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We study transitions of hadronic matter (HM) to three-flavor quark matter (3QM), regarding the
conversion processes as combustion and describing them hydrodynamically. Under the assumption that
HM is metastable with their free energies being larger than those of 3QM but smaller than those of two-
flavor quark matter, we consider in this paper the conversion induced by diffusions of the seed 3QM. This is
a sequel to our previous paper, in which the shock-induced conversion was studied in the same framework.
We not only pay attention to the jump condition on both sides of the conversion front, but the structures
inside the front are also considered by taking into account what happens during the conversion processes on
the time scale of weak interactions. We employ for HM Shen’s equation of state (EOS), which is based on
the relativistic mean field theory, and the bag model-based EOS for quark matter just as in the previous
paper. We demonstrated in that paper that in this combination of EOSs, the combustion will occur for a
wide range of the bag constant and strong coupling constant in the so-called endothermic regime, in which
the Hugoniot curve for combustion runs below the initial state. Elucidating the essential features of the
diffusion-induced conversion both in the exothermic and endothermic regimes first by a toy model, we then
analyze more realistic models. We find that weak deflagration nearly always occurs and that weak
detonation is possible only when the diffusion constant is (unrealistically) large and the critical strange
fraction is small. The velocities of the conversion front are ∼103–107 cm=s depending on the initial
temperature and density as well as the parameters in the quark matter EOS and become particularly small
when the final state is in the mixed phase. Finally we study linear stability of the laminar weak-deflagration
front and find that it is unstable in the exothermic regime (Darrius-Landau instability) but stable in the
endothermic regime, which is quite contrary to the ordinary combustions.
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I. INTRODUCTION

The hadronic equation of state (EOS) at supranuclear
densities (≳2.8 × 1014 g=cm3), which are believed to
prevail at the central region of neutron stars, is still highly
uncertain. It is possible that quark matter (QM) exists over a
substantial part of a neutron star (such a star is referred to as
a hybrid star), and, indeed, the entire star may consist of
deconfined quarks [1,2] if three-flavor quark matter (3QM),
which is referred to as strange quark matter (SQM) in this
case, is the most stable state at zero pressure. SQM is a bulk
QM, which is composed of up, down and strange quarks
(plus a small fraction of electrons for charge neutrality). If
SQM is formed in a neutron star by some mechanism (see,

e.g., Refs. [2,3]), which is referred to as a seed in the
following, hadronic matter (HM) will be subsequently
converted to SQM at the boundary of HM and SQM,
and the entire star will be eventually composed of SQM and
is called the strange star.
If SQM is the true ground state of strong interactions,

HM should be a metastable state, and its decay is avoided
by the fact that intermediate states with smaller fractions of
strangeness are unstable compared with HM. The con-
version of the metastable state to the truly stable state
separated by unstable states can be regarded as combustion:
HM is a fuel, and SQM is an ash; there is a conversion front
in between, in which the mixtures of fuel and ash exist and
the conversion process takes place. This conversion region
is very thin compared with macroscopic scales, e.g., stellar
radii. In the hydrodynamical description of terrestrial*furusawa@cfca.jp
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combustions [4–6], the fuel and ash are related with each
other by the so-called Hugoniot relation, and there are in
general four combustion modes, strong/weak detonation/
deflagration, of which the strong deflagration is thought to
be unrealizable. Which mode actually occurs is determined
by the conversion mechanism and parameters involved.
Many researchers have investigated with different

approaches the combustion modes that are actually real-
ized, the propagation speed of the conversion front [3,7–16]
and the global conversion of compact stars [17,18]. There is
no consensus yet on how the combustion proceeds in
neutron stars [19]. In this pair of papers [20], we study
locally the transitions of HM to 3QM from the hydrody-
namical point of view. We assume that HM is metastable
and has free energies that are higher (or less stable) than
those of 3QM but are lower (or more stable) than those of
2QM. Note that it is not necessarily assumed that 3QM is
absolutely stable, i.e., the most stable at zero pressure,
although the SQM hypothesis is included as a subset. In
fact, the SQM hypothesis is not necessary for the con-
version from HM to QM [21]. We are just considering the
formation of hybrid stars then, and 3QM will be recon-
verted to HM if decompressed. The SQM hypothesis is
necessary, on the other hand, for the existence/formation of
strange stars, which would never be converted back to
hadronic stars once formed. The main difference from the
previous studies is that not only the Hugoniot relation
between HM on one side of the conversion front and 3QM
on the other side but the structures inside the front are also
considered by taking into account what will happen during
the conversion processes as well as equations of state
(EOSs) in the mixed phase. The length scale of our interest
is the one determined by weak interactions, which is
actually the width of the conversion front and much larger
than the mean free path for strong interactions, whereas it is
much smaller than the macroscopic scales, e.g., stellar radii.
This justifies the employment of the hydrodynamical
description in plane symmetry. We are mainly interested
in which combustion modes (strong/weak detonation/
deflagration) are likely to be realized for the following
two scenarios: (1) the transition via 2QM triggered by a
rapid increase in density owing to the passage of a shock
wave and (2) the conversion induced by diffusions of a seed
3QM. The former was already reported in the prequel paper
[20], and we focus on the latter case in this paper.
We also stress in this pair of papers that for the

combination of realistic baryonic EOSs such as the one
we employ in this paper and the bag model EOSs for QM,
combustions occur for a wide range of a bag constant and/
or strong coupling constant in the so-called endothermic
regime, in which the Hugoniot curve for combustion runs
below the one for the shock wave [20]. Such a combustion
has no terrestrial counterpart [4,6] and has been discarded
in the previous papers exactly because it is endothermic
[12,14,16,17]. We emphasize, however, that there is no

reason in fact to throw it away. As long as there is no
obstacle in between the initial and final states such as an
intermediate state with a higher free energy, reactions
proceed spontaneously to realize the free-energy minimum
[19,20]. This was confirmed in the shock-induced con-
version [20]. In the diffusion-induced conversion we
consider in this paper, diffusions of strangeness give rise
to the situation where the free energy of the intermediate
3QM is lowered so that it should no longer be an
obstacle for conversion. Note also that the terminology of
“exothermic/endothermic combustion” is somewhat mis-
leading, since it does not necessarily correspond to heat
production/absorption.
In our previous paper, we found that strong detonation

always occurs for the transition via 2QM triggered by a
rapid density rise in a shock wave. Depending on the values
of parameters included in the EOS of QM as well as on the
initial density and Mach number of the detonation front in
HM, deconfinement from HM to 2QM is either completed
or not completed in the shock wave. In the latter case,
which is more likely if the EOS of QM ensures that
deconfinement occurs above the nuclear saturation density
and that the maximum mass of cold quark stars is larger
than 2M⊙, the conversion continues further via the
mixed state of HM and 3QM on the time scale of weak
interactions. In this paper, we focus on the diffusion-
induced conversion for the same parameter sets. The
scenario is described more in detail in the next section.
Note that our analysis in this paper is local, T; i.e., only the
region that just covers the conversion front is taken into
account. This is in sharp contrast to the global study of the
conversion of entire neutron stars by simulations [17,18].
The two methods are complementary to each other in fact.
In the former one can consider in detail, albeit phenom-
enologically, what is happening inside the conversion
region, which cannot be resolved by global simulations.
On the other hand, possible backreactions from global
configurations as well as boundary conditions cannot be
taken into account in the local analysis. We try to list all
possible structures that satisfy these necessary conditions
but make no further attempt to claim which ones are more
likely than others to be realized in the actual global
conversion. In this sense, the conditions we consider in
this paper are just necessary conditions but not sufficient
ones in this pair of papers.
The outline of the paper is as follows. To expedite the

understanding of the main results, we give in Sec. II the
scenario of the diffusion-induced conversion more in detail
and present, employing a toy model, some fundamental
features of the combustion fronts for this scenario both in
the exothermic and endothermic regimes. The basic equa-
tions and EOSs used for QM, HM and the mixed phase in
the combustion front are given for a more realistic model in
Sec. III, and the main results are presented in Sec. IV. We
discuss linear stability of the laminar weak-deflagration
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front in Sec. V. The paper is concluded with the summary
and discussions in Sec. VI.

II. SCENARIOS AND TOY MODEL

A. Scenarios

The situations we have in mind in this paper are that
3QM has the lower free energy per baryon than HM and
2QM is an obstacle for the conversion from the metastable
HM to truly stable 3QM (see Fig. 1 in Ref. [20]). SQM
hypothesis is not always assumed, and the critical pressure
may exist, below which HM is the most stable and the
conversion is forbidden.
In the diffusion-induced conversion, which is essentially

the same as the one discussed by Olinto [7], the seed 3QM
is assumed to have been already planted somehow, and HM
is gradually absorbed by 3QM at their interface. Once
engulfed, HM is deconfined to up and down quarks in
3QM, thus reducing the fraction of strangeness. 3QM
adjacent to the interface is hence not in β-equilibrium in
general, and the chemical equilibration ensues via the
production of strange quarks by weak interactions such
as uþ e− → dþ νe and uþ d → uþ s. The process gen-
erates a spatial gradient of strangeness and induces its
diffusion toward the interface, which in turn compensates
for the depletion of strangeness caused by the absorption of
HM. Since 2QM is unstable compared with HM, a certain
fraction of strangeness is required for the conversion. The
critical strangeness fraction is given by the condition that
QM with the critical fraction has the same free energy per
baryon as HM. Since the strangeness fraction at the
interface is maintained by its diffusion from the region
with higher fractions, the scenario is referred to as the
diffusion-induced conversion.
We draw a schematic picture of the conversion region for

this scenario in the left panel of Fig. 1. In this picture, HM
is put on the left side of the interface, and QM is located on
the opposite side. The interface is assumed to be at rest in
this frame (the front-rest frame). The shaded region
adjacent to HM is the place where the deconfinement of
nucleons takes place. It is accomplished on the time scale of
strong interactions, ts, and hence the width of the decon-
finement region is λs ∼ cts ≲ fm with c being the light
velocity. As mentioned, the fraction of strangeness is fixed
to the nonvanishing critical value (fsc in the figure), at
which the free energy per baryon is identical on both sides
of the interface between HM and the deconfinement region.
What happens in this region may not be described
hydrodynamically, and we treat it as a discontinuity with
a vanishing width. This is indeed justified, since the
conversion region is much more extended as we will see
shortly. Following the deconfinement, the β-equilibration
of QM occurs, and strange quarks become populated more.
Since the strangeness fraction in the asymptotic region, the
value in β-equilibrium, is larger than the fraction at the

interface, the strangeness diffuses leftward, whereas matter
flows rightward in the front-rest frame. Since the β-
equilibration is completed on the time scale of weak
interactions, tw, the width of the region, over which it
takes place, is given by λw ∼ vdtw, where vd is the diffusion
velocity, and is evaluated as λw ∼ 10−4–10−1 cm for the
typical values of vd ∼ 104–107 cm=s and tw ∼ 10−8 s. We
hence obtain the relation λs ≪ λw ≪ R with R being the
representative macroscopic scale such as the radius of a
neutron star. This justifies our hydrodynamical treatment of
this region, which we refer to as the conversion region in
this paper.
We have so far assumed that the 3QM, which is extended

to the right of the interface with HM, is in the uniform
phase from right after the transition. This may not be the

FIG. 1. The schematic pictures of the diffusion-induced con-
versions considered in this paper. In Model A (left panel),
deconfinement may be completed in the time scale of strong
interactions to yield a uniform 3QM, which is extended down-
stream, being β-equilibrated on the time scale of weak inter-
actions. In Model B (right panel), the transition from HM to 3QM
proceeds via the mixed phase. As the β-equilibration proceeds,
the volume fraction of 3QM increases and reaches unity at some
point. Then the β-equilibration goes on in 3QM in the uniform
phase. In the figure HM composed of protons and neutrons,
which are denoted by p and n, respectively, is put on the left end
and 3QM made up of up, down and strange quarks occupies the
opposite end. Matter is flowing rightwards in this front-rest
frame. The shaded region in the left panel stands for the
deconfinement region, the size of which is exaggerated, whereas
in the right panel it represents in the right panel the region where
the mixed phase exists. The lines labeled as v, nB, T and fs show
the velocity, baryon number density, temperature and fraction of
strange quarks, respectively. Leptons are not shown in this
picture. See the text for the meanings of λs, λw and fsc.
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case, though. In fact, we find in some cases that the free
energy is lowered if one considers the mixed phase. Since
we do not take into account the surface energy in this
estimation, which tends to hamper the appearance of the
mixed phase, this is certainly inconclusive, but we cannot
exclude the possibility, either. We hence study it also,
referring to it as model B in the following. The right panel
of Fig. 1 depicts what we have in mind. As described more
in detail in Sec. III D, we introduce the volume fraction of
3QM, which is less than unity unless the uniform 3QM has
the lowest free energy. In the mixed phase, the pressure
equilibrium is assumed between HM and 3QM. We further
impose chemical equilibrium for up and down quarks
between HM and 3QM. As strangeness increases via
diffusion, so does the volume fraction of 3QM. And at
some point (or from the beginning in some cases), the
uniform 3QM is obtained. The final state of 3QM is
achieved even later through the β-equilibration, which
takes place on the time scale of weak interactions, tw.
Although we are mostly interested in the possible

structures in the conversion region, the Hugoniot relations
that connect the asymptotic states are no less important.
They are obtained from the conservations of baryon
number, momentum and energy. Figure 2 shows some of
the representative Hugoniot curves for realistic EOSs of
HM and 3QM, in which the relativistic formulation is
employed. We can see that the Hugoniot curves run below
and/or to the left of the initial point in three out of four
cases, which implies that the combustions occur in the
endothermic regime. An intriguing thing with this regime is
the fact that there is no Jouget point and the detonation
branch is connected with the deflagration branch without a

gap in the initial velocity. It is also interesting to point out
that for some parameters, e.g., B1=4 ¼ 140 MeV and
αs ¼ 0.6, the Hugoniot curve is terminated at some point
and cannot be extended to lower pressures, since the
temperature would become negative. It is found that the
Hugoniot curve for combustion runs above the initial state
only for rather small bag constants as demonstrated for the
model with B1=4 ¼ 125 MeV. Such combustions are said
to be exothermic and are similar to terrestrial combustions.
The Hugoniot curves were presented for different combi-
nations of EOS parameters, and their trend was discussed
more in detail in Sec. II B of our previous paper [20]. In this
paper we discuss, based on the processes and structures in
the conversion region, which combustion modes are likely
to be realized both in the exothermic and endothermic
regimes. In the rest of this paper, we employ a non-
relativistic formulation, which is well justified for the
diffusion-induced conversion, since the fluid velocity is
typically much smaller than the light velocity.

B. Formulation of toy model

We now turn our attention to the structures in the
conversion region that connects the initial and final
asymptotic states. We assume the plane symmetry and
consider one-dimensional stationary profiles of matter
flows that undergo the phase transition from HM to
3QM. The assumption of plane symmetry and stationarity
is well justified, since the width of the conversion region is
much smaller than the typical macroscopic length scale and
the time, during which matter stays in this region, is much
shorter than the time scale, on which the initial hadronic
state is changed either by the propagation of the conversion
front in the (proto-)neutron star or by the adjustment of
(proto-)neutron-star configuration to the appearance of the
quark phase. In this section, we introduce a toy model that
will facilitate our analysis and understanding of the main
results presented in Sec. III. The simplification is mainly
concerning EOSs. As shown shortly, it is indeed a very
crude approximation to reality, but it still captures quali-
tatively the essence of the more realistic model introduced
in the next section. There is also an advantage in the
toy model that we can freely change the behavior of
Hugoniot curves, particularly the regime of combustion.
We hence believe that this simplified model is worth
presenting here.
The basic equations to describe the stationary structures

of the conversion region are the conservation equations of
mass, momentum and energy in the front-rest frame, which
are unchanged in the more realistic models introduced in
the next section and given by

ρv ¼ ρivið¼ ρfvfÞ; ð1Þ

Pþ ρv2 ¼ Pi þ ρiv2i ð¼ Pf þ ρfv2fÞ; ð2Þ

FIG. 2. The Hugoniot curves for various values of the bag and
strong coupling constants. X ¼ ðhρÞ=n2B is the relativistic analog
to the specific volume which is indeed reduced to the specific
volume in the non-relativistic limit [20,22]. Here h is the specific
enthalpy. The initial state of HM is assumed to be PNS matter at
T ¼ 10 MeV, Yp ¼ 0.3 and ρi ¼ 3.0 × 1014 g=cm3, which is
indicated by the square. The cross marks the point, at which zero
temperature is obtained.
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hþ 1

2
v2 ¼ hi þ

1

2
v2i

�
¼ hf þ

1

2
v2f

�
; ð3Þ

where plane symmetry is assumed; an x coordinate is
introduced, and the initial HM is assumed to be located at
x ¼ −∞, and the final 3QM is assumed to be realized at
x ¼ þ∞; ρ, v, P and h are the baryon density, fluid
velocity, pressure and specific enthalpy, respectively; and
the subscripts i and f stand for the initial and final states.
These equations are complemented by another equation
that gives the spatial distribution of strangeness,

v
dfs
dx

−D
d2fs
dx2

¼ fs;f − fs
τ

; ð4Þ

where fs is the fraction of strangeness and fs;f is its
asymptotic value in the final state; the diffusion coefficient
for strangeness is denoted by D, and τ gives the time
scale of β-equilibration; they are varied rather arbitrarily
in the toy model to see the dependence of solutions on
these parameters. Divided by fs;f, the above equation is
rewritten as

v
df̄s
dx

−D
d2f̄s
dx2

¼ 1 − f̄s
τ

ð5Þ

for f̄s ¼ fs=fs;f.
The strange quarks are populated up to the boundary

between HM and QM (see the left panel of Fig. 1). The
critical fraction of the strange quark (fsc in Fig. 1) is given
by hand arbitrarily in this toy model, whereas it is
determined consistently with EOSs in the more realistic
model. Since the β-equilibration ensues for the fraction of
strange quark greater than this critical value, the time scale
τ is set to infinity otherwise.
We employ the so-called γ-law EOS both for HM and

QM, knowing that this is certainly an oversimplification,

PHM ¼ ðγ − 1Þρϵ; ð6Þ

PQM ¼ ðγ − 1Þρðϵþ eÞ; ð7Þ

where the upper equation is for HM and the lower is for
QM; γ, ρ and ϵ are the adiabatic index, baryon density and
specific internal energy, respectively. The EOS for QM is
different from that for HM in that the former includes an
extra term, e, in the specific internal energy, which is
utilized to control the regime of combustion; with a positive
e, we have an exothermic combustion and vice versa.
In the conversion region, QM has strangeness fractions

that are different from the asymptotic values. In this section,
we assume for simplicity that these states are also described
by the γ-law EOS as

P ¼ ðγ − 1Þρðϵþ f̄seÞ; ð8Þ

where we multiply the extra energy, e, by the fraction of
strange quark, f̄s, introduced above, thus interpolating the
intermediate 2QM (f̄s ¼ 0) and final 3QM (f̄s ¼ 1) very
crudely. These treatments will be much improved in
Sec. III. Since we are interested in the qualitative features
of the conversion regions in this section, this level of
approximation is sufficient.
We normalize all quantities by adopting an appropriate

density, pressure and time, for which we normally take the
initial density, pressure and weak interaction time scale.
Then the parameters that characterize the system are the
normalized diffusion coefficient, D� ¼ D=ðc2siτÞ, and extra
energy, e� ¼ e=c2si, with sound velocity of HM, csi, and τ.

C. Results of toy models

In the following we analyze the solutions to the
equations given above [Eqs. (1)–(3) and (5) together with
Eqs. (6)–(8)]. The exothermic (e > 0) and endothermic
(e < 0) cases are discussed in turn separately.

1. Exothermic case (e > 0)

We first consider the exothermic case with e > 0, i.e., the
ordinary combustion as observed on Earth. The Hugoniot
curve for combustion then runs above the initial sate in the
P − V diagram.
The typical solutions for the diffusion-induced scenario

are displayed in Fig. 3. In these calculations, we take D� ¼
1.0 and e� ¼ 0.2. Note that only the QM region (x ≥ 0) is
shown, since all quantities are constant in the HM region
(x < 0). In the left panel, the solution for f̄sc ¼ 0.8 is
presented, whereas the right panel corresponds to
f̄sc ¼ 0.1. We find that the former solution is a weak
deflagration and the latter is a weak detonation. This is
most evident in Fig. 4, in which this and other solutions are
displayed together with the Hugoniot curve in the P − V
plane. The initial state corresponds to the point (1,1) in this
diagram, owing to the normalization. For f̄sc ¼ 0.8 as well
as f̄sc ¼ 0.6, the specific volume V increases whereas the
pressure decreases as the matter changes to the final state
on the Hugoniot curve. This is a feature that characterizes
the weak deflagration in the ordinary combustion. For
f̄sc ¼ 0.1 and 0.2, on the other hand, the specific volume
and pressure change in the opposite direction, which is
evidence for detonation. Note also that in both cases, the
final states are closer to the initial states than the Jouget
point is, implying that they are weak combustions. It is also
found from the figure that the final state approaches the
Jouget point on each branch as f̄sc decreases (increases) in
the weak deflagration (detonation).
The change of combustion mode with the value of fsc is

also demonstrated in Fig. 5, where some integral curves are
shown in the df̄s=dx − f̄s diagram, where x is normalized
with viτ. Note that the system of equations is reduced to a
single, second-order, ordinary differential equation for f̄s,
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d2f̄s
dx2

¼M2
i

D�

�ðγM2
i þ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

i − 1Þ2 − 2ðγ2 − 1ÞM2
i e

�f̄s
p

ðγþ 1ÞM2
i

×
df̄s
dx

þ f̄s − 1

�
; ð9Þ

where Mi is the Mach number of the flow in HM and
the upper/lower signs correspond to weak detonation/
deflagration. In the left column of the figure, the integral
curves for weak deflagration are shown, whereas those for
weak detonation are displayed in the right column. The
integral curve we seek is the one that runs into the point
with f̄s ¼ 1.0 and df̄s=dx ¼ 0.0. For f̄sc ¼ 0.8 there is a
solution only in the weak deflagration regime, which is
drawn in red in the figure. As the value of f̄sc decreases, the
final state is close to the lower Jouget point, and at a certain
point the solution ceases to exit as mentioned above. This is
demonstrated in the middle panels, where the integral
curves are presented for f̄sc ¼ 0.4. In neither regime do
we find a solution. As the value of f̄sc decreases further,
however, there appears a solution again, and the final state
moves to the upper branch. In the bottom panels we show
the integral curves for f̄sc ¼ 0.1. In this case the solution
exists in the weak detonation regime. It is important that the
mode change is automatically obtained by solving the
structure in the conversion region. It should be also noted
that the diffusion-induced conversion is not equivalent to
the weak deflagration.
So far the diffusion constant is fixed to be D� ¼ 1.0. As

it gets smaller, the region of f̄sc that gives weak detonation
becomes narrower; i.e., the Jouget point is reached at
smaller values of f̄sc. If we take a realistic value of the
diffusion constant, D ∼ 1 cm2=s ðD� ∼ 10−13Þ, no weak
detonation is obtained for f̄sc ≳ 10−4. This suggests that,
although in principle the diffusion-induced conversion is
not equivalent to weak deflagration, in reality that may be
the only solution realized. This will be confirmed in the
next section by the more realistic model, in which f̄sc is not
a free parameter but is determined consistently with the
EOSs employed for HM and QM.

2. Endothermic case (e < 0)

Now we proceed to the endothermic case (e < 0). The
Hugoniot curve for combustion runs below the initial
point. Like the exothermic case, there are two states that
satisfy the Rankine-Hugoniot jump conditions for a given
pair of ðV; PÞ and a velocity v. Unlike the ordinary
combustion, however, we always find one of them to
the left and the other to the right of the initial state in the
P − V diagram. These combustions are classified by the
same scheme as for the exothermic case: detonation is a
combustion mode, for which the initial state is supersonic
in the front-rest frame, whereas deflagration is a combus-
tion with a subsonic initial velocity; if the final state is

FIG. 3. The evolutions of the strangeness fraction, density,
pressure and velocity. The critical fractions of strangeness are
fsc ¼ 0.8 (left panel) and 0.1 (right panel). The strangeness
fraction and the other values are normalized by the values in the
final and initial states, respectively.

FIG. 4. Solutions for different critical fractions of strangeness
in the toy model presented in the P-V diagram. The dotted lines
correspond to the deconfinement regions, which may not be
described hydrodynamically and treated as discontinuity in
this paper.
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subsonic, the combustion is either strong detonation
or weak deflagration; on the other hand, it is called
either weak detonation or strong deflagration if the flow
in the final state is supersonic. One interesting feature in

the endothermic combustion is that there is no Jouget
point and the detonation branch is connected with
the deflagration branch without a gap in the initial
velocity.

FIG. 5. Integral curves in the df̄s=dx − f̄s diagram for different values of the critical strangeness fraction, f̄sc. The left column
corresponds to the weak deflagration regime whereas the right one represents the weak detonation regime. The solutions we seek are the
integral curves that run into the point with f̄s ¼ 1.0 and df̄s=dx ¼ 0.0 and are drawn in red in the figure. For large values of f̄sc, the
solution is found in the weak deflagration regime (top row) whereas weak detonations are obtained for small values of f̄sc (bottom row).
Note that there is a parameter range in between, in which there is no solution either in the weak deflagration or in the weak detonation
regime, as shown in the middle row.
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It turns out that the solutions are similar to the exother-
mic counterpart: for D� ¼ 1.0, weak deflagration obtains
for relatively large f̄sc, whereas weak detonation is realized
for small values. They are shown in Fig. 6. In the upper
panels, the distributions of various quantities as a function
of position are displayed for f̄sc ¼ 0.8 in the left panel and
for f̄sc ¼ 0.1 in the right panel. The corresponding tra-
jectories are given with other cases in the P − V diagram in
Fig. 7. The endothermic nature is reflected in the fact that
the specific volume decreases (increases) and the pressure
increases (decreases) in weak deflagration (weak detona-
tion); i.e., the sense is opposite to the exothermic counter-
parts. The integral curves in the df̄s=dx − f̄s plane are
presented in Fig. 8.

Just like in the exothermic case, weak detonation is
suppressed as the value of diffusion coefficient D is
diminished. As a matter of fact, we do not find weak
detonation for the realistic value D ∼ 1.0. It is hence
surmised that, although the diffusion-induced conversion
is not equivalent to weak deflagration in principle, in reality
it is the only combustion mode realized also in the
endothermic case. This will be confirmed by more realistic
models in the next section. Note in passing that matter is
compressed in weak deflagration in the endothermic case.

III. FORMULATION OF REALISTIC MODEL

A. EOSs for HM and QM

The EOSs we employ for HM and QM are the same as
those in the previous paper [20]. Shen’s EOS [23] is
adopted for HM; it is based on the relativistic mean field
theory, in which nuclear interactions are described by
exchanges of mesons. This EOS is rather stiff, having
the incompressibility of 281 MeVand the symmetry energy
of 36.9 MeV, and the maximummass of cold neutron star is
2.2M⊙. We employ the MIT bag model for QM, which
takes into account the confinement and asymptotic freedom
of quarks phenomenologically and describes QM as a
collection of freely moving quarks in the perturbative
vacuum with a vacuum energy density given by the so-
called bag constant, B. The first-order corrections with
respect to the strong coupling constant, αs, are also taken
into account [24,25]. The masses of quarks are set to be
mup ¼ 2.5, mdn ¼ 5.0 and msg ¼ 100 MeV [26], where
the subscripts of up, dn and sg stand for up, down and
strange quarks, respectively.
In Fig. 9, we summarize the properties of 2QM and 3QM

as well as of quark stars for some combinations of the bag
and strong coupling constants. The crosses correspond to
models investigated in this paper and listed in Table I of the

FIG. 6. The evolutions of the strangeness fraction, density, pressure and velocity in the endothermic case. The left and right panels are
for f̄sc ¼ 0.8 and f̄sc ¼ 0.1, respectively. The strangeness fraction and the other values are normalized by the values in the final and
initial states, respectively.

FIG. 7. The trajectories in the P-V diagram for different critical
fractions of strangeness in the endothermic case. The dotted lines
correspond to the deconfinement regions, which may not be
described hydrodynamically and treated as discontinuity in
this paper.
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previous paper [20]. They all satisfy the requirement that
2QM in vacuum should have a larger energy per baryon
than that of HM (∼934 MeV) including surface effects
[27]. For some models, the SQM hypothesis holds with the
energies per baryon of 3QM being smaller than
∼930 MeV. Although the critical density, at which HM
converts itself to 2QM spontaneously, plays no role in the
diffusion conversion, we choose pairs of B and αs so that
the critical density should be larger than the initial density.
Furthermore, it is ensured that the maximum mass of cold
quark stars is larger than 2M⊙.

B. Asymptotic states

In the following subsections, we explain our descriptions
of various regions in Fig. 1. We start with the asymptotic
regions of the two states, from one of which the conversion
begins and with the other of which it ends. The former is
called fuel in combustion, and the latter is referred to as ash.
We take the x coordinate from the fuel at x → −∞ to the ash
at x → ∞. The fuel of our interest is composed of neutrons
and protons as the hadronic component and electrons and
neutrinos as the leptonic component. They are assumed to
be in charge neutrality and β-equilibrium. In the case of

proto-neutron star (PNS) (T ∼ 10 MeV), neutrinos are
assumed to be trapped and equilibratedwithmatter, whereas
they are assumed to be absent in the case of cold neutron star
(NS). The lepton fraction Ylep is assumed to be Ylep ¼ 0.3
everywhere for the PNS case. The electron fraction in theNS
matter is determined from the conditions of β-equilibrium
without neutrinos and of charge neutrality. On the other
hand, the thermodynamic state of the ash or 3QM in β-
equilibrium is derived from the conditions μup þ μe ¼
μdn þ μνe and μsg ¼ μdn. More details about the asymptotic
states are given in Sec. IV B in our previous paper [20].

C. Model A: Jump condition for the transition
from HM to pure 3QM

As mentioned earlier, we consider in this paper two
possible ways of the transition from HM to QM. In this and
next subsections, we will describe them in turn more in
detail. In model A, we assume that once matter trespasses
the interface of HM and QM, HM is simply deconfined to
up and down quarks and mixed into the 3QM that has the
critical strange fraction, fsc, on the time scale of strong
interactions, ts. At the interface between the HM and the
3QM, they are hence supposed to have the same free

FIG. 8. The phase diagrams for the toy model in the endothermic regime. The left column corresponds to the weak deflagration
whereas the right one represents weak detonation. The top panels are for f̄sc ¼ 0.8 and the bottom ones are for f̄sc ¼ 0.1.
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energy. Given the initial state of HM, we can then calculate
various quantities in the 3QM just next to the interface as
follows,

nνi ¼ nνQ; ð10Þ

neQ ¼ 2nup − ndn − nsg
3

; ð11Þ

2np þ nn
nBi

¼ nup
nBQ

; ð12Þ

Gi ¼ GQ; ð13Þ

in addition to the conservative equations [Eqs. (1)–(3)]. The
subscripts Q and i indicate the quantities for the 3QM and
the initial state of HM, respectively. In the last equation,GQ
and Gi denote their free energies, respectively. Neutrinos
essentially do not interact with other particles during this
transition, and their number density and temperature do not
change [Eq. (10)]. It hence occurs that neutrinos and matter
have different temperatures just after the transition.
Electrons are swiftly redistributed to ensure charge neutral-
ity [Eq. (11)], since their plasma frequency is very high.
Equation (12) means that the fraction of the up quark is
conserved. The value of fsc is determined self-consistently
by Eq. (13).

D. Model B: Transition via the mixed state
of HM and 3QM

In model B, we assume that HM is not mixed into QM
uniformly but the phase separation occurs at first. As the
strange fraction increases due to the diffusion, the volume
fraction of HM is lowered, and a uniform 3QM is realized
at some point (x ¼ xa). The β-equilibration continues
further until the final state of 3QM in β-equilibrium is
reached. In the mixed phase, we assume then that the
chemical potentials of protons and neutrons are equal to
those in 3QM:

μp ¼ 2μup þ μdn;

μn ¼ μup þ 2μdn:

Neutrinos and electrons are assumed to be uniform spatially
and satisfy

μHνe ¼ μQνe ;

μHe ¼ μQe ;

where the indices H and Q mean the values in the hadron
and quark phases, respectively. In this paper we do not
consider the surface energy associated with the phase
boundary and take into account the bulk volume fraction
of QM, which is denoted by r in the following. We then
assume in the mixed phase that charge neutrality is ensured
only globally: ne ¼ ð1 − rÞnp þ rð2nup − ndnÞ=3. It is also
assumed as a common practice that the temperatures and
pressures on both sides of the phase boundary are equal to
each other:

PH ¼ PQ; ð14Þ

TH ¼ TQ: ð15Þ

Note that the above conditions should be satisfied locally at
each position x in the region that the mixed phase occupies.
All quantities are hence not constant in space but depend on
x. On the other hand, the lepton fraction is assumed to be
constant over the entire region. It is emphasized again that
the volume fraction of QM is obtained as a result of the
minimization of the free energy. If the uniform QM is
favored in terms of the free energy, it is realized automati-
cally. In this sense, model B includes model A.

E. Diffusion of strange quarks

The diffusion of strange quarks may be described
approximately for the strange quark fraction, fs ¼ nsg=
ð3nBÞ, as follows,

u
dfs
dx

−D
d2fs
dx2

¼ fseq − fs
τ

; ð16Þ
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FIG. 9. Some constraints on the values of the bag constant and
strong coupling constant. The black solid and dashed lines show
the pair, for which the energy per baryon of HM coincides with
that of 2QM and with that of 3QM, respectively. The domain to
the left of the former line is excluded, since HM would be
unstable to the deconfinement to 2QM. The red curve is the
critical line, above which the maximum mass of quark star would
become smaller than 2M⊙, the largest pulsar mass observed so
far. The green and blue solid lines indicate the pairs, for which the
critical density of the spontaneous transition from HM to 2QM
occurs at the nuclear saturation density. See Sec. IV A in the
previous paper [20] for more details. The crosses correspond to
the models listed in Table I of that paper.
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where τ is the time scale of weak interactions that enforce
β-equilibration, ∼10−8 s, and D is the diffusion constant,
∼1 and ∼106 cm2=s for PNS and NS matter, respectively.
The second term on the left-hand side represents the
diffusion, whereas the right-hand side describes the β-
equilibration in the relaxation approximation. Although the
diffusion constant depends in general on the temperature
and chemical potentials of quarks [7], we assume that it is
constant for simplicity. We also solve the following differ-
ential equation for Yup,

u
dYup

dx
¼ Yeq

up − Yup

τ
; ð17Þ

where Yup is the fraction of the up quark: Yup ¼
ð1 − rÞYH

up þ rYQ
up.

1 The hydrodynamical conservation
equations, Eqs. (1)–(3), and the charge neutrality [together
with Eqs. (14) and (15) for model B] give the fractions of
other particles. The boundary conditions for these differ-
ential equations are given in the next subsection.
In model A, we suppose that after deconfinement, the

neutrino temperature and lepton fractions in QM (x > 0),
which are denoted by T lep and Y lep, respectively, change
gradually toward the equilibrium values on the time scale of
weak interactions and assume that they are approximately
described as follows:

u
dY lep

dx
¼ Yeq

lep − Y lep

τ
; ð18Þ

u
dT lep

dx
¼ Teq

lep − T lep

τ
: ð19Þ

In model B Y lep is constant, and we adopt the same
diffusion constant both in the mixed phase (x < xa) and
in the uniform 3QM (x > xa), since the mean free pass and
thermal velocity (∼c) of strangeness are more or less the
same. When we solve Eq. (16), fs is the strange fraction in
quark phase alone: fsQ ¼ nsg=ðnup þ ndn þ nsgÞ. Note that
the uniform quark phase may not be attained and the mixed
phase survives even in the final state for some models with
large B and/or α (see Sec. IV in Ref. [20]). It is obvious that
model A cannot be applied to such cases. As mentioned
earlier, the appearance of the mixed phase will depend
sensitively on the surface energy we neglect in this paper.

F. Numerical method

Here we briefly explain how to solve numerically the
equations given above.We suppose that the interface of HM
and QM is at rest at x ¼ 0. We first choose the initial
thermodynamic state in HM at x ¼ −∞. Since the HM is
uniform at x < 0, we only attempt to obtain solutions for
QM at x > 0. For that purpose, we employ the shooting

method for the velocity of HM at x ¼ −∞, which is single
unknown quantity in HM. More precisely, we first make a
guess on the value of the velocity; then the gradient of the
strangeness fraction at x ¼ 0þ is obtained as dfs=dxjx¼0þ ¼
uifs=D from the condition that the strangeness should not
trespass the interface at x ¼ 0; the strangeness fraction itself
(fsc for model A and fsQ for model B) is determined by
solving the junction condition at the interface (model A)
or at the phase boundary (model B); the diffusion equation
together with other equations is then solved toward
x ¼ þ∞; if the initial guess is correct, the solution so
obtained approaches smoothly an asymptotic state, i.e., a
state in β-equilibrium with f ¼ feqs and dfs=dx ¼ 0; other-
wise we modify the guess and repeat the above steps over.
We iterate this procedure until the correct value of the
velocity of HM and, as a result, the solution are obtained.

IV. RESULTS OF REALISTIC MODELS

In the following we present the numerical results
obtained for the realistic models. Conversions from PNS
matter are discussed first, and those from cold NS matter
are considered thereafter. We assume that PNS matter has
the temperature T ¼ 10 MeV and lepton fraction Y lep ¼
0.3 including neutrinos initially. The diffusion constant is
estimated as D ∼ 10−3ðμquark=TÞ2 cm2=s and chosen to be
D ¼ 0.9 cm2=s in most of the cases, corresponding to
μquark ¼ 300 MeV. We notice that we do not stick with the
formation of the diffusion constant and take various values.
We adopt other values as well, however, and study its
influences. The time scale of weak interactions is set
to τ ¼ 10−8 s.
We begin with the solutions for B1=4 ¼ 140 MeV and

αs ¼ 0.4 and the initial density of 3.0 × 1014 g=cm3 both in
models A and B. The left panel of Fig. 10 shows the
fractions of various particles, which are defined as ni=nB
with ni being the number density of particle i. For model A,
we find that 3QM has the critical strangeness fraction fsc ¼
0.049 at x ¼ 0þ right after deconfinement. The number of
down quarks is the largest of three quarks, since neutrons
are more numerous than protons in HMðx < 0Þ. Strange
quarks increase rather quickly at first, and their fraction
approaches the asymptotic value more slowly later.
The distributions of thermodynamical quantities are

shown in the right panel of Fig. 10. The speed of the
conversion front is found to be ∼2.3 × 104 cm=s. It will
hence take about a minute to convert a neutron star to a
strange star, if the velocity does not change much in the
neutron star. The pressure is almost constant, since the
velocity is very small and the ram pressure is negligible in
momentum conservation [Eq. (2)]. The temperature is
dropped at the interface (x ¼ 0þ), since the deconfinement
to 3QMwith low fs is endothermic in the literal sense. This
was also found in the deconfinement from HM to 2QM in
our previous paper [20].1r ¼ 1 in model A.
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Figure 11 displays the solution for model B, in which the
mixed phase is taken into account. Again quarks start to
populate at x ¼ 0, but in this case QM is surrounded by
HM in the mixed phase. The volume fraction of QM
increases as x becomes larger, and QM occupies the entire
volume (r ¼ 1) at xa ¼ 0.5. From this point on, the β-
equilibration continues in the uniform QM mainly through
the conversion of down quarks to strange quarks until the β-
equilibrium is reached at x ∼ 2. The speed of the conversion
front is ∼1.3 × 104 cm=s, and the pressure is almost
constant just in the same way as in model A. The temper-
ature is not decreased in model B since fsQ of 3QM in the
mixed phase has a large enough value from the beginning to
guarantee an exothermic deconfinement.
We compare the trajectories in the nB − T plane for

models A and B in Fig. 12. Models with another combi-
nation of EOS parameters B1=4 ¼ 135 MeV and αs ¼ 0.60
are also shown. The mixed phase ends in model B at points
ðnB; TÞ ¼ ð0.21; 21Þ and (0.23, 24) for the models with
B1=4 ¼ 140 MeV and αs ¼ 0.40 and B1=4 ¼ 135 MeV and
αs ¼ 0.60, respectively. Models A and B merge at these
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points as marked with circles and have the same values of
fs ¼ 0.14 and 0.19. In model A, there appears a 3QM with
a rather small value of fsc ¼ 0.049 and 0.099 at x ¼ 0þ for
the same combinations of EOS parameters. The formation
of the mixed phase is favored in terms of the free energy for
3QM with such small fs as long as the surface energy is
ignored.
As shown shortly, no solution is obtained for model A if

the final state is in the mixed phase. The results for model B
with B1=4 ¼ 140 MeV and αs ¼ 0.60 are shown in Fig. 13.
The mixed phase of HM and 3QM survives up to the final
state, in this case, which is in sharp contrast to the previous
case with B1=4 ¼ 140 MeV and αs ¼ 0.40 (Fig. 11). This is
because the energy of QM is higher for larger B and/or αs
(see Sec. IVA in Ref. [20]). The front velocity in this case is
∼0.2 × 104 cm=s, somewhat smaller than that in the
previous case. Figure 14 compares the results of four
models, i.e., those with B1=4 ¼ 135 MeV and αs ¼ 0.6
and B1=4 ¼ 135 and αs ¼ 0.70 in addition to those pre-
sented already in Figs. 11 and 13. The final state for B1=4 ¼
135 MeV and αs ¼ 0.70 is a mixed state of HM and 3QM
just as for the model with B1=4 ¼ 140 MeV and αs ¼ 0.60
shown in Fig. 13, whereas a uniform 3QM results for
B1=4 ¼ 135 MeV and αs ¼ 0.60 as for the model
in Fig. 11.
It is found that the final densities are higher for larger B

because the EOSs become softer. On the other hand, the
final temperatures are lower for larger αs, since the
(absolute value of the negative) latent energy for deconfine-
ment is greater and deconfinement is incomplete with the
final states in the mixed phase. These features do not
depend on the critical fraction of strangeness as shown in
Fig. 15, where we compare different models that have the
strangeness fraction at x ¼ 0þ either of fsQ ¼ 0.1 or of
fsQ ¼ 0.2. In all cases, the final states are pure 3QM. We
can confirm that the final density depends only on B1=4 and
the final temperature is lower for larger αs. These trends are
also seen in the shock-induced conversion [20]. The front
velocity is mainly determined by fsQ via the boundary
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condition, although it is a bit larger for larger B, ui ¼ 4.11,
4.28 and 4.48 × 104 cm=s for B1=4 ¼ 135, 140 and 145,
respectively, in the case of fsQ ¼ 0.1, whereas in the case of
fsQ ¼ 0.2, ui ¼ 11.3; 11.6 and 12.1 × 104 cm=s for the
same bag constants.
In the models presented so far, the diffusion constant

is fixed to 0.9 cm2=s, the value evaluated from D ∼
10−3ðμquark=TÞ2 with the initial temperature and chemical
potentials of quarks. Figure 16 demonstrates how the
results are modified for different values of D in the model
with B1=4 ¼ 140 MeV and αs ¼ 0.40. The qualitative
behavior of the temperature and velocity as well as other
quantities (not shown in the figure) is similar, although it is
different quantitatively. We find that the front velocity and
the thickness of mixed phase are both proportional to the
square root of the diffusion constant, λw ∝

ffiffiffiffi
D

p
and

ui ∝
ffiffiffiffi
D

p
, which is similar to that of Alford et al. [15].

Although the diffusion coefficient D is assumed to be
constant here for simplicity, it will get smaller in reality as
the temperature is increased. Then the mixed state will be
thinner than that obtained here. Note, however, that the
final temperature is twice the initial temperature at most.
The initial density is another important parameter. The

front velocity becomes larger, and the mixed state gets
wider as the initial density increases as shown in Fig. 17.
The model with ρi ¼ 2.5 × 1014 g=cm3 ends up with the
final state in the mixed phase, since the energy difference
between 3QM and HM is small at low densities.
The strangeness fraction at the end of the mixed phase
is also affected by the initial density, fs ¼ 0.145 for
ρi ¼ 3.0 × 1014 g=cm3, whereas fs ¼ 0.127 for ρi ¼
3.5 × 1014 g=cm3; i.e., the uniform 3QM is reached even
with these small values of fs if the initial density is high.
We have so far observed that weak deflagration is always

obtained in the realistic models with B1=4 ≳ 130 MeV,
which are all in the endothermic regime for PNS matter as
shown in Fig. 2. This conclusion is also not changed for the
exothermic regime. Figure 18 displays the result for the
model with B1=4 ¼ 125 MeV and αs ¼ 0.80 as an example
in the exothermic regime. In this model matter expands in
the mixed phase and is slightly compressed thereafter
(x≳ 0.62), although the pressure is almost constant.
Note that the final number density should be larger
(smaller) than the initial one if weak detonation occurs
in the exothermic (endothermic) regime. It is clear from the
right panel of Fig. 18 that weak deflagration results in both
regimes. This is in agreement with the results obtained with
the toy model that weak deflagration is the unique outcome
of the diffusion-induced conversion as long as we take a
realistic value of the diffusion coefficient.
Finally, we mention the solutions for the NS matter,

in which β-equilibrium is assumed to be established
initially at T ¼ 0.01 MeV. The model parameters are
set to be B1=4 ¼ 130 MeV, αs ¼ 0.80, ρi ¼ 3.0 or
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5.6 × 1014 g=cm3 and D ¼ 9.0 × 105 cm2=s according to
the initial temperature. In these cases, the final states are in
the mixed phase as shown in Figs. 19 and 20. Again the
width of the conversion region should get narrower in
reality as the temperature rises, since the diffusion coef-
ficient would be reduced. The results are not much different

from those of the corresponding PNS cases. The velocity of
the conversion front is larger, ∼107 cm=s, owing to the
greater diffusion constant. Neutrinos, which are absent
initially, start to populate with strange quarks via weak
interactions at x > 0. In the case of ρi ¼ 5.6 × 1014 g=cm3,
the density is increased at first by the emergence of the
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quark phase but is later decreased due to greater repulsive
forces at high densities. Figure 21 shows the results for
fsQ jx¼0þ ¼ 0.1 or 0.2. We can confirm that the results are
not very different from those of the corresponding PNS
cases (Fig. 15), even though all models have final states in
the mixed phase, whereas the PNS cases obtain pure 3QM
in their final states. The models with larger B result in
higher compressions, while those with larger α suppress
the rise of the temperature. The front velocities, ui ∼ 1.4 ×
107 cm=s for fsQ ¼ 0.1 and ∼6.9 × 107 cm=s for
fsQ ¼ 0.2, are little affected by B and α. We hence think
that fsQ jx¼0þ is the most important parameter to determine
the front velocity, since the gradient dfs=dxjx¼0þ is
sensitive to it.

V. STABILITY OF THE COMBUSTION
FRONT REVISITED

Finally, we point out in this section that the stability of
the deflagration front is changed in the endothermic regime.
It is well known for terrestrial combustions that the
deflagration front is normally unstable to deformations
[28]. It is called the Darrieus-Landau instability. The
combustion of nuclear fuels in white dwarfs is also subject
to the instability in the type Ia supernovae. In some
simulations of the conversion of neutron stars to quark
stars [17,18], the instability is assumed to occur. Once
developed, the instability is expected to induce a turbu-
lence, which will then lead to the acceleration of the
deflagration front. This may not be true, however, if the
combustion occurs in the endothermic regime.
In order to show this, we review the linear analysis of

Darrieus-Landau instability and see what is changed in the
endothermic regime. In the following, we ignore the
thickness of the front and treat it as a discontinuity as a

common practice. We suppose that a flame front is
propagating in the y directions and the unperturbed front
is a plane perpendicular to the y axis. The perturbed front is
assumed to be expressed as y ¼ fðx; tÞ. The fuel ahead of
and ash behind the front are approximated to be incom-
pressible, since the front speed is much lower than the
sound velocity. Then the linearized hydrodynamic equa-
tions are written both for fuel and ash as

∇ · v1 ¼ 0; ð20Þ

ρ
∂v1
∂t þ ρfðvf ·∇Þv1 ¼ −ρ∇P1; ð21Þ

where the subscript 1 implies the perturbed quantities
and ρf and vf represent the density and velocity of the
fuel, respectively, in the unperturbed flow. Note that
ρv ¼ const., whereas the density is assumed to be constant
in the fuel and ash individually. It is also mentioned that the
perturbed pressure satisfies ΔP1 ¼ 0.
Following the common procedure in the literature [28],

we assume the flame speed relation, v · n − vf ¼ const,
and obtain the jump conditions across the flame front,
which we hereafter assume to be at rest at y ¼ 0 in the
unperturbed flow, as follows,

v1yjþ− ¼ 0; ð22Þ

v1xjþ− þ vf
1 − α

α

∂f
∂x ¼ 0; ð23Þ

P1jþ− ¼ 0; ð24Þ

where α (¼ ρa=ρf with ρa being the density in the ash) is
the ratio of the density in the ash to that in the fuel and jþ−
stands for the jump across the flame front from the fuel
(denoted by the suffix −) to the ash (denoted by the suffix
þ). The front velocity is given as

∂f
∂t ¼ v1y− ¼ v1yþ: ð25Þ

Assuming the solutions in the form
v1x ¼ v1xðyÞeðikxþωtÞ, v1y ¼ v1yðyÞeðikxþωtÞ, P1 ¼
P1ðyÞeðikxþωtÞ and f ¼ f0eðikxþωtÞ and inserting them in
Eqs. (20)–(25), we obtain the dispersion relation as follows:

ω ¼ 1

1þ α

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

α
þ 1 − α

r �
vfk: ð26Þ

It is found that if α < 1, which is true in the exothermic
regime, the flame front is unstable, since one of the two ω’s
is always positive. On the other hand, when α > 1, which
corresponds to the endothermic regime, the flame front is
stable because the real part is negative for both ω’s.
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In actual combustions in compact stars, the gravitational
force and surface tension may not be neglected. Then the
dispersion relation may be modified [5,28,29] as follows,

ω¼ 1

1þ α

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

α
þ 1− αþ g

ð1− α2Þ
v2fk

− σ
ð1þ αÞk
ρfv2f

s �

× vfk; ð27Þ

where g is the gravitational acceleration and σ is the surface
tension. The Darrieus-Landau instability [Eq. (26)] corre-
sponds to the case with g ¼ 0 and σ ¼ 0. It is clear that in
the exothermic regime (α < 1), the gravitational effect
tends to make the flame front unstable by buoyancy,
whereas the surface tension makes it more stable. In the
endothermic regime (α > 1), on the other hand, both of
them stabilize the flame front. It hence seems that the
stability of the flame front in the endothermic regime is
unchanged by these effects. Note that Eq. (27) is reduced in
the vanishing flame-velocity and surface-tension limit to
the ordinary dispersion relation for the Rayleigh-Taylor
(RT) instability. It is interesting to point out that the
conversion front is susceptible to the RT instability only
in the exothermic regime. This seems to be in accord with
some numerical results [17,18]. Since the conversion was
terminated artificially when the endothermic regime was
encountered in these simulations, the stability of the
conversion front in the endothermic regime has not been
studied numerically yet. The linear stability analysis
suggests a drastic change, though. It is known for terrestrial
combustions that the stability of the flame front is also
affected by diffusions of heat and fuel. Although this may
have some ramifications to the above discussion, we will
not pursue this issue further in this paper.

VI. CONCLUSION AND DISCUSSIONS

We have studied the diffusion-induced conversion of
hadronic matter to three-flavor quark matter based on the
hydrodynamical description. We consider only the vicinity
of the conversion region, the width of which is determined
by the time scale of weak interactions times the diffusion
velocity, and the plane-symmetric steady structures are
investigated locally. We have studied two possible con-
version scenarios: (1) HM is juxtaposed with uniform 3QM
with the critical fraction of strangeness and is deconfined
immediately on the time scale of strong interactions and
mixed into 3QM once it trespasses the interface; the β-
equilibration then occurs on the time scale of weak
interactions; strange quarks are diffused in 3QM toward
the interface and maintain the critical fraction of strange-
ness at the interface. (2) The mixed phase of HM and 3QM
is initially produced, in which the volume fraction of QM is
gradually increased as matter flows away from HM; uni-
form 3QM is reached at some point, and the evolution
thereafter is identical to that in the first scenario. Note that

the β-equilibration is an irreversible process accompanied
by entropy generation. This series of events together with
the matter motion are described, albeit phenomenologi-
cally, consistently by the hydrodynamical conservation
equations and the diffusion equation for strange quarks.
We have first used the simple toy model to elucidate the
essential features and then employed the realistic model, in
which microphysics such as EOS is more elaborated.
In the analysis with the toy model, we have demon-

strated, varying model parameters rather arbitrarily in a
wide range, that weak deflagration is almost always
obtained both in the exothermic and endothermic regimes,
the latter of which has no counterpart in terrestrial
combustion but seems rather common in the conversion
of HM to QM. Weak detonation is realized only when the
diffusion constant is quite large, in which case the critical
fraction of strangeness is small. In our realistic model, we
have adopted the EOS based on relativistic mean field
theory for PNS matter as well as for NS matter and
employed the MIT bag model with the first-order pertur-
bation corrections for the EOS of QM. We have observed
for some EOS parameters that the mixed phase indeed
lowers the free energy if the surface energy is neglected.
We have also confirmed that weak deflagration is always
obtained both in the exothermic and endothermic regimes.
The typical values of the front velocity are ∼104 cm=s for
PNS matter with the initial temperature T ¼ 10 MeV and
∼107 cm=s for NS matter with T ¼ 0.01 MeV. They are
proportional to the square root of the diffusion constant
and depend on the initial density as well as on the EOS
parameter (e.g., the initial fraction of strangeness in the
mixed phase dictated by the combination of bag constant
and strong coupling constant). It is also found that the
mixed phase survives up to the final state if the strong
coupling constant αs is large or the initial density is low. In
such cases, the front velocity as well as the rise of
temperature tend to be smaller than in the cases with
uniform 3QM in the final state. We have pointed out that
the laminar weak-deflagration front is stable in the
endothermic regime, which is quite contrary to the
ordinary exothermic combustions.
The models considered in this paper are phenomeno-

logical and certainly have much room for improvement: the
EOSs adopted for HM and QM affect the critical fraction of
strangeness as well as the combustion regime realized, with
a softer HM and/or a harder QM being more likely to obtain
an exothermic combustion as demonstrated by Herzog and
Röpke [17]; the surface energy, which is neglected in this
paper, will hamper the appearance of the mixed phase and
should be taken into account somehow; and muons should
be included in considering NSmatter, although they may be
minor. The results obtained in this paper are hence of
qualitative nature. It should be also noted that the local
approach employed in this paper cannot address any
feedback from the global configuration. Since the flow
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is subsonic in both up and down streams of the weak-
deflagration front, the propagation of the conversion front
itself changes the asymptotic states, which in turn affects
the front. The global consideration is hence necessary to
understand the conversion of the entire neutron star.
It is stressed, however, that even in that case the local
description is still valid for the structure in the conversion
region.
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