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Amongst standard model parameters that are constrained by cosmic microwave background (CMB)
observations, the optical depth τ stands out as a nuisance parameter. While τ provides some crude limits on
reionization, it also degrades constraints on other cosmological parameters. Here we explore how 21 cm
cosmology—as a direct probe of reionization—can be used to independently predict τ in an effort to
improve CMB parameter constraints. We develop two complementary schemes for doing so. The first uses
21 cm power spectrum observations in conjunction with semianalytic simulations to predict τ. The other
uses global 21 cm measurements to directly constrain low redshift (post-reheating) contributions to τ in a
relatively model-independent way. Forecasting the performance of the upcoming hydrogen epoch of
reionization array, we find that significant reductions in the errors on τ can be achieved. These results are
particularly effective at breaking the CMB degeneracy between τ and the amplitude of the primordial
fluctuation spectrum As, with errors on lnð1010AsÞ reduced by up to a factor of 4. Stage 4 CMB constraints
on the neutrino mass sum are also improved, with errors potentially reduced to 12 meV regardless of
whether CMB experiments can precisely measure the reionization bump in polarization power spectra.
Observations of the 21 cm line are therefore capable of improving not only our understanding of
reionization astrophysics, but also of cosmology in general.
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I. INTRODUCTION

Through a complementary blend of cosmological probes,
the past decade has seen the emergence and strengthening of
a concordance ΛCDM model of our Universe. Using just a
handful of parameters, the ΛCDM model provides an
adequate fit to data from a wide range of epochs in our
cosmic timeline, ranging from big bang nucleosynthesis
(BBN) to the cosmic microwave background (CMB) to
galaxy surveys and supernovae measurements.
Examined in more detail, however, tensions have

emerged between various data sets. Consider the latest
CMB results from the Planck satellite [1], for instance.
Distance measures inferred from Planck are in mild tension
with Lyman-α baryon acoustic oscillation (BAO) con-
straints derived from quasar observations [2]. As another
example, Planck data is best fit by a higher amplitude of
density fluctuations than is preferred by measurements of

weak lensing and galaxy cluster counts [3]. While currently
still tolerable, these tensions may be the result of exper-
imental systematics, or may be the first sign of new physics.
To make progress, it will be necessary to sharpen our

cosmological constraints. In doing so, the hint of incon-
sistencies between data sets will either vanish or become
statistically significant. One way to accomplish this is to
simply take more data. Galaxy surveys, for instance, are
poised to significantly improve their reach with new
experiments such as the dark energy spectroscopic instru-
ment (DESI) [4]. With the CMB, on the other hand, it is
likely that many improvements will come from exploiting
qualitatively new probes, such as a measurement of the
primordial B-mode signal, or better measurements of CMB
lensing and secondary anisotropies. These have the ability
to access previously unconstrained phenomena, as well as
to break existing degeneracies between cosmological
parameters. Better measurements will also pave the way
for expanded cosmological models that constrain the
neutrino mass or the time evolution of dark energy.*acliu@berkeley.edu
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In this paper, we examine the role that the emerging
field of 21 cm cosmology can play in sharpening CMB
constraints. With 21 cm cosmology, one seeks to use the
21 cmhyperfine transition tomap the large scale distribution
of neutral hydrogen at a variety of redshifts. Existing and
upcoming efforts include lower redshift efforts (z≲ 2) to
target baryon acoustic oscillations as well as higher redshift
measurements that will provide a uniquely direct probe of
the intergalactic medium (IGM) during the reionization
epoch, when radiation from the first galaxies systematically
ionized the IGM. Examples of 21 cm experiments include
the Green Bank Telescope [5,6], the Canadian hydrogen
intensity mapping experiment [7], and the Baryon Acoustic
Oscillation Broadband and Broad-beam Array [8] at low
redshifts, and the Donald C. Backer Precision Array for
Probing the Epoch of Reionization (PAPER [9]), the
Murchison Widefield Array (MWA [10,11]), the Giant
Metrewave Radio Telescope (GMRT [12]), and the Low
Frequency Array (LOFAR [13]) at high redshifts. Although
the methods in this paper are general, we will focus on the
upcoming high-redshift experiment Hydrogen Epoch of
Reionization Array (HERA [14]) as our main worked
example, with some quick estimates also provided for the
future Square Kilometer Array (SKA [15]).
Whereas reionization is the prime epoch of study for

many 21 cm experiments, it is simultaneously an interest-
ing epoch and a nuisance for CMB studies. Reionization
releases free electrons into the IGM, which Compton
scatter CMB photons as they stream from the surface of
last scattering to our detectors, necessitating the introduc-
tion of an optical depth parameter τ that quantifies the
probability of scattering. The free electrons released by
reionization source additional polarization fluctuations,
giving rise to a “reionization bump” feature at large angular
scales in polarization power spectra. The amplitude of the
bump scales as τ2, and thus an accurate measurement of this
feature enables precise constraints on τ. In turn, τ can be
converted into a crude redshift of reionization, with higher τ
implying a higher redshift.
At fine angular scales, the main effect of τ is to dampen

the measured CMB anisotropies (whether in the temper-
ature or polarization power spectra), which unfortunately
means that τ is largely degenerate with As, the amplitude of
primordial density fluctuations. Although this degeneracy
is partially broken by the aforementioned polarization
signature (or by CMB lensing if one assumes no departures
from standard ΛCDM evolution), it remains to a large
extent. This degrades cosmological parameter constraints
from the CMB, and it is in this sense that reionization is a
nuisance for CMB experiments.
In this paper, we show that 21 cm reionization experi-

ments have the ability to place constraints on reionization
that are stringent enough to allow high-precision determi-
nations of τ. These can then be fed into CMB studies,
effectively eliminating τ as a nuisance parameter. Provided
astrophysical modeling uncertainties are made sufficiently

small with upcoming measurements, this would push CMB
measurements into a new regime by avoiding cosmic
variance limits on a determination of τ. Concretely, a
known value of τ would improve estimates of As. In turn,
this would sharpen any cosmological tests that depend on
comparing primordial fluctuations (controlled by As) and
low-redshift measures of structure such as cluster counts
and CMB lensing. Any discrepancies between early and
late time measurements are potentially indicative of cos-
mological evolution beyond that predicted by basic
ΛCDM, signaling cosmological evidence for model exten-
sions such as a nonzero neutrino mass or an evolving dark
energy equation of state. Measurements of the 21 cm line
will therefore have broad cosmological implications for
future CMB studies.
This paper differs from previous cosmological parameter

estimation forecasts in that previous papers have mostly
arrived at improved constraints by focusing on the larger
comoving volume of our Universe that can be potentially
accessed by 21 cm surveys compared to traditional galaxy
surveys [16–25]. The framework that we establish here
assigns a more limited—but arguably more robust—role to
21 cm surveys. In this paper, the CMB experiments deliver
the bulk of the cosmological information, and the 21 cm
surveys play the secondary role of providing details about
reionization that are difficult to obtain from the CMB. In
this sense, our work builds on that of Ref. [26], where the
possibility of estimating τ from 21 cm cosmology was
briefly considered. Reference [23] also emphasized the
self-consistency between CMB and 21 cm that is crucial
to the current paper. Our approach here is complementary
to theirs in that they rely on phenomenological fits to
numerical simulations with tunable nuisance parameters,
whereas we ascribe a more central role to the detailed
astrophysics of reionization as modeled by semianalytic
codes. The rest of this paper is organized as follows. In
Sec. II we introduce the fiducial experiments and models
that we use for our forecasts. Section III discusses the
various sources of uncertainty in a prediction of τ.
Section IV then establishes a formalism for folding
21 cm power spectrum measurements into CMB analyses
via τ. Forecasted improvements on cosmological parame-
ters based on this formalism are presented in Sec. V. In
Sec. VII we explore how direct measurements of the mean
21 cm brightness temperature field can reduce the model
dependence of a τ prediction, and we summarize our
conclusions in Sec. VIII.

II. FIDUCIAL EXPERIMENTS
AND ASSUMPTIONS

Throughout this paper, we will illustrate our framework
for sharpening cosmological constraints by considering
various fiducial experiments. From the 21 cm side, we will
consider two types of experiments. Sections IV and V
concentrate on 21 cm power spectrum experiments. These
typically consist of low-frequency radio interferometers,
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which measure the redshifted brightness temperature con-
trast δTbðn̂; νÞ of the 21 cm line against the CMB, where n̂
specifies the direction on the sky and ν is the observation
frequency. Given the spectral nature of the probe, different
frequencies can be translated into different radial distances,
and the result is a three-dimensional brightness temperature
distribution δTbðrÞ in terms of comoving coordinates r.
Fourier transforming and binning this distribution then
allows a measurement of the brightness temperature power
spectrum P21ðkÞ, defined by

hδ ~TbðkÞδ ~Tbðk0Þ�i≡ ð2πÞ3δDðk − k0ÞP21ðkÞ; ð1Þ

where δD signifies a Dirac delta function, pointed brackets
h� � �i represent an ensemble average, and δ ~TbðkÞ is the
Fourier transform of δTb evaluated at spatial wave vector k.
Note that since the statistical properties of the brightness
temperature evolve substantially as reionization progresses,
one typically does not form a single power spectrum over
the entire survey volume of a 21 cm survey, as doing so
would violate the central assumption of translation invari-
ance necessary for forming a power spectrum. Instead,
most analysts break up their wide bandwidth data into a few
(relatively) narrow chunks and compute multiple power
spectra P21ðk; zÞ centered on several different redshifts.
Current instruments such as GMRT, MWA, LOFAR, and
PAPER have begun to place scientifically interesting upper
limits on such power spectra [27–30].
As our fiducial 21 cm power spectrum experiment, we

pick HERA, a low-frequency radio interferometric array
that is currently being constructed in the South African
Karoo desert. HERA’s construction plans involve an
incremental buildup of a series of 14-m diameter dishes,
closely packed in a hexagonal configuration. In this paper,
we assume that observations are made when the array
consists of 331 such dishes. These dishes are not steerable,
and instead observe in a drift-scan mode. From HERA’s
location, this provides roughly 6 hours of usable observa-
tion time per day, defined to be when the Galactic plane is
sufficiently far below the horizon. We further assume
180 days of observations, providing 1080 hours of total
observation time. This should, however, not be considered
1080 hours of integration time in the conventional sense,
since drift-scan observations are by definition distributed
amongst different patches of the sky. The observation time
is thus only coherently integrated for a portion of the time,
although all the data are eventually folded into a single final
estimate of the power spectrum.
To forecast power spectrum sensitivities amidst such

complications, we make use of the 21cmSense code [8,14,31].
This code also takes into account the serious challenge
of foreground contaminants in any highly redshifted
21 cm observation. Foregrounds arise from sources such
as Galactic synchrotron radiation, and are 4 to 5 orders
stronger than the 21 cm cosmological signal in brightness
temperature. In this paper, we use the “moderate

foregrounds” setting of 21cmSense to account for contami-
nation. This makes the assumption that foregrounds are
preferentially confined to certain regions of Fourier space.
This confinement is most naturally expressed in terms of
spatial Fourier wave numbers for Fourier modes along the
line of sight, k∥, and wave numbers for those perpendicular
to the line of sight, k⊥. Foreground contaminants are
expected to appear mostly in modes that satisfy the
condition

k∥ < k0∥ þ
H0Dcθ0½Ωmð1þ zÞ3 þΩΛ�12

cð1þ zÞ k⊥; ð2Þ

where c is the speed of light, H0 is the Hubble parameter,
Dc is the comoving line-of-sight distance, Ωm is the
normalized matter density, ΩΛ is the normalized dark
energy density, k0∥ is some constant offset, and θ0 is a
characteristic angular scale on the order of the instanta-
neous field of view of radio antennas. Detailed derivations
of this formula may be found in, e.g., Refs. [32,33], but for
the purposes of this paper, it is sufficient to simply
understand the qualitative features of this condition, which
are as follows. The foregrounds that plague 21 cm experi-
ments are generally expected to possess smooth spectra.
Given that redshifted 21 cm observations are mappings of a
spectral line, the spectral axis maps to line-of-sight distance
r∥, and it follows that once they are Fourier transformed,
spectrally smooth foregrounds should be seen only at k∥
modes below some k0∥ that quantifies the degree of smooth-
ness. However, this is complicated by the inherent chro-
maticity of interferometers, which may imprint extra
spectral structure into the observations of foregrounds,
and thus cause them to appear at higher k∥. Such effects
are particularly pronounced for the longer baselines
of an interferometer, which are sensitive to finer spatial
structures—higher k⊥ modes—on the sky. This leads to the
second term of Eq. (2). On the “moderate foregrounds”
setting of the 21cmSense code, modes satisfying Eq. (2) are
assumed to be irrecoverably contaminated by foregrounds
and are discarded. The power spectrum error bars in the
other modes are calculated using the methods of Ref. [34],
where standard formulas for interferometric noise are cast
in a cosmological context. At the low frequencies relevant
to 21 cm experiments that target reionization, these errors
are typically dominated by sky noise, although cosmic
variance is also accounted for in 21cmSense.
The other category of 21 cm experiments that we

consider are known as global signal experiments. Here,
the goal is to measure the angle-averaged brightness
temperature δTbðνÞ as a function of frequency (or equiv-
alently, redshift). As a fiducial experiment, we will consider
a single dipole observing the Northern Galactic Pole with a
primary beam profile of the form
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Aðθ;φÞ ¼ exp

�
−
1

2

θ2

θ2b

�
cos θ; ð3Þ

where θ is the polar angle from zenith, φ is the azimuthal
angle, and θb is a characteristic primary beam width. We
take θb to be 0.3 rad at the lowest observation frequency
(either 150 or 175 MHz depending on the data set) and
inversely proportional to ν at other frequencies. Spectral
foreground contamination is computed by mock observa-
tions of the global sky model of Ref. [35]. Observational
error bars are computed using the radiometer equation,
where the noise temperature variance σ2 is given by

σ2 ¼ 2T2
sys

tintΔν
; ð4Þ

where tint is the integration time (set to 500 hours for all
global signal experiments considered in this paper), Δν is
the frequency channel width (set to 1 MHz), and Tsys is the
system temperature (set to be equal to the sky temperature
for low-frequency, sky-noise dominated regime considered
here). The factor of 2 arises from the squared nature of
autocorrelation experiments like the single-dipole experi-
ments considered here, where the variance goes as the
four-point function of the (Gaussian-distributed) output
voltages.
For the CMB, we make use of publicly available data

products from the Planck satellite’s 2015 data release.
We use only the best-fit values for cosmological parameters
and their accompanying covariance matrices, essentially
approximating parameter uncertainties as being Gaussian,
forgoing the also-publicly available non-Gaussian posterior
distributions. This approximation is made to match the
simplicity of the 21 cm parameter estimates, which are
based on the Fisher matrix formalism to avoid the computa-
tional expense of a full Bayesian treatment. Throughout
the paper, we will focus on the “TTþ lowP” and the
“TT;TE;EEþ lowPþ lensingþ ext” data sets from
the Planck 2015 data release [2,36]. These data sets bracket
the range of uncertainties from the data release, with the
TTþ low data set having relatively large errors by Planck
standards, while TT;TE;EEþ lowPþ lensingþ ext has
the tightest error bars. Conveniently, these data sets are also
close to representing the extremes in terms of reionization
scenarios allowed by CMB data. The TTþ low data set
implies a relatively high redshift zion for reionization
(zion ≈ 9.9, assuming a width Δzion ∼ 0.5 in the ionization
history), whereas TT;TE;EEþ lowPþ lensingþ ext is
best fit by a later reionization epoch (zion ≈ 8.8). As was
demonstrated in Ref. [37], this can have a non-negligible
impact on reionization constraints from 21 cm measure-
ments. In either case, HERA’s broad frequency range (from
100 to 200 MHz, with strong possibilities for extensions on
either end of the spectrum) allows a precise determination
of τ from 21 cm data.

III. INGREDIENTS FOR A PRECISE
PREDICTION OF τ

In practical terms, the optical depth τ is a nuisance
parameter that is self-consistently fit for in CMB studies.
While such an approach is attractive in that it does not
require detailed models of reionization (or any other
process that may produce free electrons), its down side
is that one must simply accept any degeneracies in
parameter fits. In particular, CMB experiments are much
more sensitive to the overall combination of Ase−2τ than to
As or τ individually. Our goal in this paper is to show how
this degeneracy can be broken with the aid of 21 cm data.
Typically, this requires modeling the underlying astrophys-
ics of reionization, and in this section we precisely describe
the various quantities (both astrophysical and cosmologi-
cal) that are needed for such modeling.
The optical depth is given by

τ ¼ σT

Z
n̄eðzÞ

dl
dz

dz; ð5Þ

where σT is the Thomson cross section, n̄e is the free-
electron number density (with the overline denoting an
average over all sky directions), and dl=dz is the line-of-
sight proper distance per unit redshift. Explicitly, n̄e may be
decomposed as

n̄e ¼ xHIInH þ xHeIInHe þ xHeIIInHe

¼ xHIInb þ
1

4
xHeIIInbYBBN

p

¼ n̄b

�
xHIIð1þ δbÞ þ

1

4
xHeIIIð1þ δbÞYBBN

p

�
; ð6Þ

where nH, nHe, and nb ¼ nH þ nHe are the hydrogen,
helium, and baryon number densities, respectively. The
ionization fractions (defined to be between 0 and 1) are
given by xHII, xHeII, and xHeIII, referring to singly ionized
hydrogen, singly ionized helium, and doubly ionized
helium, respectively. The helium fraction YBBN

p is defined
as 4nHe=nb, and δb denotes the baryon overdensity.1 In the
penultimate equality, we made the standard approximation
(justified by simulations [38]) that the helium is singly
reionized at the same time as hydrogen is, and in the final
equality, we used the fact that nb ¼ n̄bð1þ δbÞ. With this
factorization, the averaged baryon density can be easily
related to cosmological parameters via

1We follow the Planck team’s convention and notation in
defining YBBN

p as 4 times the number density fraction, rather than
as the helium mass fraction {which would instead be defined as
4nHe=½nH þ ðmHe=mHÞnH�, where mH and mHe are the atomic
weights of hydrogen and helium, respectively}.
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n̄b ¼
3H2

0Ωb

8πGμmp
ð1þ zÞ3; ð7Þ

where Ωb is the normalized baryon density, G is the
gravitational constant, mp is the mass of the proton, and
μ is the mean molecular weight, which in our case is
given by

μ ¼ 1þ YBBN
p

4

�
mHe

mH
− 1

�
: ð8Þ

Finally, we assume a flat universe and thus have as our
differential line element

dl
dz

¼ c=H0

ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p : ð9Þ

Putting everything together, we may express the total
optical depth as τ≡ τH þ τHe, with τH and τHe denoting the
portions of the optical depth sourced by free electrons
from HI/HeI reionization and that from HeII reionization,
respectively.2 These two contributions take the form

τH ¼ 3H0ΩbσTc
8πGmp

�
1þ YBBN

p

4

�
mHe

mH
− 1

��−1

×
Z

zCMB

0

dzð1þ zÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ Ωmð1þ zÞ3

p xHIIð1þ δbÞ; ð10Þ

and

τHe ¼
3H0ΩbσTc
8πGmp

�
4

YBBN
p

þ
�
mHe

mH
− 1

��
−1

×
Z

zCMB

0

dzð1þ zÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ Ωmð1þ zÞ3

p xHeIIIð1þ δbÞ; ð11Þ

where zCMB is the redshift of the surface of last scattering.
From these expressions, we see explicitly how various
cosmological parameters and astrophysical fields contrib-
ute to a prediction of τ. In what follows, we will discuss the
extent to which these contributions must be known accu-
rately before a high-precision value for τ can be predicted.

A. Uncertainties from fundamental constants
and cosmological parameters

Equations (10) and (11) both involve a large number of
fundamental constants and cosmological parameters, all of
which come with their own error bars. Constants such asG,
σT , c, mp, mH, and mHe contribute negligibly to the error

budget of τ. The same is true for YBBN
p , which is constrained

to be 0.2467� 0.0006 by a combination of Planck data and
BBN calculations [2]. The remaining parameters contribute
to the error budget in a non-negligible way and must be
accounted for.
Consider first the uncertainties arising from cosmo-

logical parameters, leaving astrophysical uncertainties in
the reionization process to Sec. III B. To simplify the
latter in order to clarify the former, suppose (for this
section only) that reionization occurs instantaneously at
redshift zion [with different values depending on whether
one is discussing hydrogen or helium reionization, i.e.,
whether one is referring to Eqs. (10) or (11)]. Terms such
as xHIIð1þ δbÞ and xHeIIIð1þ δbÞ thus reduce to step
functions that are 1 for z < zion and 0 otherwise. The
integrals in our expressions can then be evaluated
analytically, yielding

τ ∝
hΩb

Ωm

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ Ωmð1þ zionÞ3

q
− 1

i
; ð12Þ

where we have employed the standard definition
H0 ≡ 100h km=s

Mpc , and have omitted the subscripts for τHI
and τHe in favor of a generic τ because the dependence on
cosmological parameters is the same in either case.
To estimate the uncertainty in this prefactor for τ,

we propagate cosmological parameter uncertainties from
Planck results. To account for error correlations between
different parameters, we use the publicly released covari-
ance matrices to draw random samples of Ωbh2, Ωch2, and
θMC, where Ωc is the normalized cold dark matter density,
and θMC is the CosmoMC software package’s [39] approxi-
mation to the angular size of the sound horizon at
recombination. From this set, all the parameters necessary
for evaluating Eq. (12) can be obtained. Using Planck’s
TTþ lowP covariance from the 2015 data release (featur-
ing relatively highΩm and τ), the fractional error in Eq. (12)
is 1.40%. Similar results are obtained for TT;TE;EEþ
lowPþ lensingþ ext (featuring relatively low Ωm and τ),
with a fractional error of 0.75%. Note that these values are
merely rough estimates of how cosmological parameter
uncertainties can affect a 21 cm-derived prediction of τ.
This is because we have so far only considered the
influence that cosmological parameters have on the
“geometric” portions of τ (e.g., dl=dz). In reality, cosmo-
logical parameters also affect quantities such as xHII,
leading to the possibility that the final errors may be
different from what is predicted in this section. However,
it is reassuring that our estimates are small enough that it
appears to be a worthwhile exercise to use 21 cm obser-
vations to better constrain τ. We will find this conclusion to
be unchanged when we include the nongeometric influence
of cosmological parameters in Sec. IV.

2Throughout this paper, we adopt the convention where
“hydrogen reionization” refers to the joint reionization of HI
and HeI, whereas “helium reionization” refers to the ionization of
HeII only.
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B. Uncertainties from astrophysical processes

We now consider the uncertainties in predicting τ that
arise directly from uncertain astrophysics (aside from the
subtler changes to astrophysics occurring because of shifts
in cosmological parameters that we alluded to above). At
the crudest level, changes in astrophysics affect the redshift
of reionization zion, which affects the optical depth via
Eq. (12). Indeed, working in reverse and solving for zion
given a measured value of τ is how CMB experiments have
traditionally placed constraints on reionization, although
recent advances in higher order effects such as the kinetic
Sunyaev-Zel’dovich effect have enabled increasingly
sophisticated limits [40–42].
Ultimately, we shall see that it is important to model

reionization astrophysics in detail, beyond the simple
parametrization of zion. However, by considering the coarse
dependence of zion on τ, we can distinguish the pieces of
astrophysics that need to be carefully modeled from those
that do not. In particular, we will now show that helium
reionization contributes relatively little to τ, making simple
models of the process sufficient. Consider the ratio of τHe to
τH, which can be written as

τHe
τH

¼ YBBN
p

4

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩmð1þ zion;HeÞ3

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩΛ þ Ωmð1þ zion;HÞ3
q

− 1

3
75; ð13Þ

where zion;He and zion;H are the redshifts of helium and
hydrogen reionization, respectively, assuming that both
processes are instantaneous. For a fiducial model with
ΩΛ ¼ 0.6911, Ωm ¼ 0.3089, zion;H ¼ 8.8 (corresponding
to Planck’s TT;TE;EEþ lowPþ lensingþ ext data set),
and zion;He ¼ 3, this ratio is ∼1.4%. Any errors in helium
reionization are then suppressed by this factor.
Quantitatively, if we parametrize the uncertainty in helium
reionization by considering a shift δzion;He in zion;He, the
fractional error in τ arising from such uncertainty is given
approximately by τ−1ion;Hð∂τHe=∂zion;HeÞδzion;He. This quan-
tity is shown in Fig. 1, where we have overlaid the
fractional errors from cosmological parameter uncertainties
that we computed in the previous section. One sees that so
long as the redshift of helium reionization zion;He can be
constrained reasonably well (say, δzion;He ∼ 1), the uncer-
tainties in the astrophysics of helium reionization are
subdominant to those from cosmological parameters. As
a proxy for δzion;He, consider the spread in the inferred
zion;He values from HeII Lyα absorption studies. With an
increased number of sightlines, recent studies have shown
significant scatter in zion;He, suggesting a rather extended
helium reionization between z ∼ 3.4 and z ∼ 2.7 [43],
but this still satisfies our requirement that δzion;He ≲ 1.
Admittedly, this is a rather crude way to estimate error
contributions from helium reionization, one which can be
easily improved upon even with current data. For now,

however, we will assume for simplicity that uncertainties in
helium reionization can be ignored based on our back-of-
the-envelope estimates.
In contrast, the astrophysics of hydrogen reionization

must be accurately modeled for precise predictions of τ.
Repeating the above analysis for order unity perturbations
in the zion;H, the resulting change in τ is ∼17%, largely
because there is no longer a suppression by the ratio
τHe=τH. Of course, this is hardly surprising, for if changes
in zion;H did not generate reasonably large shifts in τ, CMB-
derived constraints on reionization would not exist. For our
goal of predicting τ to be worthwhile, then, the details of
hydrogen reionization must be understood. In fact, with
hydrogen reionization dominating the CMB optical depth,
one must also go beyond simple models of instantaneous
reionization. To see this, consider the following numerical
experiment. The astrophysics of reionization enters
Eq. (10) via the xHIIð1þ δbÞ term, the density-weighted
ionized fraction. Crucially, it is incorrect to simplify this
term to x̄HIIð1þ δbÞ (which would consequently make it
equal to x̄HII), since xHII and δb may be spatially correlated,
making the angular average of their product different from
the product of their averages. In general, spatial correlations
are an expected feature of reionization. For example, in
“inside-out” models of reionization, higher density regions
produce a greater number of ionized photons and prefer-
entially ionize first [44,45], resulting in a positive
correlation between xHII and δb. This is in contrast to
“outside-in”models, where recombinations limit the rate of
ionization, and thus higher density regions (where recom-
binations are more common) are ionized last [46]. This
results in a negative correlation between ionization and
density. Figure 2 shows the differential contributions to
the total optical depth in various models, all with the
same mean ionization history x̄HIIðzÞ. These are based on

FIG. 1. Fractional error in τ induced by uncertainties in helium
reionization as a function of the redshift of helium reionization
zion;He and the uncertainty in this redshift δzion;He. For reasonable
values of these parameters, the errors arising from uncertainties
in helium reionization are subdominant to those arising from
cosmological parameter uncertainty. It is thus permissible to
neglect uncertainties in helium reionization.
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simulations used in Ref. [47], where the interested reader
will be able to find details. In brief, the curves labeled
“Global” refer to reionization models where the morphol-
ogy of reionization is driven by the large scale structure of
the density field. This tends to lead to large ionized regions
around clustered high density peaks. On the other hand, the
curves labeled “Local” refer to reionization models where
small ionized bubbles form around individual galaxies.
Each type of reionization morphology (Global or Local) is
then also paired with the inside-out or outside-in scenarios
discussed above. One sees from Fig. 2 that these details of
reionization matter, and induce errors of ∼5 to 10% in τ if
not accounted for.
Mathematically, the fact that xHIIð1þ δbÞ does not

reduce to x̄HII is due to our use of angular averages, which
are akin to volume averages. This makes our definition of
the ionized fraction x̄HII conform to the convention typi-
cally employed in the reionization literature, where it is
often denoted the volume filling factor of ionized fraction.
Such a definition is convenient for relating our measure-
ments to simulations (as we do so in the following section),
since the simulations provide ionization fractions in cells
of fixed volume. If one prefers, it is of course permissible
to define one’s averages in terms of mass averages.
Equation (10) then amounts to an integral (with appropriate
geometric factors) over x̄HII. In some sense, though, this is
merely a cosmetic change, for in order to accurately
compute a mass-weighted average, the reionization simu-
lations must still model the spatial correlations between the
density and ionization.
In summary, the uncertainties in τ predictions arise from

both uncertainties in cosmological parameters and uncer-
tainties in astrophysics. If not accounted for in detail, the

astrophysics contributes more to errors in τ than the
cosmology does. To make progress, then, our goal is to
use 21 cm data to better understand the astrophysics of
reionization.

IV. RELATING τ TO HI SURVEYS

As we have seen in previous sections, predictions of τ
are currently dominated by uncertainties in astrophysics. In
this section, we establish formalism for incorporating
21 cm-derived astrophysical constraints from reionization
to provide better measurements of τ (and thus other
cosmological parameters) than one can obtain using the
CMB alone.
The brightness temperature contrast δTb of the redshifted

21 cm line against the CMB is given by [45,48]

δTbðn̂; νÞ ≈ δTb0xHIð1þ δbÞ
�
1 −

Tγ

Ts

��
H

H þ ∂vr=∂r
�
;

ð14Þ

with

δTb0 ¼
9ℏc2A10ΩbH0

128πGkBν221μmpΩ
1=2
m

�
1 −

YBBN
p

4

�

≈ 28

�
1þ z
10

0.14
Ωmh2

�1
2

�
Ωbh2

0.022

�
mK; ð15Þ

where ℏ is the reduced Planck’s constant, A10 ¼
2.85 × 10−15 s−1 is the spontaneous emission coefficient
of the 21 cm transition, kB is Boltzmann’s constant,
ν21 ≈ 1420 MHz is the frequency of the 21 cm line,
xHI ¼ 1 − xHII is the hydrogen neutral fraction, Tγ is the
temperature of the CMB, Ts is the spin temperature of
the hydrogen atoms, and ∂vr=∂r is the derivative of the
comoving radial peculiar velocity with respect to the
comoving radial distance. The peculiar velocity gradient
is assumed to be small relative to the Hubble parameter H
in Eq. (15), and it is understood that Tγ , Ts, δb, xHI, H, and
∂vr=∂r are evaluated at redshift z ¼ ðν21=νÞ − 1. The
brightness temperature field is sensitive to both the cos-
mology (via δb, H, ∂vr=∂r and standard cosmological
parameters) and the astrophysics (via xHI and Ts) of
reionization. Since the product of xHIδb enters the expres-
sion for δTb, the 21 cm line is clearly sensitive to the
correlations between density and ionization, which we
argued in the previous section are a crucial ingredient in
our quest to understand reionization well enough to
precisely predict τ.
To harness the 21 cm line for a τ prediction, however,

there are two challenges that must be overcome. First,
it is necessary to make redshifted 21 cm measurements
that have high enough signal to noise to be useful.
Unfortunately, a combination of sensitivity limitations

FIG. 2. Cumulative contribution to the optical depth τ from low
to high redshift, for several different models of reionization. The
crucial astrophysical quantity for a precise determination of τ is
the density-weighted ionized fraction. This depends on the
correlation between the ionization field and the density field.
The different reionization models shown here reflect different
models for this correlation, which must be known for a precise
prediction of τ, given the spread seen here.
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and foreground contamination make direct mapping of the
brightness temperature field unlikely in the near future.
More observationally attainable in the short term are
measurements of the brightness temperature power spec-
trum P21ðkÞ, as defined by Eq. (1).
Having identified the 21 cm power spectrum as a

promising near-term, high signal-to-noise measurement
of reionization, the second challenge is the translation of
our measurements into a precise prediction of τ.
Fundamentally, what is needed for Eq. (10) is the den-
sity-weighted ionized fraction, but as one sees from
substituting Eq. (14) into Eq. (1), the 21 cm power
spectrum probes a much more complicated combination
of parameters and their correlations. To connect our power
spectrum observations to the underlying fields needed for
our τ prediction, we appeal to semianalytic simulations. In
particular, we assume an inside-out model of reionization
based on the excursion set formalism of Ref. [49], as
implemented in the publicly available 21cmFAST software
[50]. Of course, this is a rather specific model of reioniza-
tion, and once 21 cm measurements move beyond an initial
detection, it will be crucial to test the validity of the model.
For simplicity, we will assume for the rest of the paper that
such a model selection exercise has already been per-
formed, which upcoming instruments should be able to do
at high significance [47]. We base our forecasts on the
excursion set-based inside-out model of 21cmFAST because
it runs quickly and has been shown to agree reasonably well
with state-of-the-art ray-tracing radiative transfer simula-
tions [51], although this comes with the caveat that the
agreement is best when the comparison is made at equal
ionization fractions, not equal redshifts. For computational
convenience we run 21cmFAST in the mode where Ts ≫ Tγ .
This is expected to be a good approximation after the very
beginning of reionization [52], making it a suitable sim-
plifying assumption for us to employ given the redshift
ranges that we assume for power spectrum observations
(detailed below). However, we stress that our formalism
can be applied to any reionization simulation; in what
follows, one simply replaces Eqs. (16) and (17) with
expressions calibrated to a chosen simulation.
Figure 3 illustrates how semianalytic simulations can

be used to connect 21 cm power spectrum measurements
to τ. The bottom row of the figure shows the 21 cm
power spectra at various redshifts, plotted as Δ2

21ðkÞ≡
k3P21ðkÞ=2π2. These are (after some data analysis) what
21 cm experiments measure.3 With power spectra in hand,
one can simultaneously fit for astrophysical and cosmo-
logical parameters in an underlying model of reionization,
using priors from other cosmological probes such as the
CMB. Once the underlying parameters have been

determined, semianalytic simulations can be run to produce
past light cone maps of the nonlinear baryon density (top
row of figure) and ionization fields and ionization fields
(second row). These maps can then be used to form
xHIIð1þ δbÞ (third row), which is then inserted into
Eq. (10) to predict τ. Note from Fig. 3 that there is a clear
difference between the xHI and xHIIð1þ δbÞ curves, again
illustrating the importance of modeling correlations
between density and ionization.
Importantly, the semianalytic simulations used for the

procedure outlined above must span a wide range of
redshifts, from before reionization has begun to after
reionization is complete. This is necessary because even
small levels of ionization can perturb the predicted value of
τ by more than our final error bars. By producing full
histories of the density and ionization fields, the simulations
compensate for the limited reach in redshift of near-term
experiments, which are unlikely to probe the very beginning
of reionization to high precision. The self-consistency
required by a simulation produces a full reionization history
once the model parameters are fixed by (relatively) low-
redshift observations. This extrapolation does come with
some uncertainty, which we address in Sec. VI.
Another limitation of our observations lies in the inherent

uncertainty of a 21 cm power spectrum measurement.
Instrumental noise, foregrounds, and degeneracies inherent
in analyzing a power spectrum observation mean that our
predicted value of τ will come with a corresponding set of
uncertainties. Fortunately, we will now see that these errors
and degeneracies in 21 cm measurements are unlikely to
seriously compromise out ability to predict τ. Following
Refs. [14,59], we consider a three-parameter model of
reionization, parametrized by Tvir, the minimum virial
temperature of the first ionizing galaxies; ζ, the ionizing
efficiency of those galaxies; and Rmfp, the mean-free path of
ionizing photons in ionized regions of our Universe.4 As
shown in Ref. [14], 21 cm power spectrum measurements
tend to constrain these parameters in a way that leaves Tvir
and ζ largely degenerate. While multiredshift information
does help to break this degeneracy, it tends to remain to some
degree. This can be seen in Fig. 4, where we show Fisher
matrix projections for parameter constraints on Tvir and ζ.
The black contours demarcate the 68% and 95% confidence
regions for a hypothetical power spectrum measurement
performed by HERA spanning 6.1 ≤ z ≤ 9.1 at intervals of
Δz ¼ 0.3 (chosen roughly to give good parameter con-
straints [37]). These are calculated by first computing power

3For simplicity, we leave light cone effects in 21 cm mea-
surements to future work, although such effects should ultimately
be taken into account [53–58].

4Of course, there exist a large number of other parametriza-
tions and models to describe reionization (e.g., [51,56,60–63]).
Our intention here is not to imply that the three-parameter model
employed here will be applicable to future 21 cm measurements
without modification. Instead, it is simply a model that is
designed to be both reasonably realistic and flexible enough to
encompass a large variety of reionization histories [59].
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spectrum sensitivities using 21cmSense, which are then fed into
a Fisher matrix computation based on that employed in
Ref. [14], except with our current experimental parameters
and fiducial astrophysical parameters set at
ðTvir;Rmfp;ζÞ¼ð6×104K;35Mpc;30Þ. Our value of Tvir

corresponds to a virial mass of order ∼109M⊙ at z ¼ 9,
consistent with typical values adopted elsewhere in the
literature. The fiducial values for our three astrophysical
parameters are chosen to match the best-fit optical depth of
τ ¼ 0.066 from the Planck TT;TE;EEþ lowPþ lensingþ
ext data set. Marginalizing over cosmological parameters as
well as Rmfp gives the contours in Fig. 4.
For every point in Tvir − ζ space we also show values for

τ, predicted from 21cmFAST using the procedure outlined

above with cosmological parameters fixed at their fiducial
values. Here and in the rest of the paper, we assume that
helium is instantaneously reionized at z ¼ 3, having argued
earlier that uncertainties in helium reionization are negli-
gible. Immediately striking is the way in which contours of
constant τ are roughly aligned with the contours from our
power spectrum constraint on Tvir and ζ. This would be bad
news if our goal was to use CMB measurements of τ to
place additional constraints on the astrophysical parameters
of reionization, since parallel contours mean that the
constraints are not complementary, not to mention the fact
that the 68% confidence interval on τ from the CMB
roughly spans the entire color scale of Fig. 4. However,
parallel contours are desirable for the goals of this paper,

FIG. 3. Top row: Simulation of the nonlinear density field over the past light cone that is observed by a 21 cm experiment. Second row:
Corresponding ionization fraction, assuming ðTvir; Rmfp; ζÞ ¼ ð6 × 104 K; 35 Mpc; 30Þ to match the optical depth of
Planck TT;TE;EEþ lowPþ lensingþ ext. Third row: Corresponding ionized fraction history x̄HII (red solid curve) and the
density-weighted ionization history xHIIð1þ δbÞ (black solid curve). The averaged ionized fraction is also seen to be a poor
approximation for the density-weighted ionized fraction, which is the crucial quantity for determining τ. Bottom row: Corresponding
21 cm power spectra (black) at various redshifts, plotted as Δ2

21ðkÞ≡ k3P21ðkÞ=2π2. Blue and orange curves show power spectra for
different values of Tvir. Note that this figure is intended for illustrative purposes only, and that the scales on the top two rows do not
correspond exactly to the redshift axis on the third row. In our proposed analysis, one measures the bottom row through observations,
constraining underlying model parameters that are then fed into simulations to produce the top two rows. The density-weighted
ionization fraction (third row) is then extracted and inserted into Eq. (10) to determine τ.
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since they mean that the inherent degeneracies in one’s
ability to predict reionization parameters from 21 cm power
spectrum measurements do not detract from one’s ability to
make a highly precise prediction of τ.
Fundamentally, this rather fortunate alignment of con-

tours arises because both the 21 cm line and τ are probes of
reionization that are particularly sensitive to the timing of
the process, but are relatively insensitive to parameter
shifts that leave the timing the same. Consider a simulta-
neous increase in Tvir and ζ, for example. Increasing Tvir
means that reionization is driven by more massive gal-
axies, which are fewer in number. If one correspondingly
increases ζ, however, each galaxy within this rarer pop-
ulation will produce more ionizing photons, leaving the
timing of reionization roughly unchanged. The result will
have little impact on τ, which is only affected by the total
column density of free electrons between us and the
surface of last scattering, with no regard for whether these
free electrons were produced by a large population of faint
ionizing sources or a small population of bright sources.
As for the power spectrum measurements, previous work
[14] has shown that redshift evolution is one of the
principal ways to break astrophysical parameter degener-
acies. Combinations of parameter shifts that leave timing
unchanged therefore survive as the residual degeneracies
seen in Fig. 4.
Importantly, the similarities between constraints from τ

and those from 21 cm power spectra seem to be generally
robust. Switching to Planck’s TTþ lowP data set, we
match its best-fit τ value of 0.078 by using a fiducial
astrophysical parameter set of ðTvir; Rmfp; ζÞ ¼ ð4 × 104 K;
35 Mpc; 40Þ. To better match the higher redshift of
reionization, we also adjust our experimental parameters

by assuming that observations are analyzed in Δz ¼ 0.5
portions spanning the range 7.5 ≤ z ≤ 10.5 [37]. We find
the same qualitative effects as we did for Planck’s
TT;TE;EEþ lowPþ lensingþ ext data set.
Proceeding with our prediction of τ, it is crucial to

incorporate cosmological parameter uncertainties into our
estimate (particular those from Ωm and Ωb). As we saw in
Sec. III A, cosmological parameter uncertainties can
induce roughly percent level errors in τ, which will turn
out to be a substantial fraction of the error budget in our
final predictions. It is thus incorrect to simply integrate over
the likelihood contours (Fig. 4) against the values of τ, for
those values were computed assuming fixed cosmological
parameters. It is also essential to go beyond the approach of
Sec. III A, where our assumption of instantaneous reioni-
zation meant that cosmological parameters only entered
“geometrically” via the prefactors of Eqs. (10) and (11).
In our more detailed treatment here, we expect xHIIð1þ δbÞ
to depend on both cosmological and astrophysical
parameters.
Suppose we define a function τsimðpÞ that returns the

value of τ from our simulations given a set of parameters
p. For most of this paper (our later discussion of the
neutrino mass being an exception), we will pick the three
reionization parameters described above, plus the base
ΛCDM parameters used by Planck but without τ, i.e., p ¼
½Ωbh2;Ωch2; 100θMC; lnð1010AsÞ; ns; Tvir; Rmfp; ζ�, where
Ωc is the normalized cold dark matter density, As is
the amplitude of the primordial curvature power spec-
trum, ns is the scalar spectral index, and the other
parameters retain their definitions from earlier in the
paper. In general, τsim is a complicated function of p, and
it is computationally impractical to evaluate it directly in
(for example) a likelihood analysis.5 In practice, however,
it is sufficient to simply linearize the relation, since we
need not understand how τsim varies over all possible
parameter values. Instead, it is only necessary to consider
variations induced by perturbations within the narrow
ranges of cosmological parameters allowed by Planck and
astrophysical parameters in soon-to-exist 21 cm results.
Degeneracies in the 21 cm results (such as the Tvir − ζ
degeneracy discussed above) are of little concern since
we have shown that such degeneracies have little effect on
τ. If we denote by Δp the perturbation of parameter p
about its fiducial value in our simulations (not to be
confused with the error bar for p in measurements), we
find that numerical fits to τsim yield

FIG. 4. Forecasted 68% and 95% confidence regions (black
ellipses) in the Tvir − ζ parameter space for HERA observations,
along with 21cmFAST-predicted optical depth τ (filled color
contours). The rough alignment of the degeneracy directions
suggest that uncertainties in astrophysical parameters arising
from 21 cm power spectrum measurements are unlikely to
seriously compromise one’s ability to make highly precise
predictions of τ.

5Recent efforts in Ref. [64] have shown that full Bayesian
analyses are viable if only astrophysical parameters are varied.
However, incorporating cosmological parameter variations into
such analyses will require further speed-ups of semianalytic
simulations.
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τTTþlowP
sim ≈ 0.078þ 0.042

�
ΔΩbh2

0.02222

�
þ 0.11

�
ΔΩch2

0.1197

�

− 0.0074

�
Δ100θMC

1.04085

�
þ 0.22

�
Δ lnð1010AsÞ
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�

þ 0.27

�
Δns

0.9655

�
− 0.018

�
ΔTvir

4 × 104 K

�

− 0.0011

�
ΔRmfp

35 Mpc

�
þ 0.020

�
Δζ

40 Mpc

�

ð16Þ

for the fiducial model based on Planck’s TTþ lowP data
set, and

τTT;TE;…sim ≈ 0.064þ 0.033

�
ΔΩbh2

0.02230

�
þ 0.088

�
ΔΩch2

0.1188

�

− 0.0075

�
Δ100θMC

1.04093

�
þ 0.18

�
Δ lnð1010AsÞ

3.064

�

þ 0.21

�
Δns

0.9667

�
− 0.017

�
ΔTvir

6 × 104 K

�

− 0.00099

�
ΔRmfp

35 Mpc

�
þ 0.018

�
Δζ

30 Mpc

�

ð17Þ

for the fiducial model based on Planck’s TT;TE;EEþ
lowPþ lensingþ ext data set. Drawing 50 random
samples from the final likelihood function (derived at
the end of this section) obtained from combining 21 cm
data with CMB data, we find that the maximum error in
our linear approximation for τ to be 0.6%, and the mean
error to be 0.2%. Since we have (arbitrarily) scaled each
perturbation to the fiducial parameter values, the coef-
ficients of each term in these relations can be interpreted
as the change induced in τ per fractional shift in
parameter values. Examining the relative magnitudes
of these coefficients, one sees yet more evidence that
cosmological parameters can have a significant effect on
a τ prediction.
Because tensions have often arisen in the best-fit values

of the Hubble parameter h from different data sets, it is
worthwhile to consider the dependence of τsim on h.
Eliminating θMC in favor of h in our linearized relations,
one obtains

τTTþlowP
sim ≈ 0.078 − 0.0015

�
Δh

0.6731

�
þ… ð18Þ

and

τTT;TE;…sim ≈ 0.064 − 0.0015

�
Δh

0.6774

�
þ…; ð19Þ

where we have omitted other terms because their coeffi-
cients change by very small amounts (as is the case with
Ωbh2 and Ωch2) or not at all because they are unrelated to
θMC (as with all the other parameters). We see that our
calculated τ depends only very weakly on h. At first sight,
this may seem surprising, given that Eqs. (10) and (11)
appear to be proportional to h. This line of reasoning would
erroneously lead to the conclusion that the fractional error
on τ is equal to the fractional error on h, which is larger than
what is seen here. To understand this discrepancy, note that
if we temporarily return (for the sake of simplicity) to the
assumption that reionization happens instantaneously at
zion, and further make the approximation that ΩΛ ≪
Ωmð1þ zÞ3 for z ≈ zion, the integrals in Eqs. (10) and
(11) can be evaluated analytically. The prefactor of our
expression for τ then becomes τ ∝ Ωbh2ðΩmh2Þ−1=2 to
leading order. Now, recall that Ωbh2 and Ωmh2 are propor-
tional to physical energy densities and hence are combi-
nations that are directly constrained by the CMB. As a lone
parameter, h therefore enters only at higher order, or in the
detailed astrophysics of ¯xHIIð1þ δbÞ and xHeIIIð1þ δbÞ,
where its influence is much weaker. This weak dependence
is welcome news in our quest to compute τ, since it
immunizes our estimate against possible systematic biases
in h, such as those that are suggested by tensions between
Planck-derived values of h and those determined from
some supernovae measurements [2,65,66].
Ultimately, the goal of a 21 cm-derived τ is not the

measurement of τ itself, but rather, its elimination as a
nuisance parameter for cosmological parameter estimation.
With our linear relations for τsim, we have tight constraints
between τ and other cosmological parameters, considerably
sharpening the likelihood function. To obtain some intu-
ition for how a 21 cm-derived estimate of τ may reduce
error bars, consider Fig. 5. There we plot a set of pairwise
likelihood contours from Planck’s TT;TE;EEþ lowPþ
lensingþ ext data set, pairing τ with each of the other
cosmological parameters and marginalizing over all other
parameters. Overlaid in red are the constraints between
each parameter and τ imposed by Eq. (17), assuming all
other parameters are fixed at their fiducial values. Crudely
speaking, once a 21 cm-derived τ is folded into one’s
data analysis, parameter constraints must lie on the slices
defined by the red lines, with a small allowance for the fact
that uncertainties on the other parameters will cause the
lines to become slightly blurry. One sees that in most cases
there will be a non-negligible, though small, decrease in
cosmological parameter errors. The major exception to this
is As. CMB temperature data alone have a strong degen-
eracy between As and τ, and remain largely unchanged if
the combination Ase−2τ is kept constant. Polarization and
lensing data break this degeneracy to some extent, but there
remains some residual effect (as illustrated in Fig. 5 by the
alignment between the ellipses and the blue line, which is a
contour of constant Ase−2τ). Though As and τ are also
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positively correlated in reionization simulations (essentially
because larger primordial fluctuations lead to earlier
structure formation, and hence earlier reionization and
higher τ), the slope of the relation is rather different. We
may thus expect errors in As to be considerably suppressed
by the introduction of 21 cm data.
To be more quantitative, we may incorporate a

21 cm-estimated τ into our constraints on the parameter
set p by performing a constrained marginalization over τ to
obtain a likelihood function LðpÞ. In other words, our final
likelihood is given by

LðpÞ ¼
Z

dτLexptðp; τÞδDðτsimðpÞ − τÞ; ð20Þ

where Lexpt is the likelihood function of parameters
from experiments alone (without the extra information
imposed by our self-consistent simulations). In this paper,
we will limit ourselves to considering CMB and 21 cm
experiments, although in principle, other probes of
reionization such as Lyman-alpha observations can be
folded into Lexpt. Note that without simulations, the
21 cm power spectrum measurements place no direct
constraints on τ. The appearance of τ as an argument of
Lexpt is thus purely due to CMB experiments. The Dirac
delta function term ties simulations and observations
together, requiring that the inferred value for τ is con-
sistent with the one predicted by inputting all the other
cosmological parameters into simulations. If desired,
modeling/simulation uncertainty may be incorporated
by widening the delta function into some function of
finite width (e.g., a Gaussian), although for simplicity we
leave this for future work.
We note that the formalism here is a departure from

the picture we have painted thus far in the paper. Until
now, we have thought of τ as a parameter to be first
determined by 21 cm measurements, and then fed into
CMB data analyses to refine constraints on other
cosmological parameters. While conceptually tidy, this
approach misses the fact that once the errors on other
parameters have been brought down, the uncertainties on
τ itself can be reduced once more, since Eqs. (16) and
(17) exhibit a non-negligible dependence on cosmologi-
cal parameters. To account for these complications, our
method here is to self-consistently require that the
CMB-measured τ match a value of τ that is predicted
from 21 cm observations. With real data, this would be
enacted by performing a joint fit over CMB observations
and 21 cm observations, tied together by semianalytic
simulations.
Moving forward, we will approximate Lexpt as a corre-

lated higher-dimensional Gaussian, which is equivalent to
saying that the forecasts presented in Sec. V will be based
on a Fisher matrix formalism. Under the Fisher formalism,
the likelihood takes the form

FIG. 5. Likelihood contours for ΛCDM cosmological param-
eters as defined in the publicly released Planck TT;TE;EEþ
lowPþ lensingþ ext data set. Black ellipses show 68% and
95% confidence regions for every parameter against τ. Red
lines indicate values of τ as predicted in 21cmFAST and
approximated by Eq. (17), holding all other parameters fixed.
The blue dashed line in the τ- lnð1010AsÞ plot indicates
constant Ase−2τ, illustrating the strong degeneracy inherent
in CMB observations that we expect to be broken by 21 cm
observations.
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Lexptðp; τÞ ∝ exp

�
−
1

2

�
FττðΔτÞ2 þ

X
i≠τ

FiτΔpiΔτ

þ
X
j≠τ

FτjΔpjΔτ þ
X
ij≠τ

FijΔpiΔpj

��
; ð21Þ

where Δpi and Δτ are the deviations of ith parameter and τ
about their fiducial values, respectively, and coefficients
such as Fij, Fiτ, and Fττ are part of a Fisher matrix F. In the
Gaussian approximation, F is equal to the inverse covari-
ance of ðp; τÞ, and is an additive property of two indepen-
dent experiments. In our case, it may therefore be computed
by summing two contributions: the inverse covariance
matrices from Planck for basic cosmological parameters,
and the 21 cm power spectrum Fisher matrices for
cosmological and astrophysical parameters (calculated
in Ref. [37]).
Now, evaluating the integral in Eq. (20) is tantamount to

replacing τ with τsimðpÞ in this expression. Continuing with
the linear approximations to τsimðpÞ that we employed
above, we have

Δτ ¼
X
i

aiΔpi; ð22Þ

where faig are coefficients chosen to match our linearized
relations, Eqs. (16) and (17), and substituting this into
Lexptðp; τÞ yields another Gaussian likelihood for LðpÞ, but
with modified Fisher matrix elements F0

ij given by

F0
ij ¼ Fij þ aiFjτ þ ajFiτ þ aiajFττ: ð23Þ

Once this modified Fisher matrix has been obtained, it can
be manipulated in the usual manner to obtain projected
uncertainties on parameters. This expression will form the
basis of our predictions in the following section, where we
forecast the improvement in cosmological constraints from
combining Planck results with upcoming 21 cm power
spectrum measurements from HERA.

V. COSMOLOGICAL PARAMETERS WITH A
21 CM-DERIVED τ CONSTRAINT

Having established intuition and a formalism for reduc-
ing cosmological parameter uncertainties via 21 cm-
derived constraints on τ, we now provide some quantitative
forecasts. For each of our two selected Planck data sets, we
add their inverse covariance matrices to tailored 21 cm
power spectrum Fisher matrices. These matrices are tail-
ored in the sense that they are centered on different fiducial
parameters, chosen so that when input into the 21cmFAST

simulations, the predicted values of τ match the best-fit
values from the relevant Planck data sets. We then evaluate
Eq. (23) using either Eq. (16) or Eq. (17), giving final
Fisher matrices that we invert to obtain final covariance

matrices. As in the previous section, we assume that
observations are used to form power spectra at intervals
of Δz ¼ 0.3 from z ¼ 6.1 to 9.1 inclusive for
Planck TT;TE;EEþ lowPþ lensingþ ext, and Δz ¼
0.5 from z ¼ 7.5 to 10.5 inclusive for Planck TTþ lowP.
Table I lists the marginalized 68% limits on the astro-

physical parameters that describe reionization in our model,
showing the error bars that can be expected from combin-
ing Planck priors on cosmological parameters with 21 cm
power spectrum measurements, as well as those from
additionally requiring self-consistency between the
CMB-measured τ and a 21 cm-informed estimate from
semianalytic simulations. Comparing the two sets of error
estimates, one sees that as far as astrophysical parameters
are concerned, there is little to be gained from the
consistency constraint. This is to be expected from our
earlier discussion of Fig. 4, where we saw that the align-
ment of parameter degeneracy directions meant that incor-
porating τ was unlikely to improve one’s astrophysical
parameter constraints.
In contrast, Table II shows that there are some improve-

ments to cosmological parameters. While some parameters
(100θMC being the best example) are already known to
such precision with Planck that the addition of 21 cm
information does little to reduce errors, others do show
improvement. In general, a better performance is obtained
when the fiducial parameters are chosen to match the
Planck TT;TE;EEþ lowPþ lensingþ ext data set than
when they are based on the Planck TTþ lowP data set. For
example, by adding 21 cm power spectrum measurements
and our τ self-consistency constraint to Planck priors, the

TABLE I. Fiducial values and marginalized 68% confidence
intervals for astrophysical parameters, within reionization sce-
narios tuned to fit the Planck TTþ lowP and TT;TE;EEþ
lowPþ lensingþ ext data sets. In each case, astrophysical and
cosmological parameters were constrained simultaneously, with
Planck results imposed as a prior on the latter. The “Errors from
P21ðkÞ” are reproduced from Ref. [37] and constitute forecasted
errors from HERA using power spectrum measurements only.
The final column shows the errors that result from also requiring
that the parameters self-consistently reproduce τ in semianalytic
simulations. Imposing self-consistency in τ has a negligible effect
on astrophysical parameters, as one expects from Fig. 4.

Planck TTþ lowP priors

Fiducial value Errors from P21ðkÞ þ21 cm τ
Tvir [K] 40000 �7500 �7500
Rmfp [Mpc] 35.0 �1.2 �1.2
ζ 40.0 �4.6 �4.2

Planck TT;TE;EEþ lowPþ lensingþ ext priors

Fiducial value Errors from P21ðkÞ þ21 cm τ
Tvir [K] 60000 �6700 �6600
Rmfp [Mpc] 35.0 �0.82 �0.82
ζ 30.0 �2.0 �1.9
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former data set sees a ∼15% reduction in errors on ΩΛ and
Ωm, whereas there is negligible improvement with the latter
data set. This is because the Planck TT;TE;EEþ lowPþ
lensingþ ext parameters imply a lower redshift of reioni-
zation, which shifts the most nontrivial features in the
evolution of the 21 cm power spectrum to higher frequen-
cies. There, both foregrounds and instrumental noise are
smaller in amplitude, allowing high-significance measure-
ments of the power spectrum that are more effective at
breaking parameter degeneracies. The Hubble parameter
H0 stands as an exception to this general trend, with
Planck TTþ lowP showing a larger error reduction.
However, Planck TT;TE;EEþ lowPþ lensingþ ext still
has smaller final error bars, having started with a more
precise estimate of H0.
In our formalism, τ is marginalized out of our set of

parameters in a self-consistent manner. It is for this reason
that τ appears as a measured parameter in Table II prior to
our inclusion of 21 cm τ information, but only as a derived
parameter afterwards. To estimate errors on τ, one may
draw random samples of our parameters p from the final
likelihood LðpÞ given by Eq. (20). Samples of τ may then
be obtained by inserting these randomly drawn parameters
into our linearized relations for τ, Eqs. (16) and (17), and
uncertainties on τ can be estimated by examining the spread
of these samples. For Planck TTþ lowP, the 1σ error on τ
is�0.0015, representing a 2%measurement. Now, suppose
we artificially fix the astrophysical parameters in our
drawing of p. Our error on τ then drops to �0.00055.
Note that this represents a fractional error of 0.7%, which is
smaller than the 1.4% predicted in Sec. III A. This occurs
because there are degeneracies between the cosmological

parameters and the astrophysical parameters, and thus
fixing the latter improves the former. If we fix the
cosmological parameters and allow the astrophysical
parameters to vary, the τ error is �0.00054, almost equal
to the error from only varying cosmological parameters.
The patterns for the Planck TT;TE;EEþ lowPþ
lensingþ ext data set are similar: varying only the cos-
mological parameters yields an error of �0.00028; varying
only astrophysics gives �0.00036; and varying everything
gives�0.00083, which is a 1% measurement. These results
confirm our intuition that once 21 cm data are introduced,
astrophysical parameter uncertainties become small enough
that cosmological parameter errors must be jointly included
in one’s errors analysis.
As expected from Fig. 5, the inclusion of 21 cm

information most benefits our constraints on As, since an
independent constraint on τ breaks the CMB degeneracy
where any changes keeping Ase−2τ constant are difficult to
detect. For both Planck data sets, an error reduction of
about a factor of 4 is achieved in the quantity lnð1010AsÞ.
Shown in Fig. 6 are the 68% and 95% confidence regions
on the τ- lnð1010AsÞ plane for the Planck TT;TE;EEþ
lowPþ lensingþ ext data set. (The results for
Planck TTþ lowP are qualitatively similar.) One clearly
sees that the Ase−2τ degeneracy is strongly broken. For
reference, the grey band indicates a range of τ values that
are reflective of the spread (but not the mean) of values
given in Fig. 2 for various models of reionization. This
provides an extremely conservative sense for howmodeling
uncertainties could degrade constraints, and even then
there is some improvement from using the CMB alone.
We stress, however, that this would be a very pessimistic

TABLE II. Fiducial values and marginalized 68% confidence intervals for cosmological parameters in ΛCDM, within reionization
scenarios tuned to fit the Planck TTþ lowP and TT;TE;EEþ lowPþ lensingþ ext data sets. The “Errors” columns show error bars
using Planck data only, “þP21ðkÞ” includes 21 cm power spectrum information (reproduced from Ref. [37]), and “þ21 cm τ” also
requires self-consistency between the CMB-measured τ and the 21 cm-predicted τ. The 21 cm observations are assumed to come from
HERA. Boldfaced entries represent substantial reductions in error (arbitrarily defined as a halving or more of error bars) compared to
using Planck data only.

Planck TTþ lowP Planck TT;TE;EEþ lowPþ lensingþ ext
Best fit Errors þP21ðkÞ þ21 cm τ Best fit Errors þP21ðkÞ þ21 cm τ

Measured parameters
Ωbh2 0.02222 �0.00023 �0.00021 �0.00020 0.02230 �0.00014 �0.00013 �0.00013
Ωch2 0.1197 �0.0022 �0.0021 �0.0018 0.1188 �0.0010 �0.00096 �0.00087
100θMC 1.04085 �0.00046 �0.00046 �0.00045 1.04093 �0.00030 �0.00029 �0.00029
lnð1010AsÞ 3.089 �0.036 �0.023 �0.0063 3.064 �0.023 �0.016 �0.0053
ns 0.9655 �0.0062 �0.0057 �0.0053 0.9667 �0.0040 �0.0037 �0.0035
τ 0.078 �0.019 �0.013 � � � 0.066 �0.012 �0.0089 � � �
Derived parameters
τ � � � � � � � � � �0.0016 � � � � � � � � � �0.00083
H0½km s−1 Mpc−1� 67.31 �0.96 �0.91 �0.81 67.74 �0.46 �0.43 �0.41
ΩΛ 0.685 �0.013 �0.013 �0.011 0.6911 �0.0062 �0.0057 �0.0053
Ωm 0.315 �0.013 �0.013 �0.011 0.3089 �0.0062 �0.0057 �0.0053
σ8 0.829 �0.014 �0.009 �0.0067 0.8159 �0.0086 �0.0062 �0.0036
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scenario. It essentially assumes no progress in our ability to
distinguish between different topologies of reionization,
whereas expectations are that 21 cm observations will be
easily able to make such distinctions [47,67]. It thus seems
quite likely that incorporating 21 cm data will result in
smaller error bars on As.
To interface with the large scale structure literature, it is

helpful to express the normalization of the power spectrum
not in terms of As, but in terms of σ8, the root mean square
of matter fluctuations in 8 h−1Mpc spheres at the present
day, assuming linear perturbation theory. Explicitly, this is
given by

σ28 ≡
Z

∞

0

k2dk
2π2

PmðkÞ
�
3j1ðkRÞ

kR

�
2

; ð24Þ

where R ¼ 8 h−1 Mpc, PmðkÞ is the matter power spectrum
at z ¼ 0 in linear theory, and j1 is the first order spherical
Bessel function of the first kind.
In Fig. 7, we translate our parameter constraints into

constraints on Ωm and σ8. Shown in blue solid lines are the
68% and 95% likelihood contours from the original
Planck TTþ lowP data set, while the solid red contours
show the improvement from adding P21ðkÞ and our τ
constraints. In addition to a general shrinking of the errors,

one also sees a reorientation of the likelihood contours.
Whereas the errors in σ8 and Ωm are largely independent of
each other using Planck data alone, this is not the case once
21 cm information is included. To understand why this
occurs, recall that computing σ8 requires integrating the
present-day matter power spectrum. It thus depends not
only on the primordial fluctuation amplitude As, but also on
the evolution of perturbations, which depends on param-
eters such as Ωm. In the case of the Planck data alone, the
error on σ8 is dominated by the error on As, which masks
the dependence on other parameters. With 21 cm τ
constraints, the errors on As are reduced by so much that
they no longer drive the errors on σ8. Instead, uncertainties
in perturbation growth become the dominant source of
error, leading to correlations between σ8 and Ωm.
Sharper constraints on σ8 have the potential to shed light

on current tensions between cosmological constraints
derived from the primary CMB and those that are derived
from galaxy cluster measurements combined with BAO and
BBN [3]. Aside from our Ωm-σ8 projections, Fig. 7 also
shows likelihood contours from galaxy cluster counts of
Sunyaev-Zeldovich (SZ) clusters (reproduced from
Ref. [3]) using various calibration methods for the mass
bias. Orange and purple contours are constraints from
gravitational shear-based calibration methods using data
from the Canadian cluster comparison project (CCCP) and
the Weighing the Giants (WtG) program, respectively. The
green contours use a CMB lensing-based calibration for the

FIG. 7. Likelihood contours on theΩm-σ8 plane, with bold lines
signifying 95% confidence regions and light lines signifying
68% confidence regions. Blue contours denote the constraints
using Planck TTþ lowP data only, while red incorporates 21 cm
power spectrum and self-consistent τ information. Dashed con-
tours denote constraints from combining Planck’s SZ cluster
counts, BAO, and BBN (as published in Ref. [3]). In green are
constraints using a CMB lensing-calibrated prior on the cluster
mass bias factor (CMBlens). In orange and purple are constraints
based on calibrations using gravitational shear mass measure-
ments from the Canadian cluster comparison project (CCCP) and
Weighing the Giants (WtG) program, respectively.

FIG. 6. Likelihood contours on the τ- lnð1010AsÞ plane, with
bold lines signifying 95% confidence regions and light lines
signifying 68% confidence regions. Blue contours denote the
constraints using Planck TT;TE;EEþ lowPþ lensingþ ext
data only, while the red contours show the effect of adding
21 cm power spectrum and—crucially—self-consistency be-
tween the CMB-measured and 21 cm-predicted τ. The 21 cm
observations break the CMB degeneracy between As and τ,
enabling much better constraints on both parameters. The grey
band shows a width of optical depths representative of the spread
of models shown in Fig. 2, and is indicative of a scenario where
the ionization history is known, but the density-ionization
correlation is unknown. Even in the midst of such modeling
uncertainty, one sees an improvement in As errors, although we
stress that such a scenario is rather pessimistic since early 21 cm
measurements will place constraints on the correlation.
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mass bias. Here we focus exclusively on the Planck TTþ
lowP data set in an effort to separate the high redshift
constraints on the CMB from the low redshift constraints
from clusters. Moderate tensions are visually present at
varying degrees depending on the SZ calibration method.
In tandem with further SZ mass calibration studies, the
reduced errors on σ8 from the addition of 21 cm τ
constraints have the potential to either resolve or sharpen
tensions. If tensions remain, their increased statistical
significance would hint at the existence of systematics or
the need for an extension to Planck’s six-parameter
base model.
As an example of an extended cosmological model,

consider a nonzero neutrino mass. Massive neutrinos
alter the kinematics of our Universe’s expansion [68].
Additionally, neutrinos dampen structure growth on scales
finer than their free-streaming length [69–71], leading to
deficits in power on small scales that are more pronounced
if the sum of the neutrino masses

P
mν is large. Upcoming

precision measurements targeting both the kinematic and
structure growth signatures may therefore yield a detection
of a nonzero neutrino mass. Among other studies, Ref. [72]
provides forecasts for the expected performance for the
combination of DESI and “Stage 4” (S4) CMB experiments
[73,74]. That paper assumes DESI measurements of the
BAO signature and CMB measurements of lensed TT, TE,
and EE power spectra, along with a measurement of the
CMB convergence power spectrum. A crucial parameter
in the forecasting exercise is the minimum multipole lmin
that is assumed to be recoverable in an S4 measurement.
Reference [72] found that with lmin ¼ 5, S4 experiments
could constrain

P
mν to�15 meV (68% confidence) when

analyzed in conjunction with Planck polarization and DESI
data; with lmin ¼ 50, the error degrades to�19 meV. Now,
neutrino oscillation measurements constrain

P
mν to have

a minimum value of 60 meV [74–77]. If we take this to be
our fiducial value for

P
mν, going from lmin ¼ 5 to lmin ¼

50 then represents a degradation from a ∼4σ to a ∼3σ
detection. At this point, it is not clear what lmin would be
for ground-based S4 experiments, due to difficulties with
atmospheric and ground contamination [72], and it is likely
that the best measurements will come from a combination
of ground-, balloon-, and space-based experiments, par-
ticularly when foregrounds are taken into account [78].
That the neutrino mass forecasts depend on lmin is

largely due to a degeneracy between τ and
P

mν. This
arises because neutrinos suppress structure on small scales,
which can be mimicked by a lower As. As described above,
this is in turn degenerate with τ, leading to a τ-

P
mν

degeneracy. Accessing the lowest l modes enables S4
experiments to make precise measurements of the reioni-
zation bump signature discussed in Sec. I, breaking the
τ-As degeneracy (which we saw in Fig. 6 still exists with
current Planck data). Higher lmin values for S4 experiments
compromise their ability to do this degeneracy breaking.

With the 21 cm line, however, we recover this ability. Using
Fisher matrices from Ref. [72], we use the formalism
of Sec. IV to again predict the effect of self-consistently
including 21 cm information. Figure 8 illustrates how
this breaks the τ-

P
mν degeneracy, with the blue

contours showing the constraints from S4ðl > 50Þþ
Planck polarizationþ DESI and the red contours addition-
ally incorporating 21 cm information from HERA. The
fiducial value for

P
mν is taken to be the minimal 60 meV;

the fiducial value for τ is taken to be 0.078. This is the
best-fit τ value for the Planck TTþ lowP data set, so
we use the 21 cm Fisher matrix that is matched to
Planck TTþ lowP parameters, but in practice we find
that the results are essentially the same assuming
Planck TT;TE;EEþ lowPþ lensingþ ext. We see from
Fig. 8 that the τ-

P
mν degeneracy is broken, with the error

on
P

mν reduced from �19 to �12 meV. (Forecasted
errors6 on all cosmological parameters are given in
Table III). This demonstrates that even if S4 experiments
are unable to precisely constrain the reionization bump,
21 cm cosmology can fill in the missing information. With
an error of 12 meV, a cosmological determination of the

FIG. 8. Likelihood contours on the τ-
P

mν plane, with bold
lines signifying 95% confidence regions and light lines signifying
68% confidence regions. Blue contours denote the constraints
using S4ðl > 50Þ þ Planck polarizationþ DESI data only,
while the red contours show the effect of adding 21 cm power
spectrum and self-consistency between the CMB-measured and
21 cm-predicted τ. Early 21 cm observations will confirm models
of reionization, allowing high sensitivity measurements to predict
τ. This will break the CMB degeneracy between τ and

P
mν and

enable improved constraints on the neutrino mass.

6Importantly, note that with S4 and DESI cosmological
parameters, the fractional errors on a 21 cm-predicted τ are
comparable to the uncertainties from τ due to helium reionization,
as predicted in Sec. III B. We have thus implicitly assumed that
by the time S4 and DESI data are available, current probes of
helium reionization will have improved astrophysical models
sufficiently to enable tight predictions of τHe.
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neutrino mass becomes a 5σ detection even with the most
pessimistic fiducial value of

P
mν ¼ 60 meV.

Though the predictions in this section have been pri-
marily based on HERA, our qualitative conclusions should
hold for any next-generation high signal-to-noise 21 cm
experiment. For example, consider the SKA’s constraining
power under the base ΛCDMmodel (i.e., without fitting for
the neutrino mass). Rerunning our computations using the
“halved dipoles per station” SKA configurations7 presented
in Ref. [79], we obtain an error of �0.00060 for τ and an
error of �0.0052 for lnð1010AsÞ using the Planck TT;
TE;EEþ lowPþ lensingþ ext data set. With Planck’s
TTþ lowP data set, we obtain a �0.0013 error on τ and
a �0.0060 error on lnð1010AsÞ. (In all cases, the quoted
errors refer to 68% confidence.) Comparing these numbers
to the HERA results in Table II, we see that the SKA
delivers small improvements in precision, but not at a level
that results in qualitatively new science. We find this to be
true whether we use the “standard” SKA baseline configu-
ration of Ref. [79] or their “compact” configuration. There
are a number of reasons for the lack of significant improve-
ment beyond HERAwith the SKA.8 First, recall from Fig. 4
that astrophysical degeneracies from 21 cm power spec-
trum measurements are mostly aligned with contours of
constant τ. For the most part, this is a helpful feature, as it
decreases (though does not eliminate) the exposure of our τ
estimate to astrophysical uncertainties. However, this also
means that once a high signal-to-noise measurement of the
21 cm power spectrum is achieved, one is in a regime of
diminishing returns. Greater collecting area does result in
the shrinking of the ellipses in Fig. 4, but the degeneracy
direction is already so well aligned with the τ contours that
the decrease in errors on τ is not as large as one might hope
for. Additionally, the effect of a more precise, SKA-based τ
on As is rather small. This is again due to diminishing
returns. From Fig. 6, one sees that a HERA-based τ has (for
all intents and purposes) broken the CMB τ-As degeneracy.
Even greater precision on τ thus does little to further
improve constraints on cosmological parameters.

VI. MODEL DEPENDENCE OF τ
CONSTRAINTS FROM 21 CM POWER

SPECTRUM MEASUREMENTS

In the previous section, we saw how 21 cm power
spectrum measurements could be used in conjunction with
semianalytic simulations of reionization to place stringent

constraints on τ, considerably reducing errors on cosmo-
logical parameters in the process. While powerful, the
danger in such an approach is that it is rather model
dependent, and requires that the semianalytic simulations
correctly capture the essential features of reionization. In
this section, we discuss some of the potential problems
associated with model-dependent constraints, and how they
may be alleviated.
Of greatest concern is the extrapolation that is assumed

in this paper, where semianalytic simulations are used to
extrapolate ionization histories to high redshifts.9 In a way,
this is worrying because there are no direct measurements
of the highest redshifts, where different physical effects
may come into play. This risk may be mitigated in several
ways. First, we note that even though we have concentrated
on the use of 21 cm measurements at z < 10.5 (where the
signal to noise is highest) in this paper, most instruments
can reach higher redshifts. For example, PAPER and
HERA can in principle reach z ∼ 13.2, and the MWA
reaches z ∼ 16. LOFAR probes up to z ∼ 11 with its high-
band system, and from z ∼ 17 to z ∼ 22 with its low-band
system. In all these cases, the upper redshift boundary is
somewhat uncertain, since signal-to-noise typically drops
off towards the edge of one’s band. However, suppose we
optimistically assume that HERA can make meaningful
observations up to the edge of its design specification
(perhaps with extra integration time making up for reduced
sensitivity). In that case, only redshifts at z > 13.2 are
wholly dependent on our theoretical model. In our fiducial
model for Planck TT;TE;EEþ lowPþ lensingþ ext, the
z > 13.2 contribution to the optical depth is 0.00062.
This is less than the 1σ error of �0.00083 predicted for
combined Planck and 21 cm constraints in Table II, and
comparable to the constraint of�0.00058 listed in Table III
from combined Stage 4 and 21 cm analyses. This analysis
suggests that redshift regimes not probed by near-term
instruments make only a small contribution to τ. We find
that this contribution is even smaller than we have
estimated for our fiducial model when we repeat our
rough calculations using ionization history curves from
the state-of-the-art Cosmic Reionization on Computers
simulations [61,80].
It is important to note, however, that models with

extended ionization tails beyond z > 13 do exist. These
typically involve feedback mechanisms interacting with
star formation in low-mass halos, and can result in ionized
fractions as high as ∼10−1 at z≳ 13 [81–84]. In such
scenarios, the high redshift contribution is non-negligible
and must be modeled. The crucial quantity is then not the
absolute size of this contribution, but the precision to which
this can be modeled (note that this is also the case for the
models without a significant high redshift contribution). In

7The “halving” is with respect to the original SKA design, and
is a consequence of the recent rebudgeting process within the
SKA collaboration.

8Note that this does not preclude the possibility of precision
cosmology with the SKA using methods beyond the formalism of
this paper. Our claim here only encompasses improvements in
cosmological parameters that arise from a better τ measurement,
and does not include the extraction of other cosmological
information that the SKA might provide.

9In this section only, “high redshift” refers to z ≳ 13, and “low
redshift” refers to z ≲ 13.
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general, the error on the modeling will be smaller than the
size effect itself, particularly since certain pieces of high-
redshift physics (such as the relative importance between
high-mass and low-mass galaxies in the reionization
process) have consequences that can be probed by lower
redshift experiments. For example, supersonic relative
velocity effects between dark matter and baryons [85]
suppress the formation of low-mass minihalos [86–88],
resulting in observable effects in the 21 cm power spectrum
even down to z ∼ 10 [89].
Of course, studying high redshift processes through low

redshift observations will be somewhat indirect, reducing
the stringency of the resulting constraints. Fortunately,
uncertainties in the high redshift processes can be tolerated
so long as they do not affect the ionization history, in a
similar fashion to the way the degeneracies shown in Fig. 4
have a relatively small effect on τ. In addition, there is
ongoing progress to extend the redshift range of 21 cm
experiments. For example, the HERA collaboration is
currently designing an updated feed that will enable
observations to z ∼ 30. Power spectrum measurements
based on such observations are forecasted to produce
excellent constraints on the heating processes relevant
at high redshifts [90], and the potential even exists for
model-independent reconstructions of the x-ray spectra
responsible for this heating [91]. The SKA and the Long
Wavelength Array [92] represent yet other opportunities to
make power spectrum measurements (and perhaps even
imaging) observations at high redshifts.
Complementary to upcoming measurements of the

high redshift 21 cm power spectrum will be global
signal experiments. These experiments aim to measure the

all-sky-averaged brightness temperature as a function of
frequency, δTbðνÞ. Proposed or in-progress experiments
include the experiment to detect the global epoch of
reionization signature [93], Large-Aperture Experiment
to Detect the Dark Ages [94], Dark Ages Radio Explorer
[95], Broadband Instrument for Global Hydrogen
Reionization Signal [96], Shaped Antenna Measurement
of the Background Radio Spectrum [97], Zero-spacing
Interferometer Measurements of the Background Radio
Spectrum [98], and Sonda Cosmológica de las Islas para
la Detección de Hidrógeno Neutro [99]. Many of these are
designed to reach redshifts up to z ∼ 35 [95,100,101], and
again, are expected to make measurements of relevant high
redshift physics. For instance, these experiments have the
potential to place tight constraints on the Lyman-Werner
radiation background [102], which is a crucial ingredient in
many of the self-regulating feedback processes that sustain
the extended high redshift ionization tails seen in some
simulations.
While in this paper we have focused primarily on the

ability of the CMB to constrain cosmology, future experi-
ments may also provide precise constraints on reionization
that include effects from high redshift physics. Upcoming
high sensitivity arcminute-scale resolution polarization
experiments will make high sensitivity measurements of
the kinetic Sunyaev-Zel’dovich (kSZ) effect, providing
some information on the duration of reionization from
CMB experiments [103,104]. To be fair, Ref. [84] found
that kSZ measurements may not be very sensitive to self-
regulation effects if made at spherical harmonic wave
number l ∼ 3000, which is the focus of current measure-
ment attempts. However, they also find that the impact of
self-regulation becomes more pronounced at higher l, a
regime that may be enabled by new experiments combined
with ongoing advances in multiwavelength isolation of
foregrounds and thermal Sunyaev-Zel’dovich contami-
nants. It should also be noted that the relative baryon-dark
matter velocity effect [85] (discussed above) modulates
minihalo ionization bubbles on very large scales, and may
also enhance the kSZ signal at lower l, which is an effect
ignored in current kSZ simulations of this epoch.
Finally, there exists the possibility of exotic new physics

that is unaccounted for even in our most sophisticated
models. A prime example of this would be early (z ∼ 100 to
200) dark matter annihilations, which could have a sig-
nificant effect on τ without correspondingly large pertur-
bations to the 21 cm power spectrum [105]. In this case,
however, the discrepancy between our 21 cm-derived τ and
the CMB-derived τ would be a welcome tension, and
would only become apparent by performing the analyses
proposed in this paper.
In summary, though the methods described thus far are

model dependent, there exist ample opportunities to refine
our models over the next few years. If the true ionization
history of our Universe is close to zero beyond z≳ 13 (as

TABLE III. Fiducial values and 68% confidence limits on a
ΛCDM plus neutrino mass (

P
mν) model, within a reionization

model tuned to fit the Planck TTþ lowP data set. The errors are
computed first assuming a Stage 4 CMB experiment able to
access multipoles down to lmin ¼ 50, analyzed in conjunction
with DESI and Planck polarization data (“S4l<50 þ DESIþ
Planck Pol”). These data sets are then supplemented with HERA
measurements of the 21 cm power spectrum and self-consistent
reionization simulations. The addition of 21 cm information
reduces error bars on

P
mν and allows a 5σ detection of the

neutrino mass even if
P

mν is at its minimum value of 60 meV
allowed by neutrino oscillation experiments.

Parameter
Fiducial
value

S4l>50 þ DESI
þPlanck Pol

þP21ðkÞ
þ21 cm τ

Ωbh2 0.0222 �0.00003 �0.00003
Ωch2 0.1197 �0.00038 �0.00022
100θMC 1.04085 �0.00031 �0.00022
lnð1010AsÞ 3.089 �0.0091 �0.0016
ns 0.9655 �0.0017 �0.0015
τ 0.078 �0.005 �0.00058P

mν

[meV]
60 �19 �12
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many models suggest), almost the entirety of the optical
depth τ will be sourced at redshifts where direct observations
will soon be available, and little extrapolation to high
redshifts will be required. On the other hand, if models
with long ionization tails towards high redshifts turn out to
be correct, some extrapolation may be initially necessary, but
ongoing progress with high redshift (z≲ 35) experiments
should enable further model refinement. In any case, we
expect the forecasts in this paper to be revised as our
understanding of reionization becomes increasingly
informed by observations, and the work here is intended
only to be a proof-of-concept study to highlight the potential
of using 21 cm information to augment CMB constraints.

VII. USING GLOBAL SIGNAL MEASUREMENTS
TO DERIVE MODEL-INDEPENDENT

τ CONSTRAINTS

As discussed in the previous section, the use of 21 cm
power spectrum measurements to constrain τ requires
the use of astrophysical models, which carries the risk
of model dependency. In this section, we discuss how direct
observations of the 21 cm temperature field (rather than
its power spectrum) can provide direct, model-independent
constraints on τ.
Ignoring hard-to-measure patchy effects [106–108], τ is

effectively an angularly averaged quantity, with one value
across the entire sky. Correspondingly, in an attempt to use
direct measurements of the 21 cm brightness temperature
to constrain τ, it is not necessary to measure the three-
dimensional distribution δTbðn̂; νÞ. Instead, the angularly
averaged quantity δTbðνÞ suffices. This is precisely the
purview of the global signal experiments discussed in the
previous section.
To see how global signal measurements can be used to

constrain τ, suppose that peculiar velocity contribution to
the brightness temperature can be ignored (we will address
it below). Further assume that the hydrogen spin temper-
ature is much greater than the CMB temperature, Ts ≫ Tγ .
This approximation is expected to be justified towards the
middle and end of reionization, when the spin temperature
is tightly coupled to the kinetic temperature of the IGM,
which is strongly heated by x rays and/or shocks from
filamentary structure or exotic mechanisms such as dark
matter annihilation [109–113]. Under these assumptions,
Eq. (14) simplifies to δTbðn̂; νÞ ≈ δTb0xHIð1þ δbÞ. Taking
the angular average of this, the resulting global signal
δTbðνÞ and the density-weighted ionized fraction are seen
to be related via a simple linear equation, namely

1 −
δTbðνÞ
δTb0

¼ xHIIð1þ δbÞ: ð25Þ

As we saw in Sec. III B, the density-weighted ionized
fraction is the crucial quantity in an accurate estimate of τ.

Whereas power spectrum measurements require model-
dependent simulations to infer xHIIð1þ δbÞ, global
signal measurements can do so directly in a model-
independent way.
Of course, our claim of model independence holds only

if our assumption of Ts ≫ Tγ is true, since computing Ts

requires detailed models of the radiative backgrounds and
atomic physics [114,115]. The spin temperature approxi-
mation will almost certainly fail at the beginning of the
reionization epoch, prior to the completion of reheating.
Unfortunately, discarding this approximation requires sim-
ulating the complicated astrophysics and atomic processes
that govern Ts, which of course require a reionization
model. The best that we can do is to lower our ambitions,
and to restrict our global signal constraints to the lower
redshift contributions to τ. Ideally, one would first use the
model-dependent power spectrum methods of the previous
sections to derive an overall τ constraint, which could then
be checked for consistency against a model-independent
estimate of the low-redshift contributions from global
signal measurements.
We now consider the peculiar velocity term. This is due

to redshift space distortions, where peculiar velocities mean
that it is incorrect to assume that frequencies and comoving
radial coordinates are simply related by the Hubble flow.
The distribution of emission is thus different in frequency
(or redshift) space than in real comoving spatial coordi-
nates. However, whether one works in redshift space or real
space, the total integrated emission along the radial line of
sight is by definition the same. Such an integral is precisely
what is evaluated when predicting τ. The peculiar velocity
term can therefore be neglected. We do note that in practice,
our simulations show a small (≲0.2%) difference between
integrating 1 − δTbðνÞ=δTb0 and xHIIð1þ δbÞ. This is
likely because Eq. (14) is itself an approximate treatment
of redshift space distortions, strictly valid only when
∂vr=∂r ≪ H. For the forecasts below we simply ignore
this discrepancy (because it is small), and note that it would
not appear in an actual measurement.
Having established that 1 − δTbðνÞ=δTb0 is a good

approximation to xHIIð1þδbÞ, we may substitute Eq. (25)
into Eq. (10). Limiting our computation of the optical
depth to the contribution between z ¼ 0 and some relatively
low redshift z (in keeping our assumption that Ts ≫ Tγ),
we obtain

τðzÞ ¼ H0ΩbσTc
4πGΩmμmp

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩmð1þ zÞ3

q
− 1

i

−
16σTν

2
0kB

3ℏc2A10

Z
z

0

dz0δ̄Tb

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0

p
; ð26Þ

where it is understood that δTb is to be evaluated at
frequency ν21=ð1þ z0Þ. In deriving this expression, we used
Eq. (15) to express δTb0 explicitly in terms of fundamental
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constants, and for the second term only, made the approxi-
mation thatΩΛ ≪ Ωmð1þ zÞ3. This is an excellent approxi-
mation even at the high levels of precision being pursued
here, since the approximation becomes bad only at the
lowest redshifts, but by then reionization is complete and
δTb is zero.
The first term in our expression for τðzÞ is the optical

depth that would have resulted had our Universe been
ionized throughout cosmic history. Conveniently, it takes
the same form as Eq. (12), which as we argued in Sec. IV,
has errors that are dominated not by the Hubble parameter,
but by the much more precisely known combinations Ωbh2

and Ωmh2. At z ¼ 8.5, this term has a standard deviation
of 4.7 × 10−4 for Planck TT;TE;EEþ lowPþ lensingþ
ext and a standard deviation of 8.7 × 10−4 for Planck TTþ
lowP, with a central value of 0.063 for both.
The second term in τðzÞ is a deficit term. It quantifies the

deficit in the CMB optical depth that arises because our
Universe was neutral for part of its past. Importantly, we see
that all cosmological parameters have canceled out of this
term, leaving only fundamental constants that can be
determined to high precision in a laboratory. Though this
cancellation is remarkable, it is not surprising, since the
21 cm brightness temperature is ultimately a direct meas-
urement of the optical depth of clouds of neutral hydrogen
at high redshift. This neutral hydrogen optical depth is
precisely what sources the deficit in the CMB optical depth.
The factor of σT=A10 in the prefactor of the expression acts
as a conversion factor to account for the relatively small
cross section of the 21 cm line compared to that of
Thomson scattering.
With cosmological factors canceling out, the only source

of error in the deficit term is thus the measurement
uncertainty of the global signal δTb. Computing the
variance ðΔτÞ2 of τðzÞ, we have

ðΔτÞ2 ¼
�
16σTν

2
0kB

3ℏc2A10

�
2

×
Z

z

0

Z
z

0

dz0dz00Σðz0; z00Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ z0Þð1þ z00Þ

p
;

ð27Þ

where Σðz0; z00Þ is the error covariance between measure-
ments of the global signal at redshift z0 and z00
To forecast the performance of our fiducial experiment,

then, we require an expression for Σ. We suppose that the
data is analyzed using the methods of Ref. [37]. Briefly, we
assume that a prior measurement of the 21 cm power
spectrum is available, and that these results can be fit to
cosmological and astrophysical parameters. Simulations
are then run to predict a fiducial global signal history
δTfid

b ðνÞ as well as a plausible set of alternate histories that
are allowed within the error bars of the parameters.
Forming a covariance matrix of these alternate histories,

one may then perform an eigenvalue decomposition to
obtain a set of principal component eigenmodes that
compactly describe deviations from the fiducial history.
The global signal can then be expressed as

δTbðνÞ ¼ δTfid
b ðνÞ þ

XNd

i

bidiðνÞ; ð28Þ

where δTfid
b is the fiducial history, Nd is the number of

eigenmodes needed to adequately fit the data, diðνÞ is the
ith deviation eigenmode, and bi its amplitude. The goal
of the global signal measurement is to constrain the set of
amplitudes fbig. The effects of changing the amplitudes of
the two strongest modes are shown in Fig. 9 for a fiducial
history tuned to match Planck TT;TE;EEþ lowPþ
lensingþ ext. Importantly, we note that even though our
deviation eigenmodes are informed by simulations, our
global signal measurement remains model independent,

FIG. 9. Fiducial global signal history (black solid lines) chosen
to match the fiducial model tied to the Planck TT;TE;EEþ
lowPþ lensingþ ext data set. Dashed lines show perturbations
about the fiducial history driven by excitations of the deviation
eigenmodes (first eigenmode on top plot; second eigenmode on
bottom plot) of our power spectrum-informed principal compo-
nent basis.

ADRIAN LIU et al. PHYSICAL REVIEW D 93, 043013 (2016)

043013-20



since large deviations from the fiducial global signal history
will simply result in stronger measured deviation ampli-
tudes, and possibly a higher Nd.
In addition to the deviation mode amplitudes, a global

signal experiment must also contend with foreground
contamination (in addition to other systematics, which
may introduce additional degrees of freedom [116]).
Given that the foregrounds are spectrally smooth, we
follow previous works [16] and model them as a sum of
Np Legendre polynomials in log ν with a set of foreground
amplitudes that are fit alongside the deviation amplitudes.
This gives a total of Np þ Nd parameters that are fit for in
the analysis of global signal data. To quantify the errors in
such fits, we employ the same Fisher matrix formalism that
was used in Ref. [117], which was in turn based on the
treatments of Refs. [101,110]. Inverting the Fisher matrix to
the obtain a covariance and marginalizing over the nuisance
foreground amplitudes, we arrive at an Nd × Nd matrix C
of error covariances on the deviation amplitudes. These can
then be converted into a error covariance matrix Σ between
different frequency bins by computing

Σ ¼ DtCD; ð29Þ

where Dij ¼ diðνjÞ. This is essentially the discrete, fre-
quency-space version of Σðz; z0Þ, the continuous redshift-
space covariance that is needed to evaluate Eq. (27).
However, the discrete version is sufficient for all intents
and purposes, since the deviation eigenmodes can be
interpolated and evaluated at whatever frequencies (or
redshifts) one desires. With this, Eq. (27) can be evaluated
to compute the error contribution to τðzÞ from the global
signal measurement, which can then be combined in
quadrature with the errors from cosmological parameter
uncertainties, since the two contributions are independent.
In Figs. 10 and 11 we show the forecasts resulting

from our analysis for the Planck TTþ lowP and
Planck TT;TE;EEþ lowPþ lensingþ ext data sets,
respectively. Shown in color are the fractional errors in a
global signal measurement of τðz ¼ 8.5Þ. One sees that as
long as global signal spectra can be fit with relatively few
parameters, small error bars on τðz ¼ 8.5Þ can be attained.
These typically compare favorably with fractional errors
in τ from Planck, which are denoted by the thick black
lines on each plot (∼24% for TTþ lowP and ∼18% for
TT;TE;EEþ lowPþ lensingþ ext). We note, however,
that these lines are included for reference purposes only
and should be interpreted with caution, since any CMB-
derived τ must necessarily be an integral measurement up
to the surface of last scattering. From the perspective of
a CMB experiment, it is thus impossible to measure
τðz ¼ 8.5Þ (the contribution to τ from 0 < z < 8.5) using
the CMB. Nonetheless, the fractional errors from Planck
convey the rough sense that global signal measurements

have the potential to provide independent and competitive
constraints on τ.

VIII. CONCLUSIONS

The optical depth parameter τ serves a dual role in CMB
studies. On one hand, it serves as a crude tool for probing
reionization, since the optical depth arises from the scatter-
ing of CMB photons off free electrons produced during
reionization. On the other hand, it can be viewed as a
nuisance parameter that simply needs to be marginalized
out, in the process degrading the precision of constraints on
other cosmological parameters, particularly As.

FIG. 10. Fractional error in a global signal measurement of
τðz ¼ 8.5Þ as a function of the number of foreground parameters
Np and number of signal parameters Nd that are necessary for an
adequate fit to the data. The assumed reionization scenario is
chosen to match parameters from Planck TTþ lowP. A discre-
tized contour of the fractional error on Planck measurement of τ is
given by the thick black line for reference. As long as the number
of parameters in a global signal remains small, global signal
experiments can provide direct, model-independent constraints
on relatively low-redshift portions of τ.

FIG. 11. Similar to Fig. 10, but for the Planck TT;TE;EEþ
lowPþ lensingþ ext data set.
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In this paper, we advocate the use of highly redshifted
21 cm observations to provide an independent constraint on
τ, thereby breaking parameter degeneracies that arise in
CMB data analyses (many of which remain even when
complementary probes like galaxy surveys are introduced).
If modeling uncertainties in our current understanding of
reionization can be reduced (as is expected to be case once
a cosmological 21 cm detection is made), the opportunity to
eliminate τ as a nuisance parameter has the potential to
push CMB observations into a qualitatively new regime,
where one would not need to contend with the inherent
limitations of solving for τ internally using CMB data, such
as an lmin cutoff or eventually, a cosmic variance limit.
We propose two approaches for relating 21 cm obser-

vations to τ. Towards the end of the reionization epoch, the
complicated astrophysics of the neutral hydrogen spin
temperature Ts drops out of the expression for the bright-
ness temperature δTb of the 21 cm line. Measurements of
the sky-averaged brightness temperature δTb (“global
signal measurements”) then provide a direct probe of the
density-weighted ionized fraction, which can be integrated
in redshift to estimate τ. Our forecasts suggest that as along
as the observed global signal can be fit without an
unreasonably large number of parameters, this technique
can be used to provide precise estimates of the lower
redshift contributions to τ (up to, for example, z ∼ 8.5, but
this depends on precisely how reionization proceeds).
Provided we limit ourselves to these lower redshift portions
of τ, the resulting global signal estimates of τ are relatively
model independent and represent an improvement upon the
Planck constraints.
To compute the full optical depth from 21 cm observa-

tions, it is necessary to resort to higher signal-to-noise
observations, and here we focus on measurements of the
power spectrum P21ðkÞ of 21 cm brightness temperature
fluctuations as a function redshift. We envision a scheme
where power spectrum measurements are used over a
relatively narrow range in redshift (e.g., 6 ≤ z ≤ 9) to
constrain reionization parameters. These parameters are
then fed into semianalytic simulations of reionization to
predict the density-weighted ionized fraction to high red-
shifts, which can again be integrated to yield τ. In practice,
the simulations themselves depend on cosmological param-
eters in addition to astrophysical parameters, and to
properly account for all uncertainties, parameter estimation
must be performed jointly. Under such a scheme, informa-
tion from the 21 cm line is incorporated by self-consistently
requiring the CMB-measured τ to agree with values of τ
predicted by the 21 cm-tuned simulations. Note that we
assume that the physics probed by the (relatively narrow)
observed redshift range completely describes the physics of
τ, i.e., we assume that once the low redshift portions of our
model are tuned to observations, the errors in our model
extrapolations to higher redshifts are small. Said differently,
we assume that any additional physics at higher redshifts

makes negligible contributions to τ. These assumptions can
be checked using the many examples of proposed or
upcoming high redshift probes discussed in Sec. VI.
Forecasting the performance of our method for HERA,

we find that while parameter errors are reduced for all
cosmological parameters with the introduction of 21 cm-
derived τ information, the effects are the most pronounced
for As. This arises because of the known degeneracy
between As and τ in CMB observations. With HERA, this
degeneracy is broken and errors on lnð1010AsÞ decrease by
more than a factor of 4. Improved measurements of As can
sharpen (or alleviate) current tensions between cosmologi-
cal parameters derived from cluster counts and those from
primary CMB anisotropies.
The 21 cm line may also be instrumental in future

cosmological detections of the neutrino mass. To obtain
precise estimates of the sum of the neutrino masses

P
mν,

Stage 4 CMB experiments must accurately constrain the
low l reionization bump signature in their polarization
power spectra. Failing to do so would limit the precision of
a CMB-derived value of τ, which propagates to a degradedP

mν constraint since the two parameters are partially
degenerate. This degeneracy can be broken by comple-
menting the CMB with 21 cm cosmology. Assuming that
multipoles below lmin ¼ 50 are inaccessible to ground-
based Stage 4 experiments, the addition of 21 cm infor-
mation from HERA improves the 1σ error bars on

P
mν

from �19 to �12 meV. The latter represents a ∼5σ
detection of on the minimum allowed

P
mν of 60 meV.

As a first detection and further measurements of the
cosmological 21 cm signal are made, it is likely that our
understanding of reionization will be considerably
refined. We therefore expect our error forecasts to evolve
with new data and new models, and our current treatment
should be considered only as a proof-of-concept study
that demonstrates the potential power of combining
21 cm cosmology with CMB studies. As discussed in
Sec. VI, a wide range of near-term and future observa-
tions will confirm or refute our models of reionization,
with the push to even higher redshifts playing a particu-
larly crucial role in alleviating the potential risks of
model-dependent constraints. The present paper therefore
adds a cosmological motivation to the astrophysical case
for pursuing direct, high redshift measurements of the
pre-reionization epoch.
Future work can improve upon the results derived in

this paper by incorporating a greater variety of signatures
in the CMB. The essential idea in this paper is to demand
self-consistency between reionization constraints from
the CMB and the 21 cm line. This requirement of self-
consistency need not be limited to τ; our choice to focus on
τ is based simply on the fact that it has a clear degeneracy
with As and is measured by all CMB experiments. Future
high-precision CMB measurements will yield additional
constraints on reionization beyond τ, such as those from the
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kSZ effect. Further details regarding the ionization history
may also be obtainable from high-sensitivity polarization
measurements [118,119], with up to five independent
modes of the ionization history potentially observ-
able [120]. All of these constraints can be self-consistently
combined with 21 cm measurements and simulations in the
manner described in this paper, thus further improving
cosmological constraints. Importantly, 21 cm measure-
ments will always remain a crucial check for CMB
reionization results, since the CMB does not in general
contain enough information to accurately reconstruct the
full richness of a physically motivated ionization history
[121]. Additionally, observations of the 21 cm signal may
be the first to detect any unexpected features in the
ionization history, which may in turn inform how CMB
reionization constraints are interpreted.
The aforementioned advances will only serve to improve

the already sharp forecasts provided in this paper.
Upcoming high signal-to-noise measurements of the
21 cm line from arrays such as HERA and SKA will
therefore provide not only a transformative understanding
of the astrophysics of reionization, but also the opportunity
to further push the frontiers of precision cosmology.
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