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Models based on the Yang-Mills condensate (YMC) have been advocated for in the literature and
claimed as successful candidates for explaining dark energy. Several variations on this simple idea have
been considered, the most promising of which are reviewed here. Nevertheless, the previously attained
results relied heavily on the perturbative approach to the analysis of the effective Yang-Mills action, which
is only adequate in the asymptotically free limit, and were extended into a regime, the infrared limit, in
which confinement is expected. We show that if a minimum of the effective Lagrangian in θ ¼
−Fa

μνFaμν=2 exists, a YMC forms that drives the Universe toward an accelerated de Sitter phase. The
details of the models depend weakly on the specific form of the effective Yang-Mills Lagrangian. Using
nonperturbative techniques mutated from the functional renormalization-group procedure, we finally show
that the minimum in θ of the effective Lagrangian exists. Thus, a YMC can actually take place. The
nonperturbative model has properties similar to the ones in the perturbative model. In the early stage of the
Universe, the YMC equation of state has an evolution that resembles the radiation component, i.e.,
wy → 1=3. However, in the late stage, wy naturally runs to the critical state with wy ¼ −1, and the Universe
transitions from a matter-dominated into a dark energy dominated stage only at latest time, at a redshift
whose value depends on the initial conditions that are chosen while solving the dynamical system.
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I. INTRODUCTION

Observational data collected over the last two decades
from supernovae type Ia (SN Ia) confirmed that the
Universe is undergoing an accelerated phase of expansion.
The first piece of evidence for such a behavior was
discovered by two independent collaborations and was
reported in Ref. [1], by the High-Redshift Supernova
Search Team, and in Ref. [2], by the Supernova
Cosmology Project Team. Analyses from the combined
SN Ia data set (see, e.g., the one reported in Ref. [3]),
cosmic microwave background (CMB) radiation, for which
we refer, for instance, to Refs. [4–7], and from large scale
structures [8,9] have further provided consolidated evi-
dence for the current acceleration of the Universe. The
source of late-time cosmic acceleration has been dubbed
“dark energy” (DE), an exhaustive theoretical characteri-
zation which is still lacking. There have been many
attempts so far to determine the origin of DE, but a
consensus in the literature has not been reached yet.
A review of the models advocated for thus far within the

literature of DE is beyond the purpose of this study, and we
prefer to refer the reader to the sizable and rich literature
that exists on this subject (see, e.g., Refs. [10–12]). In what
follows, we will focus on a rather simple idea which
addresses the problem of DE from the perspective of

condensation of the Yang-Mills fields. Cosmic acceleration
as a source of cosmological inflation was first proposed
by Zhang in Ref. [13] and then further developed by the
same author and collaborators in the framework of current
cosmic acceleration, as a source of DE, in Refs. [14] and
[15], respectively, in the perturbative two-loop and three-
loop analyses of the effective action of Yang-Mills theory.
To be more specific, in Ref. [13] the author has considered
a Yang-Mills gauge boson condensate as described by the
renormalization-group-improvement action within a homo-
geneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) background. Following Refs. [16–18],
the action for the SU(N) Yang-Mills fields has been
reshuffled in terms of an effective running coupling
constant g ¼ gðτÞ, namely,

SYM ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
Leff ;

Leff ¼ −
1

4g2ðτÞF
a
μνFa μν; τ ≔ ln

���� − Fa
μνFa μν

2κ2

����; ð1Þ

in which gμν stands for the background metric and κ is the
square of the renormalization mass scale. From now on,
for simplicity of notation, we define the contraction of the
field-strength tensors as*marciano@fudan.edu.cn
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θ ≔ −
1

2
Fa
μνFa μν; ð2Þ

which plays the role of an order parameter for the Yang-
Mills condensate (YMC), and this allows us to write the
effective Lagrangian in a more compact way, τ ¼ ln jθ=κ2j.
A further simplification of the studies developed in the
literature so far concerns the use of an SU(N) gauge-
symmetry group, in which the number of colors N is not
fixed a priori. This choice connects the physics under
investigation to the constituent gauge groups of the
standard model of particles.

A. The perturbative expansion

The analysis within Ref. [13] has first focused on a one-
loop expansion. This entails considering the effective action

Leff ¼
1

2
bθ ln

���� θ

eκ2

����: ð3Þ

The constant b is of order one and depends on the number of
colors N of the SU(N) gauge group. Relying on the form of
the effective Lagrangian that has been derived for the
asymptotically free regime, it has been shown that when
the minimum is attained, namely, when θ ¼ κ2, the energy
density becomes

ρ¼ b0
2
ðE2−B2Þ; B2¼ 1

2
Fa

ijF
aij; E2¼−

1

2
Fa

0iF
a0i:

ð4Þ

The equation of state then reads like the one for dark energy,
namely, p ¼ −ρ.
The issue of proving that the dark energy behavior of the

YMC is stable with respect to higher order loop corrections
was addressed in [14] and [15]. In Ref. [14], the analysis
has resorted to the two-loop effective Lagrangian

Leff ¼
b
2
θ

�
ln

���� θκ2
����þ η ln

���� ln
���� θκ2

����þ δ

����
�
; ð5Þ

derived within the asymptotically free regime and then
extended to the infrared confining regime, in the range of
values for θ in which Leff has a minimum. Again, the
coefficients b and δ depend on the number of colors N of
the gauge-symmetry group and specifically read b ¼ 11N

3ð4πÞ2
and η ¼ 2 b1

b2, with b1 ¼ 17N2

3ð4πÞ4. The energy density and the

pressure from this model are provided by the relations

ρ ¼ b
2
θ

�
τ þ 2þ η

�
ln jτ þ δj þ 2

τ þ δ

��
; ð6Þ

p ¼ b
6
θ

�
τ − 2þ η

�
ln jτ þ δj − 2

τ þ δ

��
: ð7Þ

At high energies, when τ ≫ 1, the equation of state of the
YMC evolves toward the equation of state of radiation

w ¼ p
ρ
→

1

3
: ð8Þ

The stability of the system accounting for interactions with
matter and electromagnetic radiation, into which the YMC
may decay, has been successfully checked. To achieve this
goal, in [14] the authors considered the dynamical system
provided by the first Friedmann equation in the presence
of matter with energy density ρm and (electromagnetic)
radiation with energy density ρr,

H2 ¼ 8πG
3

ðρþ ρm þ ρrÞ; ð9Þ

the equations of motion for the energy density component
of the YMC, and the matter and radiation that arise from
conservation of the total energy-momentum tensor and
from the decay of the YMC into matter. In comoving
coordinates, in which H ¼ _a

a, these latter equations read

_ρþ 3Hðρþ pÞ ¼ −Γρ;

_ρm þ 3Hρm ¼ Γρ;

_ρr þ 3Hðρr þ prÞ ¼ 0: ð10Þ

The decay rate Γ is a free parameter of the model that enters
the definition of the dimensionless dynamical system to be
solved, Eqs. (9) and (10). The specific value of the rescaled
parameter γ ¼ Γ

H then affects the attractor coefficients in the
analysis of the stability of the model. Consistently with big-
bang nucleosynthesis [19], with the fractional density
observed for dark energy (Ω ∼ 0.73), and with the obser-
vational constraint on the equivalence between the energy
densities of the radiation and matter at the redshift of
recombination, we then set the initial conditions of the
dynamical variables. Finally, the model has been shown to
possess a dark energy tracking solution, and the dynamical
system to have a fixed point, which is stable. For γ0 ¼ 0.5,
the parameter of the equation of state takes the asymptotic
value w ¼ −1.14, provided that in Leff one sets δ ¼ 3.
A different value of this latter parameter, for instance,
δ ¼ 7, would rather entail w ¼ −1.18.
A further analysis, developed along the same lines as

the one reported above, was further explored by the same
authors in [15], and the investigation was extended to the
case of the three-loop effective action. Within the latter
work, the effective three-loop coupling constant reads

g2ðτÞ ¼ 1

b

�
1

τ
− η

ln jτj
τ2

þ η2
ln2jτj − ln jτj þ C

τ3
þO

�
1

τ3

��
;

ð11Þ
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and the main predictions have been substantially unaffected
by the improvement in the perturbative analysis. For
different choices of γ0, which is the decay rate parameter
rescaled by H evaluated at the present time, the parameter
of the equation of state at the present time takes the values
w0 ¼ 1.05 (given that γ0 ¼ 0.31) or w0 ¼ −1.15 (given
that γ0 ¼ 0.67).
We emphasize that, in both cases summarized above, the

two-loop expansion within [14] and the three-loop expan-
sion within [15], the dark energy behavior arises from the
perturbative computation of the effective Lagrangian in the
asymptomatically free limit. The validity of this procedure
is then extended to the infrared regime of the Yang-Mills
theory, in order to recover a minimum in θ for the effective
Lagrangian and derive the equation of state for the
Universe, which entails accelerated expansion. But the
occurrence of divergences in the effective action may shed
some doubts on the validity of the conclusions for the dark
energy behavior of the theory.
Finally, we would like to point out that the gauge

interactions taken into account here might not necessarily
be considered to be the ones constituting the standard
model of particle physics. It is interesting to note that an
extra “dark sector” might be advocated for to explain the
gauge group here involved. Furthermore, it might be
tempting to identify the gauge group copies with suitable
candidates for dark matter, postulating the existence of
“dark copies” of fermions colored under the extra “dark
gauge group.” The dark matter sector that is then introduced
may eventually be connected to the mirror standard model
theories [20,21] discussed in the literature.

II. TOWARD A NONPERTURBATIVE
INFRARED ANALYSIS

Within previous studies [13–15], the existence and the
stability of a dark energymechanism based on the YMCwas
investigated. The analyses were developed to move from the
ultraviolet results covered in the literature up to three loops
in the effective action for Yang-Mills SU(N) fields, and the
results were then extended in [13–15] to the infrared regime,
in order to derive a physical characterizationof an accelerated
expansion of the Universe. An important technical issue is
one that concerns the stability of the result at higher-loop
expansion since the appearance of an additional term in the
effective actionmight indeed spoil the stability, which totally
relies on ultraviolet perturbative expansion.
Furthermore, we know that the infrared regime of Yang-

Mills SU(N) theories has a completely different behavior
than the ultraviolet regime. The latter encodes asymptotic
freedom,while the former shows a confinement behavior that
depends on thenumber of gauge colors involved, and evenon
the number of colored fermions involved in the theory.
Therefore, the main motivation for this study has been to

prove that, under mild and general assumptions—which
are basically the existence of a minimum in θ in the

nonperturbative effective Lagrangian—a dark energy
behavior is recovered. Then, by making use of the non-
perturbative techniques mutated from the functional
renormalization-group procedure, which is more adequate
to be used in the confining infrared limit of the theory, it is
possible to prove that a such a minimum indeed exists.
For this purpose, we provided the explicit example of the

SU(2) Yang-Mills action, deriving the effective Lagrangian
for such a model and deepening the cases in which
interactions with different forms of matter is considered.
The procedure, which might not be completely reliable for
the precise determination of the coefficients of the effective
nonperturbative Lagrangian, is nevertheless enough to
ensure that a minimum of θ exists for Leff, and thus that
a YMC works as a reliable candidate to explain the origin
of dark energy. In the following sections, we unfold
detailed arguments in support of this thesis.

A. Yang-Mills effective action from a
nonperturbative approach

Within the perturbative YMC model for dark energy that
we reviewed in the previous section, the effective Yang-
Mills Lagrangian is the one calculated at one loop in the
seminal work by Savvidy [22], namely,

Leff ¼
1

2
bθ log

���� θκ2
����; ð12Þ

where b ¼ ð11NÞ=24π2 for SU(N). Higher-loop correc-
tions have been then deployed in order to check on whether
the substance of the physical results remains unchanged,
and how the details may vary.
Instead of continuing to consider higher-loop improve-

ments of (12), the main purpose of this work is to start from
a general nonperturbative form of the action, i.e.,

Leff ¼ WðθÞ: ð13Þ

We may then proceed to determine the form of WðθÞ by
stating some general requirements that must be fulfilled in
order to obtain a YMC that can work to explain the origin
of dark energy. The function W will also, in general, be
equipped with an energy scale κ in analogy with (1), for
dimensional reasons. We notice, indeed, that W must be a
(not necessarily analytic) function of θ satisfying the
following properties:
(1) WðθÞ has a nontrivial minimum in θ.
(2) WðθÞ possesses a perturbative limit, which repro-

duces the one-loop result derived by Savvidy [22].
(3) WðθÞ shows the asymptotic behavior of being at

least linear in θ, which in turn is linear to the bare
Yang-Mills action. This final requirement can be
formalized as follows: in the ultraviolet regime
θ ≫ κ2, W must hold the limit
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d lnW
d ln θ

ðθÞ → 1: ð14Þ

In what follows we will consider for simplicity a pure
SU(2) Yang-Mills theory, the gauge field of which is not
coupled to any other fundamental matter fields. We want to
stress that the SU(2) Yang-Mills fields introduced here, as
well as the SU(N) Yang-Mills fields dealt with in [13–15],
despite being suitable for building a model for cosmic dark
energy, should not necessarily be identified as standard
model gauge fields. The introduction of an additional copy
of SU(N) Yang-Mills fields might, in any case, allow us to
make contact with some mirror standard model theories
[20,21] that have been advocated for in the dark matter
literature. Again, such a link is not necessary for our
purposes and will not be analyzed within this investigation
of a dark energy YMC. Nevertheless, it might suggest
some interesting directions to be followed in forthcoming
studies.

B. YMC as cosmological dark energy

In what follows, we discuss the cosmological conse-
quences of the requirements we followed above for the
nonperturbative effective action, and we shed light on the
behavior of the YMC for the fate of cosmological dark
energy. We will assume a flat FLRW universe, the line
element of which can be cast in terms of comoving or
conformal coordinates, respectively, as follows:

ds2¼ dt2−a2ðtÞδijdxidxj¼ a2ðτÞ½dτ2−δijdxidxj�; ð15Þ

where the cosmological time t and the conformal time τ are
related through dt ¼ adτ. We will consider the simplest
case of a universe filled only with the YMC and will
assume it to be minimally coupled to the gravity. Then the
effective action reads1

S ¼
Z ffiffiffiffiffiffi

−g
p �

−
R

16πG
þ Leff

�
d4x: ð16Þ

From now on, we will simply denote by g the determinant
of the metric gμν. R is the scalar Ricci curvature, and Leff

is the effective Lagrangian of the YMC, described by
Eq. (13). Varying S with respect to the metric gμν, one
obtains the Einstein equation Gμν ¼ 8πGTμν, where the
energy-momentum tensor of the YMC is given by

Tμν ¼
X3
a¼1

ðaÞTμν ¼
X3
a¼1

gμνWðθÞ − 2
∂W
∂θ Fγμ

a Fa
γ
ν: ð17Þ

We may set up a gauge that preserves the isotropy and the
homogeneity of the FLRW background. We write gauge
fields as functions of the cosmological time t, and we
choose their components so as to satisfy A0 ¼ 0 and
Aa
i ¼ δai AðtÞ. This choice indeed ensures that the total

energy-momentum tensor Tμν is homogeneous and iso-
tropic. We then introduce the usual definition of the Yang-
Mills tensor, cast in terms of the group structure constants
fabc, namely,

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ fabcAb

μAc
ν: ð18Þ

For the SU(2) gauge group to which we are specializing our
analysis, the structure constants reduce to fabc ¼ ϵabc.
Furthermore, thanks to the gauge fixing we have selected
above and looking at the case of a constant electric field (for
simplicity, we will assume in the following a vanishing
magnetic field), we can rewrite the Yang-Mills tensor in the
simplified form

Faμ
ν ¼

0
BBB@

0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

1
CCCA

¼ 1

3

0
BBB@

0 E E E

−E 0 0 0

−E 0 0 0

−E 0 0 0

1
CCCA: ð19Þ

This allows us to express θ in a very simple form, i.e.,
θ ¼ P

3
i¼1 E

2
i ¼ E2, and the components of the energy-

momentum tensor can then be rewritten as

ðaÞT0
μ ¼ −

1

3
WðθÞδ0μ þ

2

3
W 0ðθÞE2δ0μ; ð20Þ

ðaÞTi
j ¼

1

3
WðθÞδij −

2

3
W 0ðθÞE2δijδ

a
j : ð21Þ

These tensors are not yet isotropic, with their values
depending on the direction of the color a. Nevertheless,
the total energy-momentum tensor Tμν ¼

P
3
a¼1

ðaÞTμν

is isotropic, and the corresponding energy density and
pressure are given by

ρYMC ¼ −WðθÞ þ 2W 0ðθÞθ;

pYMC ¼ WðθÞ − 2

3
W 0ðθÞθ: ð22Þ

Consequently, the equation of state (EOS) of the YMC is
immediately recovered as

1Following the definition in [23], we adopt the sign convention
ð−;þ;þÞ for the metric, the Riemann tensor, and the Einstein
equation, respectively.
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wYMC ≡ pYMC

ρYMC
¼ −

W − 2
3
W 0θ

W − 2W 0θ
¼ −

1 − 2
3
W0
W θ

1 − 2W0
W θ

: ð23Þ

It is worth discussing the mathematical properties of the
EOS wYMC. On one hand, if we require the Yang-Mills
theory to condensate, then the function W must have a
nontrivial minimum, as we required in Sec. II A. However,
this is equivalent to requiring that W 0 vanish at some point
θ0. At this point the YMC has an EOS of the cosmological
constant with wYMC ¼ −1. Around this critical point the
YMC dark energy models can account either for an EOS
characterized by wYMC > −1 or for an EOS characterized
by wYMC < −1, thus encoding phantom matter behavior.
On the other hand, in the high-energy-scale regime in
which θ ≫ κ2, one would like to retrieve that the YMC
exhibits an EOS of radiation, characterized by
wYMC ¼ 1=3, in analogy with the perturbative analysis
[13–15]. Within the framework of the nonperturbative
action (13), this corresponds to the third requirement listed
in Sec. II A. The effective action should then scale for
θ ≫ κ2, at least like the bare Yang-Mills action,
i.e., d lnWðθÞ=d ln θ ∼ 1.
In the following sections, we will show in detail that the

YMC evolves from an EOS with wYMC ¼ 1=3 to one with
wYMC ¼ −1 while the Universe is expanding.

C. A noninteracting YMC model

The cosmological model we are about to analyze in this
section entails three different sources for the energy-
momentum tensor: (i) the dark energy, the role of which
we assume to be played by the YMC; (ii) the matter,
including both baryons and dark matter, which is dealt with
as nonrelativistic dust with negligible pressure; and (iii) the
radiation, the component of which consists of photons and
possibly other massless particles, such as neutrinos. We
will describe the three components in terms of their EOSs,
without accounting for any microscopic treatment in terms
of the fundamental matter fields.
Since, from Eq. (15), we assumed ab initio the Universe

to be flat, fractional densities will sum up to one, namely,
ΩYMC þ Ωm þ Ωr ¼ 1. Indeed, the fractional energy den-
sities are defined as ΩYMC ≡ ρYMC=ρtot, Ωm ≡ ρm=ρtot, and
Ωr ≡ ρr=ρtot, and the total energy density is given by
ρtot ≡ ρYMC þ ρm þ ρr. The overall expansion of the
Universe is determined by the Friedmann equations:

�
_a
a

�
2

¼ 8πG
3

ðρYMC þ ρm þ ρrÞ; ð24Þ

ä
a
¼ −

4πG
3

ðρYMC þ 3pYMC þ ρm þ ρr þ 3ρrÞ; ð25Þ

where the dot denotes the d=dt.
As a first preliminary investigation, we will assume

that there is no interaction between the three energy

components. The dynamical evolution of these is deter-
mined by their equations of motion, which in turn follow
from imposing the conservation of each component of the
energy-momentum tensor,

_ρYMC þ 3
_a
a
ðρYMC þ pYMCÞ ¼ 0; ð26Þ

_ρm þ 3
_a
a
ρm ¼ 0; ð27Þ

_ρr þ 3
_a
a
ðρr þ prÞ ¼ 0. ð28Þ

From Eqs. (27) and (28), we can immediately obtain the
standard evolutions of the matter and radiation compo-
nents, ρm ∝ a−3 and ρm ∝ a−4. A less obvious but still
rather simple task is solving the evolution of the YMC
component. Inserting (22) into (26), we obtain the follow-
ing relation:

_θðW 0 þ 2W 00θÞ þ 4
_a
a
W 0θ ¼ 0; ð29Þ

which is in a quite compact form. This equation is
integrable for any regular enough W. In particular, we
can easily derive the result

ffiffiffi
θ

p
W 0ðθÞ ¼ αa−2; ð30Þ

where α is a coefficient of proportionality that depends on
the initial conditions.
At very high redshift, Eq. (30) entails an increase of the

order parameter θ that involves the limit θ ≫ κ2. Thus, at
very high redshift, the system transitions toward the ultra-
violet regime. Within this limit, Eq. (23) encodes the EOS
parameter wYMC → 1=3. The YMC then starts behaving as
the radiation component, as one would have expected since
the theory is evolving toward asymptotic freedom at high
energy. At small redshift, the expansion of the Universe
requires the lhs of Eq. (30) to vanish, which occurs for the
extremal value of θ ¼ θ0, and the EOS’ parameter then
converges toward wYMC ¼ −1. This ensures that the YMC
behaves as an effective cosmological constant.
Finally, notice that we may proceed as in [14,15] and

take advantage of the observational constraint on the ratio
between the dark energy density and the critical energy
density, in order to fix the energy scale κ2 that appears in the
effective Lagrangian WðθÞ. The effective Lagrangian is no
more dependent on the parameter κ, and we can rescale θ as
in the previous literature.

D. Interacting YMC models

In this section, we generalize the YMC dark energy
model and take into account some effective interaction with
dust matter. Nevertheless, for the sake of simplicity, at this
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first stage of the analysis we will disregard the interaction
between radiation and the YMC. We will then describe the
YMC dark energy and background matter interaction
through one additional parameter Q. Notice, however, that
the way the interaction is considered here, and the param-
eter Q is introduced, is merely phenomenological and does
not intend to capture any microphysical feature. The latter
could be correctly taken into account only through a much
more elaborate analysis than the ones that are currently
being carried out in the literature.
The equations of the conservation of energy in (26)

and (27) should be modified into

_ρYMC þ 3
_a
a
ðρYMC þ pYMCÞ ¼ −

_a
a
Q; ð31Þ

_ρm þ 3
_a
a
ρm ¼ þ _a

a
Q; ð32Þ

_ρr þ 3
_a
a
ðρr þ prÞ ¼ 0. ð33Þ

The interaction parameter Q, in natural units, has the
dimension of ½energy�4 and has been introduced for
phenomenological reasons. Its possible form will be
addressed later, but here we want to briefly mention that
the only meaningful characterization of the right-hand sides
of (31) and (32) is by a quantity proportional to the Hubble
parameter and to the components of the energy density. If
the YMC transfers energy to matter—for instance, if the
YMC decays into pairs of matter particles—we should
require the parameterQ to be positive. In the opposite case,
we should require the parameter Q to be negative.
We can then proceed to the study of the evolution of the

system (31) and (32). It is convenient to introduce the so-
called e-folding time N ≡ ln a, the derivative with respect
to which we will denote with a prime. We will denote as x
the dimensionless matter density x ¼ ρm=κ2. The system
(31) and (32) then reads

θ0ðW 0 þ 2θW 00Þ þ 4θW 0 ¼ −Q; ð34Þ

x0 þ 3x ¼ þQ: ð35Þ

Using the above definitions, we can immediately recast the
fractional energy densities of the YMC and the dust matter

ΩYMC ¼ −W þ 2W 0θ
−W þ 2W 0θ þ x

; and

Ωm ¼ x
−W þ 2W 0θ þ x

: ð36Þ

It is useful to discuss the general properties of this
dynamical system before specifying the form of the
interaction term Q. We can seek the fixed points of the
system by imposing θ0 ¼ x0 ¼ 0 in Eqs. (34) and (35), and

we then look for the solutions θc and xc of the simplified
system derived from Eqs. (34) and (35). The latter reads

4θcW 0ðθcÞ ¼ −3xc; ð37Þ

3xc ¼ þQðxc; θcÞ: ð38Þ

The stability of the solutions of these differential equations,
and the possible existence of attractor solutions, will be
analyzed in the forthcoming subsections, in which we will
specialize the form of the couplingQ by assuming different
linear combinations of the energy-density components
considered so far.

1. Q ∝ ρYMC

In this section, we parametrize the interaction as propor-
tional to the YMC energy density, namely, Q ¼ αρYMC ¼
αð−W þ 2W 0θÞ. The trivial case α ¼ 0 reduces to the free
YMC dark energy model studied above. We will only
consider the simplest case, with α being a nonzero
dimensionless constant. The evolution equations (34)
and (35) are then recast as

θ0ðW 0 þ 2θW 00Þ þ 4θW 0 ¼ −αð−W þ 2W 0θÞ; ð39Þ

x0 þ 3x ¼ þαð−W þ 2W 0θÞ: ð40Þ

When the fractional density of the YMC is subdominant in
the Universe, we expect the effect on the dust to be small.
Only in the latest stage of expansion of the Universe, where
the YMC dark energy dominates its evolution, the effect of
interaction on the dust component can become important.
The critical point equations (37) and (38) now rewrite as

2ð2þ αÞθcW 0ðθcÞ ¼ αWðθcÞ; ð41Þ

3xc ¼ −4θcW 0ðθcÞ: ð42Þ

It is easy to see that the fractional energy densities of the
YMC and the EOS at this critical point do not depend on
the details of the potential W, but they might rather have a
dependence on the parameter α. It is straightforward to
verify this from the very definition of an EOS calculated at
the fixed point solution of Eq. (41):

ΩYMC ¼ −
1

wYMC
¼ WðθcÞ − 2θcW 0ðθcÞ

WðθcÞ − 2
3
θcW 0ðθcÞ

¼ 3

3þ α
: ð43Þ

The constraint 0 ≤ ΩYMC ≤ 1 implies that α > 0. Data
from SN Ia and the CMB considerably restrict the available
range of α, allowing us to choose the value α≃ 10−2 that
we can approximately infer from the estimate of w and its
related systematical errors. This implies that solutions of
(40) will differ from the standard behavior ρm ∝ a−3

by a small perturbation. Indeed, the solution of the
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homogeneous equation will be trivially the same as the
standard case, while the homogeneous solution will be of
the order α. Internal consistency of the model requires the
solution of the system to be stable under perturbations. The
next step is then to require the critical point to be an
attractor solution. In order to achieve that, we first need
to compute the eigenvalues of the linearized system
equations (39) and (40) at the critical point:

λ1 ¼ −3; ð44Þ

λ2 ¼ −
1

ðW 0ðθcÞ þ 2θcW 00ðθcÞÞ2
ðð4þ αÞW 0ðθcÞ2

þ ð2þ αÞ4θ2cW 00ðθcÞ2 þ 4ð3þ αÞθcW 0ðθcÞW 00ðθcÞÞ:
ð45Þ

The solution is an attractor if

ð4þ αÞW 0ðθcÞ2 þ ð2þ αÞ4θ2cW 00ðθcÞ2
þ 4ð3þ αÞθcW 0ðθcÞW 00ðθcÞ > 0: ð46Þ

In general, we will need a specific form of W to further
discuss the nature of the critical point.

2. Q ∝ ρm
The next case to be considered hinges on an interaction

of the form Q ¼ αρm ¼ αx. The evolution equations (34)
and (35) now rewrite as

θ0ðW 0 þ 2θW 00Þ þ 4θW 0 ¼ −αx; ð47Þ

x0 þ 3x ¼ þαx: ð48Þ

If we assume α to be a nonvanishing constant, we easily
derive that ρm ∝ aα−3. This result might then lead to
observational inconsistencies: the evolution of the dust
component conflicts with the evolution of dust in the
standard big-bang model. We should then avoid consider-
ing an interaction term of such a form in the early stage of
evolution of the Universe, at very high redshift.
Nevertheless, even if we insisted on phenomenologically

describing at small redshift the interaction between YMC
darkmatter andmatter energy densitywith a term of the form
Q ¼ αx, we would find only a trivial critical point θc ¼ θ0
and xc ¼ 0. Thus, we must conclude that it is impossible to
obtain an attractor solution for this kind of system.

3. Q ∝ ρYMC þ ρm
As a final case, we can discuss a model where Q ¼

αðρYMC þ ρmÞ. We limit again ourselves to the consider-
ation of α being a dimensionless constant. In the later stage,
when the dark energy dominates the evolution, this model
reduces to the case we studied in Sec. II D 1, while in the

dust dominated stage reduces to the case we studied in
Sec. II D 2.
In analogy to the discussion developed in the previous

section, if we insisted on applying this model to the
description of the early Universe, the evolution of dust
would turn out to be incompatible with the prediction of the
standard hot big-bang models. Nevertheless, if we want to
develop a phenomenological model for small redshift, we
may elaborate on this case.
The dynamical equations (34) and (35) become

θ0ðW 0 þ 2θW 00Þ þ 4θW 0 ¼ −αð−W þ 2W 0θ þ xÞ; ð49Þ

x0 þ 3x ¼ þαð−W þ 2W 0θ þ xÞ; ð50Þ

and the system admits a critical point in

3αW ¼ 2ðαþ 6ÞθcW 0; xc ¼ −
4

3
θcW 0ðθcÞ: ð51Þ

The fractional energy density and the EOS of the YMC at
this critical point now read

ΩYMC ¼ −
1

wYMC
¼ 3 − α

3
: ð52Þ

Notice that the observational constraint of 0 ≤ ΩYMC ≤ 1
now sets a different range of allowed values for α,
namely, 0 < α ≤ 3.

III. A NONPERTURBATIVE EXAMPLE:
SU(2)-YMC

We focus now on the analysis of the YMC model we
have described in the previous sections, with a specific
choice for the IR effective Lagrangian. We keep analyzing a
YMtheory that enjoys anSU(2) gaugegroup, andwe showat
the nonperturbative level that a YMC forms that drives
accelerated expansion of the Universe at small redshift. The
functional renormalization group (FRG) approach to
non-Abelian gauge theories will be particularly fruitful
for our purposes, as it allows us to introduce nonpertur-
bative methods that can be treated as much as possible
analytically.

A. Functional renormalization group

The FRG approach is a tool developed to study interact-
ing quantum field theory and statistical systems in the
nonperturbative regime, where no small coupling exists and
perturbative techniques are not applicable. The method is
based upon a Wilsonian momentum-shell-wise integration
of the path integral: a masslike regulator function RkðpÞ
suppresses quantum fluctuations with momenta lower than
an IR momentum cutoff scale k. This allows us to define a
scale-dependent effective action, the flowing action Γk,
which only contains the effect of quantum fluctuations with
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momenta greater than k.2 By changing k, we can interpolate
smoothly between the microscopic action Γk→∞ and the full
quantum effective action Γk→0. The scale dependence of the
flowing action is then given by the functional renormaliza-
tion group equation (FRGE) [24,25]:

∂tΓk ¼
1

2
STrðΓð2Þ

k þ RkÞ−1∂tRk: ð53Þ

Herein, Γð2Þ
k denotes the second functional derivative of the

flowing action with respect to the fields and constitutes a
matrix in field space. The super trace STr includes a
summation over all of the discrete indices and the fields,
including a negative sign for Grassmann valued fields, i.e.,
fermions and Faddeev-Popov ghosts. The super trace also
includes a summation over the eigenvalues of the Laplacian
in the kinetic term. The main technical advantage of the
FRGE lies in its one-loop form, which nevertheless takes
into account higher-loop effects, as it depends on the full,
field-dependent nonperturbative regularized propagator

ðΓð2Þ
k þ RkÞ−1 (see [26]). The FRGE has been extensively

applied to SU(N) Yang-Mills theories. For further refer-
ences see [27–31] and, for the application of the FRG to the
study of YMC, [32–35].

B. Finding the effective Lagrangian

Solving Eq. (53) exactly is a titanic task. Since we are
mainly interested in qualitative and, as much as possible,
analytic results, we will deploy some approximations. (We
refer the reader interested in the state of the art of a YMC in
the FRG framework to the work of Eichhorn, Gies, and
Pawlowski [35], in which a numerical extrapolation
between the low and high momenta of full propagators
was used to compute the gluon condensate.)
First of all, we will replace Γk in the rhs of Eq. (53) with

the bare action S.3 Doing so, we are allowed to integrate
both sides of the equation:

Γk¼−
Z

Leff ¼−
Z

WkðθÞ¼
Z

dk
1

2
STrðSð2Þ þRkÞ−1∂tRk

¼1

2
STrLogðSð2Þ þRkÞþconst:

We select the bare action to be S ¼ 1
4

R
dxFμν

a Fa
μν, which

corresponds to the UV limit of our effective theory. We will

fix the integration constant, requiring the effective action to
vanish for vanishing field strength.
To correctly invert the regularized propagator, we need to

include in the action a (harmonic) gauge fixing and the
associated Faddeev-Popov ghosts:

Sgf ¼
1

2α

Z
dxDμaaνDνaaμ;

Sgh ¼
Z

dxDμcνDμcν:

In the Landau gauge α → 0, the trace over the gauge field
space is restricted to the transverse sector

1

2
STrLogðSð2Þ þ RkÞ ¼

1

2
TrtransvLogðDμν

T þ RkðDμν
T ÞÞ

−
1

2
TrghostLogðDμν

gh þ RkðDμν
ghÞÞ;

ð54Þ

with operators Dμν
T ¼□δcbδ

μνþgFaμνfabc and Dμν
gh¼ημν□,

in which g is the YM coupling and the barred quantities are
made of background fields; for more details on the actions
and its variations, see Appendix A. We will employ the
simplest possible regulator functions (masslike cutoff)

RkðDÞ ¼ k2; ð55Þ

in both the transversal gauge and the ghost sector
D → Dμν

T , Dμν
gh.

We can employ an integral representation4 of the
logarithm in order to find an exactly summed expression,

LogðAÞ ¼ −
Z

∞

0

ds
s
e−As: ð56Þ

A wise choice of the background allows us to perform the
traces as sums over the eigenvalues of the chosen kinetic
operators. In general, the eigenvalues of the operatorDT are
not known, and the only known stable covariantly constant
background is the self-dual that was already employed in
the FRG context in [35] (the key properties needed for this
work are summarized in Appendix B). The effective
Lagrangian is finally recovered to be

2Notice that k is, in principle, different from the scale κ defined
above. The latter is indeed the one-loop renormalization scale, while
the former is the cutoff defining scale of the FRG flow. For
dimensional reasons, since these two represent the only relevant
scale in theYM sector, they turn out to be proportional to each other.

3This kind of approximation is usually called “one loop” in the
FRG literature because of the similarities between the FRGE and
the standard one-loop effective action.

4One should actually be more careful with the definition of the
integral. A more precise formula is the following:

LogðAÞ ¼ −lim
ϵ→0

Z
∞

ϵ

ds
s
ðe−As − e−sÞ:

Nevertheless, we will use the naive representation and implicitly
regularize the final expression.
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Leff ¼
g2B2

2π2

Z
∞

0

ds
s

X∞
m;n¼0

ðe−2gBðnþmÞþk2 þ e−2gBðnþmþ2Þþk2

− e−2gBðnþmþ1Þþk2Þ

¼ g2B2

2π2

Z
∞

0

ds
s
e−k

2s

�
1

4sinh2ðgBsÞ þ 1

�
: ð57Þ

The “magnetic field” B is the only variable of the self-dual
background, which is related to the order parameter
through θ ¼ B2. The next step is to remove the constant
part from the integral that gets a contribution from the
lowest order expansion of the sinh. We then perform a
change of variable and reshuffle (57) as

Leff ¼WkðθÞ¼
g2B2

2π2

Z
∞

0

ds
s
e−

k2
gBs
�

1

4sinh2ðsÞþ1−
1

4s2

�

¼ g2θ
2π2

Z
∞

0

ds
s
e
−sð k4

g2θ
Þ1=2

�
1

4sinh2ðsÞþ1−
1

4s2

�
:

ð58Þ

The asymptotic behavior for the small coupling
constant g of the integral is reproduced exactly at the
lowest order and matches the one-loop effective action.
Furthermore, the (unique) nontrivial minimum for (58)

is found to be at g2θ0
k4 ≈ 0.361, as can be read out from

Fig. 1.

C. FRG improved YMC Lagrangian

In order to check on whether the effective Lagrangian
calculated in (58) and derived for an SU(2) YM theory can
actually explain dark energy, we need to review whether
our example satisfies the properties that we discussed in
Sec. II A.
(1) From Fig. 1, it is evident that the function (58) has

a nonzero global minimum. The exact position of
this minimum can be computed numerically and, in
terms of dimensionless quantities, is found to
be g2θ0

k4 ≈ 0.361.

(2) It is possible to compute the asymptotic expansion of
WkðθÞ for small values of the YM coupling constant
g. In this limit we are able to reproduce the one-loop
result derived by Savvidy [22]: if we perform the
Taylor expansion of 1=sinh2ðsÞ ¼ 1

s2 −
1
3
þOðs2Þ,

we indeed find

WkðθÞ ¼
g2θ
2π2

Z
∞

0

ds
s
e
−sð k4

g2θ
Þ1=2

�
−

1

12
þ 1

�
þ…

¼ 11

24π2
g2θ

Z
∞

0

ds
s
e
−sð k4

g2θ
Þ1=2 þ…

¼ 1

2

11

24π2
g2θLog

�
k4

g2θ

�
: ð59Þ

(3) WkðθÞ shows an asymptotic behavior that is at
least linear in θ. This means that, for θ ≫ k4, the
exponential in the integral tends to 1 and the only θ
dependence is the overall one, namely,

LogðWkðθÞÞ ¼ LogðθÞ þOðθÞ:

The condition d lnW
d ln θ → 1 then follows immediately.

In the following sections, we show in detail that the
YMC described by our toy model evolves from a radiation-
like component to a dark energy one.

1. A noninteracting YMC model

We have already shown that, in the case of a non-
interacting YMC model, the condensate evolution equation
is implicitly solvable, and also that the solution θðaÞ can be
obtained by inverting the equation

ffiffiffi
θ

p
W 0

kðθÞ ¼ αa−2; ð60Þ

where α is a coefficient of proportionality that depends
on the initial conditions. We can then fix the renormal-
ization scale k by comparing the “predicted” YMC
fractional energy density with the measured dark energy
fractional energy density (ΩΛ ¼ 0.735), finding for a big
range of initial conditions k ≈ 3.2h1=210−3 eV. This
energy scale, as was already noted in [13–15], is low
compared to typical energy scales in particle physics,
such as the QCD and the weak-electromagnetic unifica-
tion, and this prevents the identification of this YMC as a
condensate of some SM gauge fields. Then we can study
the evolution of the YMC energy density and its EOS for
different values of α ¼ ð10−7; 10−5Þ, still obtaining the
same asymptotic values. The results are summarized
in Fig. 2.

2. Q ∝ ρYMC

For YMC models enjoying an interaction proportional
to the YMC energy density, we have already discussed in

FIG. 1. Plot of the function (58) (the blue solid line) and the one
loop (12) (the red dashed line). Notice the presence of a nonzero
global minimum for g2θ0

k4 ≈ 0.361.
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Sec. II D 1 the equation defining the existence of a fixed
point—derived from the differential equation evolution
system (34) and (35)—and the condition to be imposed
on the coupling parameter α in order to characterize an
attractor solution. Here, we report numerical computations
on the position of the fixed point and on the value of the
critical exponents at the fixed point. The fixed point exists
for every positive value of the coupling parameter and is
always attractive, as shown in Fig. 3.

IV. CONCLUDING REMARKS

The query whether the YMC may actually provide
a consistent and physically reliable model for dark
energy, along the lines of the analysis first developed in
Refs. [13–15], has been addressed in this paper within the
attempt of finding support to this theoretical hypothesis in
the nonperturbative approach to the calculation of the
Yang-Mills effective action.

FIG. 2. In the free YMC dark energy model, the evolution of the YMC fractional energy density (left panel) and EOS (right panel) for
the models with different initial conditions (α ¼ 10−7 on the left and α ¼ 10−5 on the right).

FIG. 3. For the coupled YMC dark energy models, the plot against the coupling parameter α of the critical order parameter and matter
density θc; xc (the top panels) and of the critical exponents λ1; λ2 at the fixed point (the bottom panels). In the bottom panel on the left is
reported the case in which Q ∝ ρYMC, and on the right the case in which Q ∝ ρYMC þ ρm.
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In particular, we have first discussed the properties that
the effective Lagrangian WðθÞ must possess in order to
drive the Universe toward a cosmological dark energy
phase. If a condensate exists, i.e., if the nonperturbative
effective action has a minimum in the YMC order
parameter θ, then the model can actually reproduce the
dark energy behavior of the expanding Universe at small
redshift. If the effective action scales at least like the bare
Yang-Mills action for the high-energy scale, at high
redshifts it entails the EOS of radiation. Moreover,
internal consistency also requires that perturbative one-
loop results must still be recovered in the appropriate
asymptotic limit.
We have then focused on the particular example

provided of the SU(2) Yang-Mills bare action. We have
deployed nonperturbative techniques mutated from the
FRG method, in order to show that for the SU(2) Yang-
Mills a nontrivial minimum indeed exists, and that the
high-energy scale regime approaches known perturbative
results and yields radiation dominated EOS. Although
our conclusions thus far can only be based on this
particular example, this successful check of the require-
ments necessary for having a viable YMC dark energy
model seems to us to be extremely encouraging in
strengthening the possibility that YMC can work as a
model for dark energy.
The improvement of the nonperturbative techniques

may allow us in the future to extend the present analysis
to the cases of SUðNÞ gauge groups or, more generally, to
other classes of Lie groups. For this purpose, we may
either ask ourselves whether condensation can work for
any SUðNÞ group, or whether consistency of the model
necessarily predicts a maximal value of N in order for the
mechanism to work. Not unconnected to these questions
comes the query on the relation between the Yang-Mills
fields involved, which are necessary in order for the
condensate to form, and the elementary-particle fields
advocated for to explain dark matter. Indeed, it would be
tempting to try to link YMC dark energy models to other
models for dark matter, such as the ones referred to in the
literature [36–41] as mirror standard model for dark
matter.
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APPENDIX A: ACTION AND VARIATIONS

We consider the bare action of the Yang-Mills theory

S ¼ 1

4

Z
dxFμν

a Fa
μν:

We split the field Aμ into a background plus a fluctuation
Aμ ¼ Aμ þ aμ. The quadratic part of this action in the
fluctuation field is

δ2S ¼ 1

2

Z
dxðDμaaνDμaaν −DμaaνDνaaμ þ gFaμνfabcabνacμÞ

¼ 1

2

Z
dxabνðδcb□þDμDνδcb þ gFaμνfabcÞacμ;

where the bar quantities are made out of the background
fields. To compute the inverse propagator, we need to add
also a gauge fixing action and the corresponding Faddeev-
Popov ghost action:

Sgf ¼
1

2α

Z
dxDμaaνDνaaμ; Sgh ¼

Z
dxDμcνDμcν:

The FRGE splits into the trace over the transverse part and
the longitudinal part of the connection field and the ghost
sector:

1

2
STrðSð2Þ þ RkÞ−1∂tRk

¼ 1

2
TrTðSð2Þ þ RkÞ−1∂tRk þ

1

2
TrLðSð2Þ þ RkÞ−1∂tRk

− TrghðSð2Þgh þ RkÞ−1∂tRk

¼ 1

2
Tr

∂tRk

Dμν
T þ Rk

þ 1

2
Tr

α∂tRk

Dμν
L þ αRk

− Trghost
∂tRk

□þ Rk
:

Calculations are simplified by the fact that, in the Landau
gauge α → 0, the longitudinal trace can be dropped out
completely.

APPENDIX B: SELF-DUAL FIELD
CONFIGURATION

We may choose a background field configuration that
allows us to project onto the effective potentialWðθÞ. Hence,
a covariantly constant field strengthwithDμFμν ¼ 0 suffices.
Since the spectrum of the Laplace-type operators, like
Dμν

T ¼ □δcbδ
μν þ gFaμνfabc—or at least the heat-kernel

trace for these operators—has to be known,we have a limited
choice in the possible background field configurations. To
avoid problems with tachyonic modes, which indicate the
instability of a background, we project onto the only known
stable covariantly constant background, which is self-dual,
namely, ~Fμν¼ 1

2
ϵμν

ρσFρσ ¼Fμν. Then we set Fμν ¼ 0. Apart
fromF01 ¼ F23 ≡ B ¼ const, all other nonzero components
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follow from the antisymmetry of the field-strength tensor. Because of the enhanced symmetry properties connected to the
self-duality, zero modes exist. These carry important information and have to be regularized carefully since the standard
choice for Rk is zero on the zero mode subspace:

specðDμν
T Þ ¼ 2gBlðnþmþ 2Þ with n;m ∈ N and with multiplicity 2 in four dimensions;

¼ 2gBlðnþmÞ with n;m ∈ N and with multiplicity 2 in four dimensions:

specð□Þ ¼ 2gBlðnþmþ 1Þ with n;m ∈ N;

with a degeneracy factor B2

2π2
. Herein, Bl ¼ jνljB and νl is given by νl ¼ specfðTanaÞbcjn2 ¼ 1g, with the generators of the

adjoint representation Taand therefore for a general gauge group depends on the direction of the unit vector n.

[1] A. G. Riess et al. (Supernova Search Team Collaboration),
Observational evidence from supernovae for an accelerating
universe and a cosmological constant, Astron. J. 116, 1009
(1998).

[2] S. Perlmutter et al. (Supernova Cosmology Project Col-
laboration), Measurements ofΩ and Λ from 42 high-redshift
supernovae, Astrophys. J. 517, 565 (1999).

[3] M. Kowalski et al. (Supernova Cosmology Project Col-
laboration), Improved cosmological constraints from new,
old, and combined supernova data sets, Astrophys. J. 686,
749 (2008).

[4] D. N. Spergel et al. (WMAP Collaboration), First year
Wilkinson Microwave Anisotropy Probe (WMAP) obser-
vations: Determination of cosmological parameters, As-
trophys. J. Suppl. Ser. 148, 175 (2003).

[5] A.W. Graham, D. Merritt, B. Moore, J. Diemand, and B.
Terzic, Empirical models for dark matter halos. I. Non-
parametric construction of density profiles and comparison
with parametric models, Astron. J. 132, 2685 (2006).

[6] D. N. Spergel et al. (WMAP Collaboration), Wilkinson
Microwave Anisotropy Probe (WMAP) three year results:
Implications for cosmology, Astrophys. J. Suppl. Ser. 170,
377 (2007).

[7] E. Komatsu et al. (WMAP Collaboration), Five-Year
Wilkinson Microwave Anisotropy Probe (WMAP) obser-
vations: Cosmological interpretation, Astrophys. J. Suppl.
Ser. 180, 330 (2009).

[8] S. Cole et al. (2dFGRS Collaboration), The 2dF galaxy
redshift survey: Power-spectrum analysis of the final data
set and cosmological implications, Mon. Not. R. Astron.
Soc. 362, 505 (2005).

[9] M. Tegmark et al. (SDSS Collaboration), Cosmological
constraints from the SDSS luminous red galaxies, Phys.
Rev. D 74, 123507 (2006).

[10] S. Capozziello, S. Carloni, and A. Troisi, Quintessence
without scalar fields, Recent Res. Dev. Astron. Astrophys.
1, 625 (2003).

[11] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Is
cosmic speed-up due to new gravitational physics?, Phys.
Rev. D 70, 043528 (2004).

[12] L. Amendola and S. Tsujikawa, Dark Energy: Theory and
Observations (Cambridge University Press, Cambridge,
England, 2010).

[13] Y. Zhang, Inflation with quantum Yang-Mills condensate,
Phys. Lett. B 340, 18 (1994).

[14] T. Y. Xia and Y. Zhang, 2-loop quantum Yang-Mills con-
densate as dark energy, Phys. Lett. B 656, 19 (2007).

[15] S. Wang, Y. Zhang, and T. Y. Xia, The three-loop Yang
Mills condensate dark energy model and its cosmological
constraints, J. Cosmol. Astropart. Phys. 10 (2008) 037.

[16] H. Pagels and E. Tomboulis, Vacuum of the quantum Yang-
Mills theory and magnetostatics, Nucl. Phys. B143, 485
(1978).

[17] S. Adler, Effective-action approach to mean-field non-
Abelian statics, and a model for bag formation, Phys.
Rev. D 23, 2905 (1981); Relaxation Methods for Gauge
Field Equilibrium Equations, Nucl. Phys. B217, 3881
(1983); S. Adler and T. Piran, Relaxation methods for
gauge field equilibrium equations, Rev. Mod. Phys. 56, 1
(1984); Flux confinement in the leading logarithm model,
Phys. Lett. 113B, 405 (1982).

[18] S. G. Matinyan and G. K. Savvidy, Vacuum polarization
induced by the intense gauge field, Nucl. Phys. B134, 539
(1978).

[19] W. Zhao and Y. Zhang, Coincidence problem in YM field
dark energy model, Phys. Lett. B 640, 69 (2006).

[20] R. Foot, Mirror matter-type dark matter, Int. J. Mod. Phys. D
13, 2161 (2004).

[21] E. Hardy, R. Lasenby, and J. Unwin, Annihilation signals
from asymmetric dark matter, J. High Energy Phys. 07
(2014) 049.

[22] G. K. Savvidy, Infrared instability of the vacuum state of
gauge theories and asymptotic freedom, Phys. Lett. 71B,
133 (1977).

[23] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[24] C. Wetterich, Exact evolution equation for the effective
potential, Phys. Lett. B 301, 90 (1993).

[25] T. R. Morris, The exact renormalization group and approxi-
mate solutions, Int. J. Mod. Phys. A 09, 2411 (1994).

DONÀ, MARCIANÒ, ZHANG, and ANTOLINI PHYSICAL REVIEW D 93, 043012 (2016)

043012-12

http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/589937
http://dx.doi.org/10.1086/589937
http://dx.doi.org/10.1086/377226
http://dx.doi.org/10.1086/377226
http://dx.doi.org/10.1086/508988
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://dx.doi.org/10.1103/PhysRevD.74.123507
http://dx.doi.org/10.1103/PhysRevD.74.123507
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1016/0370-2693(94)91291-2
http://dx.doi.org/10.1016/j.physletb.2007.09.046
http://dx.doi.org/10.1088/1475-7516/2008/10/037
http://dx.doi.org/10.1016/0550-3213(78)90065-2
http://dx.doi.org/10.1016/0550-3213(78)90065-2
http://dx.doi.org/10.1103/PhysRevD.23.2905
http://dx.doi.org/10.1103/PhysRevD.23.2905
http://dx.doi.org/10.1103/RevModPhys.56.1
http://dx.doi.org/10.1103/RevModPhys.56.1
http://dx.doi.org/10.1016/0370-2693(82)90774-2
http://dx.doi.org/10.1016/0550-3213(78)90463-7
http://dx.doi.org/10.1016/0550-3213(78)90463-7
http://dx.doi.org/10.1016/j.physletb.2006.07.052
http://dx.doi.org/10.1142/S0218271804006449
http://dx.doi.org/10.1142/S0218271804006449
http://dx.doi.org/10.1007/JHEP07(2014)049
http://dx.doi.org/10.1007/JHEP07(2014)049
http://dx.doi.org/10.1016/0370-2693(77)90759-6
http://dx.doi.org/10.1016/0370-2693(77)90759-6
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1142/S0217751X94000972


[26] T. Papenbrock and C. Wetterich, Two loop results from one
loop computations and nonperturbative solutions of exact
evolution equations, Z. Phys. C 65, 519 (1995).

[27] C. S. Fischer and R. Alkofer, Infrared exponents and
running coupling of SU(N) Yang-Mills theories, Phys. Lett.
B 536, 177 (2002).

[28] C. S. Fischer and J. M. Pawlowski, Uniqueness of infrared
asymptotics in Landau gauge Yang-Mills theory, Phys. Rev.
D 75, 025012 (2007); Uniqueness of infrared asymptotics in
Landau gauge Yang-Mills theory II, Phys. Rev. D, 80,
025023 (2009).

[29] C. S. Fischer, A. Maas, and J. M. Pawlowski, On the
infrared behavior of Landau gauge Yang-Mills theory,
Ann. Phys. (Amsterdam) 324, 2408 (2009).

[30] U. Ellwanger, M. Hirsch, and A. Weber, Flow equations for
the relevant part of the pure Yang-Mills action, Z. Phys. C
69, 687 (1996); The heavy quark potential from Wilson’s
exact renormalization group, Eur. Phys. J. C 1, 563 (1998);
B. Bergerhoff and C. Wetterich, Effective quark interactions
and QCD propagators, Phys. Rev. D 57, 1591 (1998); J.
Kato, Infrared non-perturbative propagators of gluon and
ghost via exact renormalization group, arXiv:hep-th/
0401068.

[31] J. M. Pawlowski, D. F. Litim, S. Nedelko, and L. von
Smekal, Infrared Behavior and Fixed Points in Landau-
Gauge QCD, Phys. Rev. Lett. 93, 152002 (2004); Signatures
of confinement in Landau gauge QCD, AIP Conf. Proc. 756,
278 (2005).

[32] M. Reuter and C. Wetterich, Indications for gluon con-
densation for nonperturbative flow equations, arXiv:hep-th/
9411227.

[33] M. Reuter and C. Wetterich, Gluon condensation in non-
perturbative flow equations, Phys. Rev. D 56, 7893 (1997).

[34] H. Gies, Running coupling in Yang-Mills theory: A flow
equation study, Phys. Rev. D 66, 025006 (2002).

[35] A. Eichhorn, H. Gies, and J. M. Pawlowski, Gluon con-
densation and scaling exponents for the propagators in
Yang-Mills theory, Phys. Rev. D 83, 045014 (2011); 83,
069903(E) (2011).

[36] E. Akhmedov, Z. Berezhiani, and G. Senjanović, Planck-
Scale Physics and Neutrino Masses, Phys. Rev. Lett. 69,
3013 (1992).

[37] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and N.
Kaloper, Manyfold universe, J. High Energy Phys. 12
(2000) 010.

[38] Z. Berezhiani, A. Dolgov, and R. N. Mohapatra, Asym-
metric inflationary reheating and the nature of mirror
universe, Phys. Lett. B 375, 26 (1996).

[39] Z. Berezhiani and R. Mohapatra, Reconciling present
neutrino puzzles: Sterile neutrinos as mirror neutrinos,
Phys. Rev. D 52, 6607 (1995).

[40] R. N. Mohapatra and V. Teplitz, Structures in the Mirror
Universe, Astrophys. J. 478, 29 (1997).

[41] R. N. Mohapatra and V. Teplitz, Mirror dark matter
and galaxy core densities, Phys. Rev. D 62, 063506
(2000).

YANG-MILLS CONDENSATE AS DARK ENERGY: … PHYSICAL REVIEW D 93, 043012 (2016)

043012-13

http://dx.doi.org/10.1007/BF01556140
http://dx.doi.org/10.1016/S0370-2693(02)01809-9
http://dx.doi.org/10.1016/S0370-2693(02)01809-9
http://dx.doi.org/10.1103/PhysRevD.75.025012
http://dx.doi.org/10.1103/PhysRevD.75.025012
http://dx.doi.org/10.1103/PhysRevD.80.025023
http://dx.doi.org/10.1103/PhysRevD.80.025023
http://dx.doi.org/10.1016/j.aop.2009.07.009
http://dx.doi.org/10.1007/s002880050073
http://dx.doi.org/10.1007/s002880050073
http://dx.doi.org/10.1007/s100520050105
http://dx.doi.org/10.1103/PhysRevD.57.1591
http://arXiv.org/abs/hep-th/0401068
http://arXiv.org/abs/hep-th/0401068
http://dx.doi.org/10.1103/PhysRevLett.93.152002
http://dx.doi.org/10.1063/1.1920966
http://dx.doi.org/10.1063/1.1920966
http://arXiv.org/abs/hep-th/9411227
http://arXiv.org/abs/hep-th/9411227
http://dx.doi.org/10.1103/PhysRevD.56.7893
http://dx.doi.org/10.1103/PhysRevD.66.025006
http://dx.doi.org/10.1103/PhysRevD.83.045014
http://dx.doi.org/10.1103/PhysRevD.83.069903
http://dx.doi.org/10.1103/PhysRevD.83.069903
http://dx.doi.org/10.1103/PhysRevLett.69.3013
http://dx.doi.org/10.1103/PhysRevLett.69.3013
http://dx.doi.org/10.1088/1126-6708/2000/12/010
http://dx.doi.org/10.1088/1126-6708/2000/12/010
http://dx.doi.org/10.1016/0370-2693(96)00219-5
http://dx.doi.org/10.1103/PhysRevD.52.6607
http://dx.doi.org/10.1086/303762
http://dx.doi.org/10.1103/PhysRevD.62.063506
http://dx.doi.org/10.1103/PhysRevD.62.063506

