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In this paper we consider the single patch pseudospectral scheme for tensorial and spinorial evolution
problems on the 2-sphere presented by Beyer et al. [Classical Quantum Gravity 32, 175013 (2015); 31,
075019 (2014)], which is based on the spin-weighted spherical harmonics transform. We apply and extend
this method to Einstein’s equations and certain classes of spherical cosmological spacetimes. More
specifically, we use the hyperbolic reductions of Einstein’s equations obtained in the generalized wave map
gauge formalism combined with Geroch’s symmetry reduction, and focus on cosmological spacetimes with
spatial S3-topologies and symmetry groups U(1) or Uð1Þ × Uð1Þ. We discuss analytical and numerical
issues related to our implementation. We test our code by reproducing the exact inhomogeneous
cosmological solutions of the vacuum Einstein field equations obtained by Beyer and Hennig [Classical
Quantum Gravity 31, 095010 (2014)].
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I. INTRODUCTION

For many interesting problems, in particular, in general
relativity, spherical topologies S2 or S3 play an important
role. In the context of cosmological models the spherical
Friedman-Robertson-Walker, the Bianchi IX or the
Kantowski-Sachs models are particularly important exam-
ples. The main difficulty for the numerical (and analytical)
treatment of spherical manifolds is the fact that these
manifolds cannot be covered globally by a single regular
coordinate patch, and therefore the coordinate description
of any smooth tensorial quantity inevitably breaks down
somewhere. In the literature this problem is often referred
to as the pole problem since in standard polar coordinates
for the 2-sphere S2 these issues appear at the poles. Many
approaches have been tried to deal with this issue (see for
instance [1,2] and references therein). In earlier work
[3,4], we have presented a numerical framework that
applies to situations which involve the 2-sphere. The main
idea of this approach is to implement and extend the
algorithm introduced by Huffenberger and Wandelt
(HWT) in [5] to compute a transform for functions of
given spin weight s on the 2-sphere in terms of spin-
weighted spherical harmonics (SWSH). The concepts of
the spin weight, the so-called eth operators and of spin-
weighted spherical harmonics were introduced originally
in [6] and shall be reviewed in Sec. II C below. As a
consequence of this formalism, our code is (pseudo)
spectral in space; time evolutions are performed with
the method of lines and standard ODE integrators (see

below). We also point the reader to alternative imple-
mentations of this and similar formalisms in [7–9].
In our earlier work [3,4], we have studied simple

evolution problems, like the 2þ 1-Maxwell and 2þ 1-
Dirac equations, on fixed S2-backgrounds as test applica-
tions for our numerical infrastructure. The main motivation
for this paper now is to apply the same formalism and
numerical infrastructure to the much more complicated
situation of the full Einstein equations. In this context,
2-spheres arise in a very natural way. In the asymptotically
flat setting, for example, the spatial manifold R × S2 is
often considered, which allows us to address the spherical
character of the far zone of the radiation field. In the
cosmological setting, which we are interested in here, we
can find S2 -topologies as a consequence of Geroch’s
symmetry reduction [10] (see Sec. II A) when the original
spatial manifold has a symmetry. For example, this was the
basis for the work by Moncrief in [11] and for subsequent
papers, and for the work in [12,13] which plays a
particularly important role in Sec. V. Here the spacetimes
of interest have spatial S3 -topologies, and the metrics
have a certain spacelike symmetry such that Geroch’s
reduction yields the spatial manifold S2. The 3þ 1-vacuum
Einstein equations thereby become 2þ 1-coupled
Einstein-scalar field equations. All of this is explained in
Sec. II A. Notice that Geroch’s symmetry reduction has
also been used to obtain axially symmetric reductions of
Einstein’s equations in the asymptotically flat case; see for
example [14,15].
The extraction of suitable evolution and constraint

equations from Einstein’s equations is essentially the same
problem, both in the original 3þ 1 and in the reduced 2þ 1
case. We use the generalized wave map formalism [16]
(also called the generalized harmonic map formalism or
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simply wave/harmonic map formalism) which can be
understood as a covariant version of the more familiar
generalized wave/harmonic formalism; the latter was first
introduced in [16] in order to generalize the original
harmonic/wave gauge considered in [17]. We summarize
the wave map formalism in Sec. III A. It turns out that in
combination with the spin-weight formalism, all singular
terms caused by the singular polar coordinate chart of the
2-sphere can be completely eliminated. This had already
been observed for the simpler equations considered in [3,4].
Notice that generalized wave gauges have been used
extensively in the literature in various contexts (see for
instance [18]).
The numerical results in this paper are obtained using

the spin-weighted spherical harmonics transform in [3,4].
The underlying Fourier transform is two dimensional as it
applies to functions defined on the two-dimensional mani-
fold S2. Sometimes, however, it is interesting to restrict
ourselves to special classes of functions on S2 and therefore
to derive a specialized, but more efficient, version of this
transform. In our context we are interested in functions on
S2 which are invariant under rotations around an axis (in
R3), i.e., functions which do not depend on the azimuthal
angle φ in standard polar coordinates. For such functions,
the two-dimensional transform is inefficient. In this paper
we therefore also present an efficient implementation of a
one-dimensional variant of this transform which applies
to such axially symmetric functions on S2. The complexity
OðL3Þ of the two-dimensional transform is thereby reduced
to the complexity OðL2Þ, where L is the band limit of the
functions on S2 in terms of the spin-weighted spherical
harmonics. We call this transform the axially symmetric
spin-weighted transform. It will be discussed in detail
in Sec. IV.
Finally, Sec. V is devoted to a test application of our

numerical approach. We discuss different error sources
and how they arise in our implementation. We also study
the evolution using the areal gauge and the generalized
wave map gauge.

II. PRELIMINARIES

A. Geroch’s symmetry reduction

In this section we give a quick overview of Geroch’s
symmetry reduction [10]. Let M ¼ R × Σ be a globally
hyperbolic four-dimensional spacetime endowed with a
metric gab of signature (−;þ;þ;þ) and a global smooth
time function t whose level sets are Cauchy surfaces
homeomorphic to Σ. We denote the hypersurfaces given
by t ¼ t0 for any constant t0 by Σt0. Each Σt0 is homeo-
morphic to Σ. To begin with, let ξa be a smooth spacelike
Killing vector field on M induced by the smooth effective
global action of the group U(1). We suppose that ξa is
everywhere tangent to the hypersurfaces Σt and define

~ψ ≔ gabξaξb; ~Ωa ≔ ϵabcdξ
bDcξd ð2:1Þ

as the norm and the twist of ξa, respectively. The operator
D is the covariant derivative compatible with the metric
gab. Notice that by the Frobenius theorem, the field ξa is
hypersurface orthogonal if and only if ~Ωa ¼ 0. We also
define

~hab ≔ gab −
1

~ψ
ξaξb: ð2:2Þ

It turns out that for vacuum spacetimes ðM; gabÞ with any
cosmological constant Λ the 1-form ~Ωa is closed. This fact
allows us to introduce a local twist potential ~ω so that
~Ωa ¼ Da ~ω. In fact, ~ω is a global potential if M is simply
connected as we always assume.
Let S be the set of orbits of ξa onM and consider the map

π∶ M → S;

where π maps every p ∈ M to the uniquely determined
integral curve of ξa through p. The requirement that π is a
smooth map induces a differentiable structure on S, and
hence it can be considered as a smooth manifold. Since
Lξ

~hab ¼ 0, there is a unique smooth Lorentzian metric on S

which pulls back to ~hab along π. We write this metric on S
as ĥab. For the same reason, there are also unique functions
ψ , ω on S which pull back to ~ψ and ~ω. It turns out
that Einstein’s field equations with cosmological constant
Λ for ðM; gabÞ imply the following set of equations for
ðS; hab;ψ ;ωÞ where

hab ≔ ψ ĥab: ð2:3Þ

We call this system the Geroch-Einstein system (GES),1

and it reads

∇a∇aψ ¼ 1

ψ
ð∇aψ∇aψ −∇aω∇aωÞ − 2Λ;

∇a∇aω ¼ 1

ψ
∇aψ∇aω;

Rab ¼ Eab þ
2Λ
ψ

hab; ð2:4Þ

with

Eab ¼
1

2ψ2
ð∇aψ∇bψ þ∇aω∇bωÞ; ð2:5Þ

where Rab is the Ricci tensor associated with hab. In fact,
the equations for ψ and ω imply that

1We have used ∇a to denote the covariant derivative operator
associated with hab. Indices are lowered and raised by hab.
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Tab ≔ Eab −
1

2
habE ð2:6Þ

is divergence-free. It thus plays the role of the energy-
momentum tensor associated with the two scalar fields ψ
and ω in the 2þ 1-dimensional spacetime S with metric
hab. As a result, the GES can be interpreted as the equations
of 2þ 1 gravity coupled to two scalar fields ψ and ω
governed by wave map equations.
Suppose for a moment that ψ , ω and hab are known and

that they satisfy Eq. (2.4). Then we can reconstruct a
solution ðM; gabÞ of the 3þ 1-dimensional Einstein vac-
uum equation with cosmological constant Λ as follows.
It turns out that as a consequence of the above equations,
the 2-form

αab ¼
1

2ψ3=2 ϵabcΩ
c

on S is curl-free, i.e.,

∇½aαbc� ¼ 0:

We can pull this quantity back to a 2-form ~α onM which is
also curl-free. This means that there exists, locally, a 1-form
~ηa on M such that

D½a ~ηb� ¼ ~αab;

notice that it is irrelevant here that the Levi-Civita covariant
derivative Da is not yet known at this stage due to the
antisymmetrization. In fact, the 1-form ηa is uniquely
determined by this equation up to the gradient of a smooth
function f, and we can use some of the freedom in choosing
f to set ηaξa ¼ 1. Then the metric

gab ¼ ~hab þ ~ψ ~ηa ~ηb;

where ~hab and ~ψ are the pull-backs of hab=ψ and ψ ,
respectively, is a solution of the 3þ 1 Einstein vacuum
equation with cosmological constant Λ; we find

ξa ¼ gabξb ¼ ψηa:

So effectively, the quantities ψ , ω and hab determine the
metric gab up to a total gradient of some function f which
fixes the covariant version ξa of the Killing vector field ξa.

B. The 2- and 3-spheres

To begin with, we consider the manifold S3 as the
submanifold of R4 given by x21 þ x22 þ x23 þ x24 ¼ 1. We
can introduce Euler coordinates ðθ; λ1; λ2Þ on S3,

x1 ¼ cos
θ

2
cos λ1; x2 ¼ cos

θ

2
sin λ1;

x3 ¼ sin
θ

2
cos λ2; x4 ¼ sin

θ

2
sin λ2;

where θ ∈ ð0; πÞ and λ1; λ2 ∈ ð0; 2πÞ. Alternatively, we use
coordinates ðθ; ρ1; ρ2Þ (which are also referred to as Euler
coordinates) with θ as above and

λ1 ¼ ðρ1 þ ρ2Þ=2; λ2 ¼ ðρ1 − ρ2Þ=2: ð2:7Þ
Clearly, both sets of Euler coordinates break down at θ ¼ 0
and π. The vector fields ∂ρ1 and ∂ρ2 are smooth and
nonvanishing vector fields on S3 which become parallel
at the poles θ ¼ 0; π.
Similarly, we define the manifold S2 as the subset y21 þ

y22 þ y23 ¼ 1 ofR3 and introduce standard polar coordinates

y1 ¼ sinϑ cosφ; y2 ¼ sinϑ sinφ; y3 ¼ cosϑ:

The Hopf map π∶ S3 → S2 is

ðx1; x2; x3; x4Þ ↦ ðy1; y2; y3Þ
¼ ð2ðx1x3 þ x2x4Þ; 2ðx2x3 − x1x4Þ; x21 þ x22 − x23 − x24Þ
¼ ðsin θ cos ρ2; sin θ sin ρ2; cos θÞ:

This is a smooth map which has the coordinate represen-
tation

π∶ ðθ; ρ1; ρ2Þ ↦ ðϑ;φÞ ¼ ðθ; ρ2Þ: ð2:8Þ
Hence, with respect to our coordinates, the Hopf map
reduces to a simple projection map. Now, S3 is a principal
fiber bundle over S2 with structure group U(1) whose
bundle map is the Hopf map. In fact, if M ¼ R × S3 and
ξa ¼ ∂a

ρ1 is assumed to be a Killing vector (as we assume),
then S ¼ R × S2 is the space of orbits and π the corre-
sponding map in Geroch’s symmetry reduction.
In this paper we employ this relationship between S3 and

S2 for our studies of Uð1Þ-symmetric fields. Just as a side
remark we also mention the case Σ ¼ S1 × S2 which is a
trivial bundle over S2. If ξa agrees with a vector field
tangent to the S1-factor and we introduce appropriate
coordinates, then the bundle map π∶ S1 × S2 → S2 takes
the same coordinate form as Eq. (2.8). In particular,
Geroch’s symmetry reduction also yields the space of
orbits S ¼ R × S2. Hence, almost all techniques which
we introduce in this paper can also be applied to that case.

C. Bundle of orthonormal frames over S2

and spin-weighted spherical harmonics

SO(3) is the bundle of oriented orthonormal frames over
S2 with structure group U(1). Given that SO(3) is double
covered by SU(2) and that the latter is diffeomorphic to S3,
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the Hopf map π∶ S3 → S2 can be identified with the
bundle map. The theoretical details are discussed, for
example, in [4]. Hence, when we start from the spatial
manifold S3, perform the symmetry reduction as explained
before and therefore arrive at the spatial manifold S2, the
manifold S3 “reappears” in a different role, namely, as
the bundle of orthonormal frames. In practice, this means
the following: we let U be the dense open subset of S2

obtained by removing the north and the south poles. The
polar coordinates ðϑ;φÞ cover U, and the Euler coordinates
ðθ; ρ1; ρ2Þ cover π−1ðUÞ. In particular, Eq. (2.8) holds. Let
ðma;maÞ be the complex smooth frame on U defined by

ma ≔
1ffiffiffi
2

p
�
∂a
ϑ −

i
sin θ

∂a
φ

�
ð2:9Þ

and by the complex conjugate ma. Any point p ¼
ðθ; ρ1; ρ2Þ ∈ S3 in the bundle of orthonormal frames can
then be identified with the basis ðeiρ1ma; e−iρ1maÞ of the
tangent space evaluated at the point πðpÞ ∈ S2. The local
section σ∶ U → π−1ðUÞ specified by any real function
ρ1 ¼ ρ1ðϑ;φÞ yields a different frame over U which is
related to ðma;maÞ by a pointwise rotation

ma ↦ eiρ1ðϑ;φÞma; ma ↦ e−iρ1ðϑ;φÞma ð2:10Þ

at each point in U. If f∶ U → C is a component of a
smooth real tensor field on S2 with respect to the frame
ðma;maÞ, the function eisρ1 · ðf ∘ πÞ on π−1ðUÞ ⊂ S3,
which is defined for some integer s called the spin weight,
is the corresponding component obtained by any frame
rotation above. Any such function f is said to have the well-
defined spin weight s. The “standard” section, and hence
the “standard” frame which we use without further notice
in the following, is given by ρ1ðϑ;φÞ ¼ 0. We do not
distinguish between the original function f on U and the
corresponding function f ∘ π on the range of the standard
section in the bundle of orthonormal frames. When we
interpret a function f on S2 with well-defined spin weight s
as the function eisρ1 · ðf ∘ πÞ on π−1ðUÞ ⊂ S3, we are able
to replace singular frame derivatives on S2 by regular
derivatives along left-invariant vector fields on S3. This
yields eth operators ð and ð given by

ð ≔ ∂ϑ½f� −
i

sin ϑ
∂φ½f� − sf cot ϑ; ð2:11Þ

ð̄½f� ≔ ∂ϑ½f� þ
i

sinϑ
∂φ½f� þ sf cotϑ; ð2:12Þ

for any function f on S2 with spin weight s. Notice that our
convention differs by a factor

ffiffiffi
2

p
from the one for ma and

ma in Eq. (2.9). The function ð½f� has a well-defined spin
weight sþ 1, and ð̄½f� has spin weight s − 1.

The spin weighted spherical harmonics (SWSH) play
an important role in the representation of spin-weighted
functions on S2. They form a basis of L2ðSUð2ÞÞ as an
application of the Peter-Weyl theorem to the compact group
SU(2) [19]. Under certain assumptions, any spin-weighted
function sf on S2 can therefore be represented as an infinite
series of SWSH,

sfðϑ;φÞ ¼
X∞
l¼0

Xl

m¼−l
almsYlmðϑ;φÞ;

where sYlm are the SWSH and alm the complex coefficients
of the function (also called spectral coefficients). The
standard scalar spherical harmonics are given by s ¼ 0.
By applying the eth operators to these, we obtain

ð½sYlmðϑ;φÞ� ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylmðϑ;φÞ;

ð̄½sYlmðϑ;φÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylmðϑ;φÞ;

ð̄ð½sYlmðϑ;φÞ� ¼ −ðl − sÞðlþ sþ 1ÞsYlmðϑ;φÞ:

III. EINSTEIN’S EVOLUTION AND CONSTRAINT
EQUATIONS

A. Hyperbolic reduction

The Einstein equations (2.4) are a set of geometric partial
differential equations. They are invariant under general
coordinate transformations, which implies that they are
not automatically of any particular type when expressed in
an arbitrary coordinate system. There exist many ways of
extracting hyperbolic and elliptic subsets from these
equations by fixing certain coordinate gauges. Here, we
use the so-called wave map gauge, a generalization of the
well-known harmonic gauge. The setup for the wave map
gauge is discussed in detail in the Appendix.
We now introduce a general smooth frame ðeaμÞ. Notice

that this frame is neither necessarily a coordinate frame nor
an orthonormal frame. The components Rμν of the Ricci
tensor Rab with respect to this frame can be written as

Rσρ ¼ −
1

2
hμν∂μ∂νhσρ þ∇ðσΓρÞ þϒσρðh; ∂hÞ; ð3:1Þ

where in the first term, ∂νhσρ is the derivative of the
function hσρ in the direction of the frame vector field eaν ,
the third term is a lengthy nonlinear expression in the
components of hab and their first derivatives, and Γμ in the
second term denotes the contracted connection coefficients
Γμ ≔ hνσΓμνσ with

∇μΓν ≔ ∂μΓν − Γσ
μνΓσ:

Here, the connection coefficients of the frame are defined
as (using the conventions in [20])
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∇μeaν ¼ Γσ
μνeaσ

and are computed as

Γσ
μν ¼ hρσΓρμν;

Γμνρ ¼
1

2
ð∂ρhμν þ ∂νhμρ − ∂μhνρ þ Cρμν þ Cνμρ − CμνρÞ;

ð3:2Þ

with Cνμρ ¼ hνσCσ
μρ and

½eμ; eν�a ¼ Cρ
μνeaρ:

Notice that while the left side of Eq. (3.1) represents the
components of a smooth tensor field, none of the terms on
the right-hand side does this individually. In particular, the
quantity Γμ does not represent a covector field. Notice also
that, in general, ∂μ∂νhσρ is not the same as ∂ν∂μhσρ (as it
would be for a coordinate frame for which Cνμρ ¼ 0).
The nontensorial split is not the only issue of Eq. (3.1).

In addition, the second term destroys the hyperbolicity of
its principal part. The idea is to get rid of this second term
by defining a new tensor field

R̂ab ≔ Rab þ∇ðaDbÞ; ð3:3Þ

where Da is the vector field defined in Eq. (A3). The frame
representation of R̂ab is

R̂σρ ¼ −
1

2
hμν∂μ∂νhσρ þϒσρðh; ∂hÞ þ hαðρ∇σÞΓ̄α

βγhβγ

þ∇ðσfρÞ;

where ϒσρ is the same nonlinear expression as above.
Regarded as a differential operator acting on hμν, it has a
hyperbolic principal part.
The idea of the generalized wave map formalism is

to replace the Ricci tensor Rab in the field equation by
this new tensor R̂ab. We call the resulting equations the
“evolution equations” since, under suitable conditions,
these have a well-posed initial value problem for any
choice of gauge source quantities fa and h̄ab. The evolution
equations implied by Eq. (2.4) are therefore

∇a∇aψ ¼ 1

ψ
ð∇aψ∇aψ −∇aω∇aωÞ − 2Λ;

∇a∇aω ¼ 1

ψ
∇aψ∇aω;

R̂ab ¼ Eab þ
2Λ
ψ

hab;

with Eqs. (2.5) and (3.3). This is a coupled system of
quasilinear wave equations.

Suppose now that ðhab;ψ ;ωÞ is a solution of the
evolution equations. It is a solution of the original equa-
tions (2.4) if Da ≡ 0 (hence, if hab is in generalized wave
map gauge) and hence R̂ab ≡ Rab. Therefore, under which
conditions does the covector field Da vanish? The evolu-
tion equations and the contracted Bianchi identities imply
the subsidiary system (see [21] for details)

∇b∇bDa þDb∇ðbDaÞ ¼ 0: ð3:4Þ

This is a homogeneous system of wave equations for the
unknown Da. It follows that Da ≡ 0 if and only if Da ¼ 0

and ∇aDb ¼ 0 on the initial hypersurface; these conditions
therefore constitute constraints. While the constraint

0 ¼ Dν ¼ hρσðΓ̄ν
ρσ − Γν

ρσÞ þ fν ð3:5Þ

can be satisfied for any initial data hab, ψ and ω by a
suitable choice of the free gauge source quantities fa and
h̄ab, and is hence referred to as the gauge constraint, the
constraints

∇μDν ¼ 0 ð3:6Þ

hold at the initial time if and only if the initial data satisfy
the standard Hamiltonian and momentum constraints (sup-
posing that the gauge constraint and the evolution equations
are satisfied). These are equations which are therefore
independent of the gauge source functions. Hence,
Eq. (3.6) represents the actual “physical constraints” on
the initial data for hab, ψ and ω.

B. Generalized wave map gauge in the case S ¼ R × S2

In this section, we focus on the case S ≔ R × S2 and
the field equations in the form Eq. (2.4). As before, let
t∶ S → R be a smooth time function on S and

Σt ≔ ftg × S2 ≃ S2; t ∈ R:

We introduce coordinates ðt;ϑ;φÞ on the dense subset
R ×U of S and define Ta ¼ ∂a

t . With the same choice
of complex vector field ma on U ⊂ S2 as in Sec. II B, we
introduce the frame ðea0; ea1; ea2Þ ¼ ðTa;ma;maÞ on R × U.
The spin weight of any function f∶ R ×U → C is defined
in the same way as in Sec. II C, but now with respect to
frame transformations of the form

Ta ↦ Ta; ma ↦ eiρ1ðϑ;φÞma; ma ↦ e−iρ1ðϑ;φÞma

instead of Eq. (2.10). Therefore, the frame vector field Ta

has spin weight 0,ma spin weight 1 andma spin weight −1.
Under the above considerations, we choose the dual frame
ðω0

a;ω1
a;ω2

aÞ by
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ω0
a ¼ ∇at; ω1

a ¼
1ffiffiffi
2

p ð∇aϑþ i sinϑ∇aφÞ;

ω2
a ¼ ω̄1

a;

with spin weight of 0, −1 and 1, respectively. The duality
relation reads

ωμ
aeaν ¼ δμν :

Then, the general form of a smooth metric on S is

hab ¼ λω0
aω

0
b þ 2ω0

ðaðβω1
bÞ þ β̄ω2

bÞÞ þ 2δω1
ðaω

2
bÞ

þ ϕω1
aω

1
b þ ϕ̄ω2

aω
2
b: ð3:7Þ

After a straightforward computation we find that almost all
the quantities Cμ

νρ introduced in the previous subsection
are zero except

C2
12 ¼ C1

21 ¼ −C2
21 ¼ −C1

12 ¼
−1ffiffiffi
2

p cotϑ: ð3:8Þ

The occurrence of the singular function cotϑ is a conse-
quence of the fact that the quantities Cμ

νρ are not compo-
nents of a tensor field and hence do not have well-defined
spin weights. It is a consequence of the discussion in the
previous section, however, that all quantities, which we
eventually work with, are frame components of smooth
tensor fields and therefore have well-defined spin weights
without such singular terms—even though singular terms
without well-defined spin weights appear in intermediate
calculations when nontensorial expressions are used. Since
the eth operators are essentially projections of covariant
derivatives, it is not surprising that all these terms which are
caused by the connection coefficients related to the unit
sphere will disappear when frame derivatives are replaced
consistently by corresponding eth operators according to
Eq. (2.11). Indeed, we are able to demonstrate this explicitly.

In all of what follows we choose

h̄ab ¼ −ω0
aω

0
b þ 2ω1

ðaω
2
bÞ; ð3:9Þ

as the reference metric introduced in the previous section.
This is a smooth metric on S which represents the static
cylinder with the standard spatial metric on S2. All the
remaining gauge freedom is then encoded in the vector field
fa. We introduce the quantities

Γ̆μ ≔ hσρΓ̄μ
σρ; ð3:10Þ

Γ
∘ μ

≔ Γμ − Γ̆μ; ð3:11Þ
where the latter are the components of a covector field Γ

∘
a

which we call the smooth contracted connection coeffi-
cients. Thus,

Da ¼ Γ
∘ a

− fa:

Note that by construction, the nontensorial quantities Γ̆μ do
not contain any derivatives of the metric hab, and we have

Γ̄a
bc ¼

h̄ad

2
ðCdbc þ Cdcb − CbcdÞ

as a consequence of Eq. (3.2). But they contain terms
proportional to cotϑ due to Eq. (3.8). All the first-order

derivatives of the metric hab in Γμ are in Γ
∘
a. We define the

nontensorial quantity

ϒ
∘
μνðh; ∂h; Γ̆Þ ≔ ∇ðμΓ̆νÞ þϒμνðh; ∂hÞ; ð3:12Þ

with the same ϒμν as in Eq. (3.1), and write the evolution
equations as

hμν∂μ∂νψ − hμνΓρ
νμ∂ρψ ¼ hρσ

ψ
ð∂ρψ∂σψ − ∂ρω∂σωÞ − 2Λ;

hμν∂μ∂νω − hμνΓρ
νμ∂ρω ¼ hρσ

ψ
∂ρψ∂σω;

hρσ∂ρ∂σhμν − 2ϒ
∘
μνðh; ∂h; Γ̆Þ ¼ 2∇ðμfνÞ −

1

ψ2
ð∂μψ∂νψ þ ∂μω∂νωÞ −

4Λ
ψ

hμν: ð3:13Þ

We notice that the first terms on the left-hand sides
constitute the principal part of this evolution system, i.e.,
quasilinear wave operators. These terms by themselves are
not tensorial and hence give rise to singular terms (terms
proportional to cotϑ) and terms which do not have well-
defined spin weights when the frame derivatives are

replaced by eth operators as described before. The second
terms on the left-hand sides cancel these problematic terms
completely, and consequently, the left-hand sides are
tensorial. The right-hand sides are tensorial already. As a
result of this fully tensorial character of all these equations,
the system of evolution equations, Eq. (3.13), can now be

F. BEYER, L. ESCOBAR, and J. FRAUENDIENER PHYSICAL REVIEW D 93, 043009 (2016)

043009-6



solved by implementing a pseudospectral method based on
the SWSH.

IV. NUMERICAL IMPLEMENTATION

As explained earlier, we wish to implement a spectral
method based on spin-weighted spherical harmonics to
approximate spatial derivatives. A basic introduction to
spectral methods can be found in books like [22–24] and
references therein. For the temporal discretization we
mainly used the Runge-Kutta-Fehlberg method, except
for convergence tests for which the explicit fourth-order
Runge-Kutta method is used. We start this section by
describing briefly the algorithm of complexity OðL3Þ,
where L is the band limit of the functions on S2 in terms
of the spin-weighted spherical harmonics, to compute
the spin-weighted spherical harmonic transforms (forward
and backward) introduced by Huffenberger and Wandelt
in [5]. Henceforth, we refer to this algorithm as HWT.
In the next subsection, we introduce an optimized version
of this transform for the case of functions on S2 with
spin weight s that exhibit axial symmetry (i.e., invariant
along the coordinate vector field ∂φ). As a result, we
obtain an algorithm of complexity OðL2Þ which requires
a low memory cost in comparison with that required by
HWTs. In this work we focus on functions that exhibit
axial symmetry, and hence our spectral implementation is
based on this transform. For details, improvements and
applications of the HWTs for general functions in S2,
we refer the reader to [3,4]. We finalize this section by
discussing our method to choose the “optimal” grid size
in order to keep numerical errors as small as possible.

A. General description of HWTs

To begin with, let us consider a square integrable spin-
weighted function f ∈ L2ðS2Þ with spin weight s. The
forward and backward spin-weighted spherical harmonic
transformations are defined, respectively, by

salm ¼
Z
S2

fðϑ;φÞsȲlmðϑ;φÞdΩ; ð4:1Þ

fðϑ;φÞ ¼
XL
l¼jsj

Xl

m¼−l
salmsYlmðϑ;φÞ; ð4:2Þ

where the decomposition has been truncated at the maximal
mode L. Henceforth, we refer to it as the band limit.
To calculate numerically the integral in Eq. (4.1) over a
finite coordinate grid, one requires a quadrature rule and
knowledge of the SWSH over that grid. The quadrature rule
presented in [5] is based on a smooth noninvertible map
where the point at each pole is replaced by a circle in T 2.
Once a quadrature rule on equidistant points on T 2 has
been specified, we proceed to compute the SWSHs,

which are written in terms of the so-called Wigner
d-matrices [25] by

sYlm ¼ ð−1Þs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
eimφdlm;−sðϑÞ:

These matrices are easily calculated using recursion rules
introduced by [26]. Adopting the notation Δl

mn ≔ dlmnðπ2Þ,
the Wigner d-matrices can be expressed as

dlmnðϑÞ ¼ im−n
Xl

q¼−l
Δl

qme−iqϑΔl
qn; ð4:3Þ

where n and m take integer values that run from −l to l.
Later in Sec. IV B 3, we explain in detail how to compute
the Δl

nm terms. The above expression allows us to write the
forward and backward spin-weighted spherical harmonic
transforms, respectively, as

salm ¼ is−m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Xl

q¼−l
Δl

qmIqmΔl
qs; ð4:4Þ

fðϑ;φÞ ¼
X
m;n

eimϑeinφJmn; ð4:5Þ

where the matrices Imn and Jmn are computed from the
standard two-dimensional Fourier transforms (forward and
backward, respectively) over 2π-periodic extensions of the
function fðϑ;φÞ into T2. In general, the complexity of the
outlined algorithm is OðL3Þ.

B. Axially symmetric spin-weighted transforms

1. Axially symmetric spin-weighted forward transform

Let us begin by pointing out that the previous algorithm
can be decomposed into two main tasks: namely, compu-
tation of the Δl

mn terms and calculation of the Imn and Jmn
matrices by means of the two-dimensional forward and
backward Fourier transforms, respectively, acting over
some given function fðϑ;φÞ. In what follows, we discuss
in detail how to simplify these tasks for the case of axially
symmetric functions, i.e., functions that only depend on
the ϑ coordinate.
Let us consider a square integrable axially symmetric

spin-weighted function fðϑÞ ∈ L2ðS2Þ with spin weight s.
Due to the φ dependence of the nonzerommodes of SWSH
[see Eq. (4.1)], we can write the function fðϑÞ in terms
of only sYl0ðϑ;φÞ. Hence, the forward spin-weighted
spherical harmonic transform Eq. (4.1) can be written in
a simple form as

sal ¼
Z
S2

fðϑÞsȲlðϑÞ sin ϑdϑdφ;
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where we have used the notation sal ¼ sal0 and
sYlðϑÞ ¼ sYl0ðϑ;φÞ. Then, we rewrite Eq. (4.4) as

sal ¼ is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Xl

n¼−l
Δl

n0InΔl
ns; ð4:6Þ

with2

In ≔ 2π

Z
π

0

e−inϑfðϑÞ sinϑdϑ: ð4:7Þ

Similarly to what is done for HWTs in [5], the number of
computations required to obtain the spectral coefficients sal
can be reduced by a factor of 2 by using symmetries
associated with the Δl

mn quantities. In addition, we can
introduce another reduction due to the fact that Δl

n0 ¼ 0

for lþ n ¼ odd. This allows us to reduce the number of
computations by a further factor of 2. Therefore, we define
the axially symmetric spin-weighted forward transform
(ASFT) as

sal ¼ is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Xl

n¼lðmod2Þ
Δl

n0JnΔl
ns ðnþ ¼ 2Þ; ð4:8Þ

where n is a positive integer that increases in steps of two
and starts at 0 or 1 depending on whether l is even or odd.
The vector Jn is defined by

Jn ≔
�
In n ¼ 0

In þ ð−1ÞsIð−nÞ n > 0: ð4:9Þ

The evaluation of In can be carried out by extending the
function fðϑÞ to T ¼ S1 as a 2π-periodic function. This
allows the implementation of the standard one-dimensional
Fourier transform in contrast to the general case of
HWTs which, due to the φ dependence, requires a two-
dimensional Fourier transform. Now, let us define the
extended function on T as

sFðϑÞ ≔
�
fðϑÞ ϑ ≤ π

ð−1Þsfð2π − ϑÞ ϑ > π:
ð4:10Þ

Clearly, the vector In remains unchanged because sFðϑÞ
agrees with fðϑÞ on the integration domain in Eq. (4.7).
The function sFðϑÞ is chosen to be 2π periodic; hence, it
can be written as a one-dimensional Fourier sum. However,
before doing so we need to define the number of sampling
points in T . Let us consider Fig. 1. In this diagram, the
upper part of the circumference represents the number of
samples Nϑ taken for 0 ≤ ϑ ≤ π, whereas the lower part
shows the Nϑ − 2 samples for π < ϑ < 2π. Clearly, the
subtraction by 2 in the lower half of the circumference

comes from the extraction of the poles to avoid over-
sampling. Therefore, to sample a function on T we proceed
as follows. If the desired number of samples for a function
fðϑÞ on S2 is Nϑ, then the number of samples for the
extended function sFðϑÞ on T should be N0

ϑ ¼ 2ðNϑ − 1Þ
and the spatial sampling interval will be Δϑ ¼ 2π=N0

ϑ.
Therefore, the extended function can be written as a one-
dimensional Fourier sum as

sFðϑÞ ¼
XN0
ϑ=2

k¼−N0
ϑ=2þ1

Fkeikϑ:

The substitution of this equation into Eq. (4.7) yields

In ¼ 2π
XN0
ϑ=2

k¼−N0
ϑ=2þ1

Fkwðk − nÞ; ð4:11Þ

where wðpÞ is a function Z → R defined by

wðpÞ ¼
Z

π

0

eipϑ sin ϑdϑ

¼
8<
:

2=ð1 − p2Þ p even
0 p odd; p ≠ �1

�iπ=2 p ¼ �1:

By comparison with Eq. (4.11) we note that the latter is
proportional to a discrete convolution in the spectral space.
Therefore, it can be evaluated as a multiplication in the real
space such that In is the one-dimensional forward Fourier
transform of 2πsFwr as follows:

In ¼
2π

N0
ϑ

XN0
ϑ−1

q0¼0

expð−inqΔϑÞsFðq0ΔϑÞwrðq0ΔϑÞ;

where wrðq0ΔϑÞ is the real-valued quadrature weight in T
given by

wrðq0ΔϑÞ ¼
XN0
ϑ=2

p¼−N0
ϑ=2þ1

e−ipq
0ΔϑwðpÞ:

Finally, we want to emphasize that even though this way of
sampling functions on T allows us to include the value of

FIG. 1. 2π-periodic extension of the ϑ domain.

2The factor 2π comes from the trivial integral over φ.
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the extended function at the poles, it yields an even number
of modes in spectral space. Hence, we will not have the
same number of positive and negative modes after appli-
cation of ASFT. Indeed, for the mode IN0

ϑ=2
[see Eq. (4.9)],

the vector JL0 cannot be calculated since the term I−N0
ϑ=2

is
not given by the one-dimensional forward Fourier. We
avoid this issue by calculating the set of Jn terms up to
n ¼ N0

ϑ=2 − 1. Note that setting IN0
ϑ=2

to zero does not
constitute a loss of information due to the exponential
decay of the spectral coefficients of the Fourier transform.
In fact, this extra mode is, in general, numerically negli-
gible, and hence, it will not affect the accuracy of the ASFT.
Now, in order to satisfy the Nyquist condition [23], the

relation between the number of sampling points in T and
the band limit must satisfy the inequality

2ðNϑ − 1Þ ≥ ð2Lþ 1Þ þ 1;

where the last term on the right-hand side comes from
counting the extra term without a mirrored partner. As a
result, the maximum value of the band limit for which the
ASFT is exact is

L ¼ Nϑ − 2: ð4:12Þ

2. The axially symmetric spin-weighted
backward transform

This transform maps the spectral coefficients sal back to
the corresponding axially symmetric function on S2. As the
inverse transform does not contain integrals, issues of
quadrature accuracy do not arise. In a similar way as we
implemented the properties of the three-dimensional Δl

nm
term to obtain Eq. (4.8), we can write from Eq. (4.5) axially
symmetric spin-weighted backward transform (ASBT) as

fðϑÞ ¼
XN0
ϑ=2

n¼−N0
ϑ=2þ1

einϑGn;

where the vector Gn is given by

Gn ≔
� 0 if n ¼ N0

ϑ=2

is
P

L
l≡mod2ðnÞ

ffiffiffiffiffiffiffiffi
2lþ1
4π

q
Δl

nð−sÞsalΔ
l
n0 ðlþ ¼ 2Þ:

ð4:13Þ

Similarly to Eq. (4.8), l increases in steps of two and starts
at lðmod2Þ. We set GN0

ϑ=2
¼ 0 because in the implementa-

tion of the ASFT, we chose IN0
ϑ=2

¼ 0. The evaluation of
Eq. (4.13) is carried out by a one-dimensional inverse
Fourier transform that results in a function sFðϑÞ sampled
on T . This function satisfies the symmetry properties in
Eq. (4.10) where fðϑÞ represents the function sFðϑÞ on

0 ≤ ϑ ≤ π. Thus, sFðϑÞ corresponds to the extension of the
function fðϑÞ on T .

3. Computation of the three-dimensional Δl
nm

So far the forward and backward spin-weighted
spherical harmonic transforms have been simplified for
axially symmetric functions by the implementation
of a one-dimensional Fourier transform instead of a two-
dimensional one as required in the algorithm HWT. In fact,
we can simplify the computation of the Δl

nm terms even
further. This has a significant effect on the efficiency of
both ASFT and ASBT, given that such a task takes around
half of the execution time in practical situations. We
therefore devote this section to discussing this issue.
Before we explain how the Δl

nm terms are computed, we
bring up a relevant fact for both ASFT and ASBT. By
examination of Eqs. (4.8) and (4.13), we realize that we do
not really need to calculate the complete set of Δl

nm terms3

to perform the transform. Instead, we just need to compute
up to the Δl

ns term, where s is the spin weight of the
function that is supposed to be transformed. This yields a
remarkable speed-up of the algorithm since in most cases
s ≪ L. Now, based on this, we proceed to compute the Δl

ns
terms implementing the recursive algorithm introduced by
Trapani and Navaza in [26]. The recursive relations are
given by the following equations:

ðaÞ Δl
l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2l − 1

2l

r
Δl−1

ðl−1Þ0;

ðbÞ Δl
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2l − 1Þ

2ðlþmÞðlþm − 1Þ

s
Δl−1

ðl−1Þðm−1Þ;

ðcÞ Δl
nm ¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − nÞðlþ nþ 1Þp Δl

ðnþ1ÞðmÞ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − n − 1Þðlþ nþ 2Þ
ðl − nÞðlþ nþ 1Þ

s
Δl

ðnþ2ÞðmÞ;

where the letters “ðaÞ,” “ðbÞ” and “ðcÞ” denote the
sequence in which they should be used. We note that
terms with a combination of indices outside of the correct
range are set to 0. One way to visualize the above algorithm
is by means of the pyramidal representation of the Δl

ns
terms in Fig. 2. The volume of the complete pyramid
represents the complete set of theΔl

nm terms. Setting the top
peak of the pyramid as Δ0

00 ¼ 1, we start moving down
both in the vertical direction using rule ðaÞ and in the
diagonal direction by ðbÞ. Thus, one can find the Δl

ns terms
in the right-hand side in the front face of the pyramid. Then,
using rule ðcÞ repeatedly, one can find the terms behind the
front face in order to calculate the right-hand side of the

3n and m take integer values from −l to l.
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pyramid volume. If we need to compute the full set of Δl
nm

terms, we would need to repeat this algorithm in order to
obtain the complete right-hand side of the pyramid volume.
However, we just need to repeat step ðbÞ until we reach the
row corresponding to l ¼ jsj (for the given l level) because
we are just interested in computing the first Δl

ns terms.
Moreover, since only the Δl

ns terms with positive values of
n are needed to compute both ASFT and ASBT [see
Eqs. (4.8) and (4.13)], we apply rule ðcÞ until we reach the
column n ¼ 0. The left-hand side of the pyramid volume
can be obtained by applying the mirror rule Δl

nð−jsjÞ ¼
ð−1Þl−nΔl

njsj (see [26]). In Fig. 3, we display a schematic

representation of this, where the number of Δl
ns terms that

have to be computed are represented by the gray section. In
this illustration we consider the collection of Δl

ns terms for
each l-plane. Note that the gray section is not a rectangle
since we can implement the symmetric transposition rule
Δl

njsj ¼ ð−1Þjsj−nΔl
jsjn. In short, we require OðL2Þ oper-

ations to compute the Δl
ns terms needed for implementing

both ASFT and ASBT, which will allow us to precompute
the Δl

nm terms for a low memory cost in comparison with
the general algorithm for HWTs.4

In conclusion, we have presented both the forward and
backward spin-weighted spherical harmonic transform for
the axisymmetric case by implementing simplifications of
the general algorithm HWTs in order to optimize them for
axially symmetric functions in S2. The first main simpli-
fication is the replacement of the two-dimensional by a one-
dimensional Fourier transform for both the forward and
backward transforms. This reduces the number of compu-
tations to OðLlog2LÞ. The second simplification lies in the
fact that the forward and backward transforms do not need
the full set of Δl

nm terms in the axial case. Therefore,
the resulting algorithm requires OðL2Þ operations for
each transform. However, if we precompute the Wigner

coefficients Δl
mn, then the transform only requires

OðL log2 LÞ operations.
These transform have been implemented in a Python 2.7

module.5 Furthermore, the module allows us to define
objects that represent spin-weighted functions for which an
algebra can be defined. Hence, it can be seen not only as a
set of functions, but as a Python environment for working
with axisymmetric SWSH.

C. Choosing the optimal grid size

Because the axially symmetric transforms are based on
the Fourier transform, we expect that spectral coefficients
decay exponentially to zero when the band limit tends to
infinity. Theoretically speaking, a function is described in
spectral space by an infinite number of spectral coefficients.
On the other hand, because of the machine rounding error,6

any sufficiently smooth function is described by a finite set
of spectral coefficients that contribute numerically to the
spectral decomposition. In other words, the spectral coef-
ficients with order lower than 10−15 are negligible numeri-
cally, and thus are not necessary for an accurate description
of functions in the spectral space. Hereafter, we call the l
order of the last mode above order 10−15 the optimal band
limit. Consequently, in virtue of Eq. (4.12) the optimal band
limit defines the optimal number of grid points. Taking a
larger number of grid points than the optimal one will add
unnecessary computations in the transform, and conse-
quently the accuracy is reduced instead of enhanced. We
refer to this as the sampling error. In our implementation
we control this error by keeping the number of grid points
as close as possible to the optimal case. To this end, we
proceed as follows. Initially, we sample the initial data in a
large grid. In our case we have chosen Nθ ¼ 1025. Then,

FIG. 2. Schemes to calculate Δl
nm.

FIG. 3. Schemes to calculate Δl
nm.

4For L ¼ 1024, the memory cost of AST is ∼1 MB whereas
for HWT is ∼1 GB.

5This module can be freely downloaded under the GNU
General Public License (GPL) at http://gravity.otago.ac.nz/wiki/
uploads/People/Axial_Spin_Weight_Functions.zip.

6In this paper the terms “machine rounding error” and
“machine precision” refer to the finite precision by which
numbers can be represented in a computer. We always assume
that this precision is of the order 10−15 which corresponds to
standard “double precision.”
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we apply the ASFT to each function of the initial data and
identify the highest mode which is just above the threshold
10−15. In other words, we identify the optimal band limit
for each function of the system. From all of these modes we
set the order of the highest mode as the optimal band limit
for the initial data. Henceforth, we refer to this as the global
optimal band limit. Using Eq. (4.12) we obtain the optimal
number of grid points required to sample the functions of
the system. Finally, we begin the numerical solution of the
system by interpolating the initial data in the optimal grid.
Now, we discuss how we keep the optimal grid size during
the evolution. For each time step, we check the last mode of
each field in order to observe whether they are smaller than
some given tolerance. For this implementation this has been
set to 10−14. Then, if some of those modes do not satisfy the
mentioned condition, it implies that the number of grid
points is not enough for sampling some of the functions of
the system. Therefore, we need to interpolate all the
functions to a bigger grid. We point out that the new grid
should not differ too much from the previous one because,
as we mentioned before, it could lead to too many
unnecessary grid points and hence to larger errors. In this
implementation, we decided to increase the grid by four
points each time this is required. Using this small incre-
ment, we expect to stay close enough to the optimal grid
and, as a consequence, keep a good accuracy.
To finalize this section we point out that due to non-

linearities in our evolution equations, some kind of filtering
process is required in order to avoid the so-called aliasing
effect. For this we use the well-known 2=3 rule. For details
and justification of this rule, see [23] and references therein.

V. NUMERICAL APPLICATION

A. Smooth Gowdy symmetry generalized
Taub-NUT solutions

It is well known that solutions of Einstein’s field
equations are uniquely determined (up to isometries and
questions of extendibility) by the Cauchy data on a Cauchy
surface. However, there exist cases for which the uniquely
determined maximal globally hyperbolic development [27]
of the data can be extended in several inequivalent ways.
These extensions are not globally hyperbolic, and hence
there are Cauchy horizons whose topology and smoothness
may, in general, be complicated. Furthermore, there
can exist closed causal curves in the extended regions
which violate basic causality conditions. A well-known
example of this sort of solution is the Taub solution [28],
which is a two-parametric family of spatially homogeneous
cosmological models with spatial topology S3. Extensions
through the Cauchy horizons are known as Taub-NUT
solutions [29].
As generalizations of the Taub(-NUT) solutions, we

consider now the class of smooth Gowdy-symmetric
generalized Taub-NUT solutions introduced in [13]

motivated by early work by Moncrief [30]. These are
Gowdy-symmetric globally hyperbolic solutions of
Einstein’s vacuum field equation with zero cosmological
constant and spatial topology S3 which have a past Cauchy
horizon with topology S3 ruled by closed generators. To
cover the maximal global hyperbolic developments, the
class is written in terms of the “areal” time function
t ∈ ð0; πÞ [31] and the same Euler coordinates as in
Sec. II B for the spatial part. In these coordinates the
metrics take the form

g ¼ eMð−dt2 þ dθ2Þ
þ R0ðsin2teuðdρ1 þQdρ2Þ2 þ sin2θe−udρ22Þ; ð5:1Þ

with a positive constant R0 and smooth functions u, Q and
M that depend only on t and θ. A large class of such
solutions of the Einstein vacuum equations was constructed
in [13] as an application of the Fuchsian method [32].

B. Family of exact solutions

In a subsequent paper [12], the same authors introduced
a three-parametric family of explicit smooth Gowdy-
symmetric generalized Taub-NUT solutions as an applica-
tion of soliton methods. For this family of exact solutions,
the components of the metric Eq. (5.1) are given by

eM ¼ R0

64c31
ðU2 þ V2Þ; eu ¼ R0

64c21

Ue−M

1þ y
;

Q ¼ xþ c3
8
ð1 − x2Þ

�
7þ 4yþ y2 þ ð1 − yÞV2

4c21U

�
;

where

U ¼ c23ð1 − x2Þð1 − yÞ3 þ 4c21ð1þ yÞ;
V ¼ 4c1ð1 − yÞð1 − c3xð2þ yÞÞ;

with x ¼ cosϑ, y ¼ cos t. Here c1 and c3 are real constants
that, together with R0, define particular solutions. We point
out that this family of solutions contains the spatially
homogeneous Taub solutions as the special case given by

c1 ¼
1

l
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

p
þmÞ; c3 ¼ 0;

R0 ¼ 2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

p
;

with free parameters l > 0 and m ∈ R. Inhomogeneous
solutions are obtained by choosing any nonzero value for c3
(see [12] for details).
In the following we perform the Geroch reduction

described in Secs. II A and II B for these exact solutions.
As a consequence of Gowdy symmetry, the vector field ∂φ

is a smooth Killing field of the 2þ 1 metric hab.
Consequently, all the metric components of any Gowdy
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symmetric metric represented in these two coordinates are
axial symmetric in the sense defined in Sec. IV, and hence
the axial symmetric transform introduced in Sec. IV B is
the natural choice for our numerical implementation dis-
cussed below. Before we discuss this in detail, we list the
resulting formulas:

ψ ¼ R0sin2teu; ð5:2Þ

∂tω ¼ −R0

sin3t
sin ϑ

e2u∂ϑQ; ð5:3Þ

∂ϑω ¼ −R0

sin3t
sin ϑ

e2u∂tQ; ð5:4Þ

h ¼ ψðeMð−dt2 þ dϑ2Þ þ R0sin2ϑe−udρ22Þ; ð5:5Þ

where ψ and ω are the norm and twist associated with ∂ρ1
and hab. Next, as described in Sec. III B, we write the
metric in terms of the frame ðT;m;mÞ which yields

λ ¼ R0sin2teMþu; ð5:6Þ

β ¼ 0; ð5:7Þ

δ ¼ R0sin2tðeMþu þ R0Þ=2; ð5:8Þ

ϕ ¼ R0sin2tðeMþu − R0Þ=2: ð5:9Þ

Henceforth, we refer to hab as the 2þ 1 smooth Gowdy
symmetry generalized Taub-NUT metric.

We notice that the quantities Γ
∘
μ associated with hab are

calculated from Eq. (3.11) by first computing the

contracted Christoffel symbols Γμ of hab and then by
calculating Γ̆μ from Eq. (3.10) and the background metric
Eq. (3.9). The results are

Γ
∘
0 ¼ − cot t; ð5:10Þ

Γ
∘
1 ¼ Γ

∘
2 ¼

ffiffiffi
2

p
c23csc

2tsin8
t
2
sin 2ϑ: ð5:11Þ

Here, and in all of what follows, we choose c1 ¼ 1, R0 ¼ 2,
and only vary c3.
For the following it is also convenient to list the values of

the metric functions at the time t ¼ π=2, which we shall use
as the initial data for our numerical evolutions. Notice that
we cannot use t ¼ 0 or t ¼ π as initial times because the
data are singular there. Thus, evaluating Eqs. (5.6)–(5.9)
and time derivatives at t ¼ π=2, we obtain7

λ0 ¼ −4 − c23sin
2ϑ; ∂tλ0 ¼ −4c23sin2ϑ; ð5:12Þ

ϕ0 ¼
c23
2
sin2ϑ; ∂tϕ0 ¼ c23sin

2ϑ; ð5:13Þ

δ0 ¼ 4þ c23
2
sin2ϑ; ∂tδ0 ¼ c23sin

2ϑ; ð5:14Þ

β0 ¼ 0; ∂tβ0 ¼ 0: ð5:15Þ

From Eq. (5.2) and its time derivative we obtain the initial
values for ψ0 and ∂tψ0, respectively. Finally, by integrating
Eq. (5.4)with respect toϑ and setting the irrelevant integration
constant to zero, we obtain ω0. By considering Eq. (5.3) we
obtain ∂tω0. The explicit form of these functions is

ω0 ¼
−128ð−8þ 16c3 cosϑÞ

256þ 288c23 þ 3c43 − 512c3 cos ϑ − 4c23ð−56þ c23Þ cos 2ϑþ c43 cos 4ϑ
; ð5:16Þ

ψ0 ¼
8ð1þ 1

4
c23sin

2ϑÞ
ð1 − 2c3 cos ϑÞ2 þ ð1þ 1

4
c23sin

2ϑÞ2 ; ð5:17Þ

∂tω0 ¼ 128ð64þ 64c23cos
2ϑ − 64c33cos

3ϑ − 4c43sin
4ϑ

þ c3 cosϑð−128þ 8c23sin
2ϑþ 9c43sin

4ϑÞÞ=B; ð5:18Þ

∂tψ0 ¼ −64c3ð128c3cos2ϑ − 32c3sin2ϑþ 4c33sin
4ϑþ c53sin

6ϑ

þ 16 cosϑð−12þ 5c23sin
2ϑÞ − 24c33sin

22ϑÞ=B; ð5:19Þ

where

B ¼ ð32 − 64c3 cosϑþ 64c23cos
2ϑþ 8c23sin

2ϑþ c43sin
4ϑÞ2:

7We have used ∂tg0 to denote the temporal partial derivative of any function g evaluated at the initial time.
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C. Numerical error sources

The purpose of the following subsections is to describe
the numerical evolution of Eqs. (3.13) for the initial data
just discussed. We do this for two sets of gauge source
functions. Beforewe go into the details in Secs. V D andV E,
however, let us discuss possible numerical error sources,
which we refer to in our discussion of our numerical
results below.
Clearly, the time and spatial discretization gives rise to

numerical errors. In general, it is expected that time
discretization errors are larger than spatial ones thanks to
the rapid (exponential) convergence of the latter. In order to
investigate the presumably more significant time discreti-
zation errors, we use two different time discretization
schemes, the (nonadaptive) fourth-order Runge-Kutta
scheme and the (adaptive) Runge-Kutta-Fehlberg (RKF)
scheme. See [22] for details about adaptive Runge-Kutta
methods. Spatial discretizations shall always be based on
our adaptive framework discussed in Sec. IV C. For runs
using the adaptive RKF scheme, we can therefore expect
that all discretization errors can be made sufficiently small
by choosing suitable tolerance parameters.
In our numerical experiments we identify further error

sources which turn out to be particularly severe. Recall
from Sec. IV C that we choose the same band limit for all
unknowns. However, in most of our practical examples,
only a few of the unknowns actually require high spatial
resolutions. As a consequence, many unknowns are over-
sampled, which is not only inefficient numerically, but also
generates undesired numerical noise. The origin of this
noise is that the “unnecessary” modes associated with too
large band limits are, in general, not zero numerically. In
fact, while they are typically of the order of the machine
precision initially, they may grow during the evolution, in
particular, due to nonlinear coupling of modes. Typically,
the larger the difference between the optimal band limit for
any particular unknown and the global band limit, the larger
this noise. This error is difficult to control in practice, and it
is quite common that once this noise has started to grow
during the evolution it continues to grow increasingly
faster. We measure this error by looking at the evolution
of the highest modes of certain representative unknowns
during the evolution. The only conceivable cure of this
problem would be to work with higher machine precisions,
which would, however, significantly slow down the
numerical runs. Our numerical infrastructure is completely
based on “double precision.” We have not attempted to
work with higher machine precisions such as “quad
precision” yet. Further comments on this in the context
of a different numerical infrastructure can be found, for
example, in [7].
Another severe, but not fully independent numerical

error is associated with the violation of the constraints.
Recall that due to Eq. (3.4), the condition Dμ ≡ 0 is
identically satisfied during the evolution if (i) the evolution

equations hold exactly and (ii) the constraints Eqs. (3.5)
and (3.6) are satisfied initially. For our numerical calcu-
lations, however, both of these conditions are violated.
Let us, for the sake of this argument, imagine that the
constraints are violated at the initial time, but that the
evolution equations hold identically (i.e., we pretend that
the numerical evolutions are done with an infinite reso-
lution in space and time and with infinite machine
precision). Then Eq. (3.4) describes the (exact) evolution
of the, in general, nonzero constraint violation quantities
Dμ. Since the initial data for these quantities are now
assumed to be nonzero, their evolution is, in general, also
nonzero. Depending on the particular properties of the
evolution system and hence of Eq. (3.4), these quantities
may in fact grow rapidly during the evolution. If this is the
case, the constraint violation error can become large very
quickly even if it is small at the initial time, and the
resulting numerical solutions of Einstein’s equations there-
fore become useless quickly. This situation cannot be
improved by increasing the numerical resolution. In fact,
this error is a consequence of the structure of the continuum
evolution equations. Various ways to reconcile this problem
have been proposed in the literature. One of the most
promising ideas [33–35] is to introduce constraint damping
terms, i.e., to add terms to the evolution equations (i) which
are proportional to the constraint violation quantities
(hence, the solutions of the evolution equations for the
actual case of interest Dμ ≡ 0 are unchanged) and
(ii) which, however, turn the surface Dμ ≡ 0 into a future
attractor for Eq. (3.4). This technique has proved to be quite
useful to produce stable calculations for asymptotically flat
spacetimes (see for instance [36–39]). The analytic deri-
vation of suitable constraint damping terms is, in general,
difficult and is usually done based on approximations
which may only hold in certain regimes of the evolution
(see e.g. [40]). In this paper we work without constraint
damping terms. Nevertheless, we remark that thanks to the
close relationship of our formulation of Einstein’s equa-
tions with the ones used in the above references, similar
choices of constraint damping terms are expected to be
useful in reducing the constraint violation errors in our
applications. Indeed, we have already gathered some
promising experience with constraint damping terms of
the type used in [39], which we shall report on in a future
article.

D. Numerical evolutions in areal gauge

In this section we fix the gauge freedom for the evolution
equations by identifying the gauge source functions fμ with
the contracted Christoffel symbols given by Eqs. (5.10) and
(5.11); we recall that we have always implicitly assumed
Eq. (3.9) as the reference or target metric and continue to
do so. As is common in the literature, we refer to this
coordinate gauge as the areal gauge. We then evolve the
evolution equations (3.13) for the initial data given by
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Eqs. (5.12)–(5.19) at t ¼ π=2 using these gauge source
functions. The resulting numerical solutions are given in
the same coordinates as the exact solution, and direct
comparisons between the exact and the numerical solutions
can be performed conveniently by considering the error
quantity

EðtÞ ≔ max
μ;ν

∥hðeÞμν ðt;ϑÞ − hðnÞμν ðt;ϑÞ∥L2ðS2Þ;

where hðeÞμν ðt; ϑÞ represents a frame component of the exact

metric for any given t, whereas hðnÞμν ðt;ϑÞ represents the
numerical value. The norm ∥ · ∥L2ðS2Þ is approximated
numerically by the discrete l2 norm of the grid function
vector. Notice that the same spacetimes in the same
coordinates have been constructed numerically with differ-
ent methods in [41]. However, in contrast to our discussion
here, some of Einstein’s equations turn out to be formally
singular in the “interior” of the Gowdy square in the
formulation used there and hence are ignored to avoid
serious numerical problems.
As a first test for our numerical implementation we

present a convergence test in Fig. 4 for c3 ¼ 0.2. The

evolution is carried out with the (nonadaptive) fourth-order
Runge-Kutta scheme. The figure shows the expected
convergence rate demonstrating that the time discretization
error is dominant here. This is not surprising since at each t
all the metric components are very smooth functions that
can be resolved on the grid with high accuracy so long as t
does not get too close to t ¼ π. The oversampling and
constraint violation errors discussed in the previous sub-
section are small during this early phase of the evolution.
Next, we replace the nonadaptive fourth-order Runge-

Kutta scheme by the adaptive RKF method. In Figs. 5 and 6
we show the numerical evolutions of the geometric quan-
tities ψ and ω for c3 ¼ 0.2.
The numerical errors in these calculations are shown

in Fig. 7 for different values of c3. The error tolerance Tol
of the RKF method is chosen to be 10−8. This figure
suggests that the numerical errors here remain bounded for
a long time. The larger c3 is, however, and hence the more
inhomogeneous the solution is, the more rapidly the
numerical errors grow close to t ¼ π as expected.
Figure 8 indicates that the behavior close to t ¼ π cannot
be improved by decreasing the value of Tol. This suggests
that close to t ¼ π the numerical errors are not dominated

FIG. 5. Norm of the Killing vector, c3 ¼ 0.2.

FIG. 6. Twist of the Killing vector, c3 ¼ 0.2.FIG. 4. Convergence test, c3 ¼ 0.2.

FIG. 7. Error propagation for various values of c3 and
Tol = 10−8.
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anymore by the time discretization error, but that one of the
other error sources discussed in Sec. V C takes over.
Our experience suggests that, in fact, both the over-

sampling error and the constraint violation error are
significant at late times, in particular, for larger values of
c3. As a consequence of Eqs. (5.12)–(5.19), the required
band limits for the metric components and their time
derivatives are small, but the required band limits to resolve
ψ0, ω0 and their time derivatives are relatively large. This
discrepancy, which we associate with the oversampling
error, is in fact larger the larger c3 is. As already mentioned
before, the noise generated by oversampling indeed grows
during the evolution.
In order to measure the constraint violation error, we

define the quantity

DðtÞ ≔ max
μ

∥fμðt;ϑÞ − Γ
∘
μðt; ϑÞ∥L2ðS2Þ:

In Fig. 9 we show the evolution of this quantity for
c3 ¼ 0.3. At late times the curves look very similar to
the ones of EðtÞ in Fig. 8. This suggests that the constraint
violation error contributes significantly to the total numeri-
cal error.

E. Numerical evolutions in wave map gauge

In this section we describe numerical computations for
the same spacetimes as before, but using a different
coordinate gauge. To this end, we want to choose the same
initial data as before, but work with different gauge source
functions. Both the gauge constraint Eq. (3.5) and the
physical constraints Eq. (3.6) clearly have to be satisfied at
the initial time. Since we do not want to resolve these
complicated nonlinear PDEs, our strategy is to use exactly
the same initial data for the values of the metric components
and their first time derivative values, and also exactly the
same initial values of the gauge source functions as before.
In order to implement a different coordinate gauge, we then
apply the following “gauge driver condition” during the
evolution whose purpose is to rapidly drive the gauge
source functions from their initial values fixed by the gauge
constraint towards the target gauge source functions f̂μ:

fμ ¼ ðΓ∘ μjt0 − f̂μÞe−qðt−t0Þ þ f̂μ: ð5:20Þ

Here the parameter q controls how rapidly the gauge is

driven towards the target. The quantities Γ
∘
μjt0 are calculated

from the initial data and are understood as functions of the
spatial coordinates only. Notice that different gauge drivers
for the generalized wave representation of Einstein’s
equations were considered in [42]. Equation (5.20) guar-
antees that the gauge constraint is satisfied at the initial
time. As discussed at the end of Sec. III A, the physical
constraints, even though they pose highly nontrivial
restrictions on the choice of the initial data because they
are essentially linear combinations of the well-known
Hamiltonian and momentum constraints, are not restric-
tions on the gauge source functions. Hence, it is not
necessary to introduce terms in Eq. (5.20) which account

for the first time derivative of Γ
∘
μ at t ¼ t0.

We apply this idea to calculate the same spacetimes as
before, but now we choose the wave gauge as the target
gauge, which is defined by the condition f̂μ ¼ 0. For our
numerical tests we choose q ¼ 10 in Eq. (5.20). Before we
present our numerical results we notice that it is straight-
forward to derive the formula

tðwÞ ¼
π

2
þ 1

2
log

�
1 − cos t
1þ cos t

�
; ð5:21Þ

which for our spacetimes relates the time coordinate t in
areal gauge (used in Sec. V D) and the time coordinate tðwÞ
in wave map gauge. This formula holds identically even
though Eq. (5.20) is, strictly speaking, not the exact wave

map gauge. However, as a consequence of Γ
∘
0jt0¼π=2 ¼ 0

which follows from Eq. (5.10), the target gauge source
function f̂0 ¼ 0 agrees identically with f0 ¼ 0.
Equation (5.21) is then obtained by solving the exactly

FIG. 8. Error propagation for various values of Tol and
c3 ¼ 0.3.

FIG. 9. Constraint propagation for various values of Tol and
c3 ¼ 0.3.

NUMERICAL SOLUTIONS OF EINSTEIN’S EQUATIONS … PHYSICAL REVIEW D 93, 043009 (2016)

043009-15



homogeneous wave map equation for the wave map time
coordinate function with appropriate initial conditions.
Equation (5.21) allows us to make direct comparisons
between our results here and the results in the previous
section. In particular, it reveals that the wave time slices
tðwÞ ¼ const are the same as the areal time slices t ¼ const
(for different constants), and the “singularities” at t ¼ 0; π
are shifted to infinity, in particular, tðwÞ → ∞ for t → π. We
point out, however, that it is not possible to derive a formula
which relates the spatial coordinates in both gauges. This is
true even if q in Eq. (5.20) was so large that we could
consider our gauge as the exact wave map gauge. This is a
consequence of the fact that the homogeneity of the wave
equations for the spatial wave map coordinates is destroyed
by terms given by the reference metric Eq. (3.9). In fact, we
demonstrate below that the spatial coordinates on each time
slice are different in areal and wave map coordinates.
In order to obtain a more geometric and detailed

comparison of the two gauges, we consider the Eikonal
equation following [43]

∇aτ∇aτ ¼ −1: ð5:22Þ

Let τ be a smooth solution of the initial value problem of
the Eikonal equation with smooth initial data τ0∶ Σ0 → R
prescribed freely on any smooth Cauchy surface Σ0 in any
smooth globally hyperbolic spacetime. The method of
characteristics applied to this PDE allows us to prove that
such a solution indeed always exists at least sufficiently
close to the initial hypersurface Σ0. For definiteness, we
restrict ourselves to the case of zero initial data τ0 ¼ 0 for
all of what follows. Fix any point p in the timelike future of
Σ0 in the spacetime and consider any timelike geodesic
through p (with unit tangent vector). Any such geodesic
must intersect Σ0 at some point x0 in the past of p. There is
precisely one such timelike geodesic through p with unit
tangent vector which intersects Σ0 perpendicularly in x0,
and hence the point x0 is uniquely determined. The value
τðpÞ of the solution τ of the Eikonal equation with zero
initial data then represents the proper time along this
timelike geodesic from x0 to p. The quantity τ is therefore
a meaningful geometric scalar quantity which can be used
to compare our numerical spacetimes, in particular, when
the same spacetime is calculated in different coordinate
gauges. We proceed as follows. For initial data parameters
R0 ¼ 2, c1 ¼ 1 and c3 ¼ 0.1 (see Sec. V B):
(1) We calculate the corresponding solution of

Einstein’s evolution equations in areal gauge (in
the same way as in Sec. V D) and of the Eikonal
equation Eq. (5.22) (with zero initial data) up to
t ¼ 3. The value of the resulting τ function on the
t ¼ 3-surface expressed with respect to spatial areal
coordinates yields the dashed curve in Fig. 10.

(2) Equation (5.21) implies that t ¼ 3 corresponds to
tðwÞ ≈ 4.217. For the same initial data parameters as

in the first step, we calculate the corresponding
solution of Einstein’s evolution equations in wave
gauge numerically [using the gauge driver condition
Eq. (5.20) with q ¼ 10] and of the Eikonal equation
Eq. (5.22) (with zero initial data) up to tðwÞ ≈ 4.217.
The value of the resulting τ function on the
tðwÞ ≈ 4.217-surface expressed with respect to spatial
wave map coordinates yields the continuous curve
in Fig. 10.

Since the t ¼ 3-surface and the tðwÞ ≈ 4.217-surface re-
present the same geometric surface in our spacetime and
since τ is a geometric scalar quantity, the value of the
solution of the Eikonal equation on this surface should
be the same function in both steps above. However, since
this function is expressed in terms of different spatial
coordinates, namely, areal coordinates in the first step and
wave map coordinates in the second step, the two curves
in Fig. 10 are slightly different. Hence, Fig. 10 can be
understood as a representation of the difference of these
two sets of spatial coordinates. This difference is empha-
sized in Fig. 11 where the two curves in Fig. 10 are
subtracted directly. Intuitively, these two sets of spatial
coordinates should agree at geometrically distinct points,

FIG. 10. Proper time comparison.

FIG. 11. Difference of the proper times.
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namely, at the poles and also at the equator as a conse-
quence of a reflection symmetry which is inherent to our
particular class of exact solutions. Indeed, the difference
curve in Fig. 11 is zero at the poles θ ¼ 0, π and the
equator θ ¼ π=2.
Next, we present plots of the constraint violations in both

gauges; see Fig. 12. The dashed curve has been calculated
in areal gauge (in the first step above). The continuous
curve has been calculated in wave map gauge (in the second
step above), but has then been expressed in terms of the
areal time function by means of Eq. (5.21). It is interesting
that the constraint violations are significantly smaller in
wave map gauge than they are in areal gauge towards the
end of the numerical evolution.
Finally, we comment on the fact that in wave map gauge

the shift quantity β in Eq. (3.7) is a nontrivial nonzero
function, in contrast to areal gauge; see Eq. (5.7). When β
cannot be assumed to be zero identically, the algebraic
complexity of the evolution equations is increased dra-
matically. It is surprising that irrespective of this it appears
that we get better numerical results in wave map than in
areal gauge.

VI. DISCUSSION

The purpose of our work here was to introduce a
numerical approach to solve the Cauchy problem for
spacetimes which involve the manifold S2. We employ a
fully regular representation of the Einstein equations based
on the spin-weighted spherical transform and the general-
ized wave map formalism. This allows us to account for all
singular terms explicitly which usually arise as a conse-
quence of the coordinate singularities of polar coordinates
at the poles of the 2-sphere. Our numerical infrastructure is
based on the spin-weight formalism and corresponding
transforms introduced in [3,4]. We have extended this
infrastructure so that it now provides an efficient treatment
of axially symmetric functions on the 2-sphere, reducing
the complexity OðL3Þ of the full transform to the complex-
ity OðL2Þ. We therefore expect this method to be useful

also for other applications in future work. We have also
demonstrated the consistency and feasibility of our
approach by means of numerical studies of certain inho-
mogeneous cosmological solutions of the Einstein’s
equations.
As another application of this method we are currently

studying the critical behavior of perturbations of the Nariai
spacetime [3,4]. In particular, it is suggested that larger
amplitudes of the perturbations, which had not been studied
before, could lead to the formation of cosmological black
holes. It would be of great interest to explore the threshold
solutions and the expected cosmological black hole sol-
utions, as well as consequences for the longstanding cosmic
no-hair and cosmic censorship conjectures. Other conceiv-
able interesting applications where our numerical infra-
structure can be applied directly are Robinson-Trautman
solutions [44] and Ricci flow [45].

APPENDIX: GENERALIZED WAVE MAP
FORMALISM

Whether we want to solve the Cauchy problem for the
3þ 1-Einstein vacuum equations Gab þ Λgab ¼ 0 or for
the 2þ 1 Eqs. (2.4), the first task is always to extract
hyperbolic evolution equations and constraint equations
with well-understood propagation properties from the
equation for the Ricci tensor of the unknown metric. We
now briefly discuss the “generalized wave map formalism.”
In most of the literature, the related (but not covariant)
generalized wave/harmonic formalism is used. While this is
sufficient for many applications, it is a drawback for us. In
fact, for applications with spatial S2-topologies covered by
a single singular polar coordinate system, it is far more
convenient to work with actual covariant quantities (i.e.,
smooth tensor fields). The reason is that frame components
of smooth tensor fields on S2 have well-defined spin
weights (despite the fact that the frame itself is singular
at the poles), so they are expandable in spin-weighted
spherical harmonics, which are globally defined regular
“functions” on the 2-sphere (even though their coordinate
representation may be singular). It turns out that expressing
everything with respect to these bases renders the equations
manifestly regular.
To this end, we discuss the geometric formulation of the

wave map gauge [16]. We consider a map Φ∶ M → M̄
between two general smooth four-dimensional manifolds
M and M̄ (or open subsets thereof) equipped with
Lorentzian metrics8 hab and h̄ab. The map Φ is called a
wave map if it extremizes the functional

FIG. 12. Comparison of the constraint violations.

8All of the following arguments also hold if M and M̄ are n-
dimensional manifolds for some arbitrary positive integer n and if
h̄ab is a general smooth pseudo-Riemannian (not necessarily
Lorentzian) metric.
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F ½Φ� ¼
Z
M
trhðΦ�h̄ÞVolh:

In coordinate charts ðxμÞ onM and ðyαÞ on M̄ we obtain the
Euler-Lagrange equations for the coordinate representation
yα ¼ yαðxμÞ of Φ,

□hyα þ Γ̄α
βγhμν

∂yβ
∂xμ

∂yγ
∂xν ¼ 0: ðA1Þ

Here, Γ̄α
βγ are the Christoffel symbols for the metric h̄ab in

the coordinate basis on M̄, and □h is the wave operator for
scalar functions defined by hab. This equation is called the
wave-map equation. More details can be found in [46]. If
the manifolds were Riemannian then the analogous equa-
tion would characterize a harmonic map betweenM and M̄.
Let us point out that the left-hand side of the equation
defines a geometric object, namely, a section in the pull-
back bundleΦ�TM̄. This is not immediately obvious due to
the appearance of the Christoffel symbols in the second
term. However, the tensorial character of that term under
change of coordinates in M̄ is compensated for by the first
term which, by itself, is also nontensorial under such
coordinate transformations.
The generalized wave-map equation is Eq. (A1) with a

nonvanishing, arbitrary right-hand side, a section in Φ�TM̄
with coordinate representation fα,

□hyα þ Γ̄α
βγhμν

∂yβ
∂xμ

∂yγ
∂xν ¼ −fα: ðA2Þ

The minus sign on the right-hand side is a matter of
convention. Suppose now that M̄ ¼ M and Φ ¼ idM. Then
ðxμÞ and ðyαÞ are two coordinate charts forM and (A2) can
be read as an equation determining the coordinate system

ðyαÞ for M by imposing a geometrical gauge condition.
This equation is a semilinear wave equation ofM which has
solutions near any Cauchy surface so that such a coordinate
gauge always exists locally.
Choosing the coordinates according to this gauge, i.e.,

putting xμ ¼ yμ and expressing the wave operator in these
coordinates, yields the equation

ð−Γα
βγ þ Γ̄α

βγÞhβγ ¼ −fα;

where Γα
βγ are the Christoffel symbols of the metric h on

M. In this equation the tensorial character becomes
manifest since the left-hand side involves the difference
of two connection coefficients; thus, it gives the compo-
nents of a vector field in the coordinate basis of the ðxμÞ.
Therefore, this equation holds in any basis onM as long as
we interpret the Christoffel symbols as the connection
coefficients with respect to the chosen basis. Note also that
this implies that imposing Eq. (A2) does not constitute
a condition on the coordinate system ðxαÞ but a condition
on the metric components in their dependence on the
coordinates. We define the vector field Da in terms of its
components

Dα ≔ ð−Γα
βγ þ Γ̄α

βγÞhβγ þ fα: ðA3Þ

So, Da ¼ 0 when (A2) is imposed. A metric hab which is
restricted by Da ¼ 0 is said to be in wave map gauge (with
respect to h̄ab); in Eq. (3.9) we fix a particular metric h̄ab.
We point out that the wave map gauge reduces to the widely
used generalized wave/harmonic gauge characterized by
□xμ ¼ −fμ on spacetimes with topology R4 when the
Minkowski metric in Cartesian coordinates xμ is used as a
reference metric h̄ab.
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