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We study transitions of hadronic matter (HM) to three-flavor quark matter (3QM) locally, regarding the
conversion processes as combustion and describing them hydrodynamically. Not only the jump condition
on both sides of the conversion front but the structures inside the front are also considered by taking into
account what happens during the conversion processes on the time scale of weak interactions as well as
equations of state (EOSs) in the mixed phase. Under the assumption that HM is metastable with their free
energies being larger than those of 3QM but smaller than those of two-flavor quark matter (2QM), we
consider the transition via 2QM triggered by a rapid density rise in a shock wave. Based on the results, we
discuss which combustion modes (strong/weak detonation) may be realized. HM is described by an EOS
based on the relativistic mean field theory, and 2QMs and 3QMs are approximated by the MIT bag model.
We demonstrate for a wide range of the bag constant and strong coupling constant in this combination of
EOSs that the combustion may occur in the so-called endothermic regime, in which the Hugoniot curve for
combustion runs below the one for the shock wave in the p − V plane and which has no terrestrial
counterpart. Elucidating the essential features in this scenario first by a toy model, we then analyze more
realistic models. We find that strong detonation always occurs. Depending on the EOS of quark matter as
well as the density of HM and the Mach number of the detonation front, deconfinement from HM to 2QM
is either completed or not completed in the shock wave. In the latter case, which is more likely if the EOS of
quark matter ensures that deconfinement occurs above the nuclear saturation density and that the maximum
mass of cold quark stars is larger than 2M⊙, the conversion continues further via the mixing state of HM
and 3QM on the time scale of weak interactions.
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I. INTRODUCTION

The hadronic equation of state (EOS) at supranuclear
densities (≳2.8 × 1014 g=cm3), which are believed to
prevail at the central region of neutron stars, is still highly
uncertain. In fact, not only nucleons but hyperons may
also exist, or Bose-Einstein condensations of mesons like
pions or kaons might take place (see, for example, Ref. [1]).
It is also possible that quark matter (QM) prevails over a
substantial part of neutron star (such a star is referred to as a
hybrid star), and, indeed, the entire star may consist of
deconfined quarks [2] if three-flavor quark matter (3QM),

which is referred to as strange quark matter (SQM) in this
case, is the most stable state at zero pressure.
SQM is a bulk QM, which is composed of roughly the

same numbers of up, down and strange quarks (plus a small
fraction of electrons for charge neutrality) and is hypoth-
esized to be the true ground state of strong interactions [3].
SQM can have various baryon numbers from A ∼ 100

to A ∼ 1057. Macroscopic quark nuggets are generically
called nuclearites, and those with a small baryon number
(A < 106), in particular, are referred to as strangelets. Such
quark nuggets may have been produced in the early
Universe. It may be also possible that they are produced
in the center of neutron stars still in the present Universe. If
they are released into galaxies by, for example, collisions of
compact stars [4,5] or supernova explosions [6], elastic or*furusawa@cfca.jp
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quasielastic collisions of nuggets with atoms and molecules
in the traversed matter might be detected experimentally
[7], although such attempts have been unsuccessful so far
(see, for example, Ref. [8]).
If SQM is formed in a neutron star by some mechanism,

which is referred to as the seed in the following, HMwill be
subsequently converted to SQM at the boundary of HM and
SQM, and the entire star (possibly except for a thin crust at
the surface, since the Coulomb barrier may prevent the
conversion below the neutron-drip density [2]) will be
eventually composed of SQM and is called the strange star.
The conversion will liberate a large amount of gravitational
energy ∼1053 erg, which is comparable to that of a neutron
star and has been frequently advocated as a possible energy
source of gamma ray bursts [9,10]. Possible effects of the
conversion on supernova explosions [11–20] as well as on
the subsequent cooling of neutron stars have been also
investigated by many authors [21,22].
Various mechanisms of the seed formation in the neutron

star were discussed in Ref. [2]. The scenarios can be divided
into two categories depending on whether the seed SQM is
produced inside the neutron star itself or not. Included in the
first category are conversions via two-flavor quark matter
(2QM), clustering of lambda hyperons, neutrino sparking
and so on. In particular, if the density in a neutron star
reaches a certain critical value, ρc, by, e.g., a spin-down of a
neutron star [23,24], 2QM becomes energetically favored,
and the deconfinement of up and down quarks will occur via
strong interactions alone. Then SQM, which is by definition
more stable than 2QM, will be produced via weak inter-
actions, the process that can be regarded as β-equilibration.
In the second category, on the other hand, it is supposed that
SQM is produced somewhere else and is later trapped by
neutron stars. In one of such scenarios the seed was formed
in the early Universe and propagates through space. The
formation rate of strange stars was estimated, and it was
argued that all neutron stars are in fact strange stars [25].
Another possibility is that strange stars, which have been
already formed, may somehow eject a fraction of SQM into
space, which might later become a seed SQM in another
neutron star.
If SQM is the true ground state of strong interactions,

HM should be metastable, and their decay is avoided by
the fact that intermediate states with smaller fractions of
strangeness are unstable compared with HM. The con-
version of the metastable state to the truly stable state
separated by unstable states can be regarded as combustion:
HM is a fuel, and SQM is an ash; there is a conversion front
in between, in which the mixtures of fuel and ash exist and
the conversion process takes place. This conversion region
is very thin compared with macroscopic scales, e.g., stellar
radii. In the hydrodynamical description of terrestrial
combustions [26–28], the fuel and ash are related with
each other by the so-called Hugoniot relation, and there
are in general four combustion modes, strong/weak

detonation/deflagration, of which the strong deflagration
is thought to be unrealizable. Which mode actually occurs
is determined by the conversion mechanism and parameters
involved. In this paper and its sequels, we model the
structure of the conversion front, adopting the hydrody-
namical description. We then discuss which combustion
mode is likely to be realized.
The propagation speed of the conversion front and the

time scales of the conversion of entire neutron stars have
been estimated by many researchers. Olinto [29] was the
first to infer the front velocity under the assumption that the
conversion is induced by diffusions of seed SQM. Ignoring
the equations of motion and assuming a constant velocity of
SQM, she obtained the front velocity of 100 − 104 km=s
depending on the critical fraction of strange quarks, at
which 3QM becomes more stable than HM. Heiselberg
derived the transport equations for up, down and strange
quarks; solved them analytically, assuming a local thermal
equilibrium and a constant total pressure as well as
marginal flammability; and found an even smaller front
speed of ∼10 m=s [30]. These results correspond essen-
tially to the (very slow) weak deflagration among the four
combustion modes mentioned above. Employing the esti-
mation of the front velocity similar to the one given by
Olinto [29] and solving an equation for hydrostatic con-
figurations of hybrid stars, Olesen et al. [31] estimated
the conversion time scale for a whole neutron star. They
adopted Bethe-Johnson’s equation of state [32] for neutron
matter and the MIT bag model for QM. In solving the
hydrostatic equations, they assumed the pressure and
chemical equilibrium of up and down quarks and local
charge neutrality at the conversion front. For various bag
constants and initial temperatures, they found the time scale
of complete conversion ranges from 0.1 sec to a few
minutes. Benvenuto et al. [11,12] were the first to investigate
the fast combustion mode known as detonation, which is
actually the focus in this paper. They solved the relativistic
Hugoniot relations with the Bethe-Johnson EOS for neutron
matter and the MIT bag model for QM and discussed the
possible implications for supernova explosions.
Niebergal et al. [33] investigated the effects of global

dynamics on the front velocity, numerically solving hydro-
dynamical equations in spherical symmetry together with
neutrino emissions from β-equilibrating reactions as well as
diffusions of strangeness. Although the equation of state for
HM was approximated by the bag model for 2QM, they
found that the global dynamics has a non-negligible effect
and obtained the front velocity of 0.002–0.04 times the
speed of light, much faster than the previous estimates
neglecting the dynamics. Effects of turbulence on the
deflagration front velocity were studied numerically in
3D large eddy simulations by Refs. [34,35]. The time scale
to convert the whole star is the order of a few milliseconds
in their simulations. They claimed that the front velocity is
enhanced substantially compared with the laminar case.
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Advocating the picture that the conversion of neutron
stars proceeds via two steps, in which a neutron star is
first converted to a quark star composed of 2QM, which is
then converted to a strange star in the second step,
Bhattacharyya et al. [36] estimated the time scale of each
step. They found that the first conversion took about a
millisecond, whereas the second step proceeds over
100 sec. Very recently Mishustin et al. [37] pointed out
that the detonation front velocity may increase or decrease
depending on the velocity of incoming HM.
Some authors have paid their attention to the hydrody-

namical properties of the conversion such as the combus-
tion modes. Considering the jump condition at the
combustion front and the flammability condition, for
example, Cho et al. [38] claimed that neither strong
detonation nor weak deflagration is possible, whereas weak
detonation is possible under certain circumstances, and that
the burning is most likely to be unstable. The conclusion
was challenged by Tokareva et al. [39], who insisted that all
the combustion modes are possible. Lugones et al. [13] also
studied the flammability condition as well as the effect of
the hydrodynamical boundary condition on the front
velocity and suggested that the actual combustion mode
should be strong detonation. On the other hand, employing
a more realistic EOS for HM and taking into account the
mixed phase by the so-called Gibbs condition, Drago et al.
[40] concluded that the conversion process always occurs
via deflagration even if one considers possible enhance-
ment of the front velocity by hydrodynamical instabilities.
They contended further that the combustion occurs in the
strong-deflagration regime. The short list of the preceding
studies given here is clear evidence that no consensus has
been reached yet on which combustion modes are realized,
and further investigations are needed [41]. That is the aim
of this and following papers.
In this series of papers, we study the transitions of HM to

3QM locally from the hydrodynamical point of view. We
assume that HM is metastable and has free energies that
are higher (or less stable) than those of 3QM but are lower
(or more stable) than those of 2QM. Note that it is not
necessarily assumed that 3QM is absolutely stable, i.e., the
most stable at zero pressure, although the SQM hypothesis
is included as a subset. The main difference from the
previous studies is that not only the Hugoniot relation
between HM on one side of the conversion front and 3QM
on the other side but the structures inside the front are also
considered by taking into account what will happen during
the conversion processes as well as EOSs in the mixed
phase. The length scale of our interest is the one determined
by weak interactions, which is actually the width of the
conversion front and much larger than the mean free path
for strong interactions, whereas it is much smaller than the
macroscopic scales, e.g., stellar radii. This justifies the
employment of the hydrodynamical description in
plane symmetry. We discuss which combustion modes

(strong/weak detonation/deflagration) are likely to be
realized for the following two scenarios: (1) the transition
via 2QM triggered by a rapid increase in density owing to
the passage of a shock wave and (2) the conversion induced
by diffusions of a seed 3QM. We focus on the former case
in this paper, and the latter will be reported in the
next paper.
It should be noted that our analysis is local; i.e., only the

region that just covers the conversion front is taken into
account. This is in sharp contrast to the global study of the
conversion of entire neutron stars by simulations [34,35].
The two methods are complementary to each other in fact.
In the former one can consider in detail, albeit phenom-
enologically, what is happening inside the conversion
region, which cannot be resolved by global simulations.
On the other hand, possible backreactions and global
configurations as well as boundary conditions cannot be
taken into account in the local analysis. As a matter of fact,
although the front velocity is a free parameter in our
analysis, it is actually determined uniquely by the global
configuration and boundary conditions in the conversion of
neutron stars to quark stars. We hence believe that the
correct picture of the conversion of neutron stars to quark
stars is obtained only with a proper understanding of both
of these aspects. In this paper we try to list up all possible
structures but make no attempt to claim which ones are
more likely than others to be realized in the actual
conversion. In this sense, the conditions we consider in
this paper are just necessary conditions but not suffi-
cient ones.
We also stress in this series of papers that for the

combination of realistic baryonic EOSs such as the one
we employ in this paper and the bag model EOSs for QM
with a wide range of bag and strong coupling constants,
the combustions may occur in the so-called endothermic
regime, in which the Hugoniot curve for combustion runs
below the one for the shock wave. Such a combustion has
no terrestrial counterpart [26,28] and has been discarded in
the previous papers exactly because it is endothermic
[13,38]. We emphasize, however, that there is no reason
in fact to throw it away. In some papers [34,42], it is argued
that combustion can occur only in the exothermic regime
because of the so-called Coll condition [43,44]: the internal
energy of fuel, i.e., HM in the present case, should be
larger than that of ash, namely 3QM in β-equilibrium in
our case, for the density and pressure of the initial state.
Note, however, that the Coll condition is neither a neces-
sary condition nor a sufficient one but a hypothesis or
assumption actually, to which no physical justification is
given. In fact it is almost equivalent to the requirement that
the Hugoniot curve for combustion should run above that
for the shock wave. The Coll condition is hence nothing but
the conclusion itself. It should be emphasized that it is not
the internal energy but the free energy that determines
thermodynamic evolutions. As long as there is no obstacle
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in between the initial and final states, such as an inter-
mediate state with a higher free energy, reactions proceed
spontaneously to realize the free-energy minimum. This is
exactly the case in the shock-induced conversion consid-
ered in this paper: the shock wave compresses HM to the
density, at which the intermediate 2QM has the same free
energy as HM and is no longer an obstacle for conversion;
further shock compression hence ensures deconfinement
from HM to 2QM; 3QM, by definition, has a lower free
energy than 2QM because the former is the destination of
β-equilibration. Note that there is nothing to stop this
process even if the internal energy of 3QM is higher than
that of HM at the same density and pressure. Note also that
the terminology of “exothermic/endothermic combustion”
is somewhat misleading, since it does not necessarily
correspond to heat production/absorption. As shown later
neither density nor pressure is constant in the conversion. In
the following we hence consider both the exothermic and
endothermic regimes on the same basis and discuss
possible implications thereof.
The outline of the paper is as follows. In Sec. II, we

describe the scenario more in detail. Presenting the
Hugoniot curves for the combination of EOSs of our
choice in this paper, we demonstrate that the combustion
occurs in the endothermic regime more often than not. To
expedite the understanding of the main results, we present
in Sec. III some fundamental features of the combustion
fronts both in the exothermic and endothermic regimes for a
toy model that captures the essential ingredients of the
more realistic models described in Sec. IV. The basic
equations and EOSs used for QM, HM and the mixed phase
in the combustion front are given in Secs. IVA, IV B, IV C
and IV D, respectively, and the main results are presented in
Sec. V. The paper is concluded with the summary and
discussions in Sec. VI.

II. SCENARIOS

A. Free energies and schematic pictures of conversions

The situations we have in mind in this paper are best
illustrated in Fig. 1, in which the Gibbs free energies per

baryon are schematically displayed for HM and 2QM and
3QM at zero temperature as a function of pressure [45]. The
matter having the lowest free energy per baryon for a given
pressure is the most stable there. The left panel corresponds
to the SQM hypothesis, under which 3QM is the most
stable down to zero pressure. In the right panel, on the other
hand, HM is the most stable at zero pressure, and at a
certain pressure shown as Pc3 in the figure, 3QM takes its
place, having the lowest free energy per baryon. At still
higher pressures (P ≥ Pc2 in the figure), even 2QM
becomes more stable than HM in both cases. It is important
to recognize that the two cases are essentially identical in
the vicinity of Pc2. If the conversion frommetastable HM to
truly stable 3QM occurs between Pc3 and Pc2 as shown by
arrows a, the two cases do not differ qualitatively. In the
SQM hypothesis [case (A)], the diffusion-induced con-
version can take place anywhere below Pc2, whereas it is
forbidden below Pc3 in case (B). The shock-induced
conversion, on the other hand, occurs at Pc2 as indicated
by arrows b in both cases.
As already mentioned, we consider the shock-induced

conversion alone in this paper, and the diffusion-induced
conversion will be discussed in the sequels. The transition
from HM to 3QM is supposed to occur via 2QM in this
scenario: the density and temperature rise in the shock front
rapidly on the time scale of strong interactions and reach
the point where the free energies of HM and 2QM coincide
with each other and the deconfinement of nucleons to up
and down quarks takes place as a phase transition in
equilibrium. Once 2QM is formed, there is no obstacle
other than the finite mass of the strange quark to prevent
the β-equilibration to 3QM from proceeding spontane-
ously. This is in sharp contrast to the direct transition
from HM to 3QM, in which small fractions of strangeness
are energetically disfavored. Note that the chemical
potentials of up and down quarks are close to the strange
quark mass in the typical situations and the time scale of
β-equilibration will be ∼10−8 s [38], which is much
shorter than the hydrodynamical time scale (∼10−3 s)
in neutron stars. This implies that the deconfinement and

FIG. 1. Schematic pictures of the Gibbs free energy per baryon. The left panel corresponds to the strange quark matter hypothesis. The
points, at which the free energy of HM coincides with those of 3QM and 2QM, are denoted by Pc3 and Pc2, respectively.
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subsequent β-equilibration are lagged by ∼10−8 s at most
and the width of the conversion region is not larger than
∼102 cm, which is much greater than the typical length
scale of strong interactions ∼fm, but still much smaller
than the typical macroscopic scale such as a neutron star
radius ∼10 km. The conversion region can be hence
regarded as a single entity.
The shock wave may be produced when spin-down of or

matter-accretion onto a neutron star increases the central
density and temperature to the values, at which the free
energy per baryon of HM is equal to that of 2QM and the
deconfinement of up and down quarks occurs spontane-
ously. Then the β-equilibration to 3QM ensues immedi-
ately. Once the shock wave is generated, the conversion
process will be self-sustained as long as the shock com-
pression gives densities and temperatures high enough for
deconfinement. It is then obvious that the conversion is
initiated at Pc2 in Fig. 1 for both cases (A) and (B). The
conversion is schematically expressed by arrows b in the
figure.
The structure of the conversion region for this scenario is

also composed of a couple of parts and schematically
depicted in Fig. 2. The conversion is initiated by the
hydrodynamical shock wave. The density and temperature
increase in HM by shock compression. When they reach
the values (denoted as nc and Tc in the figure), at which the
free energy per baryon of HM is equal to that of 2QM, the
deconfinement of up and down quarks takes place sponta-
neously. It should be noted that the shock compression
occurs on the time scale of strong interactions, ts, and the
shock width is λs ≲ cts, in which c is the light speed. Since
ts is much shorter than the time scale of weak interactions,
tw, there are essentially no weak interactions up to this
point. As a result, the ratio of the number density of up
quarks to that of down quarks is unchanged, and no strange

quark is present in the shock wave. Then the ordinary
first-order phase transition in equilibrium converts HM to
2QM through a mixed phase. This transition may or may
not be completed in the shock wave. If it is indeed
finished and the volume fraction of 2QM becomes unity
by the end of the shock wave, the β-equilibration to 3QM
occurs everywhere simultaneously. If the mixed state of
HM and 2QM remains at the end of the shock wave, on
the other hand, the conversion of 2QM to 3QM via
β-equilibration commences only in the volume occupied
by QM. As this irreversible conversion proceeds in
QM, the volume fraction of HM becomes smaller, and
eventually QM prevails over the whole volume and
approaches the asymptotic state of 3QM in complete
β-equilibrium. In both cases, the β-equilibration proceeds
on the time scale of weak interactions, tw, and the
conversion region extends over the length of λw ∼ ctw,
which is much wider than λs, and the shock wave is
magnified unproportionately in the figure.

B. Hugoniot curves

Although the main goal of this paper is to discuss the
structures in the conversion region, we consider in this
subsection the relation connecting the initial state of HM
with the final state of 3QM. HM just prior to the conversion
is metastable, and 3QM in β-equilibrium is the truly stable
state. Then the transition is quite similar to combustions, in
which fuels are metastable states of which the spontaneous
conversion to more stable ashes is prevented by the
existence of intermediate states with positive activation
energies. The relation between the initial and final states is
obtained from the conservations of baryon number,
momentum and energy, which are expressed in the front-
rest frame as

FIG. 2. The schematic pictures of the shock-induced conversion regions for the complete-deconfinement case (left panel) and the
incomplete-deconfinement case (right panel). HM composed of protons and neutrons, which are denoted as p, n, respectively, in the
drawing, is put on the left end, and 3QMmade up of up, down and strange quarks occupies the opposite end. They are flowing rightward
in this front-rest frame. The shaded regions stand for the deconfinement regions, the widths of which are exaggerated in this picture. The
hatches correspond to the shock wave. Note that the deconfinement commences inside the shock wave but may end either inside the
shock wave (left panel) or outside (right panel). The lines labeled as v, nB, T and fs represent the velocity, baryon number density,
temperature and fraction of strange quarks, respectively. Leptons are not shown in this picture. See the text for the meanings of λs, λw, nc
and Tc.
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ρivi ¼ ρfvf; ð1Þ

Pi þ ρv2i ¼ Pf þ ρfv2f; ð2Þ

hi þ
1

2
v2i ¼ hf þ

1

2
v2f; ð3Þ

where the subscripts i and f represent the initial and final
states, respectively, and ρ, v, P and h stand for the baryon
mass density, velocity, pressure and specific enthalpy,
respectively. From Eqs. (1) and (2), we obtain the linear
relation between the pressure and specific volume
V ¼ 1=ρ. Eliminating the velocity from Eq. (3), on the
other hand, we can derive the so-called Rankine-Hugoniot
relation that gives the final pressure as a function of the
initial specific volume and pressure as well as the final
specific volume. Drawing these relations in the P − V
plane, we obtain the Rayleigh line from the former and the
Hugoniot curve from the latter. The intersection of the line
and curve gives the final state. If the initial and final states
are in the same phase, the Hugoniot curve runs through not
only the final state but also the initial state. This is the case
for shock waves. If the initial phase is different from the
final one, on the other hand, the Hugoniot curve does not
pass through the initial state, and it is different from the
Hugoniot curve for the shock wave. What we are concerned
with here is the relative positions of this Hugoniot curve for
combustion and that for the shock wave.
Since the Hugoniot curves for terrestrial combustions

always run above the corresponding ones for shock waves
in the P − V plane, combustion theory normally deals only
with this case. Then the Rayleigh line intersects the
Hugoniot curve at two points in general (except for the
so-called Juget points, at which the two points coincide
with each other). Depending on the slope of the Rayleigh
line, or equivalently the flow velocity ahead of the
combustion front, the two intersections lie either to the
left or to the right of the point corresponding to the initial
state. To be more precise, these four combustions are

characterized by the ratios of the flow velocity to the sound
speed, cs, or the Mach numbers, for the initial and final
states. If the relation vi > csi holds, the combustion is
referred to as “detonation,” whereas it is called “deflagra-
tion” if the opposite inequality is satisfied. If, in addition,
the relation vf < csf (vf > csf) holds, it is said to be
strong (weak). We hence have got four combustion modes:
strong/weak detonation/deflagration. Since combustions
are normally exothermic chemical reactions, they are
referred to as the combustions in the “exothermic” regime.
It should be noted, however, that there is no a priori

reason for not finding the opposite regime, which we refer
to as the “endothermic” regime. In fact, as we will show
later in this paper, the nonequilibrium phase transition from
HM to 3QM is more likely than not to occur in the latter
regime. As a matter of fact, we are not the first to point this
out. Lugones et al. [13] gave a simple criterion of the
exothermic combustion for the bag model and demon-
strated that the endothermic regime is indeed obtained for
the combination of the Walecka EOS for HM and the MIT
bag model for 3QM. Simply put, the endothermic com-
bustion is obtained if HM is stiff enough. As shown shortly,
this is indeed the case over a wide range of the bag constant
and the strong coupling constant also for the baryonic EOS
based on the relativistic mean field theory that we employ
in this paper. In the endothermic combustion, the Rayleigh
line again intersects the Hugoniot curve at two points.
Unlike in the exothermic case, however, there is no Juget
point, and one of the two intersections lies to the left of the
initial point, and the other sits on the opposite side. There is
no gap between detonation and deflagration in the fluid
velocity ahead of the combustion front. These features are
summarized in a schematic picture in Fig. 3.
Some of the actual Hugoniot curves are given in Fig. 4,

where the initial HM is assumed to be either cold neutron
star (NS) matter with the temperature T ¼ 0 MeV and the
density ρi ¼ 5.6 × 1014 g=cm3 or proto-neutron star (PNS)
matter with T ¼ 10 MeV, ρi ¼ 3.0 × 1014 g=cm3 and the
lepton fraction Y lep ¼ 0.3. In both cases HM is assumed to

FIG. 3. The Hugoniot curves in the exothermic (left panel) and endothermic regime (right panel). The Hugoniot curves for the shock
wave are expressed as black curves.
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be in β-equilibrium either without (NS matter) or with
(PNS matter) neutrinos. Different colors correspond to
different values of the bag constant, B1=4, and the strong
coupling constant, αs. Note that the Hugoniot curves in
the figure are obtained from the relativistic version of
Eqs. (1)–(3) and X ¼ ðhρÞ=n2B is reduced to the specific
volume in the nonrelativistic limit [46]. As B1=4 becomes
larger, the Hugoniot curve for combustion shifts downward
due to the lower pressures for fixed values of nB or X. In
contrast, αs has little impact on the position of Hugoniot
curves, since the variations of P and X with αs in the
Rankine-Hugoniot relation are mostly canceled out. Both
B1=4 and α give positive nonkinetic contributions to internal
energy and, as a result, tend to lower temperatures and
increase latent energies. These features are explained more
in detail in Sec. IVA. For comparison, the Hugoniot curves
for the shock wave in HM are also shown in the figure.
It is evident in the same figure that in most cases the

Hugoniot curves for combustion run below the corre-
sponding Hugoniot curves for the shock wave. In the model
with B1=4 ¼ 130 MeV and αs ¼ 0.6 for the PNS matter
(right panel), the Hugoniot curve for combustion intersects
that for the shock wave. Even in that case, however, the
former is still lower than the latter near the initial point.
The Hugoniot curve for combustion runs above that for the
shock wave for small bag constants as demonstrated by
the model with B1=4 ¼ 125 MeV for the PNS matter
(right panel). It is interesting to point out that in some
cases such as the model with B1=4 ¼ 140 MeV and
αs ¼ 0.6, the Hugoniot curves cannot be extended to
low pressures, since the temperature would become neg-
ative to obtain the Hugoniot relation, because of large latent
energies. The end points of the curves, which are marked
with a cross in the figure, correspond to the states with
T ¼ 0 MeV. It is incidentally mentioned that these end
points occur at higher pressures for larger αs, as observed

for the models with B1=4 ¼ 130 and αs ¼ 0.8 for NS matter
(left panel). These are the real end points, below which we
have no steady solution that satisfies the conservation laws.
What happens then will be an interesting topic that warrants
further investigations. Note in passing that the final state is
not always pure 3QM as assumed tacitly in the above
discussions. In some cases, HM survives even in the final
state in chemical equilibrium as explained later.
As mentioned earlier, in the studies done so far, the

endothermic regime is simply discarded for the very reason
that it is the endothermic regime. The idea behind this
seems to be that endothermic reactions do not occur at zero
temperature. It should be stressed, however, that the term
“endothermic regime” is misleading and indeed does not
necessarily correspond to the reactions being endothermic.
As explained above, the regimes are classified by the
relative positions of the two Hugoniot curves, one for
combustion and the other for the shock wave: if the
Hugoniot curve for combustion runs above (below) the
one for the shock wave at the specific volume for the initial
state, the combustion is referred to as exothermic (endo-
thermic). The heat release or absorption, however, is given
by d0Q ¼ dU − PdV (in the absence of mass actions)
according to the first law of thermodynamics. It should be
noted that in the phase transition we are concerned with in
this paper, neither the specific volume nor pressure remains
constant. The terminology is simply based on the our
empirical knowledge that the Hugoniot curves for terrestrial
exothermic combustions always run above the correspond-
ing Hugoniot curves for the shock wave.
We emphasize here that it is not whether the phase

transition is exothermic or endothermic in the conventional
sense above that matters. What is more important is whether
the free energy is minimum or not. If not, the reaction can
proceed toward the free-energy minimum irrespective of it
being exothermic or not in the conventional sense. This is

FIG. 4. The Hugoniot curves for various values of the bag and strong coupling constants. The initial states of HM are NS matter in β-
equilibrium without neutrinos at T ¼ 0 MeV and ρi ¼ 5.6 × 1014 g=cm3 (left panel) and PNS matter at T ¼ 10 MeV, Yp ¼ 0.3 and
ρi ¼ 3.0 × 1014 g=cm3 (right panel), respectively, which are indicated by the squares. Crosses mark the points, at which zero
temperature is obtained.
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exactly what we have at hand. Indeed, the free energy is
always lower for 3QM at the end points than for HM at the
base points of arrows a and b both for cases (A) and (B) in
Fig. 1. We hence contend that the phase transition should
occur there even if they are in the endothermic regime. The
conversion will be terminated only when Pc3 in case (B) is
reached by the conversion front.
In this subsection we have ignored the width of the

conversion front and discussed only the possible asymp-
totic states. In the following, we will see what structures the
conversion fronts have according to the scenarios described
above. In the rest of this paper, we employ a nonrelativistic
formulation for simplicity. This is certainly not a good
approximation. The reasons why we make this choice are
that the nonrelativistic dynamics and Hugoniot relations are
no doubt easier to understand intuitively, that there is a
subtle problem of causality violation in the naive relativistic
extension of our model and that the results are qualitatively
unchanged according to our preliminary explorations. Fully
relativistic and more quantitative analysis will be reported
in the sequel to this paper. In order to further expedite the
understanding, we first employ a simplified model, which
captures only the essential ingredients of the more realistic
model discussed in Sec. IV.

III. TOY MODEL

In the following, we turn our attention to the structures
of the conversion region connecting the initial and final
asymptotic states discussed in the previous section. We
assume the plane symmetry and consider one-dimensional
stationary profiles of matter flows that undergo the phase
transition from HM to 3QM. The assumption of plane
symmetry and stationarity is well justified, since the width
of the conversion region is much smaller than the typical
macroscopic length scale and the time, during which matter
stays in this region, is much shorter than the time scale, on
which the initial hadronic state is changed either by the
propagation of the conversion front in the (proto-)neutron
star or by the adjustment of (proto-)neutron-star configu-
ration to the appearance of quark phase. In this section, we
introduce a toy model that will facilitate our analysis and
understanding of the main results presented in Sec. IV.
The simplification is mainly concerning EOSs. As shown
shortly, it is indeed a very crude approximation to reality.
However, the qualitative behavior of its results still captures
the essence of the more realistic models introduced in the
next section. There is also an advantage that we can freely
change the behavior of Hugoniot curves, particularly the
regime of combustion. We hence believe that this simplified
model is worth presenting here.

A. Basic equations and simplified EOSs

The basic equations to describe the stationary structures
of the conversion region are the conservation equations of

mass, momentum and energy in the front-rest frame, which
are unchanged in the more realistic models introduced in
the next section and given by

ρv ¼ ρivið¼ ρfvfÞ; ð4Þ

Pþ ρv2 − ν
dv
dx

¼ Pi þ ρiv2i ð¼ Pf þ ρfv2fÞ; ð5Þ

hþ 1

2
v2 −

ν

ρ

dv
dx

¼ hi þ
1

2
v2i

�
¼ hf þ

1

2
v2f

�
; ð6Þ

where plane symmetry is assumed and an x coordinate is
introduced; the initial HM is assumed to be located at
x ¼ −∞ and the final 3QM is assumed to be realized at
x ¼ þ∞; ρ, v, P, and h are the baryon density, fluid
velocity, pressure and specific enthalpy, respectively; the
subscripts i and f stand for the initial and final states
as before; and the viscous dissipations are introduced to
deal with shock waves, in which ν is the viscosity. These
equations are complemented by another equation that gives
the spatial distribution of strangeness,

v
dfs
dx

¼ fs;f − fs
τ

; ð7Þ

where fs is the fraction of strangeness and fs;f is its
asymptotic value in the final state; τ gives the time scale
of β-equilibration; they are varied rather arbitrarily in the
toy model to see the dependence of solutions on these
parameters. Divided by fs;f, the above equation is rewritten
as

v
df̄s
dx

¼ 1 − f̄s
τ

; ð8Þ

for f̄s ¼ fs=fs;f.
The β-equilibration occurs once the deconfinement to

2QM is allowed. Although in our realistic models this point
is determined by the condition for the phase equilibrium
between HM and 2QM, in the toy model we set it
arbitrarily. The condition is usually met inside the shock
wave (see the left panel of Fig. 2), in which the density
increases by compression. This is the reason why we do not
treat the shock wave as a discontinuity but calculate its
profile employing the viscous dissipation term. Note that
the width of the shock wave is of the same order as that of
the deconfinement region and much smaller than the length
scale of the conversion region of our interest. In principle,
what happens inside the shock wave cannot be described by
the hydrodynamical approximation. It is a common prac-
tice, however, and it is also known that the qualitative
behavior is reproduced. We thus follow this practice,
adjusting the viscosity so that the shock wave should be
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much narrower than the conversion region but could be still
resolved in numerical calculations.
We employ the so-called γ-law EOS both for HM and

QM, knowing that this is certainly an oversimplification,

PHM ¼ ðγ − 1Þρϵ; ð9Þ

PQM ¼ ðγ − 1Þρðϵþ eÞ; ð10Þ

where the upper equation is for HM and the lower for QM;
γ, ρ and ϵ are the adiabatic index, baryon density and
specific internal energy, respectively. The EOS for QM is
different from that for HM in that the former includes an
extra constant term, e, in the specific internal energy, which
is utilized to control the regime of combustion; with a
positive e, we have an exothermic combustion and vice
versa in the conventional sense.
In the conversion region, QM has strangeness fractions

that are different from the asymptotic value. In this section,
we assume for simplicity that these states are also described
by the γ-law EOS,

P ¼ ðγ − 1Þρðϵþ f̄seÞ; ð11Þ

where we multiply the extra energy, e, with the fraction of
strange quark, f̄s, introduced above, thus interpolating the
intermediate 2QMðf̄s ¼ 0Þ and final 3QMðf̄s ¼ 1Þ very
crudely. These treatments will be more sophisticated in
Sec. IV. Since we are interested in the qualitative features of
the conversion region in this section, this level of approxi-
mation is sufficient.
We normalize all quantities by adopting an appropriate

density, pressure and time, for which we normally take
the initial density, pressure and weak interaction time
scale. Then the parameters that characterize the system
are the dimensionless viscosity, ν̄ ¼ ν=ðρic2siτÞ, and extra
energy, ē ¼ e=c2si.
The toy model can be extended to the diffusion-induced

conversion by adding the second spatial derivative in
Eq. (7), which describes the diffusion flux of strangeness.
On the other hand, the viscous term in Eqs. (5) and (6) can
be neglected in that conversion. Detailed analyses of the
modified toy model as well as the more realistic one, which
corresponds to what is introduced in the next section of this
paper, will be postponed to the sequel to this paper.

B. Results

In the following we show the solutions to the
equations given above [Eqs. (4)–(6) and (8) together with
Eqs. (9)–(11)]. The exothermic (e > 0) and endothermic
(e < 0) cases are discussed in turn separately.

1. Exothermic case (e > 0)

We first consider the exothermic case with e > 0, i.e., the
ordinary combustion as observed on Earth. The Hugoniot
curve for combustion then runs above the one for the shock
wave in the P − V diagram. We suppose here that a shock
wave traverses HM; the shock compression increases the
density and pressure, and at some point inside the shock
wave 2QM is favored in terms of free energy (Pc2 in Fig. 1);
then the phase transition to 2QM occurs spontaneously,
followed by the β-equilibration to 3QM. The basic equa-
tions are reduced to the autonomous system for f̄s and v,

df̄s
dx

¼ 1 − f̄s
v

; ð12Þ

dv
dx

¼ 1

2ν̄v

�
ðγ þ 1ÞMiðv −MiÞ

�
v −

2þ ðγ − 1ÞM2
i

ðγ þ 1ÞMi

�

þ 2ðγ − 1ÞMiēf̄s

�
; ð13Þ

where Mi is a Mach number for the initial state and all
quantities are normalized as mentioned earlier. The right-
hand side of Eq. (12) is turned on only for the QM region.
The critical point, at which HM converts itself to 2QM
spontaneously, is a free parameter specified by the density,
ρc, in this toy model. In more realistic models we employ in
the next section, the critical point is determined by the
condition for the phase equilibrium between HM and 2QM,
which is hence consistent with the EOSs adopted there.
Our concern here is whether strong detonation is the only
solution or weak detonation is also realized. Other pos-
sibilities are unlikely, since decompression is needed.
For a given pair of ðV; PÞ, we obtain a one-parameter

family of solutions and integral curves in the phase space
spanned in this case by v and f̄s. Some representative
solutions are given in the left panel of Fig. 5. The initial
states correspond to the points on the v-axis (f̄s ¼ 0) in this
figure, whereas the final states are the points on the line,
f̄s ¼ 1. The latter is divided into two regions, one for
strong detonation and the other for weak detonation, each
of which is marked with circle and cross, respectively. It is
evident that strong detonation is always obtained; i.e., all
integral lines go into the portion of strong detonation. The
right panel of Fig. 5 shows the vector field (dv=dx,
df̄s=dx), which are derived from Eqs. (12) and (13) for
some initial Mach number. We can confirm that all but one
integral lines converge to the asymptotic state correspond-
ing to the strong detonation and weak detonation is unlikely
to be realized. Note that the vector field depends on the
initial Mach number [see Eq. (13)] and is different for each
initial state.
A typical solution of strong detonation is displayed in

Fig. 6. In the left panel, we show various quantities as a
function of position. The shock wave is located at x ∼ 0.75.
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With a nonvanishing viscosity, the shock wave is no longer
a discontinuity but is smeared over a finite region, in which
the velocity and pressure change very rapidly. The fact that
this is actually a strong detonation is best demonstrated in
the right panel, in which we show the solution together with
the Hugoniot curves both for the shock wave and com-
bustion in the P − V diagram. The strong and weak
detonations are marked with a circle and cross, respectively,
on the Hugoniot curve for combustion, whereas the final
state that would be connected by the shock transition
without combustion is also indicated by a triangle on the
Hugoniot curve for the shock wave. Note that the trajectory
is not a straight line owing to the viscous term and does not
go through the final state for weak detonation. As expected,
the specific volume and pressure initially move toward
the final state for the shock transition. The evolution is

redirected to the final state corresponding to strong deto-
nation much later than the point marked with a square, at
which the critical density, ρc, for the deconfinement from
HM to 2QM is reached.
One might think that if the critical density were closer to

the density of the final state corresponding to weak
detonation, the resultant mode might be different. This
does not seem the case. In fact, we studied a wide range of
ρc, to always obtain strong detonation. Note also that the
viscosity (ν̄ ¼ 1) adopted in these calculations is way too
large. As a matter of fact, with a realistic value, the shock
width would be smaller by many orders of magnitude than
the size of the conversion region that is determined by weak
interactions as mentioned earlier. This is the main reason
why we take such an overly exaggerated value here and in
the next section as well. We confirm at least that the results

FIG. 5. The phase diagrams for the toy model of the shock-induced conversion in the exothermic regime. The left panel shows some
solution curves for different initial velocities drawn in different colors. The right panel displays the vector field (dv=dx, df̄s=dx) for a
given initial Mach number and the corresponding solution curve. The final states corresponding to strong (weak) detonation are marked
by circles (crosses).

FIG. 6. The typical strong-detonation solution for the toy model of the shock-induced conversion in the exothermic regime displayed
as functions of position (left panel) and as a trajectory in the P − V diagram (right panel). With a nonvanishing viscosity, the shock is no
longer a discontinuity but has a finite width, which is hatched in the left panel. In the right panel, the Hugoniot curves for the combustion
and shock wave are drawn as solid and dotted lines, respectively. The actual evolution is expressed with the red curve, which is not a
straight line indeed. The final state corresponding to strong (weak) detonation is marked by a circle (cross). The critical point with
ρ ¼ ρc and final state for the shock transition without combustion are also indicated by a square and triangle, respectively.
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presented above are not changed if we take much smaller
but still treatable values of viscosity. It is also mentioned
incidentally that in this toy model the conversion from HM
to 2QM is assumed to be completed instantaneously but
this will be improved in the more realistic model, which
takes the so-called mixed phase into account, in the next
section.

2. Endothermic case (e < 0)

Now we proceed to the endothermic case (e < 0), the
exotic combustion, to which we have no terrestrial counter-
part [26,28]. The Hugoniot curve for combustion runs
below the one for the shock wave in this case. Like the
exothermic case, there are two states that satisfy the
Rankine-Hugoniot jump conditions for a given pair of
ðV; PÞ and a velocity v. Unlike the ordinary combustion,
however, we always find one of them to the left and the
other to the right of the initial state in the P − V diagram.
These combustions are classified by the same scheme as for
the exothermic case: detonation is a combustion mode, for
which the initial state is supersonic in the front-rest frame,

whereas deflagration is a combustion with a subsonic initial
velocity; if the final state is subsonic, the combustion is
either a strong detonation or weak deflagration; on the other
hand, it is called either weak detonation or strong defla-
gration if the flow in the final state is supersonic. One
interesting feature in the endothermic combustion is that
there is no Jouget point and the detonation branch is
connected with the deflagration branch without a gap in the
initial velocity.
In the same way for the exothermic case, weak deto-

nation is unlikely to be realized as shown in Fig. 7. Hence
strong detonation is expected to be the only solution. In
fact, matter is decompressed in weak detonation, whereas
it is compressed in the shock wave. A typical strong-
detonation solution is presented in Fig. 8. For the com-
parison with the exothermic counterpart (Fig. 6), it is found
that the distributions of various quantities are not much
different between the two cases except that matter is further
compressed in the endothermic combustion after the
transition from HM to 2QM commences in the shock
wave. This is more evident in the right panel, in which we

FIG. 7. The phase diagrams for the toy model of the shock-induced conversion in the endothermic regime. Lines and symbols are the
same as in Fig. 5.

FIG. 8. The typical strong-detonation solution for the toy model of the shock-induced conversion in the endothermic regime. Lines and
symbols are the same as in Fig. 6.
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show the trajectory together with the Hugoniot curves for
combustion as well as for the shock wave in the P − V
diagram. In these calculations, we again take the viscosity ν̄
that is too large for the same reason as given earlier for
the exothermic case. It is confirmed that the results are
unchanged if we take smaller (but still affordable) values
of ν̄.

IV. FORMULATIONS OF REALISTIC MODELS

In the following, we elaborate on the microphysics
neglected in the toy model and study with this more
realistic model what we have found so far with the overly
simplified model.

A. EOSs for HM and QM

The EOS for ideal gas used in the toy model is certainly
inappropriate both for HM and QM and is replaced by more
realistic (albeit phenomenological) ones, which will be
described below in turn. We employ Shen’s EOS [47] for
HM, which is based on the relativistic mean field theory, in
which nuclear interactions are described by exchanges of
mesons. The Lagrangian adopted in Shen’s EOS is the
following:

LRMF ¼ ψ̄ ½iγμ∂μ −M − gσσ − gωγμωμ − gργμτaρaμ�ψ

þ 1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −

1

3
g2σ3 −

1

4
g3σ4

−
1

4
WμνWμν þ 1

2
m2

ωωμω
μ þ 1

4
c3ðωμω

μÞ2

−
1

4
Ra
μνRaμν þ 1

2
m2

ρρ
a
μρ

aμ: ð14Þ

The notation is the same as in Ref. [47]: ψ , σ, ω and ρ
denote nucleons (proton and neutron), a scalar-isoscalar
meson, a vector-isoscalar meson and a vector-isovector
meson, respectively, and Wμν ¼ ∂μων − ∂νωμ and Ra

μν ¼
∂μρaν − ∂νρaμ þ gρϵabcρbμρcν. The nucleon-meson inter-
actions are given by the Yukawa couplings, and the
isoscalar mesons (σ and ω) interact with themselves, which
are expressed as the cubic and quartic terms. These self-
interactions are tuned to reproduce more fundamental
Brückner-Hartree-Fock theory. In the mean field theory,
the mesons are assumed to be classical and replaced by
their thermal ensemble averages, whereas the Dirac equa-
tion for nucleons is quantized, and the free energy is
evaluated based on the energy spectrum of nucleons
obtained this way. M is the mass of nucleons and assumed
to be 938 MeV. They use the TM1 parameter set, in which
the masses of mesons, mσ , mω, mρ, and the coupling
constants, gσ, gω, gρ, g2, g3, c3, are determined so that not
only the saturation of uniform nuclear matter but also the
properties of finite nuclei could be best reproduced [48].
This EOS is rather stiff, having the incompressibility of

281 MeV and the symmetry energy of 36.9 MeV, and the
maximum mass of a cold neutron star is 2.2M⊙.
We adopt the MIT bag model for QM, which takes into

account the confinement and asymptotic freedom of quarks
phenomenologically and describes QM as a collection of
freely moving quarks in the perturbative vacuum with a
vacuum energy density given by the so-called bag constant.
The baryonic number density nB, pressure P and energy
density ϵ are expressed as the sums over three flavors of
quarks, which are shown by the subscripts of u, d and s for
up, down and strange quarks, respectively, and the bag
constant B:

nB ¼ 1

3

X
f¼u;d;s

nf; ð15Þ

P ¼
X

f¼u;d;s

Pf − B; ð16Þ

ϵ ¼
X
f

ϵf þ B: ð17Þ

The contributions of each flavor of quark to these quantities
are given as

Pf ¼ gf
6π2

Z
∞

0

p4
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
f þm2

f

q

× ½FðE; μf; TÞ þ FðE;−μf; TÞ�dpf; ð18Þ

ϵf ¼
gf
2π2

Z
∞

0

p2
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þm2

f

q
½FðE; μf; TÞ

þ FðE;−μf; TÞ�dpf; ð19Þ

nf ¼ gf
2π2

Z
∞

0

p2
f½FðE; μf; TÞ þ FðE;−μf; TÞ�; ð20Þ

where gfð¼ 6Þ, pf, Ef and μf are the statistical weight,
momentum, energy and chemical potential, respectively, of
each flavor of quark, and the Fermi-Dirac distribution is

denoted by FðEf; μf; TÞ ¼ 1=ðeðEf−μfÞ=TÞ þ 1Þ with E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þm2

f

q
and mf being the quark mass. The masses of

quarks are set to be mu ¼ 2.5, md ¼ 5.0 and ms ¼
100 MeV [49]. The statistical weight gf is a product of
spin (2) and color (3) degrees of freedom. In these simplest
expressions, the interactions of quarks are neglected except
for the bag constant. Fahri et al. [50] derived the first-order
corrections with respect to the strong coupling constant for
massless quarks at finite temperatures. We add them to the
simplest expression [Eq. (17)] for massive quarks following
Ref. [18] as
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PfðαsÞ ¼ Pfð0Þ −
�
7

60
T4π2

50αs
21π

þ 2αs
π

�
1

2
T2μ2f þ

μ4f
4π2

��
;

ð21Þ

where Pfð0Þ is the pressure given by Eq. (18). The number
density nf and energy density ϵf can be obtained in a
similar way.
We summarize in Table I the combinations of the bag

constant and the strong coupling constant we adopt in this
paper and the resultant properties of 2QMs and 3QMs as
well as of quark stars. Note that all models in Table I satisfy
the requirement that 2QM in vacuum should have a larger
energy per baryon than that of HM ∼ 934 MeV including
surface effects [51]. On the other hand, the SQM hypoth-
esis is true for the four models, in which the energies per
baryon of 3QM are smaller than ∼930 MeV. In Fig. 9, we
indicate the parameter values of our choice in the B − αs
plane together with some critical lines. For example, the
domain to the left of the black solid line labeled with
“2QM ¼ HM” is excluded, since 2QM would be more
stable than HM there. The SQM hypothesis holds, on the
other hand, for the parameter sets located to the left of the
black dashed line with the label of “3QM ¼ HM.” In this
paper we do not stick to this hypothesis and explore the
regions both to the left and right of this critical line. The
maximum mass of a cold quark star would be smaller than
2M⊙, the mass of the most massive pulsar observed so far,
above the red line. One of our models violates this
condition indeed. In this case, a quark star cannot exist
as a stable object.1 The critical density, at which HM
converts itself to 2QM spontaneously, plays a key role in
our scenario. Table I gives the values of the critical density
for the combinations of the bag constant and strong
coupling constant we adopt in this paper. Both the
transitions from the cold neutron star and from the hot

and proton-rich proto-neutron star are considered. It is
found that the models with larger B1=4 and/or αs have larger
critical densities. This is because 2QM with larger B1=4

and/or αs has smaller pressure for a given chemical
potential, as can be understood from Eqs. (15)–(17)
and (21).
Figure 9 shows as blue and green solid lines for NS and

PNS, respectively, the boundaries of the pairs of B1=4 and
αs, for which the critical density is larger than the nuclear
saturation density n0 ¼ 0.17 fm−3. We suppose that the
conversion from HM to QM occurs at supranuclear
densities and choose pairs of B1=4 and αs only above these
lines in this paper. Recent observations of masses of
compact stars also give a strong constraint on their EOS.
In particular, the observations of the pulsars PSR J1614-
2230 and PSR J0348þ 0432 indicate that their masses are
1.97� 0.04M⊙ and 2.01� 0.04M⊙, respectively [52,53].
As mentioned earlier, we consider both the models that
satisfy this constraint and that do not. In the latter case, a
quark star does not exist as a stable compact object and may
be realized as a transient [54].

B. Asymptotic states

In the following three subsections, we explain our
descriptions of various regions in Fig. 2 in turn. We start
with the asymptotic regions or the states, from one of which

TABLE I. Summary of models: the values of the maximum
mass of a pure quark star, free energies of 2QM and 3QM at zero
pressure and critical densities of NS matter and of PNS matter
normalized by the nuclear density for different combinations of
the bag and coupling constants.

B1=4 αs

Mmax
ðM⊙Þ

2QM
(MeV)

3QM
(MeV)

nc=n0 of
NS matter

nc=n0 of
PNS matter

145 0.40 1.90 1017 922 1.17 2.40
140 0.40 2.04 970 892 0.75 1.35
140 0.60 2.02 1016 939 1.51 4.37
135 0.60 2.17 993 908 0.95 4.09
135 0.80 2.14 1051 967 6.66 7.46
130 0.80 2.30 1001 934 6.38 7.30
125 0.80 2.47 962 907 0.74 1.21

 125

 130

 135

 140

 145

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

B
1/
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α

↓ Mmax>2.0 Mo•

HM=3QM
HM=2QM

→ nc>n0

→ nc>n0

(NS)

(PNS)

FIG. 9. Some constraints on the values of the bag constant and
the strong coupling constant. The black solid and dashed lines
show the pair for which the energy per baryon of HM coincides
with that of 2QM and with that of 3QM, respectively. The domain
to the left of the former line is excluded, since HM would be
unstable to the deconfinement to 2QM. The red curve is the
critical line, above which the maximum mass of a quark star
would become smaller than 2M⊙, the largest pulsar mass
observed so far. The green and blue solid lines indicate the pairs
for which the critical density of the spontaneous transition from
HM to 2QM occurs at the nuclear saturation density. See the text
for more details. The crosses correspond to the models inves-
tigated in this paper and listed in Table I.

1A quark star may still exist as a transient object if it is rotating
sufficiently fast.
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the conversion begins and with the other of which it ends.
The former is called fuel in combustion, and the latter is
referred to as ash. The fuel of our interest is composed
of neutrons and protons as the hadronic component2 and
electrons and neutrinos as the leptonic component. They
are assumed to be in β-equilibrium,

μp þ μe ¼ μn þ μνe : ð22Þ

In the case of PNS (T ∼ 10 MeV), neutrinos are assumed to
be trapped and equilibrated with matter, whereas they are
assumed to be absent in the case of cold NS, and we set
μνe ¼ 0. In addition, the fuel is charge neutral,

np ¼ ne; ð23Þ

where np and ne are the number densities of the proton and
electron, respectively. The lepton fraction Y lep is assumed
to be Y lep ¼ 0.3 everywhere for the PNS case. The electron
fraction in the NS matter is determined from the conditions
of β-equilibrium, Eq. (22), without neutrinos and of charge
neutrality, Eq. (23).
On the other hand, the thermodynamic state of the ash or

3QM in β-equilibrium is derived from

μup þ μe ¼ μdn þ μνe ;

μup þ μe ¼ μsg þ μνe ;

μdn ¼ μsg;

where each suffix, up, dn and sg, stands for up, down
and strange quarks, respectively. Neutrinos appear via
weak interactions, and we cannot neglect them in the
ash regardless of whether they exist in the fuel or not.
Charge neutrality is satisfied also in the ash by quarks and
electrons as

1

3
ð2nup − ndn − nsgÞ ¼ ne:

C. Deconfinement

In this paper we consider the shock-induced conversion
scenario, in which shock compression raises the density of
HM to the critical density, at which the deconfinement to
2QM occurs via strong interactions alone. Since the latter
process is nothing but a phase transition in equilibrium, the
critical density is obtained from the following conditions:

PH ¼ P2QM; ð24Þ

TH ¼ T2QM; ð25Þ

μp ¼ 2μup þ μdn; ð26Þ

μn ¼ μup þ 2μdn: ð27Þ

The subscripts 2QM and H indicate the quantities for 2QM
and HM, respectively. We assume that the phase transition
is of the first order, and hence it occurs via the mixed phase,
in which HM and 2QM coexist.
To describe the mixed phase, we define the volume

fraction, r, of QM. Note that strange quarks are not present
in the QM, since deconfinement is accomplished on the
time scale of strong interactions. Strange quarks start to
populate only on the time scale of weak interactions, on
the other hand, since they are produced only via weak
interactions.
If the shock wave is weak, the deconfinement process

may not be completed, and the volume of 2QM may reach
only r ¼ r2QM < 1 just after the shock passage. Then
strange quarks start to emerge only in the volume that
2QM occupies, and the resultant 3QM occupies the whole
volume only later on the time scale of weak interactions. If
the shock wave is even weaker, a mixed state of HM and
3QM may result as the final state with a volume fraction of
3QM less than unity: r ¼ r3QM (r2QM < r3QM < 1).
The basic equations of hydrodynamics are the same as

for the toy model, Eqs. (4)–(6). We start integration from
the initial state, employing the EOS for HM up to the
critical density, at which deconfinement commences. Then
we continue integration, taking into account the conditions
for the phase equilibrium between HM and 2QM,
Eqs. (24)–(27), as well as the conservations of individual
quarks expressed as

Yup ¼ ð1 − rÞ 2np þ nn
3nB

þ r
nup
3nB

¼ const; ð28Þ

where Yup is the fraction of up quarks. In this mixed phase,

we assume that electrons are uniform (μHel ¼ μQel) and that
charge neutrality is valid only globally: nel ¼ ð1 − rÞnpþ
rð2nup − ndnÞ=3. Neutrinos essentially do not interact with
other particles during deconfinement, and their number
density and temperature do not change. It hence occurs that
neutrinos and matter have different temperatures just after
the passage of the shock wave.
Note that it was often assumed in the literature [9,55,56]

that YH
up ¼ YQ

up and YH
dn ¼ YQ

dn holds in the mixed states
instead of Eqs. (26) and (27) employed in this paper. The
authors of these papers justified their assumption, stating
that strong interactions conserve quark flavors. The last
statement is certainly true, but that does not necessarily
mean that the fractions of up and down quarks are identical
between the HM and 2QM that coexist. As a matter of fact,
our condition, Eqs. (26) and (27), leads in general to
different fractions in the two coexisting phases. This is2Hyperons are assumed to be absent in this paper.
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possible without changing quark flavors if neutrons are
deconfined more easily than protons or vice versa. Since
neutrons have larger chemical potentials in our models,
the former is true in this paper. It should be also pointed
out that the mixed states with a different flavor abundance
in each coexisting phase have lower free energies than
those with the identical fractions of flavors as long as the
surface and Coulomb energies are ignored. Without
reliable estimates of these energies, we cannot say which
condition is more suitable. We hence adopt Eqs. (26) and
(27), which are consistent with the rest of the paper, as a
criterion for the deconfinement of HM to 2QM in
this paper.

D. β-equilibration in 3QM

After the complete (r ¼ 1) or incomplete ðr¼ r2QM<1Þ
deconfinement, strange quarks start to populate in QM
on the time scale of β-equilibration, τ. The neutrino
temperature, T lep, and lepton fractions are assumed to
change gradually toward the equilibrium values on the
same time scale, which are approximately described in this
paper as follows:

u
dY lep

dx
¼ Yeq

lep − Y lep

τ
; ð29Þ

u
dT lep

dx
¼ Teq

lep − T lep

τ
; ð30Þ

u
dYup

dx
¼ Yeq

up − Yup

τ
; ð31Þ

u
dfs
dx

¼ feqs − fs
τ

: ð32Þ

In the incomplete-deconfinement case, strange quarks
appear only in the volume occupied by QM, as noted in
the previous subsection. As the fraction of strange quarks
rises toward the β-equilibrium, the volume fraction of
QM, r, also increases either from r ¼ r2QM to r ¼ 1 or
to r ¼ r3QM on the time scale of weak interactions. We
solve Eqs. (29)–(32) together with the equilibrium con-
ditions between HM and 3QM, which are given by
PH ¼ P3QM, TH ¼ T3QM and Eqs. (26) and (27).

V. RESULTS OF REALISTIC MODELS

In the following we present the numerical results
obtained for the realistic models with the parameters listed
in Table I and also shown in Fig. 9. Conversions from PNS
matter (T ¼ 10 MeV, Y lep ¼ 0.3) are first discussed, and
those from cold NS matter are considered thereafter.
Examples of both the complete and incomplete deconfine-
ments are given for these cases. In all the models the

normalized viscosity is set to ν̄ ¼ 1.0, which is larger than
the realistic value by many orders of magnitude, so that the
shock width could be widened and well resolved numeri-
cally. We give some comments on the results with smaller
(but still tractable) viscosities and their implications at the
end of this section.
We begin with the model with B1=4 ¼ 140 MeV and

αs ¼ 0.4, which is an example that satisfies the require-
ment for the SQM hypothesis. The initial HM is a PNS
matter with the density of ρ ¼ 3.0 × 1014 g=cm3 and
the Mach number of Mi ¼ 3.0. Figure 10 shows the
fractions of various particles, which are defined as ni=nB
with ni being the number density of particle i. Once the
critical density is reached at x ¼ 5.9, 2QM grows very
rapidly in the sea of the HM until the latter disappears
completely. This model is hence an example to give the
complete deconfinement. Although the deconfinement
process should occur on the time scale of strong inter-
actions and the deconfinement region is extremely thin in
reality, it is extended artificially in our models by
adopting the large viscosity. Once the deconfinement is
completed at x ¼ 9.0, strange quarks increase quickly at
first, and their fraction approaches the asymptotic value
rather slowly later.
The evolutions of thermodynamical quantities are shown

in Fig. 11. The number density and pressure increase by
shock compression up to x ∼ 11.0. After the completion of
deconfinement at x ¼ 9.0, the increment of temperature
changes due to the appearance of strange quarks. Then the
total pressure and number density are reduced after the
shock passage at x≳ 11.0, since the Fermi energies of other
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FIG. 10. Fractions of various particles for the model with
B1=4 ¼ 140 MeV and αs ¼ 0.40. Each fraction is defined to be
the ratio of the number density of the particle to the baryonic
number density. The x coordinate is normalized by the typical
length of weak interactions, τ × cs. The shaded region stands for
the deconfinement region. The dashed line indicates the end of
the shock wave.
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quarks decrease. On the other hand, the temperature still
increases even in this phase. This is due to the entropy
production in the irreversible β-equilibration.
The deconfinement process is not completed in the shock

wave for the model with B1=4 ¼ 140 MeV and αs ¼ 0.60,
which is displayed in Fig. 12. This happens because the
harder 2QM prevents the shock wave from being com-
pressed sufficiently to complete deconfinement. Just after
the shock passage (x ∼ 12.0), the fraction of the volume
that 2QM occupies is r2QM ¼ 0.29. The conversion from
2QM to 3QM by the generation of strange quarks occurs
only in this volume surrounded by HM. The volume
fraction of QM increases gradually then on the time scale
of weak interactions as the strangeness is accumulated just
like the diffusion-induced conversion, which will be
studied in detail in the forthcoming paper, and QM
occupies the entire volume; i.e., r ¼ 1 is reached at
x ¼ 17.3. The density increase after the appearance of

strange quarks is slower in this incomplete-deconfinement
case than in the complete-deconfinement model with
B1=4 ¼ 140 MeV and αs ¼ 0.40. This is due to the
coexistence of QM with HM at 12.0 < x < 17.3. The
width of the conversion region (see Fig. 2), λw ∼ 13.0
ð12.0 < x≲ 25.0Þ, is accordingly larger in this model than
that for the complete-deconfinement model, λw ∼ 11.0
ð9.0 < x≲ 20.0Þ. The temperature is lowered as the vol-
ume fraction of QM increases at 12.0 < x < 17.3 due to
negative latent energies associated with the conversion
from HM to 3QM.
The incomplete deconfinement observed above also

occurs for B1=4 ¼ 140 MeV and αs ¼ 0.4 if the initial
Mach number is smaller. The model with B1=4 ¼ 130 MeV
and αs ¼ 0.80 also gives the incomplete deconfinement as
shown in Fig. 13. Just after the shock passage, the volume
fraction of 2QM is r2QM ¼ 0.11 at x ¼ 12.2. It turns out
that in this model, 3QM does not occupy the whole volume
even in the final state and the terminal volume fraction of
3QM is r3QM ¼ 0.78. This happens because 3QM is
substantially harder in this model than in the previous
cases. The width of the conversion region, λw ∼ 20.0, is also
considerably larger than those of the other two models,
λw ∼ 11.0 and 13.0.
We now discuss the systematics in detail. The critical

density is higher for models with larger B1=4 and/or αs as
already explained in Sec. IVA, which can also be con-
firmed by the dashed lines in Fig. 14. On the other hand,
B1=4 and αs affect the stiffness of the EOS differently. The
pressure for a fixed number density decreases with B1=4,
whereas it increases with αs.
Figure 14 compares the results of the three models with

B1=4 ¼ 140 MeV and αs¼0.70, B1=4 ¼ 130 and αs ¼ 0.70
and B1=4 ¼ 140 MeV and αs ¼ 0.40. The former two have
incomplete deconfinement, whereas the last one has com-
plete deconfinement as has been already presented. The
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final state of B1=4 ¼ 140 MeV and αs ¼ 0.70 is a mixed
phase of HM and 3QM just as the model with B1=4 ¼
130 MeV and αs ¼ 0.80 shown in Fig. 13, whereas pure
3QM results for the model with B1=4 ¼ 130 MeV and
αs ¼ 0.70 as for the model in Fig. 12. It is found that the
final densities are higher for the models with larger B1=4

because the EOS is softer then. The final temperatures,
on the other hand, are lower for larger αs because the
(absolute value of the negative) latent energy for decon-
finement is greater. These features do not depend on the
critical density as shown in Fig. 15, where we compare
different models that have the same critical densities nc ¼
0.2 or 0.26 fm−3. We can confirm that the final density
depends only on B1=4 and the final temperatures are lower
for larger αs. Whether deconfinement is completed or not

in the shock wave also depends on B1=4 and αs. In fact, if
we choose the pairs so that they would give the same
critical density, how deconfinement is terminated still
depends on the bag constant. Among three models with
nc ¼ 0.2 fm−3 in Fig. 15, the model with B1=4 ¼
140 MeV results in the complete deconfinement, whereas
the other models lead to the incomplete deconfinement.
The width of the conversion region also depends on the
stiffness of the EOS. For the instance, the model with
B1=4 ¼ 130 MeV has about 1.2 times wider a conversion
region than the model with B1=4 ¼ 140 MeV does for the
case of nc ¼ 0.26 fm−3.
Next we pay attention to the dependence on the initial

Mach number, Mi, and density, ρi, using the model with
B1=4 ¼ 130 MeV and αs ¼ 0.8, which is shown in Fig. 16.
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We find that the final state is highly sensitive to the initial
condition. For example, the model with Mi ¼ 2.5 does not
reach the critical density, and pure HM remains, since the
shock compression is weak. On the other hand, the model
withMi ¼ 3.5 obtains pure 3QM as the final state thanks to
the sufficient compression, whereas the asymptotic state for
the intermediate model with Mi ¼ 3.0 is found to be in the
mixed phase of 3QM and HM as shown in Fig. 13. The

initial density also affects whether 3QM occupies the entire
volume in the end or not. The models with ρi ¼ 3.0 and
3.5 × 1014 g=cm3 end up with the mixed states of HM
and 3QM, and the final volume fractions are r3QM ¼ 0.78
and 0.84, respectively. The model with an even higher
initial density of ρi ¼ 4.0 × 1014 g=cm3 leads to pure 3QM
or r3QM ¼ 1.0.
We have so far demonstrated that strong detonation is

always obtained in the realistic models with B1=4 ≳ 130,
which are all in the endothermic regime as shown in
Fig. 4. This is almost trivial, since matter is decompressed
in the weak detonation in the endothermic regime
whereas it is compressed in the shock wave. Figure 17
displays the result of the model with B1=4 ¼ 125 MeV,
αs ¼ 0.80 and Mi ¼ 3.5 as an example in the exothermic
regime. This model has incomplete deconfinement and
leads to pure 3QM as the final state. This confirms the
conclusion obtained with the toy model that strong
detonation is the unique outcome of the shock-induced
conversion.
Finally, we mention the results for the conversion

from the NS matter, in which β-equilibrium is estab-
lished without neutrinos in the initial state with
T ¼ 0 MeV. The model parameters are set to be
B1=4 ¼ 130 MeV, αs ¼ 0.80, Mi ¼ 2.0 and ρi ¼ 3.0 or
5.6 × 1014 g=cm3. The results are not much changed
from those of the corresponding PNS cases as also
shown in Fig. 18. Neutrinos, which are absent initially,
start to appear with strange quarks via weak interactions
at x ∼ 14 and 34 for ρi ¼ 3.0 and 5.6 × 1014 g=cm3,
respectively, at which deconfinement is terminated
incompletely. Note that the critical density for the NS
matter is smaller in general than for the PNS matter due
to the larger Fermi energies of neutrons. Deconfinement
hence occurs even in the models with ρi ¼ 3.0 and
Mi ¼ 2.0 for the NS matter, although the corresponding
PNS matter cannot reach the critical density even with
Mi ¼ 2.5 as shown in Fig. 16. In the case of
ρi ¼ 5.6 × 1014 g=cm3, shock compression is weaker
due to greater repulsive forces of HM at such high
densities. The resultant lower temperature results in a
mixed state of 3QM and HM in the final state.
In the calculations done so far, the viscosity is

normalized to unity, which is much larger than the
realistic value as previously noted. This was necessary
to widen the shock width and treat the processes that
occur inside the shock wave on the same footing as other
events that happen afterward on the time scale of weak
interactions. We have confirmed that smaller but still
tractable viscosities do not change the results qualita-
tively, although the width of the conversion region tends
to get wider in general quantitatively. We hence expect
that the results obtained in this paper will be still valid for
the realistic shock widths.
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VI. CONCLUSION AND DISCUSSIONS

Based on the hydrodynamical description, we have
studied the shock-induced conversion of hadronic matter
to three-flavor quark matter, taking into account the
structure inside the shock wave. In this scenario, the shock
wave compresses HM beyond the critical density, at which
the deconfinement to two-flavor quark matter occurs as the
first-order phase transition in thermal and chemical equi-
libria on the time scale of strong interactions; then
strange quarks are produced via weak interactions and β-
equilibration ensues. This is an irreversible process accom-
panied by entropy generation. This series of events together
with the matter motion have been described consistently by
the hydrodynamical model. Introducing finite viscosities,
we have taken into account the structure of the shock wave
instead of treating it as a discontinuity as usual. We have
employed both the simple toy model and the realistic
model, in which microphysics such as the EOS is more
elaborated to understand the conversion processes.
In the analysis with the toy model, which is meant to

elucidate the generic properties of the conversion qualita-
tively, we have demonstrated, varying model parameters
rather arbitrarily in a wide range, that strong detonation
is almost always obtained both in the exothermic and
endothermic regimes, the latter of which has no counterpart
in terrestrial combustion but is rather common in the

conversion of HM to QM. In our realistic model, we have
adopted the EOS based on relativistic mean filed theory for
the hot proto-neutron star matter as well as for the cold
neutron star matter and employed the MIT bag model with
the first-order perturbation corrections for the EOS of QM.
We have confirmed the basic scenario: the shock com-
pression raises the density, pressure and temperature and
induces deconfinement at the critical density; once it
commences, the mixed state of HM and 2QM is formed
with the volume of the latter increasing as the density rises;
the negative latent energy in deconfinement suppresses the
rise in temperature particularly for large αs; after the shock
passage, strange quarks start to populate via weak inter-
actions, and eventually 3QM in β-equilibrium is realized.
We have also found that if the shock is not strong

enough, deconfinement is not completed inside the shock
wave; i.e., the mixed state of HM and 2QM is left behind
just after the shock passage. Then strange quarks are
generated only in the region that 2QM occupies. As the
strangeness increases in that region, the volume of the
region itself also increases, since such a state is more stable
thermodynamically. For the pairs of the bag constant and
strong coupling constant that satisfy the constraints that the
critical density should be larger than the nuclear saturation
density and the maximummass of cold quark star should be
larger than 2M⊙, this incomplete deconfinement seems
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more likely than otherwise. It is also interesting that the
final state may also be a mixed state of HM and 3QM,
depending on the initial density and Mach number. We
have found no essential difference between the conversions
from the hot PNS matter and those from the cold NS matter
except that the critical density tends to be lower for the
latter.
We have seen that the shock-induced conversion is more

likely to occur in the endothermic regime if one considers
various constraints (see Fig. 9) and argued that there is no
a priori reason to discard the conversion in that regime. If
this is really the case, strong detonation will be the unique
outcome of the shock-induced conversion, since matter is
compressed in the shock wave, whereas it would be
decompressed in the weak detonation for the endothermic
regime. We have observed, however, that strong detonation
is obtained also in the exothermic regime in our realistic
model, the conclusion also supported by the phase space
analysis for the toy model. It is interesting to point out that
there is no Jouget point in the endothermic combustion. It is
well known that the so-called Zeldovich detonation, which
is a self-similar combustion that occurs at the Jouget point
in the detonation branch, is obtained for the single-point-
ignition in a uniform fuel. It is an intriguing question then
what happens to such a self-similar propagation of a
detonation wave in case there is no Jouget point, which
may have some implications for the global conversion of
NS or PNS by detonation.
In this paper, we have employed the nonrelativistic

formulation for simplicity. This is certainly not a good
approximation in the current context, since the conversion
front travels at a fraction of c. It is still not so high as to
affect the results qualitatively, though. In fact, it is
straightforward to accommodate special relativity as
already demonstrated in Sec. II B except for the subtle
problem with causality in viscous hydrodynamics, and
some preliminary studies done so far indicate that the main
results in this paper are not changed qualitatively indeed.
The full results will be presented in the sequel to this paper.
It is repeated that our analysis is local, with the front

velocity being regarded as a free parameter. In reality, it is
determined uniquely by the global configuration of neutron

star and appropriate boundary conditions. Our standpoint in
this local analysis is that we should list all possibility inner
structures of the conversion region, although some of them
may not be realized in reality. Put another way, whatever
conversion front appears in global simulation should be
included in our list if it is observed locally. Such an
approach is complementary to the global analysis by
large-scale simulations. We believe that both of them are
indispensable to obtain a coherent picture of the conversion
from neutron stars to quark stars. Muons have been
neglected as a leptonic component in this paper, which
may not be justified completely, particularly for the con-
version from the NS matter. We believe, however, that the
results in this paper will not be changed qualitatively by
the inclusion of muons, since they are not so abundant at
rather low densities considered above; their abundances
are estimated to be ∼2.7 and 7.8% at ρ ¼ 3.0 and
5.6 × 1014 g=cm3, respectively.
There are many uncertainties in the EOS of QM other

than the bag and strong coupling constants: at present there
is supposed to be a rich variety of phases such as color-
flavor locking [57–60] and quark clustering in cold quark
matter [61,62]. We have also to take into consideration the
surface effect in dealing with the mixed phase of HM and
QM, since it may affect the dynamics in that phase. Last but
not least, other conversion scenarios should be investigated.
As mentioned in Sec. II A, the diffusion-induced conver-
sion has been discussed in the literature over the years. We
are currently investigating it with the same approach. The
results of the detailed analysis will be reported in our
next paper.
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