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We exploit a new numerical technique for evaluating the tree order contributions to the primordial scalar
and tensor power spectra for scalar potential models of inflation. Among other things we use the formalism
to develop a good analytic approximation which goes beyond generalized slow roll expansions in that (1) it
is not contaminated by the physically irrelevant phase, (2) its 0th order term is exact for the constant first
slow roll parameter, and (3) the correction is multiplicative rather than additive. These features allow our
formalism to capture at first order effects which are higher order in other expansions. Although this
accuracy is not necessary to compare current data with any specific model, our method has a number of
applications owing to the simpler representation it provides for the connection between the power spectra
and the expansion history of a general model.
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I. INTRODUCTION

A central prediction of primordial inflation is the gen-
eration of a nearly scale invariant spectrum of tensor [1] and
scalar [2] perturbations. These are increasingly recognized
as quantum gravitational phenomena [3–5]. The scalar
power spectra was first resolved in 1992 [6] and is by now
observed with stunning accuracy by a variety of ground and
space-based detectors [7–10]. The inflation community
was transfixed with the March 2014 announcement that
BICEP2 had resolved the tensor power spectrum [11].
Although subsequent work has shown this signal to be
attributable to polarized dust emission [12,13], inclusion of
the BICEP2 data gives the strongest upper bound on the
tensor-to-scalar ratio [14], and so we have crossed the
critical threshold at which the tensor power spectrum is
more accurately constrained by polarization data than by
temperature data. No one knows if the tensor signal is
large enough to be resolved with current technology but
many increasingly sensitive polarization experiments are
planned, under way, or actually analyzing data, including
POLARBEAR2 [15], PIPER [16], SPIDER [17], BICEP3
[18], and EBEX [19].
The triumphal progress of observational cosmology has

not seen a comparable development of inflation theory.
There are many, many theories for what caused primordial
inflation, and all of them make different predictions for the
tree order power spectra [20–22]. In most cases there is no
precise analytic prediction [23] and numerical techniques
must be employed instead [24–28]. At loop order the

situation is even worse because there are excellent reasons
for doubting that the naive correlators represent what is
being observed [29–32], but there is no agreement on what
should replace them [33–41]. Although defining loop
corrections is by no means urgent, it may eventually
become relevant with the full development of the data
on the matter power spectrum which is potentially recov-
erable from highly redshifted 21 cm radiation [42,43].
We cannot do anything right now about the multiplicity

of models, or about the ambiguity in how to define loop
corrections for any one of these models. Our goal instead is
to devise a good analytic prediction for the tree order power
spectra from any scalar potential model. We will elaborate a
numerical scheme developed previously [44,45], both to
make the scheme even more efficient and to motivate what
should be an excellent analytic approximation for the
power spectra. One fascinating feature of this formalism
is that the tensor power spectrum can easily be converted
into its scalar cousin, so one need only work with the
simpler tensor result. We use the numerical formalism to
examine a wide variety of models with the aim of
answering two questions:
(1) For models in which the first slow roll parameter ϵðtÞ

evolves, what value of the constant ϵ approximation
gives the best fit to the actual power spectrum?

(2) How numerically accurate is our analytic formula
for the nonlocal correction factor to the constant ϵ
approximation?

It is useful to compare and contrast our formalism with
the generalized slow roll approximation introduced by
Stewart [46], and developed by Dvorkin and Hu [47], to
deal with models for which ϵðtÞ is small, but some of its
derivatives are order one when expressed in Hubble units.
In that technique one expands the mode function about its
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de Sitter limit, using the de Sitter Green’s function to
develop a series of nonlocal corrections which depend upon
the past history of ϵðtÞ. In contrast, our formalism is based
on the norm squared of the mode function, which avoids
having to keep track of the complicated and physically
irrelevant phase. That allows our first order corrections to
recover effects which are second order in the generalized
slow roll approximation. Another difference is that our 0th
order term is exact for arbitrary constant ϵðtÞ. Finally, our
corrections are multiplicative rather than additive.
Although our formalism is more accurate, at the same

order, than the generalized slow roll expansion, it is
debatable whether current observations require greater
accuracy for comparison with any specific model. Our
motivation is rather to better understand how a general
expansion history affects the power spectra. This has
applications for the power spectra on three times scales:
the interpretation of anomalies in current data; the next
generation of observations which will reduce the error on
ns by a factor of 5 and might resolve the tensor power
spectrum; and in the very long term, when the full
development of 21 cm cosmology might provide enough
data to resolve one loop corrections. These applications are
as follows:

(i) To facilitate the deconvolution of anomalies in the
power spectrum so as to identify the sorts of models
which might have produced them;

(ii) To generalize the famous single-scalar consistency
relation [48–50] so one can say something even with
sparse data, before the tensor spectral index has been
well measured; and

(iii) To understand whether loop corrections can receive
significant contributions from early times when ϵðtÞ
was small and HðtÞ was large.

Regarding the third point, one should note that the ζ-ζ
propagator contains a factor of 1=ϵðtÞ which is usually
assumed to be canceled by powers of ϵðtÞ from the
vertices [51]. However, it seems possible that the
propagator—which depends nonlocally on ϵðtÞ—might
receive significant contributions from small, early val-
ues of ϵðtÞ. If so, one might expect loop corrections
from vertices at late times to be enhanced by large
factors of ϵlate=ϵearly. A closely related issue is deciding
what time best describes the putative loop counting
parameter of GH2ðtÞ [51].
A different sort of application concerns nonlocal modi-

fied gravity models of cosmology which are conjectured to
represent quantum gravitational effects that became non-
perturbatively strong during primordial inflation [52–54].
These quantum gravitational effects derive from secular
growth in the graviton propagator which is known for de
Sitter [55–57], but not for geometries in which ϵðtÞ evolves
[58]. Our formalism will facilitate better extrapolations of
these growth factors to general geometries, which should
motivate more realistic models.

This paper consists of six sections, of which the first is
this Introduction. Section II reviews scalar potential models
and the simple procedure for passing from the expansion
history to the potential and vice versa. In Sec. III we define
the two tree order power spectra, explain the relation
between them, and give constant ϵ results. Our improved
formalism is derived in Sec. IV, along with the analytic
approximation. Section V presents numerical studies. Our
conclusions comprise Sec. VI.

II. SCALAR POTENTIAL MODELS

The Lagrangian for a general scalar potential model is

L ¼ 1

16πG
R

ffiffiffiffiffiffi
−g

p
−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
− VðφÞ ffiffiffiffiffiffi

−g
p

: ð1Þ

We assume a homogeneous, isotropic, and spatially flat
background characterized by φ0ðtÞ and scale factor aðtÞ,

ds2 ¼ −dt2 þ a2ðtÞd~x · d~x⇒HðtÞ≡ _a
a
; ϵðtÞ≡−

_H
H2

:

ð2Þ

The nontrivial Einstein equations for this background are

3H2 ¼ 8πG

�
1

2
_φ2
0 þ Vðφ0Þ

�
; ð3Þ

−2 _H − 3H2 ¼ 8πG

�
1

2
_φ2
0 − Vðφ0Þ

�
: ð4Þ

As long as the tensor power spectrum remains unre-
solved, there is no question that scalar potential models
can be devised to fit the data because one can regard the
observed scalar power spectrum as a first order differential
equation for HðtÞ [59]. Once HðtÞ is known, there is a
simple way of using Eqs. (3) and (4) to construct a potential
VðφÞ which supports any function HðtÞ that obeys
_HðtÞ < 0 [60–64]. One first adds (3) and (4) to obtain
an equation for the scalar background,

φ0ðtÞ ¼ φi �
Z

t

ti

dt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _Hðt0Þ
16πG

s
: ð5Þ

By graphing this relation and then rotating the graph by 90°
one can easily invert (5) to solve for time tðφÞ. The final
step is to subtract (4) from (3) to find the potential,

VðφÞ ¼ 1

8πG
½ _HðtÞ þ 3H2ðtÞ�t¼tðφÞ: ð6Þ

Rather than specifying the expansion history aðtÞ and
using relations (5) and (6) to reconstruct the potential, it is
more usual to specify the potential and then solve for the
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expansion history aðtÞ. This is greatly facilitated by making
the slow roll approximation,

H ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
8πGVðφÞ

r
; ϵ ≈

1

16πG

�
V 0ðφÞ
VðφÞ

�
2

: ð7Þ

It is desirable to express the scale factor a ¼ aieN in terms
of the number of e-foldings N from the beginning of
inflation. Then one can use the slow roll approximation (7)
to solve for the scalar’s evolution from initial value φi by
inverting the relation,

N ¼ −8πG
Z

φ

φi

dψ
VðψÞ
V 0ðψÞ : ð8Þ

An important special case is power law potentials,

VðφÞ ¼ Aφα ⇒ ϵ ¼ ϵi
1 − 4ϵi

α N
; H ¼ Hi

�
1 −

4ϵi
α

N
�α

4

:

ð9Þ

III. THE PRIMORDIAL POWER SPECTRA

The purpose of this section is to introduce notation
to describe the scalar and tensor power spectra and
review the local approximate formulas for them. We
begin by defining the two spectra and explaining how
the tensor result can be used to derive the scalar result.
Then we consider the special cases of expansion
histories with constant ϵðtÞ, and where ϵðtÞ makes
an instantaneous transition from one constant value
of ϵðtÞ to another.

A. Generalities

It is useful to define time dependent extensions of the
scalar and tensor power spectra, Δ2

RðkÞ and Δ2
hðkÞ. At

tree order these time dependent power spectra take the
form of constants times the norm squared of the scalar
and tensor mode functions vðt; kÞ and uðt; kÞ,

Δ2
Rðt; kÞ ¼

k3

2π2
× 4πG × jvðt; kÞj2; ð10Þ

Δ2
hðt; kÞ ¼

k3

2π2
× 32πG × 2 × juðt; kÞj2: ð11Þ

The actual primordial power spectra are defined by
evaluating these time dependent ones long after the time
tk of the first horizon crossing at which k ¼ HðtkÞaðtkÞ.
After tk the mode functions approach constants, and it is
these constant values which define the predicted power
spectra,

Δ2
RðkÞ≡ Δ2

Rðt; kÞjt≫tk ; Δ2
RðkÞ≡ Δ2

Rðt; kÞjt≫tk :

ð12Þ
The equations of motion and normalization conditions

for the scalar and tensor mode functions are

v̈þ
�
3Hþ _ϵ

ϵ

�
_vþ k2

a2
v¼ 0; v_v� − _vv� ¼ i

ϵa3
; ð13Þ

üþ 3H _uþ k2

a2
u ¼ 0; u _u� − _uu� ¼ i

a3
: ð14Þ

The full system (10)–(14) is frustrating because the
phenomenological predictions (12) emerge from late
times, whereas it is only at early times k ≫ HðtÞaðtÞ
at which one has a good asymptotic form for the mode
functions,

vðt; kÞ ⟶
k≫Ha

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kϵðtÞa2ðtÞ

p exp

�
−ik

Z
t

ti

dt0

aðt0Þ
�
; ð15Þ

uðt; kÞ ⟶
k≫Ha

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ka2ðtÞ

p exp

�
−ik

Z
t

ti

dt0

aðt0Þ
�
: ð16Þ

So these forms (15) and (16) serve to define the initial
conditions, and one must then use Eqs. (13) and (14) to
evolve vðt; kÞ and uðt; kÞ forward until well past the
first horizon crossing, at which point the mode functions
are nearly constant and one can use them in expressions
(10)–(12) to compute the primordial power spectra. It is
this cumbersome and highly model dependent procedure
which we seek to simplify and systematize.
First, we take note of an important relation between the

scalar and tensor systems. This is that the scalar relations
(13) follow from the tensor ones (14) by simple changes of
the scale factor and time [65],

aðtÞ →
ffiffiffiffiffiffiffiffi
ϵðtÞ

p
× aðtÞ; ∂

∂t →
1ffiffiffiffiffiffiffiffi
ϵðtÞp ×

∂
∂t : ð17Þ

We will therefore concentrate on the tensor system, and we
do so in terms of the norm-squared tensor mode function,

Mðt; kÞ≡ juðt; kÞj2: ð18Þ

B. The case of constant ϵðtÞ
An important special case is when ϵðtÞ is constant, for

which the Hubble parameter and scale factor are

ϵðtÞ ¼ ϵi ⇒ HðtÞ ¼ Hi

1þ ϵiHiΔt
;

aðtÞ ¼ ½1þ ϵiHiΔt�
1
ϵi ; ð19Þ
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where Δt≡ t − ti. Note that the combination HðtÞ½aðtÞ�ϵ is
constant. The appropriate tensor mode function for constant
ϵðtÞ is

u0ðt; kÞ ¼
1

aðtÞ ffiffiffiffiffi
2k

p ×

ffiffiffiffiffi
πz
2

r
Hð1Þ

ν ðzÞ;

zðt; kÞ≡ k
ð1 − ϵÞHa

;

ν≡ 3

2
þ ϵ

1 − ϵ
: ð20Þ

From the small argument expansion of the Hankel function
we can infer the constant late time limit of (20),

u0ðt; kÞ ⟶
k≪Ha

ffiffiffiffiffiffiffiffiffiffi
πz
4a2k

r
× −

iΓðνÞ
π

�
2

z

�
ν

; ð21Þ

¼ −
ið1þ ϵÞΓð1

2
þ ϵ

1−ϵÞffiffiffiffiffiffiffiffiffiffi
2πk3

p ½2ð1 − ϵÞ� ϵ
1−ϵ

�
HðtÞaϵðtÞ

kϵ

� 1
1−ϵ
: ð22Þ

It is usual to evaluate the constant factor of HðtÞaϵðtÞ at
horizon crossing,

u0ðt; kÞ⟶
k≪Ha

HðtkÞffiffiffiffiffiffiffi
2k3

p × −
ið1þ ϵÞΓð1

2
þ ϵ

1−ϵÞffiffiffi
π

p ½2ð1 − ϵÞ� ϵ
1−ϵ:

ð23Þ

Substituting (23) in expressions (10)–(12) gives the famous
constant ϵ predictions for the power spectra,

Δ2
RðkÞj_ϵ¼0 ¼

�
ℏ

c5

�
×
GH2ðtkÞ

πϵ

×
ð1þ ϵÞ2Γ2ð1

2
þ ϵ

1−ϵÞ
π

½2ð1 − ϵÞ� 2ϵ1−ϵ; ð24Þ

Δ2
hðkÞj_ϵ¼0 ¼

�
ℏ

c5

�
×
16

π
GH2ðtkÞ

×
ð1þ ϵÞ2Γ2ð1

2
þ ϵ

1−ϵÞ
π

½2ð1 − ϵÞ� 2ϵ
1−ϵ: ð25Þ

The final factor in expressions (24) and (25) contains an
ϵ-dependent correction which is not usually quoted because
it is so near unity for small ϵ,

CðϵÞ≡ ð1þ ϵÞ2Γ2ð1
2
þ ϵ

1−ϵÞ
π

½2ð1 − ϵÞ� 2ϵ1−ϵ: ð26Þ

Figure 1 shows the dependence of CðϵÞ versus ϵ for the full
inflationary range of 0 ≤ ϵ < 1. Note that CðϵÞ is a
monotonically decreasing function of ϵ. In particular, it
goes to zero for ϵ → 1−. If we assume the single-scalar
relation of r ¼ 16ϵ, then the current upper bound of r <
0.09 implies ϵ < 0.0056. At this upper bound the constant ϵ

correction factor is about 0.997. It would be even closer to
unity for smaller vales of ϵ.

C. The case of a jump from ϵðtÞ ¼ ϵ1 to ϵðtÞ ¼ ϵ2
Suppose the Universe begins with constant ϵðtÞ ¼ ϵ1,

with initial values of the Hubble parameter and scale
factor H1 and a1, respectively. At some time t2 the first
slow roll parameter makes an instantaneous transition to
ϵðtÞ ¼ ϵ2 > ϵ1. In both regions we express the scale factor
in terms of the number of e-foldings N as aðtÞ ¼ a1eN . If
the transition time t ¼ t2 corresponds to N ¼ N2, then we
have

N < N2 ⇒ ϵ ¼ ϵ1; H ¼ H1e−ϵ1N; ð27Þ

N > N2 ⇒ ϵ ¼ ϵ2; H ¼ H1eΔϵN2−ϵ2N; ð28Þ

where Δϵ≡ ϵ2 − ϵ1.
It is useful to define mode functions assuming the two

constant values of ϵðtÞ ¼ ϵi had held for all time,

uiðt; kÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ka2ðtÞ

p
ffiffiffiffiffi
πz
2

r
Hð1Þ

νi ðzÞ;

z≡ k
ð1 − ϵiÞHa

;

νi ≡ 1

2

�
3 − ϵi
1 − ϵi

�
: ð29Þ

The actual mode function after the transition is a linear
combination of the positive and negative frequency sol-
utions,

N < N2 ⇒ uðt; kÞ ¼ u1ðt; kÞ; ð30Þ

N > N2 ⇒ uðt; kÞ ¼ αu2ðt; kÞ þ βu�2ðt; kÞ: ð31Þ

FIG. 1. Graph of 1π ð1þ ϵÞ2Γ2ð1
2
þ ϵ

1−ϵÞ½2ð1 − ϵÞ� 2ϵ
1−ϵ as a function

of ϵ.
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The combination coefficients are

α ¼ iπ
4

h ffiffiffiffiffi
z1

p
Hð1Þ

ν1 ðz1Þ½
ffiffiffiffiffi
z2

p
Hð1Þ

ν2 ðz2Þ��;z2
− ½ ffiffiffiffiffi

z1
p

Hð1Þ
ν1 ðz1Þ�;z1

ffiffiffiffiffi
z2

p
Hð1Þ�

ν2 ðz2Þ
i
; ð32Þ

β ¼ iπ
4

h
−

ffiffiffiffiffi
z1

p
Hð1Þ

ν1 ðz1Þ½
ffiffiffiffiffi
z2

p
Hð1Þ

ν2 ðz2Þ�;z2
þ ½ ffiffiffiffiffi

z1
p

Hð1Þ
ν1 ðz1Þ�;z1

ffiffiffiffiffi
z2

p
Hð1Þ

ν2 ðz2Þ
i
; ð33Þ

where z1 and z2 are

zi ≡ 1

1 − ϵi

k
Hðt2Þaðt2Þ

¼ 1

1 − ϵi

HðtkÞaðtkÞ
Hðt2Þaðt2Þ

: ð34Þ

We seek to understand the effect of varying the transition
point N2 relative to first horizon crossing Nk, with the
important dimensional parameters k and HðtkÞ held fixed.
Of course, this is accomplished by adjusting the initial
values a1 and H1,

Nk<N2⇒H1¼eϵ1NkHðtkÞ; a1¼
k

eNkHðtkÞ
; ð35Þ

Nk > N2 ⇒ H1 ¼ eϵ2Nk−ΔϵN2HðtkÞ; a1 ¼
k

eNkHðtkÞ
:

ð36Þ

It is useful to express the late time limit of Mðt; kÞ in terms
of the results Mi which would pertain if ϵðtÞ ¼ ϵi for all
time,

Mi ≡H2ðtkÞ
2k3

× CðϵiÞ; ð37Þ

where expression (26) gives the constant ϵ correction factor
CðϵÞ. The late time limit of the actual mode function uðt; kÞ
always derives from (31), but the late time limit of u2ðt; kÞ
depends upon whether the transition comes before or after
the first horizon crossing,

Nk < N2 ⇒ lim
t→∞

u2ðt; kÞ ¼ −i
ffiffiffiffiffiffiffi
M2

p
× e−

Δϵ
1−ϵ2

ðNk−N2Þ; ð38Þ

Nk > N2 ⇒ lim
t→∞

u2ðt; kÞ ¼ −i
ffiffiffiffiffiffiffi
M2

p
: ð39Þ

Hence the late time limit of Mðt; kÞ ¼ juðt; kÞj2 is

Nk < N2 ⇒ lim
t→∞

Mðt; kÞ ¼ jα − βj2 × e−
2Δϵ
1−ϵ2

ðNk−N2Þ ×M2;

ð40Þ

Nk > N2 ⇒ lim
t→∞

Mðt; kÞ ¼ jα − βj2 ×M2: ð41Þ

Because only the difference of (32) and (33) enters the

late time limit, the imaginary part of Hð1Þ
ν2 ðz2Þ¼Jν2ðz2Þþ

iNν2ðz2Þ drops out,

α − β ¼ iπ
2
½ ffiffiffiffiffi

z1
p

Hð1Þ
ν1 ðz1Þ½

ffiffiffiffiffi
z2

p
Jν2ðz2Þ�;z2

− ½ ffiffiffiffiffi
z1

p
Hð1Þ

ν1 ðz1Þ�;z1
ffiffiffiffiffi
z2

p
Jν2ðz2Þ�: ð42Þ

In evaluating the zi one must distinguish between the cases
for which the first horizon crossing occurs before and after
the transition,

Nk < N2 ⇒ zi ¼
1

1 − ϵi
eð1−ϵ1ÞðNk−N2Þ; ð43Þ

Nk > N2 ⇒ zi ¼
1

1 − ϵi
eð1−ϵ2ÞðNk−N2Þ: ð44Þ

Figure 2 shows the late time limit of Mðt; kÞ for an
instantaneous transition from ϵ1 ¼ 1

200
to ϵ2 ¼ 1

10
at

N ¼ N2. For ΔN ≡ N2 − Nk ≪ −1 the transition occurs
long before the first horizon crossing soMðt; kÞ approaches
M2, the result for a universe which has had ϵðtÞ ¼ ϵ2 for all
time. This follows from our analytic expressions because
zi ≫ 1 in this regime, so we have

Nk ≪ N2 ⇒

ffiffiffiffiffiffiffi
πz1
2

r
Hð1Þ

ν1 ðz1Þ → exp

�
iz1 − i

�
ν1 þ

1

2

�
π

2

�
;

ð45Þ

⇒

ffiffiffiffiffiffiffi
πz2
2

r
Jν2ðz2Þ → cos

�
z2 −

�
ν2 þ

1

2

�
π

2

�
; ð46Þ

⇒ α − β → exp

�
iðz1 − z2Þ þ ðν2 − ν1Þ

π

2

�
: ð47Þ

4 2 0 2 4
0.98

1.00

1.02

1.04

1.06

1.08

N

M
k

M1

M2

FIG. 2. Graph of MðkÞ ¼ limt→∞Mðt; kÞ in units of M2 for an
instantaneous transition from ϵ1 ¼ 1

200
to ϵ2 ¼ 1

10
as a function of

the number of e-foldings ΔN ≡ N2 − Nk from the first horizon
crossing. The curve has a cusp at ΔN ¼ 0 because HðtkÞ and k
are held fixed, whereas the way they depend upon the initial
values of HðtÞ and aðtÞ changes from ΔN < 0 to ΔN > 0.
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For ΔN ≫ þ1 the transition occurs long after the first
horizon crossing, which implies that the new value of
ϵðtÞ ¼ ϵ2 is irrelevant andMðt; kÞ freezes in at the valueM1

that would pertain for a universe with ϵðtÞ ¼ ϵ1 for all time.
This is the regime of zi ≪ 1, for which our analytic
expressions give

Nk ≪ N2 ⇒

ffiffiffiffiffiffiffi
πz1
2

r
Hð1Þ

ν1 ðz1Þ → −
Γðν1Þffiffiffi

π
p

�
2

z1

�
ν1−1

2

; ð48Þ

⇒

ffiffiffiffiffiffiffi
πz2
2

r
Jν2ðz2Þ →

ffiffiffi
π

p
Γð1þ ν2Þ

�
z2
2

�
ν2þ1

2

; ð49Þ

⇒ α − β →

ffiffiffiffiffiffiffi
M1

M2

s
exp

�
ΔϵðNk − N2Þ

1 − ϵ2

�
: ð50Þ

Although the details depend upon the values of ϵ1 and ϵ2,
Fig. 2 really is generic and has been known since the 1992
study of Starobinsky [66]. In particular, as N2 approaches
Nk from below there are always oscillations of decreasing
frequency and increasing amplitude, the value at N2 ¼ Nk
always is somewhat below M2 < M1, and the value for
N2 > Nk always rises monotonically to approach M1.
Similar results pertain for transitions of the inflaton
potential [67,68].

IV. OUR EVOLUTION EQUATION

This is the main analytic portion of the paper. It begins
by reviewing the derivation of an evolution equation for
Mðt; kÞ≡ juðt; kÞj2 [44,45]. We then factor out the main
effect by writing Mðt; kÞ ¼ M0ðt; kÞ × ΔMðt; kÞ, where
M0ðt; kÞ≡ ju0ðt; kÞj2 is the constant ε result evaluated at
the instantaneous ϵðtÞ. Next M0ðt; kÞ is simplified and the
asymptotic behaviors are discussed. By linearizing the
equation for ΔMðt; kÞ we derive what should be an
excellent approximation for ΔMðt; kÞ for a general infla-
tionary expansion history.

A. An evolution equation for Mðt;kÞ
The tensor power spectrum (11) depends upon the

norm squared of the tensor mode function uðt; kÞ. It is
numerically wasteful to follow the irrelevant phase
using the tensor evolution equations (14), especially
during the early time regime of k ≫ HðtÞaðtÞ when
oscillations are rapid. The better strategy is to use (14)
to derive an equation for Mðt; kÞ≡ juðt; kÞj2 directly.
This is accomplished by computing the first two time
derivatives,

_Mðt; kÞ ¼ uðt; kÞ × _u�ðt; kÞ þ _uðt; kÞ × u�ðt; kÞ; ð51Þ

M̈ðt; kÞ ¼ uðt; kÞ × ü�ðt; kÞ þ 2_uðt; kÞ × _u�ðt; kÞ
þ üðt; kÞ × u�ðt; kÞ: ð52Þ

Now use (14) to eliminate ü and ü� in (52),

M̈ ¼ −3H _M −
2k2

a2
M þ 2_u _u�: ð53Þ

Squaring (51) and subtracting the square of the
Wronskian (14) gives _u _u�,

_M2 ¼ þu2 _u�2 þ 2M _u _u� þ _u2u�2; ð54Þ

1

a6
¼ −u2 _u�2 þ 2M _u _u� − _u2u�2: ð55Þ

Hence the desired evolution equation for Mðt; kÞ is [44,45]

M̈ þ 3H _M þ 2k2

a2
M ¼ 1

2M

�
_M2 þ 1

a6

�
: ð56Þ

As already noted, the transformation (17) converts (56)
into an equation for the norm squared of the scalar mode
function Nðt; kÞ≡ jvðt; kÞj2, so both power spectra follow
from Mðt; kÞ.
One indication of how much more efficient it is to evolve

(56) than (14) comes from comparing the asymptotic
expansions of uðt; kÞ and Mðt; kÞ in the early time regime
of k ≫ HðtÞaðtÞ. The expansion for uðt; kÞ is in powers of
1=k and is not even local at first order,

uðt; kÞ ¼
�
1þ iαðtÞ

k
þ βðtÞ

k2
þO

�
1

k3

��

×
exp½−ik R t

ti
dt0
aðt0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ka2ðtÞ
p ; ð57Þ

αðtÞ ¼ 1

2

Z
t

ti

dt0½2 − ϵðt0Þ�H2ðt0Þaðt0Þ; ð58Þ

βðtÞ ¼ −
1

2
α2ðtÞ þ 1

4
½2 − ϵðtÞ�H2ðtÞa2ðtÞ: ð59Þ

In contrast, Mðt; kÞ gives a series in 1=k2 which is local to
all orders,

Mðt;kÞ¼
�
1þ ᾱðtÞ

k2
þ β̄ðtÞ

k4
þO

�
1

k6

��
×

1

2ka2ðtÞ ; ð60Þ

ᾱðtÞ ¼
�
1 −

1

2
ϵ

�
H2a2; ð61Þ
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β̄ðtÞ¼
�
9

4
ϵ

�
1−

2

3
ϵ

��
1−

1

2
ϵ

�
þ 9_ϵ

8H
−
3ϵ_ϵ

4H
þ ϵ̈

8H2

�
H4a4:

ð62Þ
Taking the norm squared of (57) helps to explain why our
formalism is so much more accurate than the generalized
slow roll approximation [46,47],

juðt; kÞj2 ¼
�
1þ iα

k
þ β

k2
þO

�
1

k3

��

×

�
1 −

iα
k
þ β

k2
þO

�
1

k3

��
×

1

2ka2
; ð63Þ

¼
�
1þ ½α2 þ 2β�

k2
þO

�
1

k4

��
×

1

2ka2
: ð64Þ

Comparing (64) with (60) reveals that one must expand
uðt; kÞ to second order to recover the first order correction
to Mðt; kÞ. Dvorkin and Hu have noted (in the context of a

late time expansion for the scalar mode functions, rather
than this early time expansion for the tensor mode
functions) that simply using the first order correction of
the mode function to infer the power spectrum does not
give a very accurate result [47]. From (64) we can see that it
also gives the misleading impression that the correction to
Mðt; kÞ is nonlocal, whereas one can see from expression
(59) that part of the second order correction exactly cancels
this, leaving a purely local correction to Mðt; kÞ.

B. Factoring out the constant ϵ part

Reflection on the early time expansion (60)–(62) leads
to the following form for the terms which include no
derivatives of ϵðtÞ,

M0ðt; kÞ ¼
1

2ka2ðtÞ
�
1þ

X∞
n¼1

fnðϵðtÞÞ
�
HðtÞaðtÞ

k

�
2n
�
;

ð65Þ

fnðϵÞ≡ ð2n − 1Þ!!
ð2nÞ!! ½ðnþ 1Þ − nϵ�½n − ðn − 1Þϵ� � � � ½3 − 2ϵ�½2 − ϵ�

× ½ðn − 1Þϵ − ðn − 2Þ�½ðn − 2Þϵ − ðn − 3Þ� � � � ½ϵ − 0�½0 − ð−1Þ�: ð66Þ

This is just M0ðt; kÞ ¼ ju0ðt; kÞj2, where u0ðt; kÞ is the
constant ϵ solution (20) evaluated at the instantaneous value
of ϵðtÞ. The evolution of ϵðtÞ is so slow in most cases that it
makes sense to factor M0ðt; kÞ out of the result and derive
an equation for the more sedate evolution of the residual
amplitude.
We begin by writing

Mðt; kÞ≡M0ðt; kÞ × ΔMðt; kÞ;
M0ðt; kÞ≡ ju0ðt; kÞj2: ð67Þ

Differentiating (67) results in the relations

_M ¼ _M0 × ΔM þM0 × Δ _M; ð68Þ

M̈ ¼ M̈0 × ΔM þ 2 _M0 × Δ _M þM0ΔM̈; ð69Þ

_M2

2M
¼

_M2
0

2M0

× ΔM þ _M0 × Δ _M þM0 ×
Δ _M2

2ΔM
; ð70Þ

1

2a6M
¼ 1

2a6M0

× ΔM þ 1

2a6M0

×

�
−ΔM þ 1

ΔM

�
: ð71Þ

Substituting relations (68)–(71) into (56) and dividing by
Mðt; kÞ gives

ΔM̈
ΔM

þ
�
3H þ

_M0

M0

�
Δ _M
ΔM

−
1

2

�
Δ _M
ΔM

�
2

þ 1

2a6M2
0

�
1 −

1

ΔM2

�

¼ −
M̈0

M0

− 3H
_M0

M0

−
2k2

a2
þ 1

2

�
_M0

M0

�
2

þ 1

2a6M2
0

≡ Sðt; kÞ: ð72Þ

This is an evolution equation for ΔMðt; kÞ, which is driven
by a source Sðt; kÞ. From (60)–(62) we see that the early
time expansion of ΔMðt; kÞ is

ΔMðt; kÞ ¼ 1þ
�
9_ϵ

8H
−
3ϵ_ϵ

4H
þ ̈ϵ
8H2

��
aH
k

�
4

þO

�
a6H6

k6

�
:

ð73Þ

C. Simplifications

Because M0ðt; kÞ is an exact solution for constant
ϵðtÞ, it must be that the source Sðt; kÞ is proportional to
_ϵ and ̈ϵ. This is not obvious from expression (72)
because of the complicated way M0ðt; kÞ depends upon
time explicitly through aðtÞ and implicitly through
zðt; kÞ and νðtÞ,
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M0ðt; kÞ ¼
πz
2
× jHð1Þ

ν ðzÞj2
2ka2ðtÞ ;

zðt; kÞ≡ k
ð1 − ϵÞHa

;

νðtÞ≡ 1

2
þ 1

1 − ϵ
: ð74Þ

In Appendix A we make the following simplifications:
(1) Define the z and ν dependent part of M0

as σðz; νÞ≡ ln½2ka2ðtÞ ×M0ðt; kÞ�;

(2) Use the chain rule to express time derivatives of
M0ðt; kÞ as z and ν derivatives of σðz; νÞ multiplied
by time derivatives of zðt; kÞ and νðtÞ;

(3) Use Bessel’s equation to eliminate the second z
derivative;

(4) Change variables in σðz; νÞ from z to ζ≡ lnðzÞ and
from ν≡ 1

2
þ Δν to ξ≡ ln½Δν�;

(5) Change the evolution variable from comoving time t
to the number of e-foldings N ≡ ln½aðtÞ=ai�; and

(6) Express ΔMðt; kÞ in terms of a new dependent
variable hðt; kÞ as ΔMðt; kÞ≡ exp½− 1

2
hðt; kÞ�.

When all of these things are done, Eq. (72) takes the form

∂2
Nh −

�
1

2
∂Nh

�
2

þ ½1 − ϵþ ∂Nσ�∂Nhþ ½2ð1 − ϵÞeζ−σ�2½eh − 1�

¼ 2

� ∂2
Nϵ

1 − ϵ
þ 2

� ∂Nϵ

1 − ϵ

�
2
� ∂σ
∂ζ þ 2

�
∂Nϵþ

∂2
Nϵ

1 − ϵ
þ 2

� ∂Nϵ

1 − ϵ

�
2
� ∂σ
∂ξ

þ 4

�
−∂Nϵþ

� ∂Nϵ

1 − ϵ

�
2
�� ∂2σ

∂ζ∂ξþ
1

2

∂σ
∂ζ

∂σ
∂ξ

�
þ 2

� ∂Nϵ

1 − ϵ

�
2
�∂2σ

∂ξ2 −
∂σ
∂ξ þ

1

2

�∂σ
∂ξ

�
2
�

þ 4

�
−2∂Nϵþ

� ∂Nϵ

1 − ϵ

�
2
�� ð2 − ϵÞ

ð1 − ϵÞ2 þ e2ζðe−2σ − 1Þ
�
: ð75Þ

If desired, the derivative of σ with respect to N on the first
line of (75) can be expressed like the terms on the right
hand side of the equation,

∂Nσ ¼
�
−ð1 − ϵÞ þ ∂Nϵ

1 − ϵ

� ∂σ
∂ζ þ

∂Nϵ

1 − ϵ

∂σ
∂ξ : ð76Þ

If Nk represents the e-folding at which the first horizon
crossing occurs, then one can express the scale factor in
terms of ΔN ≡ N − Nk,

a ¼ aieN ¼ aieNk × eΔN ¼ keΔN

HðtkÞ
: ð77Þ

Hence we have

Mðt;kÞ¼eσ−
1
2
h

2ka2

¼H2ðtkÞCðϵkÞ
2k3

×exp

�
σ− ln½CðϵkÞ�−2ΔN−

1

2
h

�
;

ð78Þ

where (26) gives CðϵÞ. The correction to the constant ϵ
prediction we are seeking is the late time limit of the
exponential factor in expression (78).

D. Asymptotic analysis

In using Eq. (75) it is important to understand its limiting
forms for early times (k ≫ Ha) and for late times
(k ≪ Ha). At early times zðt; kÞ is large and hðt; kÞ is
small. In Appendix B we expand each of the factors of
equation (75) to show that its early time limiting form is

∂2
Nhþ ð1 − ϵÞ∂Nhþ 4ð1 − ϵÞ2z2hþOðz0 × hÞ

¼ −
�
2ðνþ 3Þ∂Nϵþ

∂2
Nϵ

1 − ϵ

� ðν − 1
2
Þ

z2
þO

�
1

z4

�
: ð79Þ

Equation (79) represents a damped, driven oscillator
with

Friction Force ⇒ −ð1 − ϵÞ × ∂Nh; ð80Þ

Restoring Force ⇒ − 4ð1 − ϵÞ2z2 × h; ð81Þ

Driving Force ⇒ −
�
2ðνþ 3Þ∂Nϵþ

∂2
Nϵ

1 − ϵ

� ðν − 1
2
Þ

z2
: ð82Þ

The restoring force (81) pushes hðt; kÞ down to zero if it
ever gets displaced. The driving force (82) does push hðt; kÞ
away from zero, but its coefficient falls like 1=z2, whereas
the restoring force grows like z2. The “time” (that is, N)
derivatives are irrelevant at leading order in z, so the result
in this regime is just the local “tracking relation” we noted
in expression (73),
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hðt;kÞ ¼−
�
2ðνþ3Þ∂Nϵþ

∂2
Nϵ

1−ϵ

� ðν−1
2
Þ

4ð1−ϵÞ2z4þO

�
1

z6

�
;

ð83Þ

¼−
1

4
½ð9−7ϵÞ∂Nϵþ∂2

Nϵ�
�
Ha
k

�
4

þO

�
H6a6

k6

�
:

ð84Þ

This explains why the early time expansion is local to all
orders. It also explains the striking property of Fig. 2 that an
instantaneous jump in ϵðtÞ—which makes the source
diverge—has negligible effect until just a few e-foldings
before the first horizon crossing. One consequence is that
we may as well begin numerical evolution at N ¼ Nk − 7
using expansion (84) to determine the initial values of
hðt; kÞ and ∂Nhðt; kÞ.
At late times zðt; kÞ is small, but hðt; kÞ can grow to reach

significant values. In Appendix C we expand the various
factors of (75) to show that the late time limiting form is

∂2
Nh −

�
1

2
∂Nh

�
2

þ ½2∂NϵΔν2F þ 3 − ϵ�∂Nh

¼ 4∂NϵΔν½ð2Δνþ 1ÞF þ 1� þ 4

� ∂2
Nϵ

1 − ϵ

�
ΔνF

þ 4

� ∂Nϵ

1 − ϵ

�
2

Δν
�
ΔνF2 þ 2F − 1þ Δνψ 0

�
1

2
þ Δν

��

þOðz2Þ: ð85Þ

Here Fðt; kÞ stands for the quantity

F≡ −1 − ln

�
z
2

�
þ ψ

�
1

2
þ Δν

�

¼ ΔN − 1þ ln

�
2ð1 − ϵÞH
HðtkÞ

�
þ ψ

�
1

2
þ 1

1 − ϵ

�
: ð86Þ

The late time equation (85) implies

∂Nh ¼ 4∂NϵΔν2F þOðz2Þ; ð87Þ

∂2
Nh ¼ 4

� ∂2
Nϵ

1 − ϵ
þ 2

� ∂Nϵ

1 − ϵ

�
2
�
ΔνF þ 4∂NϵΔν

þ 4

� ∂Nϵ

1 − ϵ

�
2

Δν
�
−1þ Δνψ 0

�
1

2
þ Δν

��

þOðz2Þ: ð88Þ

Hence the asymptotic form of hðt; kÞ at late times is

hðt; kÞ ¼ 4ΔνϵΔN þ 4Δν ln
�

H
HðtkÞ

�
þ 2 ln

�
CðϵÞ
CðϵkÞ

�

− 2 ln½CðkÞ� þOðz2Þ: ð89Þ

Comparison with (78) reveals the unknown constant CðkÞ
as the correction factor we seek to the constant ϵ prediction
for the tensor power spectrum.

E. An analytic approximation for ΔMðt;kÞ ¼ e−
1
2hðt;kÞ

The behaviors we noted in the previous section are
generic, and they imply that we only need to bridge a small
range of e-foldings around first horizon crossing Nk to
carry the early form (84) into the late form (89). In this
region hðt; kÞ is small and we can linearize Eq. (75),

∂2
Nhþ ½1 − ϵþ ∂Nσ�∂Nhþ ½2ð1 − ϵÞeζ−σ�2h ≈ SðN;NkÞ;

ð90Þ

where SðN;NkÞ is the full source term on the right hand
side of (75). Just like the early time form (79), Eq. (90) is
a damped, driven harmonic oscillator. Figure 3 shows the
friction term for the V ¼ 1

2
m2φ2 model. Figure 4 gives

log and linear plots of the restoring force for the
same model.
It is easy to develop a Green’s function solution to (90).

Note that the homogeneous equation takes the form

χ00 −
ω0

ω
χ0 þ ω2χ ¼ 0;

χ0 ≡ ∂NχðN;NkÞ;
ω0 ≡ ∂NωðN;NkÞ; ð91Þ

where the frequency is

ωðN;NkÞ≡ 2ð1 − ϵÞeζ−σ: ð92Þ

The two linearly independent solutions of (91) can be
expressed in terms of the integral of ωðN;NkÞ,

FIG. 3. Graph of ð1 − ϵþ ∂NσÞ as a function of N, assuming
Nk ¼ 50 and ϵðNÞ ¼ 1

200−2N, which corresponds to VðφÞ ∝ φ2.
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χ�ðN;NkÞ ¼ exp

�
�i

Z
N

0

dnωðn;NkÞ
�
⇒ χ0þχ− − χþχ0−

¼ 2iω: ð93Þ

Hence the retarded Green’s function we seek is

GðN;N0Þ ¼ θðN − N0Þ
ωðN0; NkÞ

sin
�Z

N

N0
dnωðn;NkÞ

�
: ð94Þ

And the Green’s function solution to (90) is

hðt; kÞ ¼
Z

N

0

dn sin

�Z
N

n
dn0ωðn0; NkÞ

�
Sðn;NkÞ
ωðn;NkÞ

: ð95Þ

The asymptotic expansion (84) is so accurate at early
times that one may as well begin the evolution at some
point near to the first horizon crossing, say N1 ¼ Nk − 7.
Then the Green’s function solution takes the form

hðt; kÞ ¼ cos

�Z
N

N1

dnωðn;NkÞ
�
× hðt1; kÞ

þ sin

�Z
N

N1

dnωðn; NkÞ
�
×
∂Nhðt1; NkÞ
ωðN1; NkÞ

þ
Z

N

N1

dn sin

�Z
N

n
dn0ωðn0; NkÞ

�
Sðn;NkÞ
ωðn;NkÞ

:

ð96Þ

The initial values hðt1; kÞ and ∂Nhðt1; kÞ can be either
computed from (84) or simply approximated as zero.
Whether one uses expression (95) or (96), the goal is to

evolve it to some point safely after the first horizon
crossing, say N2 ¼ Nk þ 7. Then the nonlocal correction
factor CðkÞ can be estimated by ignoring the order z2 terms
in expression (89),

CðkÞ ≈ exp

�
2Δν2ϵ2ΔN2 þ 2Δν2 ln

�
Hðt2Þ
HðtkÞ

�

þ ln

�
Cðϵ2Þ
CðϵkÞ

�
−
1

2
hðt2; kÞ

�
: ð97Þ

Expression (97) is radically different from other numerical
schemes for computing the tensor power spectrum in that it
gives an approximate but closed form expression for
arbitrary first slow roll parameter ϵðNÞ. One consequence
is that we can use the transformation (17) to immediately
read off the analogous correction to the constant ϵ pre-
diction (24) for the scalar power spectrum. Expression (97)
is also the best way of deconvolving features in the power
spectrum [69,70] to reconstruct the geometrical conditions
which produced them.

V. NUMERICAL ANALYSES

The purpose of this section is to support various
conclusions using numerical solutions of our full
Eq. (75) for hðt; kÞ. Recall that the full amplitude is given
by Mðt; kÞ ¼ M0ðt; kÞ × exp½− 1

2
hðt; kÞ�, where M0ðt; kÞ is

the known constant ϵ solution (74). Recall also that the
ultimate observable is the correction factor CðkÞ—inferred
from hðt; kÞ using expression (89)—to the constant ϵ
approximation (25) for the tensor power spectrum.

A. CðkÞ − 1 is small for smooth models

It has long been obvious the constant ϵ approximations
(24) and (25) are wonderfully accurate for models in which
ϵ is small and varies smoothly near the first horizon
crossing [24]. Figure 5 confirms this for two simple
monomial potentials,

VðφÞ ∝ φ2 ⇒ ϵðNÞ ¼ 1

200 − 2N
; ð98Þ

FIG. 4. Log (left) and linear (right) plots of ½2ð1 − ϵÞeζ−σ �2 as a function of N, assuming Nk ¼ 50 and ϵðNÞ ¼ 1
200−2N, which

corresponds to VðφÞ ∝ φ2.
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VðφÞ ∝ φ4 ⇒ ϵðNÞ ¼ 1

100 − N
: ð99Þ

Figure 5 also answers the first of the questions posed at
the end of the Introduction: it seems that the constant ϵ
approximation is most accurate for ϵ near to ϵk. One can see
this by comparing the value of the correction factor CðϵÞ,
defined in (26), with the nonlocal correction factor CðkÞ
shown in Fig. 5, over the 20 e-foldings of the first horizon
crossing (40 < Nk < 60) depicted,

VðφÞ ∝ φ2 ⇒
�
0.99546 < CðϵkÞ < 0.99317

0.99996 < CðkÞ < 0.99991

�
; ð100Þ

VðφÞ ∝ φ4 ⇒

�
0.99084 < CðϵkÞ < 0.98619

0.99992 < CðkÞ < 0.99982

�
: ð101Þ

There is about 50 times more variation in CðϵkÞ than in
CðkÞ, limiting the potential improvement to a positive offset
of about ΔN ≈ 20

50
¼ 0.4. Because other models show

CðkÞ > 1 there is actually no preference for shifting the
point at which ϵ is evaluated.

B. CðkÞ − 1 significant for changes near
horizon crossing

It has also long been understood that the constant ϵ
formulas require significant corrections when ϵðNÞ suffers
large variation within several e-foldings of the first horizon
crossing [66,67]. We already saw this in the exact results
depicted in Fig. 2 for an instantaneous jump in ϵ. Figure 6
makes the same point for two smooth transitions. The left
hand graph shows the effect on CðkÞ of a smooth transition
from ϵ ¼ 0 to ϵ ¼ 1

2
via a logistic function centered at a

critical value Nc,

ϵðNÞ ¼ 0.5
1þ eNc−N

: ð102Þ

The right hand graph shows CðkÞ for a VðφÞ ∝ φ2 model
which experiences a Gaussian bump, centered at Nc, which
actually induces a brief deceleration,

ϵðNÞ ¼ 1

200 − 2N
þ exp½−10ðN − NcÞ2�: ð103Þ

This is one of the models for which CðkÞ is larger than one.

C. Equation (96) is quite accurate near
horizon crossing

The previous two points were known before in general
terms. Our contributions in this paper are the following:

FIG. 6. Correction factors CðkÞ to the constant ϵ approximation for two models with smooth transitions centered at an arbitrary point
Nc. The first model has ϵðNÞ ¼ 1

2½1þeNc−N �, corresponding to the left hand graph. The right hand graph corresponds to a VðφÞ ∝ φ2 which

experiences a Gaussian “blip” defined by (103). In each case horizon crossing is fixed at Nk ¼ 50, and the graph shows how CðkÞ
changes as Nc varies.

FIG. 5. Correction factors CðkÞ to the constant ϵ approxima-
tion for ϵðNÞ ¼ ½200 − 2N�−1 (blue dots), corresponding
VðφÞ ∝ φ2, and for ϵðNÞ ¼ ½100 − N�−1 (yellow dots), corre-
sponding to VðφÞ ∝ φ4.
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(1) An analytic quantification—through the asymptotic
expansions (84) and (89)—of when to expect
significant corrections to the constant ϵ approxima-
tion; and

(2) An analytic approximation (96) of the function
hðt; kÞ which gives us the nonlocal correction factor
through expression (97).

Figure 7 shows just how accurate our approximation is in
the period before the first horizon crossing. It even catches
the turning points at N ∼ 49.8.
Our analytic approximation (96) continues to be very

accurate after the first horizon crossing for models in
which there is no significant evolution of ϵðtÞ at late
times. Figure 8 illustrates this by showing hðt; kÞ versus
N for a class of models in which ϵ makes a transition
(centered about the horizon crossing of Nk ¼ 50) from
an early value of ϵ ¼ 1

200
to a late value of ϵ ¼ 1

10

through a logistic function with steepness parameter
K ¼ 1, 2, 10,

ϵðNÞ ¼ 1

200
þ

19
200

1þ exp½−KðN − NkÞ�
: ð104Þ

In each case the horizon crossing value is ϵk ¼ 41
400

.
Note from Fig. 8 that the final value of hðt; kÞ is

largest when the transition is most gradual. Because the
full amplitude is Mðt; kÞ ¼ M0ðt; kÞ × exp½− 1

2
hðt; kÞ�,

one might expect that Mðt; kÞ therefore freezes into a
smaller amplitude for a more gradual transition. In fact,
the reverse is true because only the value of ϵ near the
horizon crossing is relevant, so making ϵ stay small
longer causes the freeze-in amplitude to be larger. This is
evident from the nonlocal correction factors CðkÞ for the
three cases,

K ¼ 1 ⇒ CðkÞ ¼ 0.993556 ð0.994121Þ; ð105Þ

K ¼ 2 ⇒ CðkÞ ¼ 0.989201 ð0.989418Þ; ð106Þ

FIG. 7. The prehorizon crossing regime of hðt; kÞ for two simple models. The left hand graph shows ϵðNÞ ¼ ½200 − 2N�−1,
corresponding to VðφÞ ∝ φ2, and the right hand graph shows ϵðNÞ ¼ ½100 − N�−1, corresponding to VðφÞ ∝ φ4. In each case the
continuous blue line represents numerical evolution of the full nonlinear equation (75), and the yellow dots give the analytic
approximation (96).

FIG. 8. The pre- and posthorizon crossing regimes for ϵðNÞ ¼ 0.005þ 0.095 × ð1þ exp½−K × ðN − NkÞ�Þ−1, forK ¼ 1 (left),K ¼ 2
(center), and K ¼ 10 (right). Each of these models interpolates between ϵ ¼ 0.005 at early times to ϵ ¼ 0.100 at late times, with
ϵk ¼ 0.0525. The continuous blue line represents numerical evolution of the full nonlinear equation (75), and the yellow dots give the
analytic approximation (96).
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K ¼ 10 ⇒ CðkÞ ¼ 0.975152 ð0.975230Þ: ð107Þ

(The parenthesized values are for the linearized approxi-
mation, which shows that it is indeed quite good.) We
fixed the values of HðtkÞ and aðtkÞ to be the same for
each model, so these correction factors give the relative
freeze-in amplitudes for Mðt; kÞ.
The much larger and opposite-sense effect which is

evident in the asymptotic values of hðt; kÞ of Fig. 8 is
needed to compensate for the factor M0ðt; kÞ. Recall from
Sec. III B that if ϵðtÞ becomes constant at ϵ1 for times
t > t1, then we can write

ϵðtÞ ¼ ϵ1 ⇒ HðtÞaϵ1ðtÞ ¼ H1a
ϵ1
1 ; ð108Þ

where H1 ≡Hðt1Þ and a1 ≡ aðt1Þ. Each of the three
models has effectively reached this condition by 10
e-foldings after the first horizon crossing, but the values
of H1 and a1 are smaller the steeper the transition. That
affects the factor of M0ðt; kÞ, which approaches a constant
given by (22),

M0ðt; kÞ →
H2ðtkÞ
2k3

× Cðϵ1Þ ×
�

H1a
ϵ1
1

HðtkÞaϵ1ðtkÞ
� 2

1−ϵ1 : ð109Þ

The final factor of (109) is significantly larger for more
gradual transitions, which is mostly canceled by the larger
asymptotic values of hðt; kÞ, to leave the small effect
evident in the nonlocal correction factors (105)–(107).
The same late time effect of hðt; kÞ partially compensat-

ing for changes in M0ðt; kÞ is evident from the results for
VðφÞ ∝ φ2 and VðφÞ ∝ φ4 models displayed in Fig. 9. In
this case ϵðtÞ continues to evolve after the first horizon
crossing. Considered as a function of N we have
∂N ln½HðNÞ� ¼ −ϵðNÞ, so the asymptotic form (89) can
be reexpressed as

hðt; kÞ ¼ 4

1 − ϵðNÞ
Z

N

Nk

dnΔnϵ0ðnÞ þ 2 ln

�
CðϵðNÞÞ
CðϵkÞ

�

− 2 ln½CðkÞ� þOðe−2ΔNÞ; ð110Þ

where Δn≡ n − Nk and ΔN ≡ N − Nk. Because ϵ typ-
ically grows slowly with N (as it does for both of the
models in Fig. 9), the integral grows and dominates the
slowly falling logarithm of (110), so that hðt; kÞ grows
like ΔN2. This growth is evident for both models
in Fig. 9.

D. Problems long after horizon crossing

Of course, too much growth endangers the linearized
approximation we made in passing from the full equa-
tion (75) to (90). Recall that this entails changing two
terms,

−
�
1

2
∂Nh

�
2

→ 0; ð111Þ

exp

�
hðt; kÞ

�
− 1 → hðt; kÞ: ð112Þ

There is never any problem with (112) because hðt; kÞ is
small before the first horizon crossing and the coefficient of
this term is minuscule after the first horizon crossing. The
problematic approximation is (111), although only in the
region after the first horizon crossing for models in which ϵ
evolves at very late times. One can see from expression (87)
that two terms contribute to provide the factor of F2 ∼ ΔN2

[recall the definition (86) of F] which is evident in the late
time evolution equation (85),

−
�
1

2
∂Nh

�
2

→ −½2∂NϵΔν2F�2; ð113Þ

FIG. 9. The pre- and posthorizon crossing regimes of hðt; kÞ for two simple models. The left hand graph concerns
ϵðNÞ ¼ ½200 − 2N�−1, corresponding to VðφÞ ∝ φ2, and the right hand graph concerns ϵðNÞ ¼ ½100 − N�−1, corresponding to
VðφÞ ∝ φ4. In each case the continuous blue line represents numerical evolution of the full nonlinear equation (75), and the yellow dots
give the analytic approximation (96).
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2∂NϵΔν2F × ∂Nh →þ 2½2∂NϵΔν2F�2: ð114Þ

These terms are enhanced by the factor of F2 ∼ ΔN2 but
suppressed by ð∂NϵÞ2. In the full nonlinear equation (113)
cancels half of (114), but this cancellation does not happen
in the linearized equation because (113) is not present.
Hence we expect the very late time growth of the linearized
approximation (96) to be less than what it is for the actual
solution. This is barely evident in Fig. 10 for the VðφÞ ∝ φ2

model at very late times.
The problem we have just described might seem serious,

but it is not. The full amplitude Mðt; kÞ ¼ M0ðt; kÞ ×
exp½− 1

2
hðt; kÞ� really does become constant shortly after

the first horizon crossing. The growth of hðt; kÞ is only an
artifact of being factored out byM0ðt; kÞ, which also grows
for models in which ϵ increases at late times. Because the
problem has such a simple origin, there are two easy fixes:
(1) Either evaluate CðkÞ using expression (97) at some

point N2 before nonlinear effects become impor-
tant or

(2) Subtract the right hand side of (113) from the source
SðN;NkÞ in the Green’s function solution.

VI. EPILOGUE

The full scalar and tensor power spectra can be expressed
in terms of two amplitudes Nðt; kÞ and Mðt; kÞ,

Δ2
RðkÞ ¼

2Gk3

π
× Nðt ≫ tk; kÞ × f1þOðGH2Þg; ð115Þ

Δ2
hðkÞ ¼

32Gk3

π
×Mðt ≫ tk; kÞ × f1þOðGH2Þg: ð116Þ

If the one loop corrections of orderGH2 ≲ 10−11 are ever to
be resolved, we must have precise predictions for the two
amplitudes. Part of this problem entails finding a unique

model for primordial inflation, which is beyond the scope
of our present effort. We have instead focused on predicting
how the amplitudes depend upon the inflationary expansion
history aðtÞ. Our analysis is based on earlier work in
which nonlinear equations for the two amplitudes were
derived [44,45].
Because the transformation (17) carries Mðt; kÞ into

Nðt; kÞ, we worked with the simpler tensor amplitude.
We express its late time limiting form as

Mðt ≫ tk; kÞ ¼
H2ðtkÞ
2k3

× CðϵðtkÞÞ × CðkÞ; ð117Þ

where CðϵÞwas defined in expression (26) and graphed in
Fig. 1. Our numerical studies show that this factor really
does need to be present, and it is best to evaluate it at the
time tk of the first horizon crossing. The remaining factor
CðkÞ represents nonlocal effects from the expansion
history before and after the first horizon crossing. It
has long been clear that this factor is close to unity for
models in which ϵðtÞ is smooth near the first horizon
crossing, but CðkÞ can give significant corrections when
there are large changes within a few e-foldings of the first
horizon crossing [66,67].
Our key results (89) and (97) give, for the first time ever,

a good analytic approximation for the nonlocal correction
factor CðkÞ. Our technique was to first get close to the exact
solution by factoring out the known, constant ϵ solution
M0ðt; kÞ,

Mðt; kÞ ¼ M0ðt; kÞ × exp

�
−
1

2
hðt; kÞ

�
: ð118Þ

Of course, this means that the evolution equation (75) for
hðt; kÞ is driven by a source term which vanishes whenever
ϵðtÞ is constant. From the equation’s asymptotic early time
form (79) we can see that hðt; kÞ behaves as a damped,

FIG. 10. Each graph shows the model with ϵðNÞ ¼ ½200 − 2N�−1, corresponding to VðφÞ ∝ φ2. Horizon crossing is at Nk ¼ 50 and
inflation ends at N ¼ 99.5. In each case the blue line represents numerical evolution of the full nonlinear equation (75), and the yellow
line gives our analytic approximation (96).
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driven harmonic oscillator. For more than a few e-foldings
before the first horizon crossing the restoring force (81) is
so large that hðt; kÞ is both small and completely deter-
mined by local conditions according to a wonderfully
convergent expansion (84). That is evident from Fig. 2
even for an instantaneous jump in ϵðtÞ.
As long as ∂Nhðt; kÞ remains small, the full Eq. (75) can

be linearized to a form (90) for which we were able to
derive a Green’s function solution (96). It cannot be
overstressed that this solution pertains for an arbitrary
inflationary expansion history. The assumption of linearity
on which it is based should be valid long before the first
horizon crossing. It can break down long after the first
horizon crossing but in a way which is very simple to repair.
Our formalism differs from the generalized slow roll

approximation [46,47] in three ways:
(1) Instead of correcting the mode function uðt; kÞ and

then inferring how this affects Mðt; kÞ≡ juðt; kÞj2,
we correct Mðt; kÞ directly;

(2) Our 0th order term is exact for arbitrary constant
ϵðtÞ; and

(3) Our corrections are multiplicative rather than
additive.

As the early time expansions (64) and (60) show, our
formalism captures effects at first order which require going
to second order in the generalized slow roll expansion.
Given a specific model, the additional accuracy of our
formalism is not required for the analysis of current data. Its
advantage derives rather from the more explicit connection
it makes between data and a general, initially unknown
model. This has potential applications for the power spectra
on three time scales:
(1) For current data it facilitates the process of infer-

ring the sorts of models which might explain
anomalies;

(2) For next generation data, which might begin resolv-
ing the tensor power spectrum, it permits exploita-
tion of the general relation (17) between the tensor
and scalar power spectra to develop a version of the
single scalar consistency relation [48–50] that could
be employed before the tensor spectral index has
been well measured; and

(3) For far future data, when the full development of
21 cm cosmology might permit loop corrections to
be resolved, it elucidates both when the loop
counting parameter of GH2ðtÞ should be evaluated,
and whether there can be enhancements of the
form ϵlate=ϵearly.

Our work also has three more general applications. First,
there is a close relation between Mðt; kÞ and the vacuum
expectation value of a massless, minimally coupled (MMC)
scalar,

hΩjφ2ðt; ~xÞjΩi ¼
Z

dkk2

2π2
Mðt; kÞ: ð119Þ

This relation should allow us to estimate the secular
growth for an arbitrary inflationary expansion history,
which is an important step in building nonlocal models to
represent the quantum gravitational backreaction on
inflation [52–54,71]. Second, note that our transforma-
tion (17) could be used to convert the propagator of a
MMC scalar into the propagator for the scalar perturba-
tion field ζðt; ~xÞ for an arbitrary inflationary expansion
history. Of course, we do not have a MMC scalar
propagator for arbitrary aðtÞ, but perhaps the transforma-
tion could be used to derive relations between loops
involving gravitons and loops involving ζ. Finally, our
technique for passing from the oscillatory mode functions
to their norm squared [44,45] can be applied for any
perturbations whose mode functions obey second order
equations. It would be interesting to see what it gives for
Higgs inflation and for fðRÞ models of inflation.
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APPENDIX A: SIMPLIFYING EQ. (72)

The first time derivative of M0ðt; kÞ is

_M0 ¼ −2HM0 þ _zM0
0 þ _ν∂νM0; ðA1Þ

where a prime stands for the derivative with respect to z
and ∂ν denotes differentiation with respect to ν. It is
best to postpone using the explicit expressions for _z
and _ν,

_z ¼ −
k
a
þ _ϵ

1 − ϵ
× z; _ν ¼ _ϵ

ð1 − ϵÞ2 : ðA2Þ

The time second derivative of M0ðt; kÞ is

M̈0 ¼ ð4þ 2ϵÞH2M0 þ ð−4H_zþ ̈zÞM0
0

þ ð−4H _νþ ν̈Þ∂νM0

þ _z2M00
0 þ 2_z _ν ∂νM0

0 þ _ν2∂2
νM0: ðA3Þ
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Bessel’s equation implies that M00
0 can be eliminated

using

M00
0 þ 2M0 − 2ð2 − ϵÞH

2a2

k2
M0 ¼

1

2M0

�
M02

0 þ 1

k2a4

�
:

ðA4Þ
The other derivatives we require are

3H _M0 ¼ −6H2M0 þ 3H_zM0
0 þ 3H _ν∂νM0; ðA5Þ

−
_M2
0

2M0

¼ −2H2M0 þ 2H_zM0
0 þ 2H _ν∂νM0

−
ð_zM0

0 þ _ν∂νM0Þ2
2M0

: ðA6Þ

Substituting everything into the definition (72) of Sðt; kÞ
gives

Sðt; kÞ ¼ −ðH_zþ ̈zÞM
0
0

M0

− ðH _νþ ν̈Þ ∂νM0

M0

− 2_z _ν

�∂νM0
0

M0

−
M0

0

2M0

∂νM0

M0

�

− _ν2
�∂2

νM0

M0

−
1

2

�∂νM0

M0

�
2
�
−
�
_z2 −

k2

a2

�

×

� ð4 − 2ϵÞ
ð1 − ϵÞ2z2 − 2þ 1

2k2a4M2
0

�
: ðA7Þ

Each of the five terms on the right hand side of (A7) is
proportional to at least one derivative of ϵðtÞ. Before
exhibiting this it is desirable to isolate the ϵ-dependent
part of the index ν, and to change from comoving time t to
the number of e-foldings since the beginning of inflation
N ≡ ln½aðtÞ=ai�,

Δν≡ 1

1 − ϵ
;

d
dt

¼ H
d
dN

;

d2

dt2
¼ H2

�
d2

dN2
− ϵ

d
dN

�
: ðA8Þ

With this notation the five prefactors from the right hand
side of (A7) are

H_zþ ̈z ¼
�
Hϵ_ϵ

1 − ϵ
þ ̈ϵ
1 − ϵ

þ 2

�
_ϵ

1 − ϵ

�
2
�
z

¼ H2

� ∂2
Nϵ

1 − ϵ
þ 2

� ∂Nϵ

1 − ϵ

�
2
�
z; ðA9Þ

H _νþ ν̈ ¼
�
H_ϵ

1 − ϵ
þ ̈ϵ
1 − ϵ

þ 2

�
_ϵ

1 − ϵ

�
2
�
Δν

¼ H2

�
∂Nϵþ

∂2
Nϵ

1 − ϵ
þ 2

� ∂Nϵ

1 − ϵ

�
2
�
Δν; ðA10Þ

2_z _ν ¼
�
−2H_ϵþ 2

�
_ϵ

1 − ϵ

�
2
�
zΔν

¼ H2

�
−2∂Nϵþ 2

� ∂Nϵ

1 − ϵ

�
2
�
zΔν; ðA11Þ

_ν2 ¼
�

_ϵ

1 − ϵ

�
2

Δν2 ¼ H2

� ∂Nϵ

1 − ϵ

�
2

Δν2; ðA12Þ

_z2 −
k2

a2
¼

�
−2H_ϵþ

�
_ϵ

1 − ϵ

�
2
�
z2

¼ H2

�
−2∂Nϵþ

� ∂Nϵ

1 − ϵ

�
2
�
z2: ðA13Þ

In comparing expressions (A9)–(A13) with (A7) it will
be seen that every derivative with respect to z is paired with
one factor of z, and every derivative with respect to ν is
paired with one factor of Δν. This suggests differentiating
with respect to the logarithms,

ζ ≡ lnðzÞ ⇒ z
∂
∂z ¼

∂
∂ζ ;

ξ≡ lnðΔνÞ ⇒ Δν
∂
∂ν ¼

∂
∂ξ : ðA14Þ

From (A7) it is also apparent that the factor of 2ka2 in
the denominator of M0ðt; kÞ is always canceled, by
either ratios or explicit factors. It is best to define a
new variable for the logarithm of the factor in the
numerator (74),

σðz; νÞ≡ ln

�
πz
2
jHð1Þ

ν ðzÞj2
�
¼ ln

�
πz
2
½J2νðzÞ þ N2

νðzÞ�
�
:

ðA15Þ

Our final form for the source is therefore
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Sðt; kÞ
H2

¼ −
� ∂2

Nϵ

1 − ϵ
þ 2

� ∂Nϵ

1 − ϵ

�
2
� ∂σ
∂ζ −

�
∂Nϵþ

∂2
Nϵ

1 − ϵ
þ 2

� ∂Nϵ

1 − ϵ

�
2
� ∂σ
∂ξ

− 2

�
−∂Nϵþ

� ∂Nϵ

1 − ϵ

�
2
�� ∂2σ

∂ζ∂ξþ
1

2

∂σ
∂ζ

∂σ
∂ξ

�
−
� ∂Nϵ

1 − ϵ

�
2
�∂2σ

∂ξ2 −
∂σ
∂ξ þ

1

2

�∂σ
∂ξ

�
2
�

− 2

�
−2∂Nϵþ

� ∂Nϵ

1 − ϵ

�
2
�� ð2 − ϵÞ

ð1 − ϵÞ2 þ e2ζðe−2σ − 1Þ
�
: ðA16Þ

We obviously want to make the same changes on the
left hand side of (A7). It is also desirable to change the
dependent variable from ΔM to hðt; kÞ≡ −2 ln½ΔMðt; kÞ�,
all of which implies

ΔM̈
ΔM

þ
�
3Hþ

_M0

M0

�
Δ _M
ΔM

−
1

2

�
Δ _M
ΔM

�
2

þ 1

2a6M2
0

�
1−

1

ΔM2

��

¼−
H2

2

�
∂2
Nh−

�
1

2
∂Nh

�
2

þ ½1− ϵþ ∂Nσ�∂Nh

þ½2ð1− ϵÞeζ−σ�2½eh− 1�
�
: ðA17Þ

Equating (A16) to (A17) and dividing out the common
factor of − 1

2
H2 gives the final form (75) of our evolution

equation.

APPENDIX B: EQUATION (75)
AT EARLY TIMES

In the early time regime the parameter zðt; kÞ≡ k
ð1−ϵÞHa is

large which implies

πz
2
jHð1Þ

ν ðzÞj2 ¼ 1þ ðν2 − 1
4
Þ

2z2
þ 3ðν2 − 1

4
Þðν2 − 9

4
Þ

8z4
þO

�
1

z6

�
:

ðB1Þ

Hence the early time expansion for σðz; νÞ is

σðz; νÞ ¼ ðν2 − 1
4
Þ

2z2
þ ðν2 − 1

4
Þðν2 − 13

4
Þ

4z4
þ…: ðB2Þ

Expression (B2) implies the following expansions for the
various σ-dependent factors in (75):

½1 − ϵþ ∂Nσ� ¼ 1 − ϵþO

�
1

z2

�
; ðB3Þ

½2ð1 − ϵÞeζ−σ�2 ¼ 4ð1 − ϵÞ2z2 þOð1Þ; ðB4Þ

∂σ
∂ζ ¼ −

ðν2 − 1
4
Þ

z2
þO

�
1

z4

�
;

∂σ
∂ξ ¼ ðν2 − 1

2
νÞ

z2
þO

�
1

z4

�
; ðB5Þ

� ∂2σ

∂ζ∂ξþ
1

2

∂σ
∂ζ

∂σ
∂ξ

�
¼ −

ð2ν2 − νÞ
z2

þO

�
1

z4

�
; ðB6Þ

�∂2σ

∂ξ2 −
∂σ
∂ξ þ

1

2

�∂σ
∂ξ

�
2
�
¼ ðν − 1

2
Þ2

z2
þO

�
1

z4

�
; ðB7Þ

� ð2 − ϵÞ
ð1 − ϵÞ2 þ e2ζðe−2σ − 1Þ

�
¼ 3ðν2 − 1

4
Þ

2z2
þO

�
1

z4

�
: ðB8Þ

Substituting these expansions in (75) and additionally
neglecting nonlinear terms in hðt; kÞ gives Eq. (79).

APPENDIX C: EQUATION (75) AT LATE TIMES

In the late time regime of zðt; kÞ ≪ 1, but still with
0 ≤ ϵðtÞ < 1, it is the small argument expansion of the
Neumann function in (A15) which controls the behavior of
σðz; νÞ,

σ ¼ ln

�
Γ2ðνÞ
π

�
2

z

�
2ν−1

�
þOðz2Þ

¼ 2Δν
�
ΔN þ ln

�
H

HðtkÞ
��

þ ln½CðϵÞ� þOðz2Þ: ðC1Þ

Its derivative involves the digamma function
ψðzÞ≡ d

dz ln½ΓðzÞ�,

∂Nσ ¼ 2þ 2Δν
∂Nϵ

1 − ϵ

�
−1 − ln

�
z
2

�
þ ψ

�
1

2
þ Δν

��

þOðz2Þ: ðC2Þ

The term in square brackets is defined in expression (86)
and grows roughly linearly in N. The seven σ-dependent
factors of expression (75) have the expansions

½1 − ϵþ ∂Nσ� ¼ 3 − ϵþ ∂Nϵ

1 − ϵ
× 2ΔνF þOðz2Þ; ðC3Þ

½2ð1 − ϵÞeζ−σ�2 ¼ 4ð1 − ϵÞ2z2 ×
�
z
2

�
4Δν π2

Γ4ðνÞ
þOðz4þ4ΔνÞ; ðC4Þ
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∂σ
∂ζ ¼ −2ΔνþOðz2Þ;
∂σ
∂ξ ¼ 2ΔνðF þ 1Þ þOðz2Þ; ðC5Þ

� ∂2σ

∂ζ∂ξþ
1

2

∂σ
∂ζ

∂σ
∂ξ

�

¼ −2Δν2ðF þ 1Þ − 2ΔνþOðz2Þ; ðC6Þ

�∂2σ

∂ξ2 −
∂σ
∂ξ þ

1

2

�∂σ
∂ξ

�
2
�

¼ 2Δν2
�
ðF þ 1Þ2 þ ψ 0

�
1

2
þ Δν

��
þOðz2Þ; ðC7Þ

� ð2 − ϵÞ
ð1 − ϵÞ2 þ e2ζðe−2σ − 1Þ

�
¼ Δνþ Δν2 þOðz2Þ: ðC8Þ

From (C4) the restoring force drops out of (75), but all the
other terms contribute to give the late time limiting form (85).
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