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We analyze the quantum supersymmetric cosmological Friedmann-Robertson-Walker model with a
scalar field, with a conditional probability density and the scalar field identified as time. The Hilbert space
has a spinorial structure and there is only one consistent solution, with a conserved probability density. The
dynamics of the scale factor is obtained from its mean value. The uncertainty relations are fulfilled and the
corresponding fluctuations are consistent with a semiclassical Universe. We give two examples which turn
out to have negative potential.
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I. INTRODUCTION

Supersymmetric quantum cosmology has been broadly
studied in in the past years, see e.g. [1,2]. For uniform
spaces, it can be obtained from the “minisuperspace”
formulation [3] of four dimensional supergravity [4].
The Wheeler-deWitt equation is traced back to the “square
root” of the Hamiltonian constraint, i.e. the supersymmetric
generator constraints. Additional to these constraints, in
these formulations there are also Lorentz constraints [3,4],
which strongly restrict the solutions [5]. An alternative
formulation for supersymmetric models has been given in
[6], by means of a “world line” superfield approach, where
the time variable is extended to a (supersymmetry) super-
space. This formulation has been worked out for all Bianchi
models [7], and under the inclusion of matter [6]. We
follow an approach of this type, by means of the covariant
formulation of one-dimensional supergravity [8], given by
the so called “new” Θ variables [9,10], which allows us to
write supergravity invariant actions in a covariant Wess-
Zumino gauge. The solution of the Wheeler-DeWitt equa-
tion is the wave function of the Universe, and depends on
the degrees of freedom of the 3-space metrics. Hence, there
is not an external time, as if there would not be dynamics.
This is the so called problem of time, and with all its
implications is one of the main problems of quantum
gravity, subject of study since the early times of general
relativity, see e.g. [11–13]. In fact, it has been argued that
instead of an external time, time arises as a result of the
interactions inside the Universe. One of the aspects of this
problem is the interpretation of the wave function of the
Universe and how time could arise consistently, with a
conserved probability. The operator ordering ambiguities in

the constraints can be tackled considering that the
Hamiltonian constraint should be self-adjoint, and that
the supersymmetric generators, which classically are
obtained by complex conjugation of the others, are
Hermitian conjugated. This requires self-adjoint bosonic
momenta, and for the fermions suitable conjugation rela-
tions. This can be a problem, for instance in the Friedmann-
Robertson-Walker (FRW) model, as in the classical theory
the scale factor satisfies a ≥ 0, but the hermiticity of its
momentum would require the whole real line [12]. In the
supersymmetric theory, the Hamiltonian constraint is
modified by the addition of fermionic terms, in such a
way that the anticommutator of the supersymmetry gen-
erators closes to it. Thus the Wheeler-DeWitt equation is
modified, and the supersymmetric constraints give first
order equations for the wave function, which is spinorial
and the number of its independent components can be very
high. However, the constraints can restrict this wave
function strongly, leading to quite simple solutions [4].
Here we consider a FRW model with a real scalar field, and
we argue that its supersymmetric theory could contribute to
the understanding of the mentioned aspects of the problem
of time. We show, for a nonvanishing superpotential, that
from the solutions of the supersymmetric constraints, only
one is consistent. This solution vanishes at a ¼ 0, allowing
that its canonical conjugated momentum is self-adjoint for
a ≥ 0. Further, a definition for the probability that the
Universe has some value of a is given, as the conditional
probability that the Universe has this value of a and a value
ϕ of the scalar field, if the Universe is at ϕ regardless of a,
and then the scalar field is identified with time [12]. With
this interpretation, the probability density depends on this
time and is conserved, and the uncertainty relation of awith
its momentum is fulfilled. We compute then the mean value
of a as a function of time, and its acceleration. Considering
that the actual observable regarding the scale factor is the
red shift, we compute the quantum fluctuations of the
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velocity of the scale factor, which reduce notably in the
region corresponding to the present era, consistently with a
semiclassical behavior. We give two examples, which turn
out to have negative potential. The resulting universes
expand from a singularity, and after one or more inflationary
periods collapse to a singularity again, consistently with the
results of [14,15], where this type of potentials are studied.
The outline of the paper is as follows. In the second section

we extend the FRWmodel with a scalar field to a world line
supergravity model and sketch the Hamiltonian analysis, in
the third section we perform the quantization, in the fourth
section we discuss the interpretation and show the results
based on the examples, one of a stable potential and the other
of an unstable one. In the last section we draw some
conclusions.

II. SUPERSYMMETRIC FRW MODEL
WITH A SCALAR FIELD

Let us consider the action of a scalar field with a four
dimensional FRW metric

I ¼ 1

κ2

Z �
−3

_a2a
N

þ 3Nkaþ 1

2

a3 _ϕ2

N
− Na3VðϕÞ

�
dt; ð1Þ

where N is the lapse function and a is the scale factor. This
Lagrangian is invariant under time general reparametriza-
tions. From the equations of motion of this action, with
N ¼ 1, the Friedmann equations and the conservation
equation for a perfect fluid turn out, _3a2

a2 ¼ ρþ k, 2äa þ _a2

a2 ¼
−ðpþ kÞ and _ρþ 3_a

a ðpþ ρÞ ¼ 0, with ρ ¼ 1
2
_ϕ2 þ VðϕÞ

the energy density, and p ¼ 1
2
_ϕ2 − VðϕÞ the pressure for

the perfect fluid ϕðtÞ. The Hamiltonian constraint of (1) is

H0 ¼ −
κ2

12a
π2a þ

κ2

2a3
π2ϕ −

3k
κ2

aþ 1

κ2
a3VðϕÞ ¼ 0: ð2Þ

After quantization it becomes theWheeler-DeWitt equation
for the wave function of the universe, where the ordering
ambiguity of the first term must be fixed.

A. Supersymmetric formulation

Supersymmetric cosmology can be obtained from one
dimensional supergravity [16], which can be formulated as
general relativity on the extension of the time coordinate to
the superspace of supersymmetry [10], t → zM ¼ ðt;Θ; Θ̄Þ,
where Θ and Θ̄ are anticommuting coordinates. The basic
quantities are the superfields, see e.g. [9], which transform as
δζΦðzÞ ¼ −ζMðzÞ∂MΦðzÞ, and their covariant derivatives
are ∇AΦ ¼ ∇M

A ðzÞ∂MΦ, where the index A transforms
as a scalar. ∇M

A ðzÞ is the superspace vielbein, whose super-
determinant gives the invariant density E ¼ S det∇M

A,
δζE ¼ ð−1Þm∂MðζMEÞ, which in the covariant Wess-
Zumino gauge [10] is E ¼ −e − i

2
ðΘΨ̄þ Θ̄ΨÞ, see e.g.

[8]. Therefore, in order to obtain the supersymmetric
cosmological model of (1), superfields for the scale factor
and the scalar field must be assigned

Aðt;Θ; Θ̄Þ ¼ aðtÞ þ iΘλ̄ðtÞ þ iΘ̄λðtÞ þ BðtÞΘΘ̄; ð3Þ

Φðt;Θ; Θ̄Þ ¼ ϕðtÞ þ iΘη̄ðtÞ þ iΘ̄ηðtÞ þGðtÞΘΘ̄: ð4Þ

The supersymmetric generalization of the action is given by
I ¼ IR þ IM, where IR is the cosmological supersymmetric
generalization of the free FRWmodel and IM the matter term
[6,8]

IR ¼ 3

κ2

Z
EðA∇Θ̄A∇ΘA −

ffiffiffi
k

p
A2ÞdΘdΘ̄dt; ð5Þ

IM ¼ 1

κ2

Z
EA3

�
−
1

2
∇Θ̄Φ∇ΘΦþWðΦÞ

�
dΘdΘ̄dt: ð6Þ

Upon integration over the Grassmann parameters in (5) and
(6), we find the total component Lagrangian [8]

L ¼ 1

κ2

�
−3e−1a _a2 þ 3e−1a _aðψλ − ψ̄ λ̄Þ þ 1

2
e−1a3 _ϕ2 −

1

2
e−1a3 _ϕðψη − ψ̄ η̄Þ þ 3i

2
a2 _ϕðλη̄þ λ̄ηÞ

þ 3iaðλ _̄λþ λ̄ _λÞ − i
2
a3ðη _̄ηþ η̄ _ηÞ þ 6

ffiffiffi
k

p
eλλ̄þ 3i

ffiffiffi
k

p
aðψλþ ψ̄ λ̄Þ − 6eaWλλ̄ −

3i
2
a2Wðψλþ ψ̄ λ̄Þ

−
i
2
a3W0ðψηþ ψ̄ η̄Þ þ 3ea2W0ðλ̄η − λη̄Þ − ea3W00ηη̄ −

3

2
e−1aψψ̄λλ̄þ 1

4
e−1a3ψψ̄ηη̄ − 3eaλλ̄ηη̄

− 3eaB2 þ 6
ffiffiffi
k

p
eaB − 3eBλλ̄ −

3

2
ea2Bηη̄ − 3ea2BW þ 1

2
ea3G2 þ 3

2
ea2Gðλη̄ − λ̄ηÞ − ea3GW0

�
: ð7Þ

The fields B and G do not contain kinetic terms and are eliminated solving their equations of motion B ¼ ffiffiffi
k

p
− 1

2
aW −

1
2
a−1λλ̄ − 1

4
aηη̄ and G ¼ W0 − 3

2
a−1ðλη̄ − λ̄ηÞ. Then, making the rescalings λ → κa−1=2λ, λ̄ → κa−1=2λ̄, η → κa−3=2η,

η̄ → κa−3=2η̄, the Lagrangian becomes
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L ¼ −
3

κ2
e−1a _a2 þ 3

κ
e−1a

1
2 _aðψλ − ψ̄ λ̄Þ þ 3k

κ2
eaþ 1

2κ2
e−1a3 _ϕ2 −

1

2κ
e−1a

3
2 _ϕðψη − ψ̄ η̄Þ þ 3i

2
_ϕðλη̄þ λ̄ηÞ

þ 3iðλ _̄λþ λ̄ _λÞ − i
2
ðη _̄ηþ η̄ _ηÞ þ 3

ffiffiffi
k

p
ea−1λλ̄ −

3
ffiffiffi
k

p

2
ea−1ηη̄þ 3i

ffiffiffi
k

p

κ
a

1
2ðψλþ ψ̄ λ̄Þ þ 3

4κ2
ea3W2 −

3
ffiffiffi
k

p

κ2
ea2W

−
1

2κ2
ea3W02 −

9

2
eWλλ̄þ 3

4
eWηη̄ −

3i
2κ

a
3
2Wðψλþ ψ̄ λ̄Þ − i

2κ
a

3
2W0ðψηþ ψ̄ η̄Þ þ 3

2
eW0ðλ̄η − λη̄Þ

− eW00ηη̄ −
3

2
e−1ψψ̄λλ̄þ 1

4
e−1ψψ̄ηη̄: ð8Þ

As in the bosonic case, the kinetic terms have different
signs, pointing to the presence of ghosts. Following the
usual interpretation, in this Lagrangian there are Goldstino
fields as follows. Upon substitution of the equations of
motion of the auxiliary fields, the supersymmetry trans-
formations of the fermions λ and η become δζλ ¼
ζ̄ð ffiffiffi

k
p

− aW=2Þ þ � � � and δη ¼ ζ̄W0 þ � � �. Thus if any
the fields on the right-hand side (r.h.s.) of these equations
has nonvanishing vacuum expectation value or k ≠ 0, the
corresponding fermion is a Goldstino. However in one
dimension, the appearance of this fermion does not mean
necessarily that supersymmetry is spontaneously broken.

B. Hamiltonian analysis

The canonical momenta of (8) are πe ¼ 0 and

πa ¼ −
6

κ2
e−1a _aþ 3

κ
e−1a

1
2ðψλ − ψ̄ λ̄Þ; ð9Þ

πϕ¼
1

κ2
e−1a3 _ϕ−

1

2κ
e−1a

3
2ðψη− ψ̄ η̄Þþ3i

2
ðλη̄þ λ̄ηÞ; ð10Þ

πλ ¼ −3iλ̄; πλ̄ ¼ −3iλ; ð11Þ

πη ¼
i
2
η̄; πη̄ ¼

i
2
η: ð12Þ

Equations (11) and (12) are second class constraints
and the corresponding Dirac brackets are fa; πagD ¼ 1,
fϕ; πϕgD ¼ 1, fλ; λ̄gD ¼ − i

6
, fη; η̄gD ¼ i. Using the stan-

dard definition for the Hamiltonian and solving the second
class constraints, the Hamiltonian of the theory is

H ¼ NH0 þ
1

2
ψS −

1

2
ψ̄ S̄; ð13Þ

where

H0 ¼ −
κ2

12
a−1π2a þ

κ2

2
a−3π2ϕ −

3iκ2

2
a−3πϕðλη̄þ λ̄ηÞ − 3k

κ2
a −

3

4κ2
a3W2ðϕÞ þ 3

ffiffiffi
k

p

κ2
a2WðϕÞ þ 1

2κ2
a3W02ðϕÞ

þ 9

2
WðϕÞλλ̄ − 3

4
WðϕÞηη̄þ 3

2
W0ðϕÞðλη̄ − λ̄ηÞ þW00ðϕÞηη̄ − 3

ffiffiffi
k

p
a−1λλ̄þ 3

ffiffiffi
k

p

2
a−1ηη̄ −

9κ2

4
a−3λλ̄ηη̄; ð14Þ

S ¼ κa−
1
2πaλþ κa−

3
2πϕη −

6i
ffiffiffi
k

p

κ
a

1
2λþ 3i

κ
a

3
2WðϕÞλþ i

κ
a

3
2W0ðϕÞηþ 3iκ

2
a−

3
2ληη̄; ð15Þ

S̄ ¼ κa−
1
2πaλ̄þ κa−

3
2πϕη̄þ

6i
ffiffiffi
k

p

κ
a

1
2λ̄ −

3i
κ
a

3
2WðϕÞλ̄ − i

κ
a

3
2W0ðϕÞη̄ − 3iκ

2
a−

3
2λ̄ηη̄; ð16Þ

which close under the Dirac brackets

fS; S̄gD ¼ −2iH0; fH0; SgD ¼ fH0; S̄gD ¼ 0: ð17Þ

From (2) we see that the scalar potential is

VðϕÞ ¼ 3
ffiffiffi
k

p
a−1WðϕÞ − 3

4
W2ðϕÞ þ 1

2
W02ðϕÞ: ð18Þ
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III. QUANTIZATION

Under canonical quantization, the Hamiltonian con-
straint is imposed as a second order differential equation
on the wave function, giving the Wheeler DeWitt
equation. In the supersymmetric case, the supercharges
(15) and (16) give first order differential equations, from
which the Hamiltonian follows (17). From the Dirac
brackets we get

½a;πa� ¼ ½ϕ;πϕ� ¼ i; fλ; λ̄g¼ 1

6
; fη; η̄g¼−1; ð19Þ

the rest of the (anti)commutators being zero. In parti-
cular λ2 ¼ η2 ¼ λ̄2 ¼ η̄2 ¼ 0. The bosonic momenta are

represented by derivatives and the fermionic degrees of
freedom have been represented in various ways, for
instance by Dirac matrices [4] or as derivatives of the
canonical conjugated variables [17]. Here we will quantize
in the simplest way, as done in [18], starting from a vacuum
state, annihilated by the fermionic operators λ and η, and on
which new states are created by λ̄ and η̄. Then we apply the
operators S and S̄ on a general state obtained in this way,
and then we look for their null eigenstates. We use gradated
Weyl ordering to fix the ordering ambiguities, i.e. products
of operators which classically commute are symmetrized,
and products of fermionic operators are antisymmetrized.
Thus, the quantum constraints are

S ¼ κ

2

�
a−

1
2πa þ πaa−

1
2

�
λþ κa−

3
2πϕηþ

3i
κ
a

3
2WðϕÞλþ i

κ
a

3
2W0ðϕÞη − 6i

ffiffiffi
k

p

κ
a

1
2λþ 3iκ

4
a−

3
2λ½η; η̄�; ð20Þ

S̄ ¼ κ

2

�
a−

1
2πa þ πaa−

1
2

�
λ̄þ κa−

3
2πϕη̄ −

3i
κ
a

3
2WðϕÞλ̄ − i

κ
a

3
2W0ðϕÞη̄þ 6i

ffiffiffi
k

p

κ
a

1
2λ̄ −

3iκ
4

a−
3
2λ̄½η; η̄�: ð21Þ

The anticommutator of these operators is fS; S̄g ¼ −2H0, hence the quantum Hamiltonian is

H0 ¼ −
1

12
κ2ða−1π2a þ ia−2πaÞ þ

κ2

2
a−3π2ϕ −

3i
2
κ2a−3πϕðλη̄þ λ̄ηÞ − 3k

κ2
a − 3

ffiffiffi
k

p
a−1½λ; λ̄� þ 3

ffiffiffi
k

p

2
a−1½η; η̄� ð22Þ

−
3

4κ2
a3W2ðϕÞ þ 3

ffiffiffi
k

p

κ2
a3WðϕÞ þ 1

2κ2
a3W02ðϕÞ þ 9

4
WðϕÞ½λ; λ̄� − 3

8
WðϕÞ½η; η̄� þ 3

2
W0ðϕÞðλη̄ − λ̄ηÞ ð23Þ

þ 1

2
W00ðϕÞ½η; η̄� − 3

2

ffiffiffi
k

p
a−1½λ; λ̄� þ 3

ffiffiffi
k

p

4
a−1½η; η̄� − 9κ2

16
a−3½λ; λ̄�½η; η̄� − κ2

64
a−3: ð24Þ

The last term is due to the operator ordering. Thus, S̄ ¼ S†,
and H0 is self-dual, as ensured by the second term on the
right-hand side of (24).
The Hilbert space is generated from the vacuum state j1i,

which satisfies λj1i ¼ ηj1i ¼ 0. Hence, there are four
states

j1i; j2i¼
ffiffiffi
6

p
λ̄j1i; j3i¼ η̄j1i and j4i¼

ffiffiffi
6

p
λ̄ η̄ j1i;

ð25Þ

which are orthogonal and have norms h2j2i ¼ h1j1i,
h3j3i ¼ −h1j1i and h4j4i ¼ −h1j1i. Therefore a general
state will have the form

jΨi ¼ ψ1ða;ϕÞj1i þ ψ2ða;ϕÞj2i þ ψ3ða;ϕÞj3i
þ ψ4ða;ϕÞj4i: ð26Þ

Hence

λjΨi ¼ 1ffiffiffi
6

p ½ψ2ða;ϕÞj1i þ ψ4ða;ϕÞj3i�; ð27Þ

ηjΨi ¼ −ψ3ða;ϕÞj1i þ ψ4ða;ϕÞj2i; ð28Þ

λ̄jΨi ¼ 1ffiffiffi
6

p ½ψ1ða;ϕÞj2i þ ψ3ða;ϕÞj4i�; ð29Þ

η̄jΨi ¼ ψ1ða;ϕÞj3i − ψ2ða;ϕÞj4i; ð30Þ

ληη̄jΨi ¼ −
1ffiffiffi
6

p ψ2ða;ϕÞj1i; ð31Þ

λ̄ηη̄jΨi ¼ −
1ffiffiffi
6

p ψ1ða;ϕÞj2i: ð32Þ
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Therefore, from the constraint equation SjΨi ¼ 0, we get

a

�
∂a −

3

κ2
a2W þ 6

ffiffiffi
k

p

κ2
aþ 1

8
a−1

�
ψ2

−
ffiffiffi
6

p �
∂ϕ −

1

κ2
a3W0

�
ψ3 ¼ 0; ð33Þ

�
∂a −

3

κ2
a2W þ 6

ffiffiffi
k

p

κ2
a −

5

8
a−1

�
ψ4 ¼ 0; ð34Þ

�
∂ϕ −

1

κ2
a3W0

�
ψ4 ¼ 0; ð35Þ

while for S̄Ψ ¼ 0, we get

ffiffiffi
6

p �
∂ϕ þ

1

κ2
a3W0

�
ψ2

− a

�
∂a þ

3

κ2
a2W −

6
ffiffiffi
k

p

κ2
aþ 1

8
a−1

�
ψ3 ¼ 0; ð36Þ

�
∂a þ

3

κ2
a2W −

6
ffiffiffi
k

p

κ2
a −

5

8
a−1

�
ψ1 ¼ 0; ð37Þ

�
∂ϕ þ

1

κ2
a3W0

�
ψ1 ¼ 0: ð38Þ

The equations for ψ1 and ψ4 can be straightforwardly
solved yielding the, up to constant factors, unique solutions

ψ1ða;ϕÞ ¼ a
5
8 exp

�
−
a3WðϕÞ − 3

ffiffiffi
k

p
a2

κ2

�
; ð39Þ

ψ4ða;ϕÞ ¼ a
5
8 exp

�
a3WðϕÞ − 3

ffiffiffi
k

p
a2

κ2

�
: ð40Þ

Further, the equations of ψ2 and ψ3 can be written as

�
a∂a −

3

κ2
a3WðϕÞ þ 6

ffiffiffi
k

p

κ2
a2 þ 1

8

�
ψ2ða;ϕÞ

−
ffiffiffi
6

p �
∂ϕ −

1

κ2
a3W0ðϕÞ

�
ψ3ða;ϕÞ ¼ 0; ð41Þ

�
a∂a þ

3

κ2
a3WðϕÞ − 6

ffiffiffi
k

p

κ2
a2 þ 1

8

�
ψ3ða;ϕÞ

−
ffiffiffi
6

p �
∂ϕ þ

1

κ2
a3W0ðϕÞ

�
ψ2ða;ϕÞ ¼ 0: ð42Þ

These equations might have nontrivial solutions,
which could be obtained by a power series ansatz in the
variable a, i.e. ψ2ða;ϕÞ ¼

P
n≥0αnðϕÞan and ψ3ða;ϕÞ ¼P

n≥0βnðϕÞan. If there is a solution, it can be seen that the

coefficients in these power series contain exponentials of
the form eωnϕ and e−ωnϕ, with undetermined coefficients,
where ωn are real numerical factors. In fact, these expan-
sions have the form

ψ2ða;ϕÞ ¼
X
n≥0

ðcneωnϕ þ dne−ωnϕÞan

þ terms dependent on e�ωnϕW; ð43Þ

ψ3ða;ϕÞ ¼
X
n≥0

ðcneωnϕ − dne−ωnϕÞan

þ terms dependent on e�ωnϕW; ð44Þ

whereωn ¼ 1ffiffi
6

p ðnþ 1
8
Þ, and cn anddn are arbitrary constants.

In fact, for W ¼ 0, the solutions of (41) and (42) are
ψ2ða;ϕÞ¼a−1=8½fþðaeϕ=

ffiffi
6

p
Þþf−ðae−ϕ=

ffiffi
6

p
Þ� andψ3ða;ϕÞ¼

a−1=8½fþðaeϕ=
ffiffi
6

p
Þ−f−ðae−ϕ=

ffiffi
6

p
Þ�, where f� are arbitrary

functions, as a consequence of the fact that there
are two variables. Therefore, in general the solution
to the constraint equations is jΨi ¼ C1ψ1ða;ϕÞj1i þ
C2ψ2ða;ϕÞj2i þ C3ψ3ða;ϕÞj3i þ C4ψ4ða;ϕÞj4i, where
the factors are arbitrary constants. The norm of this state is

hΨjΨi ¼
�
jC1j2

Z
jψ1ða;ϕÞj2dadϕ

þ jC2j2
Z

jψ2ða;ϕÞj2dadϕ

− jC3j2
Z

jψ3ða;ϕÞj2dadϕ

− jC4j2
Z

jψ4ða;ϕÞj2dadϕ
�
h1j1i: ð45Þ

If wewant to have a probabilistic interpretation, it is desirable
that (45) iswell defined and always positive. Thus,we keep in
this expression, as consistent solutions, only the ones whose
wave functions ψ iða;ϕÞ are square integrable. Moreover, the
operators which represent observables must be self-adjoint.
We count here as observables the phase space variables a, ϕ,
πa and πϕ and the Hamiltonian H0. Thus, in order that the
integrals in (45) arewell defined and the operators a, ϕ, πa ¼
−iℏ∂=∂a and πϕ ¼ −iℏ∂=∂ϕ are self adjoint, first their
definition domainsmust be stated. In quantummechanics, the
integration from −∞ to ∞ and the vanishing boundary
conditions of the wave function at the limits, ensure that
the momenta are self-adjoint. However, classically a ≥ 0,
which poses a problem for quantization, see e.g. [11].
Nevertheless, whatever the integration range of a is, if there
are nontrivial solutions for ψ2 and ψ3, these solutions
are not square integrable, considering that ϕ ranges from
−∞ to ∞. Thus, we exclude these possible solutions and
jΨi ¼ C1ψ1ða;ϕÞj1i þ C4ψ4ða;ϕÞj4i. In this case, we
observe that the solutions (39) and (40) vanish at a ¼ 0;
hence πa and H0 are self-adjoint, keeping a ≥ 0,
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Z
∞

0

ψða;ϕÞπaψða;ϕÞda¼
Z

∞

0

πaψða;ϕÞψða;ϕÞda: ð46Þ

Further, in order that the integrals are well defined, a first
condition is that the corresponding wave function vanishes as
a → ∞ or asϕ → �∞. Therefore, forψ1, the argument in the
exponential must blow up to negative infinity, i.e. 3a2

ffiffiffi
k

p
−

a3WðϕÞ → −∞ as a → ∞ or as ϕ → �∞. In particular the
condition regarding a → ∞, requires that WðϕÞ is always
positive. In the case of ψ4, the inverse situation holds:WðϕÞ
must be always negative and it should have the limit
Wðϕ → �∞Þ → −∞. Therefore, only one of both wave
functions (39) or (40) can be normalizable. Thus, for a given
nonvanishing superpotential, there is only one square inte-
grable wave function, whose norm (45) can be chosen to be
positive, hence

jΨi ¼ Cψða;ϕÞj1i≡ Cψ1ða;ϕÞj1i; if WðϕÞ > 0 or

ð47Þ

jΨi¼Cψða;ϕÞj4i≡Cψ4ða;ϕÞj4i; if WðϕÞ< 0; ð48Þ
where

ψða;ϕÞ ¼ a
5
8 exp

�
−
a3jWðϕÞj − 3

ffiffiffi
k

p
a2

κ2

�
; ð49Þ

and h1j1i is chosen to be 1 in the first case, and −1 in the
second case. Note that these states are bosonic. Thus, given a
nonvanishing superpotential, there is only one consistent
wave function.
In the following, we will restrict ourselves to the case

k ¼ 0. If we impose the condition that these states are
normalized to unity, then the normalization constant is

jCj2 ¼ 3

Γð3
4
Þ
	Z

∞

−∞

�
κ2

2jWðϕÞj
�
3=4

dϕ


−1
: ð50Þ

In fact, the old problem of time shows at this stage, i.e. that
from this wave function we cannot make any prediction as
there is no time. In other words, if (45) is well defined and
positive, to it corresponds rather a sort of static universe.

IV. INTERPRETATION

As already long ago discussed, the universe has to be
self-contained regarding time [19], i.e. the clock is part of it.
In particular, it can be in the form of a scalar field [11].
Further, nowadays the universe is classical and in fact, its
gravitational evolution has been classical excluding its very
first moments, when anyway the meaning of time would be
expected to be blurred by the strong quantum space-time
fluctuations, and in any case we would require full quantum
gravity. Thus, regarding time, one would be rather inter-
ested on the classical information, which is rendered when

the mean values of the observables are computed. Here we
consider the FRW model with a scalar field, in a super-
gravity framework. Hence, the main observable is the scale
factor, which on the other side is the only parameter of the
space metric. As a first step regarding interpretation, we
consider the square module of the wave function as the
probability density of finding a certain three geometry, i.e,
in the model we are considering, a geometry with the value
a for the scale factor and ϕ for the scalar field [12,20]. We
consider further two examples, whose probability densities
are shown in Figs. 2 and 8, and to which would correspond
a frozen universe. These figures show a well-defined path
along the maxima relative to the direction of the coordinate
a, which suggests that we consider evolution along this
path, i.e. we would have a sort of effective wave function,
given by a section of constant ϕ, in such a way that this
coordinate would be identified with time. Actually, a
computation of the mean value of the scale factor gives

hai ¼ hψ jajψi ¼ jCj2
Z

∞

−∞
dϕ

Z
∞

0

daajψða;ϕÞj2: ð51Þ

Thus, if we restrict for a while the integration of ϕ to
a finite interval ½ϕ1;ϕ2�, then, from the mean value
theorem we get hai¼R

∞
0 daajψða;φÞj2=R∞

0 dajψða;φ0Þj2,
where φ, φ0 ∈ ½ϕ1;ϕ2� are such that

R
dϕ

R
daajψða;ϕÞj2 ¼

Δϕ
R
daajψða;φÞj2, and

R
dϕ

R
dajψða;ϕÞj2 ¼ Δϕ ×R

dajψða;φ0Þj2. This suggests to us that we consider time
given by the scalar field ϕ → τ, with a probability ampli-
tude [12]

Ψða; τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
∞
0 dajψða;ϕÞj2

q ψða;ϕÞ
�����
ϕ¼τ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 × 23=4

Γð3=4Þ

s �jWðτÞj
κ2

�
3=8

a5=8 exp

�
−

1

κ2
a3jWðτÞj

�
;

ð52Þ

which is normalized at each time,
R
∞
0 dajΨða; τÞj2 ¼ 1.

Thus, the corresponding probability density amounts to

jΨða; τÞj2 ¼ jψða;ϕÞj2R∞
0 dajψða;ϕÞj2

����
ϕ¼τ

; ð53Þ

i.e. it is the conditional probability of the universe of being
at a and ϕ, if the universe is at ϕ regardless of a. Further, a
conservation equation for this probability density can be
given ∂

∂τjΨða;tÞj2− ∂
∂a½16 d

dτðlnjWðτÞjÞajΨða;τÞj2�¼0. Thus,
under the preceding assumption, which assigns to ϕ the
character of the clock, the classical setup arises from mean
values with the probability amplitude (52). For instance the
mean value of the scale factor is
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aðτÞ¼
Z

∞

0

ajΨða;τÞj2da¼Γð13=12Þ
Γð3=4Þ

�
κ2

2jWðτÞj
�
1=3

: ð54Þ

The validity of the previous assumption can be verified by a
computation of the quantum fluctuations

ðΔaÞ2¼Γð3=4ÞΓð17=12Þ−Γð13=12Þ2
Γð3=4Þ2

�
κ2

2jWðτÞj
�
2=3

; ð55Þ

and

ðΔπaÞ2 ¼ 21
Γð13=12Þ
Γð3=4Þ

�jWðτÞj
4κ2

�
2=3

; ð56Þ

from which the uncertainty relation follows

ΔaΔπa ¼
1

2Γð3=4Þ3=2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21Γð13=12Þ½Γð3=4ÞΓð17=12Þ − Γð13=12Þ2�

q
≈ 0.68: ð57Þ

Note that we have set ℏ ¼ 1.
In order to compute the uncertainty in the measurement

of the scale factor we would be tempted to use (55).
However, the scale factor is determined from its velocity
through measurements of the red shift and the big-bang
assumption. Nevertheless, the fluctuations for the velocity
cannot be obtained from d=dτaðτÞ, hence we estimate them
from _aðtÞ ¼ −6κ2a−1πaþ fermionic terms, obtained from
(9). Thus, considering that the mean values of the fermionic
variables vanish, Δ _a ¼ a−1ðj _ajΔaþ κ2=6ΔπaÞ, where the
quantities from the right-hand side are computed from (54),
(55) and (56), considering a → aðτÞ. For the two examples
considered, these fluctuations are shown in Figs. 5 and 11.
It is remarkable that these fluctuations reduce considerably
their size in the region which would correspond to the
actual era, consistently with a semiclassical behavior.
In this formulation the Hubble factor has the simple

expression

HðτÞ ¼ −
13 _WðτÞ
12WðτÞ ; ð58Þ

where _W ≡ d
dτW. In the following, dot and double dot will

mean derivatives with respect to τ.
There are some comments in order. First, for a given

nonvanishing superpotential, there is only one consistent
state, solution to the constraint equations. Further, this state
is invariant under supersymmetry transformations, hence
supersymmetry is unbroken.
In the following, we discuss two examples. These

examples are somewhat representative of what can happen.

The first one is of a stable potential and the second one of
an unstable potential.

A. Stable potential

As an example of the preceding results consider the
superpotential

WðϕÞ ¼ 1

2
m2ðϕ2 þ cÞðe−ϕ þ eϕÞ: ð59Þ

This superpotential is positive for any value of ϕ only if
c > 0. To it corresponds a stable scalar potential (18), with
a stable minimum at ϕ ¼ 0 and Vð0Þ ¼ −c2m4, see Fig. 1.
In the following, in the figures we set κ ¼ 1. Thus the
condition that the superpotential does not vanish, requires
that this potential is negative in a neighborhood of the
minimum. This class of potentials have been studied in
[15], where it has been shown that they describe universes
which after inflation stop to expand, and eventually
contract again to a singularity. In particular, these potentials
can be the basis for models of cyclic universes. Moreover,
the evolution described by these potentials is similar to the
behavior resulting from potentials unbounded from
below [14,15].
The wave function profile corresponding to (59) is

shown in Fig. 2. Further, the evolution of the mean value
of the scalar factor, aðτÞ, is shown in Fig. 3, where we have
used the freedom to fix the free parameter c in order to
produce a profile where aðτ ¼ 0Þ ¼ 1. This evolution is
consistent with the results of [15]. Thus, we have a growing
Universe from the past at τ ¼ −∞ to the time τ ¼ 0, when
it reaches its maximum, and then it starts to collapse as
τ → ∞. It can be seen that this potential satisfies the usual
initial conditions _aðτÞ → 0 and äðτÞ → 0 as τ → −∞, and
also exhibits this behavior at τ → ∞. Furthermore, we
depict the corresponding behavior for äðτÞ in Fig. 4. In
Fig. 5 we show the quantum fluctuations of the velocity of
the scale factor, which correspond to the fluctuations of the

FIG. 1. Stable potential generated by the superpotential (59),
m ¼ 1 and c ¼ 0.24.
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red shift. As mentioned, these fluctuations reduce in the
region corresponding to the present era.
Finally, for the Hubble parameter we get

HðτÞ ¼ cþ ðτ − 2Þτ − ½cþ ðτ þ 2Þτ�e2τ
3ðcþ τ2Þð1þ e2τÞ : ð60Þ

It has limits H → 1=3 as τ → −∞, and H → −1=3
as τ → ∞.

B. Unstable potential

Another example is the superpotential

WðϕÞ ¼ 1ffiffiffi
2

p
�
−

1

12
m2ϕ3 þ 1

24
m2ϕ4 þ eϕ

�
; ð61Þ

which is positive for any value of m. In [8] it has been
shown that the superpotential corresponding by (18) to a
quartic tachyonic potential, is given by an infinite power
series, which is locally approximated by (61). However,
(61) is interesting by itself, because its scalar potential
VðϕÞ has properties which lead to instabilities, as discussed
in [15]. Indeed, VðϕÞ has negative local minima, being
otherwise positive in a neighborhood of the origin, and at
the same time it is unbounded from below for ϕ → �∞.
This behavior is shown for m ¼ 3 and m ¼ 6.6 as follows.
In Fig. 6 are shown the details of the local minima that are
located in the central part of Fig. 7, the last corresponding
to the large scale behavior. From the last figure, it is
interesting to note that −VðϕÞ has two negative minima,
including the global one; hence it corresponds to a potential
similar to the one of the example of the preceding
subsection. For m ¼ 3, the graphics of the wave function
squared is quite similar to Fig. 2, and for m ¼ 6.6 it is
shown in Fig. 8. Further, the mean value of the scale factor
is shown in Fig. 9. Its evolution is consistent with the one of
the previous example, Fig. 3. For both values ofm there is a
singularity at the origin and at some point a collapse; for

FIG. 2. Dependence profile of jψða;ϕÞj2 for the superpotential
(59), m ¼ 1 and c ¼ 0.24.

FIG. 3. Profile of a for the superpotential (59), m ¼ 1 and
c ¼ 0.24.

FIG. 4. Profile of ä for the superpotential (59), m ¼ 1 and
c ¼ 0.24.

FIG. 5. Profile of _a, including its quantum fluctuations, for the
superpotential (59), m ¼ 1 and c ¼ 0.24.
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m ¼ 3 the evolution is like in Fig. 3, but for m ¼ 6.6 there
is a second, shorter inflationary phase before collapse. Note
that this last structure cannot be associated directly to the
structure of the potential for this value ofm in Fig. 6, as can
be seen from a comparison of the details of both Figures. It
can be easily seen that this model satisfies as well the
boundary conditions _aðtÞ → 0 and äðtÞ → 0, as t → �∞.
The acceleration äðtÞ is shown in Fig. 10. In Fig. 11 the
quantum fluctuations of the velocity of the scale factor are
shown for m ¼ 6.6. Similar to the preceding case, these
fluctuations reduce notably in the region corresponding to
the present era.
The Hubble parameter (58) is in this case

HðτÞ ¼ 2m2ð3 − 2τÞτ2 − 24eτ

3m2ðτ − 2Þτ3 þ 72eτ
: ð62Þ

It has the limits H → 0 as τ → −∞, and H → −1=3
as τ → ∞.

FIG. 6. Central region of the unstable potential generated by the
superpotential (61), m ¼ 3 for the solid line and m ¼ 6.6 for the
dashed line.

FIG. 8. Dependence profile of jψða;ϕÞj2 for the superpotential
(61), m ¼ 6.6.

FIG. 9. Profile of a for the superpotential (61), m ¼ 3 for the
solid line and m ¼ 6.6 for the dashed line.

FIG. 10. Profile of ä for the superpotential (61), m ¼ 3 for the
solid line and m ¼ 6.6 for the dashed line.

FIG. 7. Unstable potential generated by the superpotential
(61), m ¼ 3 for the solid line and m ¼ 6.6 for the dashed
line. The details of its central region are shown in Fig. 6.
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V. CONCLUSIONS

We have studied the world line supersymmetric theory of
FRWuniverse, with a scalar field. The action is constructed
in the superfield formalism following [8,10]. The quanti-
zation is formulated in the canonical formalism. The
operator ordering ambiguities in the supersymmetric con-
straints are solved by means of the Weyl ordering, leading
to “zero point” contributions. The Hilbert space has an
indefinite inner product. However, provided the super-
potential is nowhere vanishing, there is only one consistent
solution to the constraint equations. This solution is
bosonic and can be chosen to have positive norm and
can be normalized. The examples considered, which
correspond to stable and unstable potentials, with

probability densities shown in Figs. 2 and 8, suggest an
interpretation of the scalar field ϕ as clock, in such a way
that a time dependent, conditional probability density is
obtained from the section of constant ϕ of the wave
function [12], properly normalized. Considering that the
actual universe is classical, from this probability density the
measurable information is obtained via mean values of the
observables, in our case limited to the scale factor. With this
setting, the Heisenberg uncertainty relation for the scale
factor and its canonical momentum is satisfied. The two
considered examples, whose corresponding scalar poten-
tials are shown in Figs. 1, 6 and 7, are consistent with the
results of Refs. [14,15], as they lead to inflationary
scenarios with initial and final singularities. Moreover,
there may be more than one inflationary phases, as happens
in the example of Sec. IV B for m ¼ 6.6. The quantum
fluctuations of the velocity _a, corresponding to the actual
measurable quantity regarding the scale factor, the red shift,
are computed from the fluctuations of πa, and are shown in
Figs. 5 and 11 for the worked examples. It is remarkable
that these fluctuations reduce considerably their size in the
region corresponding to the present era. It would be
interesting to make a more detailed study of more realistic
cosmological models, as well as under the inclusion of
additional matter fields. It could be explored also the
introduction of effects like noncommutativity [21].
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