
�

mχ

100 GeV

�
2

;

ð3Þ

of order the mean Earth density for a characteristic thermal
relic velocity-averaged cross section [27] and 100 GeV
dark-matter particle. We note, however, that unless the DM
annihilates through an s-wave interaction (σv ¼ const), the
value of hσvi for the considered DMC depends on its
internal velocity dispersion and need not be equal to the
thermal relic value.
Clearly, a minimum core density is required for the DMC

to survive disruption by stellar encounters or galactic tides
before reaching the immediate vicinity of the SMBH. The
survival rate of DMCs is a subject of activework and debate
[9,24,28,29], and we shall not venture an estimate of the
minimum DMC density here. We shall instead keep ρcl as a
free parameter, bounded from above as in Eq. (3) (when
considering self-annihilating DM), and defer a detailed
study of allowed values for future work.
In what follows we shall only focus on the DMC’s

core. We denote by Mcl the DMC’s mass (more precisely,
its core’s mass). The characteristic clump radius Rcl is
defined as

1Of course, hydrodynamic simulations including baryons can
resolve a core [21,22], but the DMCs we consider are too small to
retain any baryons.
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Rcl ≡
�
3Mcl

4πρcl

�
1=3

≈ 6 × 10−5ðMcl;⊙Þ1=3ρ−1=310 pc; ð4Þ

where from this point on we use Mcl;⊙ ≡Mcl= M⊙ and
ρ10 ≡ ρcl=ð10−10 g=cm3Þ. This particular normalization is
arbitrary, but all our expressions remain completely
general.

B. Infall into a SMBH

If the DMC is orbiting a SMBH with mass MBH, then
the tidal radius, at which the tidal field of the SMBH
overcomes the DMC self-gravity, is given by

Rt ≡
�
3MBH

4πρcl

�
1=3

≈ 6 × 10−3M1=3
BH;6ρ

−1=3
10 pc; ð5Þ

where MBH;6 ≡MBH=ð106 M⊙Þ. This is typically much
larger than the Schwarzschild radius of the SMBH,
RBH ¼ 2GMBH=c2 ≈ 10−7MBH;6 pc, as long as

ρcl ≪ 2 × 104 g cm−3M−2
BH;6: ð6Þ

We assume that the center of mass of the DMC is on a
parabolic orbit around the SMBH, with pericenter Rp. Its
distance from the SMBH is given by

R ¼ 2Rp

1þ cos f
; ð7Þ

where the angle f is the true anomaly. Following Ref. [15],
we define the penetration factor

β≡ Rt

Rp
: ð8Þ

Note that assuming Rp ≥ RBH imposes an upper bound on
the penetration factor β ≤ βmax, with

βmax ≈ 6 × 104M−2=3
BH;6ρ

−1=3
10 : ð9Þ

Once the DMC is deep enough inside the tidal radius,
tidal forces dominate over its self-gravity. The DMC is then
effectively gravitationally unbound, and all of its particles
are in free fall. The DMC is then tidally stretched along the
axis joining its center of mass to the SMBH and tidally
compressed along the perpendicular directions. Unlike
stars, for which internal pressure eventually halts tidal
compression, the DMC can a priori be compressed to
arbitrarily large densities. Initial turbulent velocities will,
however, prevent the DMC from reaching infinite densities,
as they lead to a desynchronization of orbit crossings [16].
We shall restrict ourselves to penetration factors β ≤

ðMBH=MclÞ1=3 for which the DMC-SMBH separation is
always larger than the DMC size, Rcl ≪ R. This allows us to
compute the tidal deformation of the clump perturbatively by

Taylor expanding the equations of motion of its constituent
mass elements around the trajectory R of the center of mass.
It would be interesting to generalize our analysis to larger
penetration factors, and we defer this to future work.
We define r to be the distance of a mass element to the

center of mass, divided by Rcl. We also define v ¼ _r, where
an overdot denotes differentiation with respect to the
normalized time t=Tcl. The linearized equation of motion
for the dimensionless separation r is then

̈r ¼
�
Rt

R

�
3

ð3ðR̂ · rÞR̂ − rÞ: ð10Þ

This can be transformed into a differential equation in f by
using

1

Tcl

dt
df

¼
ffiffiffi
8

p
β−3=2ð1þ cos fÞ−2: ð11Þ

By virtue of the linearity of Eq. (10), we may linearly relate
the phase-space coordinate ðr; vÞ at true anomaly f to the
initial coordinates ðr0; v0Þ at the crossing of the tidal radius,
which occurs at true anomaly f0 ¼ −arccosð2=β − 1Þ,
assuming the transition from the domination of self-gravity
to that of tidal forces is instantaneous. Since the system is
deterministic, the transformation is invertible, and we shall
denote by ðr0; v0Þðr;v;fÞ the unique initial conditions leading
to ðr; vÞ at f.
Liouville’s theorem ensures that the phase-space density

F ðr; vÞ is conserved: F ðr; v; fÞ ¼ F ððr0; v0Þðr;v;fÞ; f0Þ.
This allows us to compute the (normalized) density field
~ρðr; fÞ,

~ρðr; fÞ ¼
Z

d3vF ðr; v; fÞ

¼
Z

d3vF ððr0; v0Þðr;v;fÞ; f0Þ: ð12Þ

To simplify calculations we assume that the initial phase-
space density is Gaussian and spherically symmetric, in
both position and velocity, and takes the form

F ðr0; v0; f0Þ ¼ ρ�e−3r
2
0
=2

�
3

2π

�
3=2

e−3v
2
0
=2; ð13Þ

with ρ� ≡
ffiffiffiffiffiffiffiffi
6=π

p
R3
clρcl. This form is in turn factorizable in

products of phase-space densities along each axis. Note that
the prefactor

ffiffiffiffiffiffiffiffi
6=π

p
≈ 1.38 is chosen so that the simple

relation Mcl ¼ ð4π=3ÞρclR3
cl holds.

We see from Eq. (10) that the evolution of r in the orbital
plane (component r∥) is decoupled from that in the
direction perpendicular to it (z-component). The integral
in Eq. (12) is therefore factorizable into in-plane and out-
of-plane contributions, which we study separately below.
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C. Compression perpendicular to the orbital plane

The evolution perpendicular to the orbital plane takes the
form

zðfÞ ¼ aðfÞz0 þ bðfÞvz0; ð14Þ

vzðfÞ ¼ _aðfÞz0 þ _bðfÞvz0; ð15Þ

where aðfÞ and bðfÞ are given explicitly in Ref. [16] as
functions of the penetration factor β. We show some
example trajectories in Figs. 1 and 2.
Since the out-of-plane evolution is separately

Hamiltonian, it also satisfies Liouville’s theorem, and
conserves the phase-space volume. The transformation

ðz0; vz0Þ → ðz; vzÞ therefore has unit determinant
(a _b − _ab ¼ 1), and its inverse is readily computed,

z0 ¼ _bðfÞzðfÞ − bðfÞvzðfÞ; ð16Þ

vz0 ¼ − _aðfÞzðfÞ þ aðfÞvzðfÞ: ð17Þ

Assuming a ≠ 0 we rewrite Eq. (14) as

z0 ¼
z
a
−
b
a
vz0: ð18Þ

The contribution of the z axis to Eq. (12) is

~ρzðz; fÞ ¼ ρ1=3�

ffiffiffiffiffiffi
3

2π

r Z
dvze−3z

2
0
=2e−3v

2
z0=2

¼ ρ1=3�

ffiffiffiffiffiffi
3

2π

r Z
dvz0
jaj e−3ðz=a−ðb=aÞvz0Þ2=2e−3v

2
z0=2;

ð19Þ

where in the second line we changed integration variables
from vz to vz0 at fixed z, hence the factor 1=jaj, obtained
from Eq. (17). Performing the Gaussian integral we arrive at

~ρzðz; fÞ ¼
ρ1=3�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p exp

�
−
3

2

z2

a2 þ b2

�
: ð20Þ

We see that the DMC’s density profile along the z axis
remains Gaussian (if it was initially so) with a characteristic
extent

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðfÞ þ b2ðfÞ

p
. We show the characteristic com-

pression factor Δz ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðfÞ þ b2ðfÞ

p
in Fig. 3.

Reference [16] gives explicit expressions for aðfÞ and
bðfÞ. In the large-β limit, they are approximately

FIG. 1. Trajectories of test particles with respect to the center of
mass of the DMC, perpendicular to the orbital plane, for a
penetration factor β ¼ 10. Specifically, we show trajectories with
initial height z=Rcl ∈ ½−1; 1� and initial vertical velocity from
−1 to 1 times the virial velocity. The curves are started and ended
at entry and exit from the tidal radius.

FIG. 2. Velocities of test particles with respect to the center of
mass of the DMC, perpendicular to the orbital plane, for a
penetration factor β ¼ 10. For each curve, the initial conditions
match those of the line with identical color in Fig. 1.

FIG. 3. Compression factor perpendicular to the orbital plane,
as a function of the true anomaly f (focusing on the interval
−π=4 < f < π=4), for several values of the penetration factor β.
Pericenter passage occurs at f ¼ 0.
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aðfÞ ≈ 2β−1

1þ cos f
ðcos f −

ffiffiffi
β

p
sin fÞ; ð21Þ

bðfÞ ≈ 2β−1

1þ cos f
ð

ffiffiffi
2

p
cos f −

ffiffiffiffiffiffiffiffi
β=2

p
sin fÞ: ð22Þ

By Taylor expanding the compression factor Δz ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
for f ≪ 1, we arrive at

Δzðf; βÞ ≈
βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
2
βf2 − 4

ffiffiffi
β

p
f þ 3

q ; ð23Þ

which peaks at true anomaly fmax ¼ 4=ð3 ffiffiffi
β

p Þ with
maximum value

max½Δz� ¼
ffiffiffi
3

p
β; ð24Þ

and width (measured between the two passages at half-
maximum)

Δf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=ð3βÞ

p
: ð25Þ

In order to convert this to a duration, we use the differential
relation between time and the true anomaly, Eq. (11), and
obtain the following time interval between the two passages
at half maximum,

Δttce ≈
2ffiffiffi
3

p Tclβ
−2 ≈ 6 h ρ−1=210 ð102=βÞ2: ð26Þ

D. Deformation in the orbital plane

The same steps can be followed for the DMC deforma-
tion in the orbital plane. Starting from the relation

r∥ðfÞ ¼ AðfÞr∥0 þ BðfÞv∥0; ð27Þ

where AðfÞ and BðfÞ are two-by-two matrices, we show in
the Appendix that the contribution of the in-plane axes to
Eq. (12) is

~ρ∥ðr∥; fÞ ¼
ρ2=3�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðAAT þ BBTÞ
p

× exp

�
−
3

2
rT∥ðAAT þ BBTÞ−1r∥

�
; ð28Þ

where the superscript “T” denotes the transpose. We see
that the isodensity contours are deformed into ellipses. The
characteristic elongations are the square roots of the
eigenvalues of AAT þ BBT.
Reference [16] explicitly provides the components of

AðfÞ as a function of β, but not those of BðfÞ. We compute
BðfÞ by numerically solving the differential equation
satisfied by r∥ðfÞ. As a sanity check we have verified that

our numerical solution for A reproduces that of Ref. [16]
and that the determinant of the bloc matrix with rows ðA;BÞ
and ð _A; _BÞ is unity, as it should.
In Fig. 4, we plot the trajectory of the DMC as it moves

around the SMBH, numerically solving for its deformation.
We take β ¼ 10.
We show the in-plane compression factor Δ∥ ≡

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðAAT þ BBTÞ

p
in Fig. 5. We see that the net result

of tidal forces is to stretch the DMC (Δ∥ < 1). However,
this stretching remains of order unity even for large
penetration factors, in qualitative agreement with the results
of Ref. [16]. We find that accounting for random in-plane
motions further reduces the net compression factor (i.e.
increase the net stretching) by ∼25%. The characteristic
value of Δ∥ near pericenter and for large β is Δ∥ ≈ 0.5.

FIG. 4. Orbital plane deformation of the DMC, with a
penetration factor of β ¼ 10. At any given moment, tidal forces
tend to stretch the DMC along the axis connecting it to the SMBH
and compress it in the perpendicular direction. This figure
illustrates the delayed response of the DMC as it moves along
its parabolic orbit.

FIG. 5. Compression factor in the orbital plane, as a function of
the true anomaly f, for several β ¼ 102 (red lines) and 104 (blue
lines). The dashed lines illustrate the compression factor that one
would obtain if neglecting random velocities (or setting B to
zero).
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III. OBSERVABLE SIGNATURES

A. Gamma-ray flares from dark-matter annihilation

1. Annihilation rate

Self-annihilating weakly interacting massive particles
(WIMPs) are among the most motivated candidates for dark
matter [27]. The observable signals resulting from their
continuous annihilation near the Galactic center have been
studied by several groups [30,31]. The signal can be
enhanced if the dark matter is clumpy [10]. Here we
consider a qualitatively new aspect: the transient flaring
of the annihilation rate that results from the tidal com-
pression of DMCs.
We assume that to lowest order in the velocity, the

annihilation cross section has the form σv ¼ αv2l, where α
is a constant. The indices l ¼ 0 and l ¼ 1 correspond to
s-wave and p-wave annihilation, respectively [27]. The
exponent l ¼ 2 corresponds to a d-wave annihilation [32].
We denote the mass of the dark-matter particle by mχ.

For s-wave annihilation the ratio pann ≡ hσvi=mχ is con-
strained by CMB anisotropy measurements to be less than
pmax
ann ≡ 3.5 × 10−28 cm3 s−1GeV−1 (up to an efficiency

factor of order unity) [3].
The rate of annihilation events is

_Nann ¼
Z

d3r
ρ2ðrÞ
m2

χ
hσvreli; ð29Þ

where hσvreli is averaged over the relative velocity of
two DM particles. At any given position, the latter has a
Gaussian distribution with zero mean and covariance
matrix whose elements are (in units of the DMC virial
velocity dispersion V2

cl ≡GMcl=Rcl)

hv2rel;zi ¼
2

3

1

b2ðfÞ þ a2ðfÞ ¼
2

3
Δ2

z ; ð30Þ

Covðvrel;∥Þ ¼
2

3
½ ~BT ~Bþ ~DT ~D�−1; ð31Þ

where the matrices ~B and ~D are defined in Eqs. (A5) and
(A6), and the in-plane and out-of-plane relative velocities
are uncorrelated. We rewrite

hσvreli ¼ hσvi0 × Δv; ð32Þ

where hσvi0 is the value of hσvreli for the isolated DMC,
prior to its entry inside the tidal radius, and Δv is a boost
factor due to the velocity dependence of the annihilation
rate. Integrating Eq. (29), the annihilation rate simplifies to

_Nann ¼
ffiffiffiffiffiffi
3

4π

r
hσvi0
m2

χ
ρclMcl × ΔzΔ∥Δv: ð33Þ

The factor ΔzΔ∥Δv is the net boost of the annihilation rate
due to tidal compression of the DMC.
We find that near maximum compression the in-plane

relative velocity dispersion [the trace of Covðvrel;∥Þ] is
always much smaller than hv2zi for large penetration factors.
Near maximal compression, we therefore get

Δv ≈

8>><
>>:

1 s-wave
1
3
Δ2

z p-wave:
1
5
Δ4

z d-wave

ð34Þ

Therefore, near maximum compression the annihilation
rate is enhanced by a factor ∼β2lþ1 with respect to that of a
quiescent (noncompressed) DMC.
The total number of annihilation events during the

flare is

Nflare
ann ≈ _Nflare

ann Δttce

≈ 0.5
hσvi0
m2

χ
ρclMcl

Tcl

β
Δv; ð35Þ

where we used Δ∥ ≈ 0.5 and Δz ≈
ffiffiffi
3

p
β at maximum

compression, and Δttce is given by Eq. (26).
Numerically, we get, for β ≫ 1, and l ¼ 0, 1, or 2
(up to a factor of order unity),

Nflare
ann ≈ 1051hσvi28

�
GeV
mχ

�
2

ρ1=210 Mcl;⊙ × β2l−1; ð36Þ

where

hσvi28 ≡ hσvi0
10−28 cm3 s−1

: ð37Þ

We note that for β ¼ 1 Eq. (36) gives the number of
annihilation events during a DMC dynamical time.
As an aside, we note that the total time elapsed between

entry in the tidal radius and passage at pericenter can be
simply obtained by integrating Eq. (11) from f ¼ f0 ¼
−arccosð2=β − 1Þ to 0. In the limit β ≫ 1, we find that this
time is ttot ≈ ð ffiffiffi

2
p

=3ÞTcl, of order the DMC dynamical time
scale, independently of β. Therefore as long as the DMC
density is below the maximum value given by Eq. (3), it
does not entirely annihilate before reaching the pericenter.
However, for p- and especially d-wave annihilation, very
dense DMCs could completely annihilate in the flaring
event even if their density is below that given in Eq. (3). In
this case the light curves that we predict below would be
truncated at the time of full DMC annihilation.

2. Gamma-ray flux

The differential gamma-ray flux per energy interval (in
photons=s=cm2=GeV) from annihilating dark matter inside
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an unresolved DMC at distance d ¼ 100d100 Mpc from the
observer is

d _ϕ
dE

¼ dNγ

dE

_Nann

4πd2
ð38Þ

≈ 3 × 10−8 m−2 s−1
dNγ

dE
hσvi28

�
GeV
mχ

�
2

× ρ10Mcl;⊙ðd100Þ−2ΔzΔ∥Δv; ð39Þ

where dNγ=dE is the mean spectrum of gamma-ray
photons per annihilation event. We show a few example
light curves in Fig. 6.
The total number of photons received per unit area

during the flaring event has an energy distribution

�
dϕ
dE

�
flare

¼ dNγ

dE
Nflare

ann

4πd2

≈ 10 m−2 dNγ

dE
Nflare

ann

1051
ðd100Þ−2: ð40Þ

From Eq. (36) we see that at equal values of hσvi0 for
quiescent clumps, p-wave and d-wave annihilations pro-
duce larger flares than s-wave annihilations. They are
therefore more likely to be observable even if the back-
ground gamma ray flux of the possibly numerous quiescent
DMCs orbiting the SMBH is undetected.

3. TCEs of DMCs as the origin of Fermi flares?

The Fermi All-Sky Variability Analysis detected 215
flaring gamma-ray sources with photon energies E ≥
100 MeV [33]. These sources were selected if their photon
count over one week exceeded the expected number of
events (rescaled from the total number of events observed
over 47 months) by more than 5.5 standard deviations.
While known Fermi-LAT sources were found to be
associated with the majority of these flaring events, a
few tens do not have any known counterpart. Moreover, the
associations are purely based on positional coincidence
within a broad radius of ∼1 deg. There is therefore
currently no certain explanation for the origin of at least
some of these flares, and here we examine whether they
could result from TCEs of DMCs.
At high latitudes the threshold for flare identification

corresponds to ∼100 photons per week at energies
E ≥ 100 MeV. We assume Fermi’s effective area is approx-
imately 0.5 m2. Assuming a p-wave annihilation with
hσvi28 ≈ 1, we see that the tidal compression of a DMC
at a distance of 100 Mpc, with mass Mcl ≈ 0.1M⊙, density2
ρcl ≈ 10−10 g=cm3 with penetration factor β ≈ 100, could
have been at the origin of detected flares. With these
parameters the time scale of the flare is several hours,
and if the DM particle has mass mχ ¼ 1 GeV and produces
Nγ¼

R
dEðdNγ=dEÞ∼10 photons of energy E≥100MeV

per annihilation, the total number of photons received during
the flaring event is of order ∼1000. One may worry that for a
TCE to occur a large number of quiescent DMCs orbiting the
SMBH is required, and that their combined quiescent
emission could overshadow the flare. With the parameters
chosen above, we find from Eq. (39) that ∼104 − 105

quiescent DMCs are required to produce ∼103 photons
during a week. These results depend strongly on the assumed
microphysical properties of dark matter. Considering d-wave
annihilation instead of p-wave, for instance, would result in
an enhancement factor larger by β2 for the resulting gamma-
ray flare from a TCE of DMC, in which case it would take
∼108 − 109 quiescent clumps with the same mass and
density to produce a similar signal.
Given the large freedom allowed by the multiple param-

eters of the model, it is not surprising that TCEs of DMCs
are able to accommodate flares of virtually arbitrary
duration and amplitude. However, if this model is to
explain some of the Fermi flares (or any other unexplained
gamma-ray flaring event), it also makes several additional

FIG. 6. Gamma-ray light curves from DM annihilation in
tidally compressed DM clumps at a distance of 100 Mpc,
assuming Mcl ¼ 0.1M⊙, ρcl ¼ 10−10 g cm−3, mχ ¼ 1 GeV,
and a total number of 10 gamma-ray photons produced per
annihilation event. The assumed annihilation cross section is
normalized such that hσvi0 ¼ 3 × 10−28 cm3 s−1 before the
DMC enters the tidal radius. The three rightmost (blue) curves
correspond to a penetration factor β ¼ 10, and the two leftmost
(red) curves to β ¼ 100. The labels s, p, d indicate the type of
annihilation (s-wave, p-wave, or d-wave, respectively).

2We note that a power-law primordial power spectrum with
adiabatic initial conditions and an amplitude extrapolated from
CMB anisotropy measurements cannot lead to DMCs as dense as
10−10 g=cm3. However, the primordial power spectrum at the
relevant very small scales is unconstrained by current observa-
tions and need not have the aforementioned properties. Other
scenarios, such as an adiabatic primordial spectrum with local-
ized features or isocurvature fluctuations [5], could potentially
lead to such large overdensities [19].
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predictions that would be interesting to check. First and
foremost, the energy spectrum of the flares should be
universal, as they all arise from the same DM annihilation
process. Second, we expect flares on a variety of time
scales, the statistics of which depends on the distribution of
β, which in turn is set by the loss cone physics [34]. If the
DMCs have a rather narrow distribution in mass and
densities, then we expect a well-defined mapping between
the flare amplitude and duration, depending on the type of
annihilation: _ϕmax ∝ ðΔtÞ−1=2−l. Third, the flares should be
isotropically distributed, as expected if they take place at
cosmological distances. Finally, the light curves of the
flares should resemble Fig. 6, though, of course, a more
detailed computation ought to be carried out for a more
accurate prediction.

B. Synchrotron flares

If the end products of dark-matter annihilation are
electrons and positrons, they may produce synchrotron
radiation due to the magnetic field near the Galactic center
[30,31]. The synchrotron radiation may not necessarily
flare on the time scale of the TCE. Indeed, the energy-loss
time scale for relativistic electrons is [35]

tsyn ¼
E
_Esyn

¼
�
4

3
cσT

B2

8π

E
ðmec2Þ2

�−1

≈ 1 yr
�

B
1 G

�
−2 10 MeV

E
; ð41Þ

where σT is the Thomson cross section and B is the
magnetic field strength. If tsyn < Δttce, a synchrotron flare
would result from the annihilation flare, on a time scale
Δttce. In the opposite case, the burst of synchrotron
radiation would be spread over the time scale tsyn.
The amplitude of the magnetic field a fraction of a parsec

away from SMBHs is poorly known. Following Ref. [36],
one may derive an equipartition value for the magnetic
field, obtained if the magnetic energy density equals the
kinetic pressure. Assuming a Bondi accretion rate of
1022 g=s ¼ 1.6 × 10−4 M⊙=yr, the authors of Ref. [36]
arrive at

BðRÞ ≈ 0.6M1=4
BH;6

�
R

10−3 pc

�
−5=4

G; ð42Þ

where R is the separation from the SMBH. Recent
observations of a distant active galactic nucleus (AGN)
suggest that the magnetic field could be tens of Gauss, if
not significantly larger, 0.01 pc away from the central black
hole [37]. While AGNs may have significantly larger
magnetic fields than quiescent SMBHs (which would be
more appropriate to look for signatures of TCEs of DMCs),
this suggests that it is possible that the magnetic field is

strong enough that the synchrotron emission could flare on
a short time scale.
To obtain a simple estimate of the synchrotron flux, let us

assume for definiteness that tsyn > Δttce. We denote by
dNe=dE the average electron-positron spectrum per anni-
hilation. Shortly after the TCE, and before the electron
energies are significantly dissipated by synchrotron radi-
ation (i.e. if t < tsyn for the energies considered), the total
synchrotron flux received at a distance d per frequency
interval is

dF
dν

¼ Nflare
ann

4πd2

Z
dE

dNe

dE
dP
dν

ðEÞ; ð43Þ

where the power radiated by a single electron is, up to
angular factors of order unity [35],

dP
dν

ðEÞ ≈ e3B
mec2

F
�

ν

νsðEÞ
�
; ð44Þ

where FðxÞ is a dimensionless function of order unity
peaking at x ≈ 0.3 and νsðEÞ is the characteristic frequency
of radiation given by

νs ≈
E2

ðmec2Þ3
ecB
2π

≈ 1 GHz

�
E

10 MeV

�
2 B
1 G

: ð45Þ

For simplicity we assume a flat electron-positron spectrum:
EðdNe=dEÞ ¼ 2 for E ≤ mχc2 (this normalization ensures
that the total energy is 2mχc2). We then arrive at

dF
dν

¼ Nflare
ann

4πd2
e3B
mec2

G

�
ν

νsðmχc2Þ
�
; ð46Þ

where GðxÞ≡ R
∞
x dy=yFðyÞ. The function G is of order

unity and decays exponentially with characteristic decay
scale x ∼ 1. Numerically, we get

dF
dν

≈ 10 mJyðd100Þ−2
Nflare

ann

1051
B
1 G

ð47Þ

for frequencies ν≲ νsðmχc2Þ. This flux level is within the
reach of existing transient radio surveys (see e.g. Ref. [38]).
It would therefore be interesting to make a more quanti-
tative prediction for the time evolution of the synchrotron
spectrum for arbitrary ratios Δttce=tsyn and more realistic
models for the electron-positron spectrum. We defer study-
ing these issues to future work.

C. Gravitational wave bursts

A natural consequence of TCEs of DMCs is the emission
of gravitational waves (GWs), which will be radiated
regardless of the microphysical properties of the dark
matter.
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The first source of GWs is the orbital motion itself [39].
For large β a burst of GWs is emitted near pericenter
passage, with characteristic time scale

torb ∼
�
GMBH

R3
p

�
−1=2

∼ Tcl × β−3=2: ð48Þ

The GW strain due to orbital motion is

horb ∼
GMclR2

p

c4dt2orb
∼
GMclR2

p

c4dT2
cl

β3; ð49Þ

where d is the distance to the source.
The tidal compression of the DMC leads to an additional

burst of GWs, on a time scale Δttce. As shown in Ref. [16],
GW emission can be significantly enhanced for an object
that is not perfectly symmetric about the orbital plane.
Whereas the asymmetry parameter is expected to be small
for stars considered in Ref. [16], we expect DMCs to be
generically triaxial objects [40]. Since our detailed treat-
ment in Sec. II assumed a perfectly spherical DMC, we
shall only use the characteristic length scales and time
scales derived there to estimate the GW emission during
a TCE.
We saw in Sec. II that the clump is not (yet) significantly

deformed in the orbital plane near pericenter passage. We
shall therefore assume that x ∼ y ∼ Rcl. On the other hand,
the clump is significantly compressed perpendicular to the
orbital plane, with z ∼ Rcl=β at maximal compression. The
components of the reduced quadrupole moment tensor are
therefore of order

Qxx ∼Qxy ∼Qyy ∼MclR2
cl; ð50Þ

Qxz ∼Qyz ∼MclR2
cl=β; ð51Þ

Qzz ∼MclR2
cl=β

2: ð52Þ

The time scale for compression in the z direction is
Δttce ∼ Tcl=β2, while the evolution in the plane is much
slower (see Fig. 5). The second derivative of the reduced
quadrupole moment is therefore of order

Q̈xz ∼ Q̈yz ∼
MclR2

cl

T2
cl

β3; ð53Þ

Q̈zz ∼
MclR2

cl

T2
cl

β2; ð54Þ

while the other components are subdominant for large β.
Note that the scalings with β are different from those
derived in Ref. [16] since in their study the star’s internal
pressure causes a bounce at maximum compression,
whereas in our case it is the initial random velocities of

the virialized clump that prevent it from collapsing to
a point.
The observed gravitational wave amplitude depends, of

course, on the orientation of the detector with respect to the
orbital plane. For generic orientations and large β, the terms
Q̈xz and Q̈yz dominate. We therefore get a characteristic
GW strain

htce ∼
GQ̈
c4d

∼
GMclR2

cl

c4dT2
cl

β3: ð55Þ

This is a factor ∼ðRcl=RpÞ2 smaller than the strain due to
the orbital motion itself. However, the time scale Δttce for
the GW flare from the TCE is shorter by a factor ∼1=

ffiffiffi
β

p
than the time of pericenter passage (48). The resulting
GWs are therefore emitted at frequencies ∼

ffiffiffi
β

p
higher.

Numerically, the characteristic frequency of the GW
emission due to the TCE is

νtce ∼ 2πΔt−1tce ∼ 30 Hz

�
ρcl

1 g cm−3

�
1=2

ðβ=100Þ2; ð56Þ

and the amplitude of the strain is of order

htce ∼ 10−23
�

Mcl

0.1 M⊙

�
5=3

�
ρcl

1 g cm−3

�
1=3 ðβ=100Þ3

d100
:

ð57Þ

Consider, for instance, a 0.1 M⊙ DMC with density
1 g cm−3, tidally compressed by a 105 M⊙ SMBH. The
tidal radius is approximately 50 solar radii (3 × 107 km),
and a penetration factor β ¼ 100 corresponds to pericenter
Rp ≈ 0.5R⊙ ≈ Rcl ≈ RBH. In this case the amplitude of the
GW burst generated by the TCE is as large as that due to the
orbital motion, though, of course, our calculation breaks
down both close to the SMBH horizon and when the
SMBH-DMC separation becomes comparable to the size of
the DMC. From Eqs. (56) and (57) we see that with these
parameters the burst of GWs from the TCE could be
detected by Advanced LIGO and Advanced Virgo [41],
while that from the orbital motion would remain beyond
their reach due to its lower frequency. A detailed compu-
tation of the total waveform and its detectability by current
or future GW detectors is beyond the scope of this work.
We therefore simply point out that TCEs of DMCs ought to
produce a unique GW signal that could make it possible to
distinguish them from signatures of other close encounters
with SMBHs.

IV. DISCUSSION

In this paper we have outlined the essential physics of
TCEs of DMCs and predicted several observational con-
sequences. Our calculations rely on a rather simplified
model, however, and we list below several points that need
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to be explored in more detail to obtain more precise
quantitative estimates.

A. Different clump profiles

In our calculation of the DMC compression, we have
assumed a simple phase-space density, with a Gaussian
density profile. Our results can in principle be generalized
to more realistic density profiles, such as the isothermal
profile ρ ∝ r−2 or the Navarro-Frenk-White profile [42].
Since most profiles do not generally factor into independent
functions along each axis, the calculation would not
simplify as it did for a Gaussian profile, but the formalism
remains identical. A more difficult aspect would be to
consistently follow different layers of the DMC as their
tidal radii are different. This is particularly important for a
cusped profile. In this case one ought to numerically solve
for the trajectories of the clump particles under the
combined gravitational pull of the DMC at that of the
SMBH. Simulations may provide a useful tool to estimate
the effect of different clump profiles.

B. Self-gravity

We have assumed that the DMC self-gravity can be
entirely neglected immediately at the crossing of the tidal
radius, and that the later compression of the DMC does
not affect this result. In reality, of course, the self-gravity of
the DMC ought to be self-consistently included and may
significantly affect our results. Near pericenter passage
where the DMC is highly elongated and compressed,
instabilities may develop due to self-gravity and the clump
could fragment.

C. Self-interactions

We have only considered collisionless DM in this work.
The dynamical behavior of the DMC under compression
would be modified if the DM is self-interacting [43].

D. Tidal approximation

We have restricted our calculation to the tidal approxi-
mation, for which the DMC extent is much smaller than
its separation from the SMBH. It would be interesting
to generalize this calculation to close encounters or
extended DMCs.

E. Background star cluster

We have assumed that the SMBH dominates the gravi-
tational potential, neglecting the effect of the background
star cluster. This could have an effect if the tidal radius is
comparable to that of the SMBH sphere of influence. As
long as the stellar cluster is spherically symmetric, the form
of the equations derived in this work should be unchanged:
the center-of-mass orbit will still be planar, and the in- and
out-of-plane deviations should still be separable and

linearizable provided Rcl is much smaller than the char-
acteristic length scale of the potential.

F. Newtonian approximation

Throughout this calculation we have taken a Newtonian
approximation, ignoring general-relativistic effects. If the
DMC approaches the SMBH within a few Schwarzschild
radii, a fully relativistic treatment is required. Interesting
effects may arise if the SMBH is rapidly spinning [44].

G. Rate estimates

The obvious next step of this work is to estimate the rates
of TCEs of DMCs. This requires (i) a prescription for the
abundance and mass function of DMCs, accounting for
their tidal destruction by stars and galactic tides and (ii) a
more detailed study of the loss-cone problem of DMCs and
the distribution of penetration factors β. The rates may be
significantly enhanced in binary SMBHs [45]. We leave
these important questions to future work.

V. CONCLUSION

We have calculated the tidal deformation and compres-
sion of a DMC penetrating into the tidal sphere of a SMBH.
We found that this process results in extreme compression
in the direction perpendicular to the orbital plane, with a
duration and a compression factor that depend on the initial
density of the DMC core, as well as on the ratio between
the pericenter radius of the DMC orbit and the tidal radius
of the SMBH. As a result of the boost in density and
velocity dispersion, a natural signature of this model is in
the form of flares (of gamma rays, for example) from
annihilating dark-matter particles in the clump. The ampli-
tude of these annihilation flares relative to the quiescent
DMC annihilation rate is particularly pronounced for
p- and d-wave annihilation.
Under the WIMP scenario, we calculated the character-

istic amplitude and duration of gamma-ray flares, covering
the full parameter space of DMC mass and core density,
dark-matter particle mass, and orbital penetration factors.
Comparing our predictions with observations from Fermi-
LAT [33], we found that flares recently detected in the data,
some with no known counterparts in the point-source
catalogs, are consistent with those expected from TCEs
of DMCs for a range of model parameters. We emphasize
that our model further predicts that the flares should be
distributed isotropically on the sky, and exhibit a universal
energy spectrum. Our results therefore motivate a more
exhaustive search for flares in Fermi-LAT data, including
ones on shorter time scales, the finding of which may
enable a more detailed comparison against the model
presented here, as well as many alternative scenarios.
We also addressed other possible signatures of TCEs of

DMCs. We derived the characteristic flux of synchrotron
radiation that would be produced if the products of dark
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matter annihilation are relativistic positrons and electrons.
We also discussed the gravitational-wave signature result-
ing from a TCE and argued that it is detectable by
Advanced LIGO for certain parameters.
We mentioned several caveats and discussed possible

generalizations and improvements to this model. Looking
forward, dedicated numerical simulations would be a
particularly interesting and useful follow-up.
While we have focused on the characteristics of TCEs of

DMCs given arbitrary clump parameters, more work lies
ahead before we can use these results to constrain the
properties of dark matter. The next steps are, first, to derive
the clump parameters and their distribution from any
particular model for the small-scale DM power spectrum,
and second, to make predictions for the event rate, account-
ing for stellar encounters and loss-cone physics. It is our hope
that the interesting new observables we have introduced in
this paper will stimulate more work in this direction.
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APPENDIX: CLUMP DEFORMATION
IN THE ORBITAL PLANE

Here we derive Eq. (28), following the same steps as in
Sec. II C but generalizing it to a two-by-two-dimensional
phase space. We use standard linear algebra results for the
inverse and determinant of a block matrix.
The components of r and v in the orbital plane depend

linearly on initial conditions

r∥ðfÞ ¼ AðfÞr∥0 þ BðfÞv∥0; ðA1Þ

v∥ðfÞ ¼ _AðfÞr∥0 þ _BðfÞv∥0: ðA2Þ

The initial positions and velocities can be obtained with
the inverse transform

r∥0 ¼ ~Ar∥ þ ~Bv∥; ðA3Þ

v∥0 ¼ ~Cr∥ þ ~Dv∥; ðA4Þ

with the following explicit expressions for ~B, ~C, ~D, if A is
nonsingular (we will not need an expression for ~A):

~D≡ ð _B − _AA−1BÞ−1; ðA5Þ

~B≡ −A−1B ~D; ðA6Þ

~C≡ − ~D _AA−1: ðA7Þ

The determinant of the ðr∥0; v∥0Þ → ðr∥; v∥Þ linear trans-
formation is unity. Explicitly, this determinant is

detðAÞ detð _B − _AA−1BÞ ¼ 1; ðA8Þ

which implies that det ~D ¼ detA. We now rewrite
Eq. (A1) as

r∥0 ¼ A−1r∥ − A−1Bv∥0: ðA9Þ

Using Eq. (A4) we obtain the determinant of the v∥ → v∥0
change of variables at constant r∥,

d2v∥ ¼
d2v∥0
j det ~Dj ¼

d2v∥0
j detAj : ðA10Þ

The contribution of the in-plane axes to Eq. (12) is therefore

~ρ∥ðr∥; fÞ ¼ ρ2=3�
3

2π

Z
d2v∥0
j detAj e

−3v2∥0=2 ðA11Þ

× e−3ðA−1r∥−A−1Bv∥0Þ2=2: ðA12Þ

After some linear algebra, we compute the Gaussian
integral and arrive at Eq. (28).
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