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We set up a field theory model to describe the longitudinal low-energy modes in high density matter
present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are
treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron
dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a
longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or
quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero
sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic
wave are complementary to each other. We discuss possible physical consequences of these modes for
properties of white dwarfs.
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I. INTRODUCTION AND SUMMARY

Consider a neutral system of particles made of quantum
degenerate electrons, and either oxygen (Z ¼ 8) or carbon
(Z ¼ 6) or helium (Z ¼ 2) nuclei, at mass densities ρ ∼
ð106–107Þ g=cm3 and temperatures T < ða fewÞ × 108 K.
For such high densities, average interparticle separations in
the system are much smaller than the atomic scale—hence
no atoms would form, even if the system were cold. On the
other hand, the separations are much larger than the nuclear
scale, and hence one can regard the O, C, and He nuclei as
pointlike, positively charged, spin-0 particles; we will refer
to them as ions in the present work, to emphasize that one
does not need to care about their detailed nuclear structure.
For the O, C, and He ions, the baryon number, A, equals

twice their charge Z, and therefore the ion mass densities,
ρ ∼ ð106–107Þ g=cm3, translate into the electron number
density that can be estimated as J0 ≃ ðρ=2mpÞ∼
ð0.1–0.3 MeVÞ3, where mp is the protons mass. The
corresponding Fermi momenta are pF ∼ ð0.3–0.9Þ MeV,
and hence the electrons are (nearly) relativistic. Their Fermi
energy significantly exceeds their thermal energy, as well as
their two-body Coulomb interaction energies; therefore, the
electron system can be regarded as a quantum degener-
ate gas.
As for the ions, they are much heavier than the electrons,

and hence their thermal de Broglie wavelengths are much
shorter, so that at T ∼ ða fewÞ × 108 K they generically
form a classical gas (see Ref. [1] and references therein).
However, at lower temperatures two effects need to be
taken into account: (a) Their two body Coulomb interaction
energies start to dominate over their thermal energy;

(b) their thermal de Broglie wavelengths become compa-
rable to their average separation, and they enter a quantum
regime. As a result, below T ∼ ða fewÞ × 106 K, the ions
may form either a classical or quantum crystal [2], or a
quantum liquid [3], depending on concrete values of ρ
and Z.
The above described matter is believed to exist in the

interiors of white dwarf stars (WDs). These are stars that
finished their thermonuclear burning process and are sitting
in the sky to radiate away the heat stored in them. They can
be regarded as retired stars, slowly evolving from being part
of luminous matter to become baryonic dark matter. There
are abundant numbers of suchWDs observed in our Galaxy
alone, and the interiors of the majority of them consist
of carbon or oxygen or a mixture of the two, with mass
density ρ ∼ ð106–107Þ g=cm3, although higher densities are
also present in many of them (see, e.g., Ref. [1] and
references therein). A typical WD starts off at temperature
∼ ða fewÞ × 108 K and takes from a few to 10 Gyrs to cool
down to about 105 K or below, becoming then directly
unobservable.
The WD cooling rate is strongly influenced by thermo-

dynamic properties of the state of matter in the bulk of these
stars, and in particular by its specific heat. The latter can be
calculated if one knows dispersion relations of low-energy
excitations of the substance in WDs [1]. As mentioned
above, depending on concrete values of the temperature T,
density ρ, and ion charge Z, the ions could end up being in a
classical gas state or may create a classical or quantum
crystal or may condense into a quantum liquid state. These
different substances will have different low-energy
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excitations and hence different specific heats and cooling
rates. Knowing accurate values of these rates is important,
e.g., for precise determination of the age of the Universe.
Irrespective of the microscopic structure of the resulting

state of the ions in WDs, the ion system may be treated as a
uniform substance described by an appropriate equation of
state, at length scales much greater than the average inter-
ion separation. We would like to study long-wavelength
collective fluctuations in this neutral system. Furthermore,
we will be solely interested in the longitudinal low-energy
excitations for reasons that will become clear below. In
particular, we would like to understand the interplay
between the zero sound mode, that typically exists in
degenerate fermionic systems, and the ion acoustic wave
that is usually present in a neutral plasma. What we will
show is that these two modes are complementary to each
other: When one of these modes is present, the other one is
absent. However, one of them is always present. We will
also show that the cores of O and C WDs with ρ ∼
ð106–107Þ g=cm3 support only the ion acoustic wave;
the zero sound mode could be present in those WDs in
a relatively narrow spherical shell, away from the cores if
density in those domains is ρ < 105 g=cm3.
In Sec. II, we will set up a prototype effective field theory

model to calculate dispersion relations for the low-energy
excitations. Our calculations will focus on temperatures
below ða fewÞ × 107 K. The two-body Coulomb energy of
the ions is of the order of ð104–105Þ eV ¼ ð108–109Þ K.
While the Coulomb interactions are screened by the
electrons, the screening length is greater than the average
inter-ion separation, thus leading only to a small reduction,
at the level of 10% or so, of the unscreened two-body
Coulomb interaction energy [4]. Therefore, for
T < ða fewÞ × 107 K, the screened Coulomb energy domi-
nates over the ion thermal energies, by at least an order of
magnitude. Hence, we neglect the thermal effects.
Likewise, finite temperature effects are negligible for the
calculation of dispersion relations in the fermionic part of
the system, since T=J1=30 ≪ 1. Thus, in Sec. II, we
formulate an effective field theory at zero temperature,
to calculate the dispersion relations for low-energy modes.
One can then use the standard formalism of finite temper-
ature statistical mechanics to evaluate the effects of the
dispersion relations on the values of the specific heat. This
is a self-consistent procedure, as long as T=J1=30 ≪ 1.
In Sec. III, we recover all the results of Sec. II in a

Coulomb gauge. The advantage of the latter is that the
properties of the longitudinal collective modes are captured
by the phase of a scalar field describing the system of spin-0
charged ions. It is in this section that we show that the O and
C WDs will dominantly support the ion acoustic wave in
their cores, even before the ions turn into a crystal state.
Section IV is dedicated to the He WDs. There are WDs

that have a helium core due to the removal of matter and
energy from them by their binary companions (see

discussions and references in Ref. [5]). Among these,
furthermore, there is a very small subclass of the dwarf
stars for which the temperature Tc, at which the de Broglie
wavelengths of the nuclei begin to overlap, is higher than
the would-be crystallization temperature. Then, right below
Tc, the quantum-mechanical uncertainty in the position of
the charged nuclei is greater that the average internuclear
separation. This is exactly opposite to the crystallized state
where the nuclei would have well-localized positions with
slight quantum-mechanical fuzziness due to their zero-
point oscillations.
It was argued in Refs. [3,6] that such a system, instead of

forming a crystalline lattice, would condense owing to the
quantum-mechanical probabilistic attraction of Bose par-
ticles to occupy one and the same zero-momentum state,
and leading to a quantum liquid in which the charged spin-0
nuclei would form a macroscopic quantum state with a
large occupation number—the charged condensate.
The dispersion relations for the quasimodes of the

charged condensate were derived in Refs. [3,6]. These
results were obtained by using the unitary gauge and the
Thomas-Fermi (TF) approximation for the electrons. Using
these results the cooling of the He core WD stars was
studied in Refs. [5,7], with the conclusion that they would
cool faster due to condensation and that this prediction
could be tested if a large enough sample of He core WDs
existed.
However, it was subsequently shown in Ref. [8] that the

TF approximation combined with the unitary gauge misses
one gapless mode, which could affect the cooling calcu-
lation. In particular, instead of using the TF approximation,
Ref. [8] took into account the one-loop fermion effects and
unveiled the gapless mode. The same results were later
confirmed in a gauge independent way in Ref. [9].
Furthermore, it was also shown in Ref. [8] that the gapless
mode makes a negligible contribution to the specific heat at
relevant temperatures and densities for He WDs, and
therefore the predictions for the fast cooling rates obtained
in Refs. [5,7] remain unchanged. The contribution of the
gapless mode to cooling via neutrinos was discussed in
Ref. [10]; however, this is also not a significant effect at the
relevant temperatures.
In the present work, we will confirm the results of

Ref. [8] on the existence of the gapless mode in a charged
condensate, by doing calculations in both unitary and
Coulomb gauges. The latter calculation turns out to be
simpler and does not require going beyond the TF
approximation to establish the existence of the gapless
mode (the one-loop result is needed though in the
Coulomb gauge to calculate the imaginary part of this
mode). Furthermore, the Coulomb gauge calculations lead
us to the arguments that the gapless mode found in Ref. [8]
is an ion acoustic wave, that is present in a charged
condensate even when the finite temperature effects are
ignored.
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A brief outlook is presented in the last section of
the paper.

II. PROTOTYPE MODEL

Consider a high density medium composed of nuclei and
degenerate electrons, as discussed in the previous section.
Depending on the temperature and/or composition, the
nuclei could be in a state of plasma, crystal, or charged
condensate. In all three cases, Lorentz invariance is broken
by the medium; for a crystal the rotation and translation
symmetries are also broken to their discrete subgroups. We
consider this medium at length scales larger than the
average interparticle separations and would like to study
long-wavelength longitudinal collective modes. We use an
effective field theory technique to write down the
Lagrangian that respects symmetries of the system at hand.
In this section we discuss a prototype Lagrangian.
The ions are much heavier than the electrons, and at low

momenta the effects they produce are presumed to be
modeled by introducing in the Maxwell Lagrangian the
“electric” and “magnetic” masses, denoted by m0 and mγ ,
respectively (electrons and their effects will be accounted
for a bit later),

LA ¼ 1

2
ðE2

j −H2
j þm2

0A
2
0 −m2

γA2
jÞ; ð1Þ

where Ej and Hj; j ¼ 1, 2, 3, are the components of the
electric and magnetic fields, and unless stated otherwise we
use the units c ¼ ℏ ¼ 1, for which the vacuum values of the
dielectric constant and magnetic permeability are set
to unity.
The presence of the electric and magnetic mass terms in

(1) captures the phase of the spin-0 ionic matter, as will be
more clear below. This phase is what is capturing the
relevant low-energy physics of longitudinal modes. In
reality, the parametersm0 andmγ would be scale dependent
quantities and should account for renormalization of the
vacuum values of the dielectric constant and magnetic
permeability, due to the quantum effects of the ions.
However, we are interested in the low momentum and
frequency limit, where these parameters can be approxi-
mated by constant m0 and mγ. The scale dependent
renormalization of these quantities due to the electrons will
be explicitly included below. Wewill show that the outlined
approximations give a reasonable description for longi-
tudinal modes in the plasma and crystal (Secs. II and III);
however, they break down for the charged condensate
(Sec. IV), where the explicit scale dependence of the
“electric mass” cannot be ignored.
In particular, the prototype model allows for a simple and

clear description of the conditions for the existence of a
zero sound and ion acoustic wave in the degenerate plasma
and crystal; with a certain modification, derived in Sec. IV,

this model can also describe the collective fluctuations of
the charged condensate.
The Lagrangian (1) is not gauge invariant. The only

physical meaning of the latter statement is that (1) describes
more degrees of freedom than the Maxwell theory. Local
gauge invariance can always be restored at the expense of
introducing new fields, and therefore it is a redundancy of
the description (although a convenient one). In particular,
Eq. (1) can always be regarded as a gauge-fixed version of a
gauge-invariant Lagrangian obtained from (1) by the
substitution, Aμ → Bμ ¼ Aμ − ∂μα, with the invariance
transformation, δAμ ¼ ∂μγ; δα ¼ γ, where γ is a gauge
transformation parameter and μ ¼ 0, 1, 2, 3. The phase
field α makes explicit the presence of the degree(s) of
freedom beyond the two transverse states that can be
attributed to the gauge field Aμ, when a nonzero α is
retained.
Conversely, Eq. (1) can be regarded as the Lagrangian in

the so-called unitary gauge, α ¼ 0. We use this gauge in the
present section, while in Sec. III we restore back a nonzero
α and use instead the Coulomb gauge for the gauge field,
∂jAj ¼ 0. The results in the two gauges will naturally be
the same, but the two derivations are different, each having
its own advantages for understanding of the final results.
Irrespective of the gauge choice, the system described by

(1) contains an extra longitudinal degree of freedom, in
addition to the two transverse modes of a photon. The
longitudinal mode can be thought of as a collective low-
energy excitation of the charged ion background. Since we
have not introduced yet the neutralizing electrons in (1), the
spectrum of excitations is gapped by the parameter mγ. As
long as the latter is smaller than the inverse interparticle
distance, all three gapped modes can still be meaningfully
described by the low-energy Lagrangian.
We now introduce the electrons. Instead of writing an

effective Lagrangian for them, we use the fundamental
description in terms of the Dirac theory. This is justified;
the ions are much heavier than the electrons, and at energy
scales below the ion mass, their collective longitudinal
mode is captured into an effective Lagrangian (1), while the
electrons can be kept fundamental as long as they are
weakly interacting and as long as their loop effects will in
the end be taken into account (see below). Hence, the total
low-energy prototype Lagrangian for the electron-ion
system reads as follows:

L ¼ LA þ LF; LF ¼ ψ̄ði ~D −meÞψ : ð2Þ

Here we have introduced the chemical potential for the
electrons μe via the usual prescription on the covariant
derivative ~D0 ¼ D0 − iμe. We will also package the electric
and magnetic fields in a Lorentz-invariant Maxwell form,
with the Lorentz-breaking effects of the nuclei summarized
by m0 and mγ; this is pending additional Lorentz-violating
effects to arise due to the electrons. To account for the latter,
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we look at the contribution of the electrons to the
Lagrangian at the one-loop level, namely via the photon
self-energy Π̄μν. Then, the Lagrangian density for the
fluctuations in the quadratic approximation is given by

L ¼ −
1

4
F2
μν þ

1

2
m2

0A
2
0 −

1

2
m2

γA2
j þ

1

2
AμΠ̄μνAν: ð3Þ

Note that the inclusion of a one-loop expression for Π̄μν in
the effective Lagrangian (3) to determine the dispersion
relations yields the same results for the dispersion relations,
as if they were deduced from the poles of Green’s functions
in which the one-loop bubble diagrams have been
resummed (such a resummation is often referred as the
random phase approximation).
It will be convenient to work in the momentum space and

use the Fourier transform of Π̄μν that we denote byΠμν. Due
to the conservation of the fermion number and rotation
symmetry, Πμν can be expressed in terms of two functions,
Πðω; kÞ and Π⊥ðω; kÞ, where k ¼ j~kj, and takes the form

Πμν ¼

0
B@ Π ωkj

k2 Π
ωki
k2 Π

ω2kikj
k4 Π −

�
δij −

kikj
k2

�
Π⊥

1
CA: ð4Þ

If we decompose the photon into transverse, longitudinal,
and timelike components, A⊥

j , A
L, A0, the Lagrangian for

the transverse modes decouples from that of the longi-
tudinal and timelike components. In momentum space,
we have

L⊥ ¼ 1

2
A⊥
j ðω2 − k2 − Π⊥ −m2

γÞA⊥
j ; ð5Þ

LL
2 ¼ 1

2
ðA0ALÞ ·M ·

�
A0

AL

�
; ð6Þ

where

M¼

0
B@k2

�
1þ Π

k2

�
þm2

0 ωk
�
1þ Π

k2

�
ωk

�
1þ Π

k2

�
ω2

�
1þ Π

k2

�
−m2

γ

1
CA: ð7Þ

The dispersion relations of the two transverse modes are
clearly given by

ω2 − k2 − Π⊥ðω; kÞ −m2
γ ¼ 0: ð8Þ

The dispersion relations for the remaining modes are given
by the zeros of the determinant of the matrix M,

detM¼ ðm2
0ω

2 −m2
γk2Þ

�
1þΠðω; kÞ

k2

�
−m2

0m
2
γ ¼ 0. ð9Þ

If we were to neglect the contribution of the electrons, i.e.,
to setΠðω; kÞ ¼ Π⊥ðω; kÞ ¼ 0, we would find from (9) one
massive longitudinal mode

ω2ðk → 0Þ ¼ m2
γ ; ð10Þ

alongside with two massive transverse modes described by
(8). Let us see now how the effects of the electrons,
encoded in Πðω; kÞ and Π⊥ðω; kÞ, modify this spectrum.
The expression for the nonvacuum contribution to the

one-loop self-energy of the photon due to electrons at finite
chemical potential is standard and can be found, for
example, in Refs. [11,12]. In the approximation of small
ω and k as compared to the Fermi energy and momenta, and
for ω ≠ vFk, this expression is given by

Πðω; kÞ≃ e2μ2e
π2

�
1 −

1

2

ω

kvF
ln

�
ωþ kvF
ω − kvF

��
; ð11Þ

where the Fermi velocity vF is defined as vF ¼ kF=me. The
usual Debye screening mass is denoted by ms,

m2
s ≡ Πðω ¼ 0; k → 0Þ ¼ e2μ2e

π2
: ð12Þ

The above expression is for relativistic electrons, while in
the nonrelativistic case, one has m2

s ¼ e2mekF=π2.
Using Eq. (11), we can now check for both massive and

massless longitudinal modes. For massive modes, we take
k → 0 while keeping ω finite. We find

ω2ðk → 0Þ ¼ m2
γ þ

1

3
m2

sv2F: ð13Þ

Thus, the Debye screening mass contributes to the longi-
tudinal mode of the massive photon.
To check for a massless pole, we set ω ¼ xvFk and also

introduce the following notations:

a2 ≡ m2
γ

v2Fm
2
0

≡ v20
v2F

; b2 ≡ m2
γ

v2Fm
2
s
≡ v2s

v2F
: ð14Þ

We then take the k → 0 limit while keeping x fixed. Then,
detM ¼ 0 corresponds to

ðx2 − a2Þ
�
1 −

x
2
ln

�
xþ 1

x − 1

��
¼ b2: ð15Þ

The right-hand side of the above expression is clearly both
real and positive. Thus, in order for a solution to this
expression to exist, there must be some value of x, either
real or complex, for which the left-hand side is both real
and positive. We will investigate these solutions below.
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A. Zero sound

Consider real x that is also large, x ≫ 1. Then, Eq. (15)
takes the form

ðx2 − a2Þ
�
−

1

3x2
−

1

5x4
þ � � �

�
¼ b2;

and the solution is

x2 ≃ 5a2 − 3

15b2 þ 5
: ð16Þ

Our assumption of x ≫ 1 is valid as long as a ≫ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3b2

p
. In that case, x2 ≃ a2=ð1þ 3b2Þ, and the

dispersion relation for the massless mode is

ω≃ v0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3v2s=v2F

p : ð17Þ

Thus, the velocity of the massless mode (both phase and
group) is given by v0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3b2

p
. The mode exists when

v0 ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2F þ 3m2

γ=m2
s

q
, because only in that case x ≫ 1.

Furthermore, in our system of electrons and ions, vF ≫ vs,
and (17) can be approximated by the dispersion rela-
tion ω≃ v0k.
Note that the slope of the linear dispersion relation of

the mode (17) is larger than vF since x ≫ 1, and thus the
ωðkÞ line never intersects a region in which the near-
the-Fermi-surface modes live (see Fig. 1). Hence, dumping
of the mode into electron-hole pairs is negligible.
This excitation corresponds to the zero sound mode that

exists in interacting degenerate Fermi systems, e.g., in
repulsively interacting Fermi liquids and gases alike [13].
More will be said on this in the next section.

B. Ion acoustic wave

Let us now turn to the opposite regime, when x could be
complex but both its real and imaginary parts are small, i.e.,
x ≪ 1þ i1. In this case, we need to take into account that
the log entering (15) is a multivalued function in the
complex plane of its argument. Then, it is instructive to start
by proving that the Eq. (15) has no solutions on the first
Riemann sheet of the complex x-plane if jxj < 1.
To proceed with the proof, we introduce the definition

WðxÞ≡ ðx2 − a2Þ
�
1 −

x
2
ln

�
xþ 1

x − 1

��
: ð18Þ

Let us first consider the case in which x ∈ R and
−1 < x < 1. For this range of values, we can use the
following integral representation:

WðxÞ ¼ x2 − a2

2

Z þ1

−1
dz

z
z − x − iϵ

: ð19Þ

The epsilon prescription is given to recover the correct
imaginary part of ΠðxÞ,

ImWðxÞ ¼ x2 − a2

2

Z þ1

−1
dzzπδðz − xÞ;

¼ π

2
xðx2 − a2Þ: ð20Þ

We see that for these values of x,WðxÞ is complex, with the
exception of x ¼ a. However, at x ¼ a, we haveWðxÞ ¼ 0,
and thus these values of x do not contain a solution of (15).
For all other values of x, real or complex, we use the

following representation:

WðxÞ ¼ ðx2 − a2Þ
Z þ1

0

dz
z2

z2 − x2
: ð21Þ

For both real x and purely imaginary x, we see thatWðxÞ is
real. However, only when a > 1 can WðxÞ be positive and
thus solve (15).
Finally, we check for complex x. Setting x ¼ σ þ iβ,

with σ; β ∈ R and σ; β ≠ 0, and using the representation
(21), we find through some basic algebra that either
ImWðxÞ ≠ 0 or ReWðxÞ < 0. Thus, only in the case in
which a > 1 is WðxÞ both real and positive. Otherwise, we
cannot solve (15), and no massless pole exists on the first
Riemann sheet. This completes the proof.
Thus, we look for solutions on the second Riemann sheet

and rewrite the Eq. (15) in the following form:

ðx2 − a2Þ
�
1 −

x
2

�
ln

�
1þ x
1 − x

�
− iπ

��
¼ b2: ð22Þ

FIG. 1. Spectrum of longitudinal collective modes and particle-
hole excitations.
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In the approximation of small x, this has a solution:

x≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
− i

πb2

4
: ð23Þ

Thus, the physical mode at hand has the following
dispersion relation:

ω≃
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v20 þ v2s

q
− i

πv2s
4vF

�
k: ð24Þ

The sign of the imaginary parts above is such that the mode
is on the second Riemann sheet of the complex energy
plane. Thus, it is a resonance, with a momentum dependent
width. In what follows, wewill argue that this is nothing but
the ionic acoustic wave.
Consider the m0 → ∞ limit; the above mode does exist

in this limit, and its dispersion relation reads

ω ¼
�
vs − i

πv2s
4vF

�
k: ð25Þ

It is instructive to go back to the Lagrangian and calculate
the exact k dependence of the mode, not only its low k
limit. The m0 → ∞ limit settles us in the regime A0 ¼ 0.
The Lagrangian then takes the form

L ¼ 1

2
ð∂tAjÞ2 −

1

4
F2
ij −

1

2
m2

γA2
j þ

1

2
AiΠ̄ijAj: ð26Þ

This Lagrangian describes four degrees of freedom: two
massive helicity-1, one massive helicity-0, and one mass-
less helicity-0 states; the latter is the mode with the
dispersion relation (25). To see all this, we proceed by
splitting the transverse and longitudinal parts of Aj as
follows:

Aj ¼ A⊥
j þ ∂jπ

mγ
: ð27Þ

Upon this substitution, the Lagrangian splits into two
separate parts, one for A⊥

j ,

1

2
ð∂tA⊥

j Þ2 þ
1

4
A⊥
j ΔA⊥

j −
1

2
m2

γðA⊥
j Þ2 þ

1

2
A⊥
i Π̄ijA⊥

j ;

and one for π,

1

2

�∂t∂jπ

mγ

�
2

−
1

2
ð∂jπÞ2 −

ð∂tπÞΠ̄ð∂tπÞ
m2

γ
: ð28Þ

It is straightforward to see that the dispersion relations for
the two modes in A⊥

j are determined by

ω2⊥ ¼ k2 þm2
γ þ Π⊥ðω⊥; kÞ; ð29Þ

while the dispersion relations that follow from the
Lagrangian (28) are determined by the equation

ω2 ¼ m2
γk2

k2 þ Πðk;ωÞ : ð30Þ

In the absence of Π (i.e., if the electrons are assumed to be
frozen), we get from (30)

ω2 ¼ m2
γ ¼

Ze2J0
mH

: ð31Þ

The latter is a plasmon dispersion of a charged ion gas. In
this limit of “frozen” electrons (Π → 0), there is nothing to
compensate for a displaced change of ions upon their
perturbation, and therefore the mode is gapped. Note that in
the Π ¼ Π⊥ ¼ 0 limit the longitudinal and transverse
modes have the same gap, ωðk ¼ 0Þ ¼ ω⊥ðk ¼ 0Þ ¼ mγ ,
consistent with the rotation symmetry.
Once the dynamical electrons are returned back, then the

Lagrangian (28) and the dispersion relation (30) describe
two modes, one massive and one massless. Let us start with
the massive mode; taking k → 0 in (30) with fixed and
nonzero ω, we findΠ≃ −m2

sv2Fk
2=ð3ω2Þ and get a solution

ω2 ¼ m2
γ þm2

sv2F=3, which agrees with (13). The latter sets
the gap for the longitudinal photon.
For small ω and k, on the other hand, we get a massless

mode as follows: In this regime, the real part of Π,
ReΠ≃m2

s , and therefore the real part of the corresponding
dispersion relation reads

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γk2

k2 þm2
s

s
≃ vsk: ð32Þ

This dispersion relation coincides with the m0 → ∞ limit
of the one in (24), up to the imaginary part that can also be
straightforwardly recovered by keeping it in Π. Therefore,
this mode is an ion acoustic wave; sometimes it is also
referred as an ionic sound [14]. It corresponds to a
collective excitation of the ions and neutralizing fast
electrons, producing a gapless longitudinal mode.
A few comments before we turn to the next section. We

reiterate that the propagator in the considered regime has no
low-energy poles on the first Riemann sheet, neither real
nor complex ones. The obtained complex pole describing
the ionic sound is on the second sheet. The function that the
propagator is proportional to

1

ðx2 − a2ÞΠ −m2
γ

has a branch cut and exhibits a “bumplike” behavior for real
values of energy and momentum. Why does this mode have
a resonancelike nature? The reason is simple: The phase
velocity of the mode equals xvF, that is less than vF. The
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range of allowed energies of the electron-hole pairs near the
Fermi surface (depicted in Fig. 1) has the upper boundary
with the slope near the origin that equals vF. Thus, a wave
with the dispersion ω≃ xvFk would be damped due to
near-the-Fermi-surface excitations, as long as x < 1.
This also explains why this mode does not exist for

x ≫ 1. If it existed, it would have been faster than the near-
the-Fermi-surface excitations, which then would not be
able to catch up with the mode to give rise to a neutral
acoustic wave; instead, in the x ≫ 1 regime, only the zero
sound mode exists. Thus, the zero sound and ion acoustic
wave are complementary to each other.

III. PHASE FIELD AND LONGITUDINAL MODES

The derivations in the previous section were performed
in the unitary gauge; i.e., the phase of the charged
scalar field describing collective motion of the ions was
gauge fixed to zero. This was reflected in the gauge-
noninvariant terms in the Lagrangian (1). The latter was
regarded as a gauge-fixed version on a gauge-invariant
Lagrangian, obtained from (1) by a substitution, Aμ → Bμ≡
Aμ − ∂μα, with the unitary gauge corresponding to α ¼ 0. In
this section, we would like to keep nonzero α, but we use
instead the Coulomb gauge ∂jAj ¼ 0. This will enable us to
obtain and understand the results of the previous section in a
more clear way.

A. Warmup example

We start with a field theory containing a complex scalar
field, degenerate fermions, and an Abelian gauge field that
couples to both the scalar and fermions in a conventional
way. The charged scalar field is thought to model properties
of charged nuclei, while fermions model the electrons, and
the Abelian gauge boson models a photon. For illustrative
purposes, we consider the case when the Uð1Þ gauge
symmetry is spontaneously broken, and the gauge field
acquires the mass term as a result of this breaking.
Furthermore, we consider the parameter space for which
the scalar field radial mode is a heavy state that can be
decoupled from the rest of the fields. In this approximation,
and in the Coulomb gauge, the relevant part of the
Lagrangian reads as follows:

1

2
m2B2

μ þ
1

2
A0ð−Δþ Π̄ÞA0: ð33Þ

The first term is the gauge boson mass term, while the
second term contains a part of the Maxwell Lagrangian, as
well as the term generated due to one-loop renormalization
of the polarization operator via the fermion-antifermion
pair. These are all the terms in the Lagrangian that contain
A0 and α.

Integrating out A0, we get for m2 ≠ 0

A0 ¼
m2

ð−Δþm2 þ Π̄Þ ∂0α ð34Þ

[we neglect an irrelevant zero mode of the inverse of the
operator multiplying ∂0α on the right-hand side of (34)].
Substituting (34) back into the Lagrangian (33) and
calculating the dispersion relation for the remaining field
α, we obtain the following expression:

ω2
k2 þ Πðω; kÞ

k2 þ Πðω; kÞ þm2
¼ k2: ð35Þ

Letusnowstudy this relation in twodifferent regimes,x ≫ 1,
and x ≪ 1, where as before we introduceω ¼ xvFk. For the
x ≫ 1 case, one getsΠ≃ −m2

s=ð3x2Þ. Hence, the solution to
(35) reads

x2 ¼ 1

v2F þ 3m2=m2
s
: ð36Þ

When ms ≫ m and vF ≪ 1, we get the condition, x ≫ 1,
requiredby the approximationmade.Asper the argumentsof
the previous section, this is the dispersion relation of the zero
sound mode,

ω ¼ vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2F þ 3m2=m2

s

p k: ð37Þ

We see that in the Coulomb gauge the zero sound mode is
described by the phase α. Since x ≫ 1, the phase/group
velocity of thismode is greater thanvF, and hence, thismode
experiences no damping in the approximation we use.
In the opposite regime, x ≪ 1, the gapless mode does not

exist, as shown by reductio ad absurdum: Assuming that
x ≪ 1, one gets Π≃m2

sð1þOðxÞÞ, and the solution x ¼
v−1F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2=m2

sÞ
p

> 1, which contradicts the initial
assumption that x were small.
The lack of the ion sound wave in this model has a

reason: We used the approximation when the Lorentz-
invariant vacuum condensate of the charge scalar is the only
source for the mass term [the first term in (33)]; this implies
that the number of dynamical scalars that can fluctuate is
zero, in the approximation used (the Lorentz-invariant
Higgs vacuum has zero scalar number). Hence, one should
not expect to have the ion acoustic wave, in the approxi-
mation when the number of ions that can fluctuate is
ignored (the charge that neutralizes the electrons in this
approximation is not dynamical).

B. More realistic model

We now consider the case when the electric and magnetic
masses of the photon are different, and the phase is
explicitly kept, while the Coulomb gauge is assumed for
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Aj, as in the previous subsection. The relevant part of the
Lagrangian in this gauge then reads

1

2
ðm2

0B
2
0 −m2

γB2
jÞ þ

1

2
A0ð−Δþ Π̄ÞA0: ð38Þ

As before, we integrate out A0 to get

A0 ¼
m2

0

ð−Δþm2
0 þ Π̄Þ ∂0α: ð39Þ

Substituting this back into (38) and deducing the dispersion
relation for α, we obtain

ω2
k2 þ Πðω; kÞ

k2 þ Πðω; kÞ þm2
0

¼ v20k
2; v20 ≡

m2
γ

m2
0

: ð40Þ

In a realistic system such as a plasma and solid, m0 ≫ mγ ,
and the ion sound speed v0 ≪ 1.
For x ≫ 1, we know that Π≃ −m2

s=ð3x2Þ, and in this
approximation, the solution to (40) reads

x2 ¼ 1

v2F=v
2
0 þ 3m2

0=m
2
s
: ð41Þ

Hence, whenms > m0 and v0 ≫ vF, we get x ≫ 1, and the
zero sound dispersion relation

ω≃ vFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2F=v

2
0 þ 3m2

0=m
2
s

p k: ð42Þ

This coincides with the dispersion relations for the zero
sound mode found in (17).
Unlike in theprevious subsection,however, a solutionalso

exists in the opposite limit, x ≪ 1: Indeed, assuming that
x ≪ 1, one gets Π≃m2

sð1þOðxÞÞ and hence the solution
x ¼ v0

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

0=m
2
sÞ

p
, which, if v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þm2

0=m
2
sÞ

p
≪ vF,

gives rise to the following physical mode:

ω≃ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

0

m2
s

s
k: ð43Þ

This is nothingbut thedispersion relation for the longitudinal
ion sound wave discussed in Sec. II.
One can give heuristic arguments for the complemen-

tarity of the two modes that we have derived above. For
this, we consider the regime in which vs can be neglected as
compared with v0 and vF. This is a meaningful approxi-
mation for a plasma and crystal since mγ is suppressed by
the heavy ion mass scale, while ms is determined by the
electron mass and chemical potential. Then, the phase
velocity of both the zero sound mode and the ion acoustic
wave is approximately v0. When v0 ≪ vF, we get x ≪ 1,
and the ionic sound is present; this makes sense—the

electrons are faster than the wave, and thus they can readily
follow a perturbation of the ions to screen its charge and
create a gapless neutral mode, the ionic sound. In the
opposite limit, v0 ≫ vF, the electrons are slower than the
would-be ionic sound wave, and therefore they cannot be
effectively screening ion perturbations, and it makes sense
that the ion acoustic wave does not exist. Instead, the
electron fluctuations themselves—which are now effec-
tively screened by the ambient mobile ion charge distri-
bution—form a collective mode, the zero sound.
Having derived the dispersions relations, let us apply

them to the system of the oxygen and carbon ions at
densities ρ ∼ ð106–107Þ g=cm3. As we have already dis-
cussed, the corresponding Fermi momentum for the elec-
trons is pF ∼ ð0.3–0.9Þ MeV. Therefore, the electrons are
(nearly) relativistic, with vF ∼ 1, to a good accuracy. This
implies that the value of x given in (41) can never be greater
than the unity, since v0 < 1. Therefore, we conclude that
the zero sound cannot be supported in the cores of the O
and C WDs. Instead, the dominant longitudinal mode in
this case is the ion acoustic wave (43), with the sounds
speed approximated by v0 ≪ 1. The exact value of the
sound speed cannot be calculated in our effective
Lagrangian approach; however, our finding confirms the
suggestion made in Ref. [2] that a longitudinal wave, the
one that is similar to the longitudinal acoustic wave of a
crystal, can be used to study the cooling of the O and C
WDs even when the interior is in a strongly interacting
plasma state and the crystal is not yet formed [i.e., from
temperatures ða fewÞ × 107 K, down to ða fewÞ × 106 K,
after which the crystal forms].
As to the zero sound mode, its existence requires lower

densities. While WDs have fairly uniform density profiles
in their bulks (excluding their “atmospheres” that are
dominantly made of H and He, with some small fractions
of “metals”), nevertheless the interiors are not exactly
uniform. Typically, one can have variation of density
amounting to a factor of 5 in the ratio of the maximal
density to average density. Therefore, it might not be
foolish to think of relatively narrow spherical shells, away
from the cores of low density WDs, in which densities
might be ρ < 105 g=cm3. In such shells, the zero sound
mode could be supported instead of the ion acoustic wave.
It could also be interesting to look for the existence of the
zero sound mode in the low mass brown dwarfs [15], where
densities are ρ ∼ 103 g=cm3.

IV. CHARGED CONDENSATE

We now consider in detail the spectrum of the charged
condensate. We incorporate the effect of the background
density of electrons through their one-loop contribution to
the photon self-energy. An analogous approach was used in
Refs. [16,17] to determine the electrostatic potential of this
system at finite temperature. More recently, this approach
was applied in Ref. [8] to argue that the dynamical
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electrons give rise to a previously unnoticed massless
mode. Here we confirm this finding and argue that the
obtained massless mode is the ion acoustic wave discussed
in the previous section.
A classical nonzero vacuum expectation value of a field

Φ can serve as an order parameter for the condensation of
the helium-4 nuclei, describing a state with a large
occupation number. Fluctuations of the order parameter
describe the collective modes of the condensate. In the
nonrelativistic approximation, the effective Lagrangian for
the nuclei Φ and electrons ψ can be written as follows [6]:

L ¼ PðXÞ − 1

4
F2
μν þ ψ̄ðiD −meÞψ ; ð44Þ

where

X ¼ i
2
ðΦ�D0Φ − ðD0ΦÞ�ΦÞ −

jDjΦj2
2mH

: ð45Þ

The covariant derivative of the scalar field is given by
Dμ ¼ ∂μ − 2ieAμ. PðXÞ stands for a general polynomial
function of its argument. The coefficients of this poly-
nomial are dimensionful numbers that are inversely propor-
tional to powers of a short-distance cutoff of the effective
field theory. We normalize the first coefficient to 1 so that

PðXÞ ¼ X þ c2X2 þ � � � : ð46Þ

The Lagrangian is invariant under global Usð1Þ trans-
formations, responsible for the conservation of the number
of scalars. Another global Ueð1Þ guarantees the electron
number conservation. Accordingly, we can introduce
chemical potentials for both the scalars and electrons, μs
and μe, respectively, via the usual prescription on the
covariant derivative D0 → D0 − iμ.
We could also have included a quartic interaction for the

scalars λðΦ�ΦÞ2. However, as long as the quartic coupling
is small, λn ≪ m3

H, our results will not be affected by
this term.
It is useful to represent the scalar as Φ ¼ ΣeiΓ and to

work first in the unitary gauge where the phase of the scalar
is set to zero, Γ ¼ 0. At a later stage, we will move instead
to the Coulomb gauge where things will become easier.
When the scalar chemical potential is zero, μs ¼ 0, there

is a solution to the equations of motion of (44) with a
nonzero expectation value for the scalar field

hΣi ¼
ffiffiffiffiffi
J0
2

r
; ð47Þ

where J0 is the background electron density.
Let us consider the quadratic action around this back-

ground solution. We introduce perturbations of the scalar
field as follows:

ΣðxÞ ¼
ffiffiffiffiffi
J0
2

r
þ ffiffiffiffiffiffiffi

mH
p

τðxÞ: ð48Þ

The factor of
ffiffiffiffiffiffiffi
mH

p
has been introduced for convenience.

Let us also integrate out the electrons as was done in
Ref. [8]. Thus, the Lagrangian density for the fluctuations
in the quadratic approximation reads

L2 ¼ −
1

4
F2
μν þ

1

2
m2

0A
2
0 −

1

2
m2

γA2
j þ

1

2
AμΠμνAν

−
1

2
ð∂jτÞ2 þ 2mHmγA0τ: ð49Þ

Here

m2
γ ≡ ð2eÞ2 J0

2mH
; m2

0 ¼ c2J0mHm2
γ : ð50Þ

When the coefficient c2 is such that m0 ¼ mγ , the
dispersion relations coincide with those of a relativistic
theory; however, in general m0 ≠ mγ .

A. Spectrum in the unitary gauge

We now consider the spectrum of these fluctuations. We
decompose the photon into transverse, longitudinal, and
timelike components. In addition, let us also integrate out
the scalar mode τ so that we can easily compare our results
to those of the previous section. Again, the transverse
modes of the photon decouple entirely. Their dispersion
relations are given by

ω2 − k2 − Π⊥ðω; kÞ −m2
γ ¼ 0: ð51Þ

For the remaining modes, we have

LL
2 ¼ 1

2
ðA0ALÞ ·M ·

�
A0

AL

�
; ð52Þ

where now

M≡
0
B@ k2

�
1þ Π

k2

�
þ 4M4

k2 þm2
0 ωk

�
1þ Π

k2

�
ωk

�
1þ Π

k2

�
ω2

�
1þ Π

k2

�
−m2

γ

1
CA;

ð53Þ

with M≡ ffiffiffiffiffiffiffiffiffiffiffiffiffimγmH
p . The matrix M differs from the analo-

gous matrix in our prototype model only via the appearance
of the 4M4=k2 term.
The dispersion relations of these modes are again given

by the zeros of the determinant of the matrix M. To check
for the presence of massive modes, we use expression (11)
in the matrix (53) and take the k → 0 limit, keeping ω
finite. Setting detM ¼ 0, we find a massive mode,
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ω2ðk → 0Þ ¼ m2
γ þ

1

3
m2

sv2F: ð54Þ

This can be thought of as the mass of the longitudinal
component of the photon that now carries 3 degrees of
freedom. The mass receives two contributions, one from
the charged nuclei, m2

γ , and another one from charged
electrons, m2

sv2F=3. Hence, we find that the one-loop
contribution shifts up the mass of the longitudinal mode.
This mode was argued to be heavy to contribute to specific
heat of the charged condensate at relevant temperatures [6];
we see that the one-loop contribution makes it even heavier,
justifying further that it can be neglected.
To determine the possibility of a massless pole, we set

ω ¼ xvFk and then take the k → 0 limit. Then, detM ¼ 0
corresponds to

x2
�
1 −

x
2
ln

�
xþ 1

x − 1

��
¼ m2

γ

m2
s
: ð55Þ

Thus, we see that the charged condensate corresponds to
our prototype model of Sec. II in the particular case with
a ¼ 0. As argued above, there is a massless resonance

solution, with the dispersion relation ω≃ ðvs − i πv
2
s

4vF
Þk, in

agreement with Ref. [8]. This is also in agreement with the
dispersion relation obtained in Sec. II, describing the ion
acoustic wave in a plasma. In our view, this mode has the
same physical origin and interpretation as the ion sound
wave of ordinary degenerate plasma [14]. We further
strengthen this latter point in Sec. IV C by unveiling the
hydrodynamics origin of the ion acoustic wave in a charged
condensate.

B. Spectrum in the Coulomb gauge

Here, we derive the results of the previous subsection in
the Coulomb gauge. This makes the connection to the
calculations in the prototype model presented in Sec. III
clearer and helps to explain the origin of the ion sound
wave in the charged condensate.
As before, we use Bμ ¼ Aμ − ∂μα. The relevant part of

the Lagrangian in the Coulomb gauge reads as follows,

1

2
ðm̄0B2

0 −m2
γB2

jÞ þ
1

2
A0ð−Δþ Π̄ÞA0; ð56Þ

where the key difference from the model of Secs. II and III
is that electric mass in the charged condensate has essential
dependence on the momentum:

m̄0 ¼
�
m2

0 þ
4M4

−Δ

�
: ð57Þ

This suggests that for small momenta, we always end up in
the regime of large electric mass for the photon; as
discussed in Sec. II, this implies that the zero sound mode

will be absent, but the ionic acoustic wave should be
present, in agreement with the results of Sec. IVA. Let us
see this explicitly in the Coulomb gauge.
We first integrate out A0:

A0 ¼
m2

0

ð−Δþm2
0 þ 4M4

−Δ þ Π̄Þ ∂0α: ð58Þ

Substituting this back into the Lagrangian (56) and deduc-
ing the dispersion relation for α, we get

ω2
k2 þ Πðω; kÞ

k2 þ Πðω; kÞ þm2
0 þ 4M4

k2

¼ v20
m2

0

m2
0 þ 4M4

k2
k2: ð59Þ

As before, we use the notation ω ¼ xvFk. For both k and ω
approaching zero, we only get one dispersion relation, and
that is with x ≪ 1. This dispersion relation reads

ω≃mγ

ms
k: ð60Þ

This is the ionic acoustic wave, in agreement with pre-
viously obtained results.
A final comment before we move to the hydrodynamics

considerations. In the approach adopted above, the
fermions were treated in a one-loop approximation, while
the scalars were treated in terms of a low-energy effective
field theory. The quantum effects of the condensed scalars
were captured by the order parameter Lagrangian. It is
instructive to check that the same results are obtained if the
scalars are also treated via the one-loop calculations, as was
done in Refs. [16,17]. We briefly use this method in the
Coulomb gauge. Then, the poles of the full propagator are
determined by

k2 þ ΠBðω; kÞ þ Πðω; kÞ ¼ 0; ð61Þ

where the polarization operator for the bosons, ΠBðω; kÞ,
can be calculated straightforwardly via the corresponding
one-loop diagrams [16,17]. The part of the loops that is due
to the existence of the condensate reads as follows:

ΠBðω; kÞ ¼ m2
γ

2

� ð2mH − ωÞ2
ðω −mHÞ2 − k2 −m2

H

þ ð2mH þ ωÞ2
ðωþmHÞ2 − k2 −m2

H
− 2

�
: ð62Þ

Substituting this into (61) and taking the small momentum
limit, we get the pole at
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ω≃mγ

ms
k: ð63Þ

The latter coincides with the result already obtained
above (60).

C. Hydrodynamic considerations

The purpose of this subsection is to demonstrate that the
ionic sound found in the prototype model, as well as its
counterpart emerging in the charged condensate, can be
understood in terms of standard hydrodynamics, with the
only difference that the charged condensate hydrodynamics
equations need to retain the pressure gradient term even
when finite temperature effects are ignored, as will be
shown below.
We are looking at a degenerate plasma of electrons and

positively charged nuclei (or ions); as already mentioned,
depending on temperature T, the ion mass mH, and charge
Z, the system of nuclei could be in a classical gas state or
may create a Wigner crystal or may be in a condensed
quantum liquid state. In any case, at length scales much
greater than the inter-ion separation, the ion system may be
treated as a uniform substance described by an appropriate
equation of state. We would like to understand the spectrum
of long-wavelength longitudinal collective fluctuations in
this system.
Let us first ignore the temperature effects and consider

the case when the ions are in the plasma or crystal state. All
the hydrodynamic equations presented below for this case
are well known but are given to emphasize the difference of
these states from the charged condensate, to which we will
turn by the end of the section.
The continuity equations for the electron and ion

number densities—denoted, respectively, by ne and nH—
read as

∂tne;H þ ∂jðne;HvjÞ ¼ 0; ð64Þ

while the momentum equation for the ions is

∂tvj þ ðvk∂kÞvj ¼ −
Ze
mH

Ej: ð65Þ

Consider small localized perturbations, small overdensities
δne;H of the electrons and ions over their background values
set by J0 and J0=Z, respectively,

ne ¼ J0 þ δne; nH ¼ 1

Z
J0 þ δnH: ð66Þ

For both the plasma and crystal states at long wavelength,
the Poisson equation for the electrostatic potential created
by these perturbations reads as follows:

ΔA0 ¼ −ZeδnH þ eδne: ð67Þ

For simplicity, we consider relativistic electrons here. The
electron overdensity can be related to the local potential via
the Thomas-Fermi approximation,

EF ≡ μ ¼ −eA0 þ pF; ð68Þ

and using that ne ¼ p3
F=3π

2, we find

δne ≃ 3μ2eA0: ð69Þ
Substituting this expression into (67), one gets

ðΔ −m2
sÞA0 ¼ −ZeδnH; ð70Þ

where m2
s ≡ e2μ2=π2 is the Debye screening mass squared,

due to the electrons. We now look at the system of three
equations (64), (65), and (70) and consider their lineari-
zation above the background (bg) with

nbge ¼ J0; nbgH ¼ J0
Z
; Abg

0 ¼ 0; vbgj ¼ 0: ð71Þ

In the linearized equations, we transform to the Fourier
models for all perturbations, as for instance,

δneðx; tÞ ¼
Z

d3kdω ~δneðk;ωÞeiðωt−kjxjÞ: ð72Þ

As a result, we get the following dispersion relation from
the linearized system of equations (64), (65), and (70):

ω2 ¼ m2
γk2

k2 þm2
s
; where m2

γ ≡ ðZeÞ2ðJ0=ZÞ
mH

: ð73Þ

This describes a gapless collective mode; at small momen-
tum, the dispersion relations reads

ω≃mγ

ms
k; ð74Þ

that is the dispersion relations of the ion acoustic wave
(ionic sound) for plasma, while for a crystal it describes a
longitudinal acoustic phonon.
Things are a bit different, however, for the case of the

charged condensate. While the continuity and Poisson
equations remain unchanged, the momentum equation gets
modified due to the pressure term on the right-hand side;
this can be shown from the Lagrangian formulation of the
charged condensate given in Sec. IV (the pressure term
would certainly exist in ordinary plasma as a finite temper-
ature effect, but in charge condensate, it is nonzero even
when the finite temperature effects are ignored). The
corresponding momentum equation reads

∂tvj þ ðvk∂kÞvj ¼ −∂jb0 −
Ze
mH

Ej: ð75Þ
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The difference is due to the fact that a gradient of the
pressure is not negligible for perturbations in the charged
condensate; the respective term is kept as the first term
on the right-hand side in (75), and it is determined
by the gradient of the gauge-invariant potential, b0 ¼
ðm2

γ − 4M2=ΔÞδnH.
We now combine this new momentum equation (75)

with the Poisson (70) and continuity (64) equations and
easily derive the modified dispersion relation for the
longitudinal mode in the charged condensate:

ω2 ≃ k4

4m2
H
þ m2

γk2

k2 þm2
s
: ð76Þ

The result coincides with the real part of the dispersion
relation for the massless mode found in Ref. [8]. It also
coincides, in the low momentum approximation, with the
dispersion relations for the ion acoustic waves found in
Secs. II, III, and IV of the present work.
An important approximation made above is the Thomas-

Fermi method. This method will in general miss fermion
dynamics near the Fermi surface. In particular, as we see, it
does not capture the width of the ion acoustic wave due to
its dumping by the fermionic quasiparticles. However, this
effect was already taken into account by the one-loop
consideration in Ref. [8] and above in the present work.

V. OUTLOOK

White dwarf stars constitute interesting physical objects
and are also important for inferring key astrophysical and
cosmological data. The theory of cooling of O and CWDs
is well known [2] and agrees well with observations
[18,19]. While at temperatures above ∼107 K the ions can
be regarded as being in a classical gas state, and below
∼106 being in a bcc crystal state, between these two
temperatures—from ∼107 K, down to ∼106 K—one is
dealing with a strongly interacting plasma of ions that is
not easy to study using fundamental electromagnetic
interactions. Instead, we used an effective Lagrangian
approach that is in general well suited to study long-
wavelength excitations, even for strongly interacting
systems. Our finding of the absence of the zero sound
mode, and the presence of the longitudinal ion acoustic

wave in the interacting plasma regime, confirms a sug-
gestion made in Ref. [2] that the longitudinal acoustic
wave can be used to describe physics of WDs in this
interval of temperatures where neither gas nor crystal
descriptions are valid.
As to the zero sound mode, its existence requires

somewhat lower densities, ρ < 105 g=cm3. While WDs
have fairly uniform density profiles in their interiors, they
are not exactly uniform and are described by an adiabatic
equation of state. Thus, the density can vary from the core
to the outskirts of the bulk by a factor of 5 or more.
Therefore, there might exist a subclass of low density WDs,
with relatively narrow spherical shells away from the cores,
in which densities might be ρ < 105 g=cm3; if so, then the
zero sound mode could be supported in those domains
instead of the ion acoustic wave. It could also be interesting
to see if the zero sound mode could be supported in the low
mass brown dwarfs stars studied in Ref. [15], where
densities are ρ ∼ 103 g=cm3.
Finally, the interaction between the electrons due to the

exchange of the zero sound mode (or the ion acoustic wave)
would be strong if the momentum transfer in the two-by-
two electron scattering amplitude is near the pole of the
zero sound (or the ion acoustic wave), i.e., is at ω≃ xvFk,
with x ≫ 1 (or with x ≪ 1 for the ion acoustic wave). This
interaction, if attractive for a certain domain of momenta,
might lead to the formation of bound states, or loosely
bound states such as Cooper pairs. While naive kinematical
arguments suggest that the momentum transfer is not close
to the zero sound pole as long as x ≫ 1 (or with x ≪ 1 for
the ion acoustic wave), the issue needs careful study,
presumably via the Schwinger-Dyson equation, to see if
such interactions can be used to trigger Cooper instability
and produce a gap of a physically meaningful magnitude.
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