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We present a method for detection and reconstruction of the gravitational wave (GW) transients with the
networks of advanced detectors. Originally designed to search for transients with the initial GW detectors,
it uses significantly improved algorithms, which enhance both the low-latency searches with rapid
localization of GWevents for the electromagnetic follow-up and high confidence detection of a broad range
of the transient GW sources. In this paper, we present the analytic framework of the method. Following a
short description of the core analysis algorithms, we introduce a novel approach to the reconstruction of the
GW polarization from a pattern of detector responses to a GW signal. This polarization pattern is a unique
signature of an arbitrary GW signal that can be measured independently from the other source parameters.
The polarization measurements enable rapid reconstruction of the GW waveforms, sky localization, and
helps identification of the source origin.
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I. INTRODUCTION

Advanced LIGO detectors [1] have started their oper-
ation at unprecedented sensitivity, targeting first detection
of gravitational waves from astrophysical sources. A more
robust detection of gravitational waves is anticipated in the
next few years as the advanced LIGO reaches its designed
sensitivity and the other advanced detectors Virgo [2],
Kagra [3], and LIGO-India [4] come online. Numerous
gravitational wave (GW) signals expected to be observed
by the advanced detectors (∼40 binary neutron star and
possible black hole mergers per year [5]) will begin our
exploration of the gravitational wave sky and start the era of
the gravitational wave astronomy.
The advanced detectors target the detection of GW tran-

sients for a wide range of promising astrophysical sources
including various types of gamma-ray bursts, core-collapse
supernovae, soft-gamma repeaters, cosmic strings, late inspiral
and mergers of compact binaries, ringdowns of perturbed
neutron stars or black holes, and as-yet-unknown systems.
Most of these sources are difficult to model due to their
complicated dynamics and because the equation of state of
matter at neutron star densities is not known. Therefore, the
search algorithms have been developed [6–9] for detection of
GW transients or bursts of GW radiation in the detector
bandwidth with no or little assumptions on the sourcemodels.
There are two different ways the GW searches are

conducted: in real time and searches on the archived data.

The objective of the real-time burst search is the identi-
fication and reconstruction of significant event candidates
with low latency (within a few minutes). The reconstructed
sky location can be promptly shared with the partner
telescopes, which search for a coincident electromagnetic
(EM) counterpart [10,11]. A prominent source for such
joint observation is a merger of compact binary objects
where one of the companions (or both) is a neutron star.
Such mergers may produce several EM signals: gamma-ray
busts (GRBs), GRB afterglow, kilonova, etc., which will
fade away with the time scales ranging from seconds to
days [12]. A small fraction of such mergers (when the GRB
beam is pointing at us) can be independently detected by
the gamma-ray telescopes and associated with a GW signal
by the time of the event. However, most of the compact
binary mergers require a prompt sky localization with the
GW detectors and follow-up EM searches for possible
afterglow. Similar observations can be performed for the
galactic events such as supernovae or soft-gamma repeat-
ers, which may produce both the EM and neutrino counter-
parts. On the contrary, the objective of the archived burst
analysis is to establish a significance of observed events
and identify their progenitors. Such analysis requires detail
background studies and accurate reconstruction of the
source parameters, which may not be readily available
with low latency.
Both types of searches and the sky localization studies

have been performed with the baseline burst algorithm
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Coherent WaveBurst (CWB) [6] used in the analysis of data
from the initial instruments [13–18]. In this paper, we
describe the improvements of the CWB algorithm, which is
currently used both for the real-time burst search and
several archived searches with the networks of advanced
detectors. This second-generation CWB algorithm includes
several novelties. The time-frequency analysis has been
updated with a novel time-frequency transform [19], which
improved the waveform reconstruction. It also significantly
improved the computational performance of the algorithm,
enabling a robust low-latency operation. The data con-
ditioning (whitening, removal of the spectral artifacts, etc.)
has been enhanced with the data regression algorithms [20].
Fast reconstruction of the chirp mass [21] has been
introduced to enable rapid identification of the compact
binary coalescence sources. The extensive sky localization
studies have been performed [22].
In this paper, we focus on the CWB analytic framework

enhanced with a novel method for reconstruction of the
GW polarization from the pattern of detector responses to a
GW signal. It significantly simplifies the solution of the
inverse problem in the burst analysis and enables weakly
modeled burst searches with the polarization constraints.
The paper is organized as follows. Section II gives

introduction into the coherent network analysis required to
introduce in Sec. III the dual stream likelihood analysis and
the polarization pattern. In Sec. IV we describe how it can
be used to construct network regulators—the model-
independent constraints used in the CWB analysis.

II. OVERVIEW

Data from a network of K detectors are presented as
discrete series xk½i� in the most general time-frequency (TF)
domain, where k is the detector index in the network, and i
is the data sampling (TF pixel) index. The real TF series
xk½i� is obtained from the detector time series with the
Wilson-Daubechies-Meyer (WDM) transform [19]. The
data are conditioned to remove spectral features, such as
violin, power, and mechanical lines [20].
A detector noise (assuming to be Gaussian) is described

by the WDM power spectral density Sk½i� estimated for
every data sample. Therefore, Sk½i� is a TF series as well,
which is convenient for the characterization of a quasista-
tionary noise typical for real detectors. The noise-scaled
(whitened) data are defined as wk½i� ¼ xk½i�=

ffiffiffiffiffiffiffiffiffi
Sk½i�

p
.

The whitened TS series from all detectors are combined
to obtain the energy TF maps E½i� ¼ P

kw
2
k½i�, where E½i�

are maximized over all possible time-of-flight delays in the
network. The energy maps are used to identify TF areas
(cluster C, i ∈ C) with the excess energy above the baseline
detector noise. The TF clusters identified with an appro-
priate clustering algorithm define the burst events, which
are analyzed to extract the signal waveform, polarization,
and sky location (inverse problem).

A. Formulation of the inverse problem for bursts

The data vector x½i� ¼ fx1½i�;…; xK½i�g recorded by a
network of GW detectors at the time of a gravitational wave
signal h½i� ¼ ½hþ½i�; h×½i�� with the source sky location at θ
and ϕ is a superposition of the network response Fh½i� and
noise n½i�:

x½i� ¼ Fh½i� þ n½i�; ð2:1Þ

where the hþ and h× are the amplitudes of the two GW
polarization components, and F is the network antenna
pattern matrix

F ¼

2
64
F1þðθ;ϕÞ F1×ðθ;ϕÞ

� � � � � �
FKþðθ;ϕÞ FK×ðθ;ϕÞ

3
75: ð2:2Þ

The antenna patterns often include a transformation by the
polarization angle Ψ. But this transformation is equivalent
to a rotation of the wave frame where the vector h is
defined. The network response is Ψ invariant, and, there-
fore, the polarization angle can be included in the definition
of h.
To solve the inverse problem, one should find the

amplitudes of the GW polarization components ðhþ; h×Þ
and the sky coordinates ðθ;ϕÞ from a coincident output of
several GW detectors. Initially, this problem was consid-
ered by Gürsel and Tinto [23] for a network of three
detectors. A more solid statistical foundation of the
problem was presented by Flanagan and Hughes [24],
who considered a likelihood method for the estimation of
the signal parameters. They define the likelihood ratio

Λðx;ΩÞ ¼ pðxjhðΩÞÞ
pðxj0Þ ; ð2:3Þ

whereΩ is a parameter set describing the signal, the pðxj0Þ
is the joint probability that the data are only instrumental
noise, and pðxjhÞ is the joint probability that a GW signal
h is present in the data x. The sample index i is omitted to
stress that i ∈ C, where C is a collection of the TF pixels
(cluster).
The explicit form of the likelihood ratio is determined by

the noise model pðxj0Þ and by the signal model hðΩÞ.
For unmodeled burst signals, Ω ¼ ðhþ; h×; θ;ϕÞ, which
can be found by analytical or numerical variation of Λ.
The advantage of the likelihood method is that it allows
introduction of the signal and noise models and can be
applied to an arbitrary detector network.

B. Unconstrained likelihood analysis

This section presents the solution of the inverse problem
assuming that the burst parameter set Ω is not constrained
by a source model, and the noise of detectors in the network
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is quasistationary and Gaussian with the power spectral
densities S1;…; SK . The noise-scaled data vector is then

w½i� ¼ x1½i; τ1ðθ;ϕÞ�ffiffiffiffiffiffiffiffiffi
S1½i�

p ;…;
xK½i; τKðθ;ϕÞ�ffiffiffiffiffiffiffiffiffiffi

SK½i�
p ; ð2:4Þ

where the detector amplitudes xk½i; τkðθ;ϕÞ� take into
account the time-of-flight delays τk depending upon the
source coordinates θ and ϕ. Respectively, the noise-scaled
network response vector is

ξ½i� ¼ F½i�h½i�; ð2:5Þ

where F½i� is the noise-scaled antenna pattern matrix

F½i� ¼

2
664

F1þðθ;ϕÞffiffiffiffiffiffiffi
S1½i�

p F1×ðθ;ϕÞffiffiffiffiffiffiffi
S1½i�

p
� � � � � �

FKþðθ;ϕÞffiffiffiffiffiffiffi
SK ½i�

p FK×ðθ;ϕÞffiffiffiffiffiffiffi
SK ½i�

p

3
775: ð2:6Þ

We also introduce the network matrix f, which is obtained
from F by the transformation to the dominant polarization
frame (DPF) introduced by Klimenko et al. [25].
The likelihood functional L is defined as twice the

logarithm of the likelihood ratio Λ,

L½h� ¼ 2ðwjξÞ − ðξjξÞ; ð2:7Þ

where the inner products ðwjξÞ and ðξjξÞ are calculated over
the TF cluster.
The solution for the GW waveforms h is found by

variation of the likelihood functionalℒ½h�. It is convenient
to introduce the antenna pattern vectors fþ and f×, which
are simply the columns of the matrix f and satisfy the DPF
conventions: ðfþ · f×Þ ¼ 0 and jf×j ≤ jfþj. These two
vectors define a network plane where the GW response
vector ξ must be located. The likelihood variation gives a
system of linear equations for the amplitudes hþ½i� and
h×½i� (also defined in the DPF)

� ðw½i� · eþ½i�Þ
ðw½i� · e×½i�Þ

�
¼

� jfþ½i�j 0

0 jf×½i�j

��
hþ½i�
h×½i�

�
; ð2:8Þ

where eþ and e× are the unit vectors along fþ and f×,
respectively. Note, the 2 × 2matrix in Eq. (2.8) characterizes
the network sensitivity to the two GW polarizations. The
maximum likelihood ratio statistic is calculated by substitut-
ing the solutions into L½h�. The result can be written as

Lmax ¼
X
i∈C

w½i�P½i�wT ½i�; ð2:9Þ

where the matrix P is the projection constructed from the
components of the unit vectors eþ and e×:

Pnm½i� ¼ enþ½i�emþ½i� þ en×½i�em×½i�: ð2:10Þ
The kernel of the projection P is the network plane defined
by these two vectors. The null space of the projection P
defines the residual detector noise, which is referred to as the
null stream.

C. Reconstructed network response

The maximum likelihood ratio statistic Lmax is a quad-
ratic form [see Eq. (2.9)], which can be split into the
incoherent Ei and coherent Ec parts

Ei ¼
X
i∈C

X
n

wn½i�Pnn½i�wn½i�; ð2:11Þ

Ec ¼
X
i∈C

X
n≠m

wn½i�Pnm½i�wm½i�: ð2:12Þ

These coherent statistics, together with the energy of the
null stream En, are widely used in the burst searches for
the construction of the event selection cuts. For example,
the network correlation coefficient [6]

cc ¼ Ec=ðjEcj þ EnÞ ð2:13Þ
provides a powerful event consistency test to distinguish
genuine GWevents (cc ∼ 1) from spurious events (cc ≪ 1)
produced by the detectors. The statistic Ec (coherent
energy) is particularly important because it depends on
the cross-correlation terms between the detector pairs. It is
used for the construction of the burst detection statistic

ηc ¼ ðccEcK=ðK − 1ÞÞ1=2; ð2:14Þ
which is an estimator of the network coherent signal-to-
noise ratio for correlated GW signals recorded by different
detectors.
The coherent statistics are very beneficial for the burst

analysis, provided they are correctly constructed to address
the “two-detector paradox” [26]. Namely, for any network
of two detectors, the cross terms of the projection operator
Pnm½i� [Eq. (2.10)] are always equal to zero, or Ec ¼ 0.
Clearly, for two coaligned detectors with the identical
detector responses, this is not true, which constitutes the
two-detector paradox.
The origin of the two-detector paradox is the ambiguity

of the projection operator. The likelihood Lmax is invariant
with respect to the rotation in the network plane where any
two orthogonal unit vectors can be used for the construction
of the projection Pnm½i�. Therefore, we select two such unit
vectors u½i� and v½i� that the likelihood component corre-
sponding to the vector v½i� vanishes, and the projection
Pnmðv½i�Þ can be omitted. The Lmax and the coherent
statistics are given by the projection

Pnmðu½i�Þ ¼ un½i�um½i�; ð2:15Þ
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which resolves the two-detector paradox. The vectors u½i�
define the reconstructed network response

ξr½i� ¼ ðw½i� · u½i�Þu½i�; ð2:16Þ

whose components are the unconstrained likelihood
estimators of the noise-scaled detector responses.

III. DUAL STREAM LIKELIHOOD ANALYSIS

As defined in Sec. II, a network noise-scaled data stream
isw. Additionally, a quadrature data stream ~w is used. It can
be obtained from the original detector data, which is phase
shifted by −90°. The data (w, ~w) define the network dual
data stream conveniently provided by the WDM transform:
applied to the detector time series, it generates both data
streams. For the unmodeled reconstruction (see Sec. II B),
the analysis can be performed individually for each data
stream resulting in the likelihood statistics Lmax and ~Lmax.
Formally, the quadrature data stream does not contain
any new information, nevertheless, Lmax ≠ ~Lmax. This is
because for a given time-frequency cluster, the quadrature
counterparts may have different contributions both from the
signal and noise. Therefore, the inclusion of the quadrature
stream can improve the collection of the signal energy and,
respectively, improve the reconstruction. Also, the dual
data stream is required for the inclusion of the signal
polarization models into the analysis.

A. Phase transformation

Each dual data stream sample is presented by the data
vectors w½i� and ~w½i�. We define a phase transformation to
calculate the amplitudes for an arbitrary phase shift λi:

w0½i� ¼ w½i� cos λi þ ~w½i� sin λi; ð3:1Þ

~w0½i� ¼ ~w½i� cos λi − w½i� sin λi; ð3:2Þ

where the individual phase shift λi is applied to each data
sample. In the likelihood functional, the same transforma-
tion should be applied to the detector responses ξ½i� and ~ξ½i�.
The quadrature likelihood functionals L and ~L,

L½h� ¼ 2ðwjξÞ − ðξjξÞ; ð3:3Þ

~L½h� ¼ 2ð ~wj~ξÞ − ð~ξj~ξÞ ð3:4Þ

vary as the phase transformation is applied; however, the
total likelihood L∘ ¼ Lþ ~L is the phase invariant. There
are several distinct phase transformations, two of which are
considered below.
In the orthogonal phase transformation (OPT), the phase

shift is selected such that the network responses ξ0½i� and
~ξ0½i� in the network plane become orthogonal to each other.

The OPT pattern is used for calculation of dual stream
coherent statistics in Sec. IVA.
The polarization phase transformation (PPT) is defined

by the scalar products of the network response and the
antenna pattern vectors

cos λi ∝ ðξ½i� · eþ½i�Þ; sin λi ∝ ð~ξ½i� · eþ½i�Þ: ð3:5Þ

The purpose of the phase transformations is to obtain the
signal polarization patterns. Namely, the wave polarization
is captured by the network as a distinct pattern of the GW
responses in the network plane, which is revealed when a
particular phase transformation is applied.

B. Polarization pattern

To describe the polarization state of a generic GW signal,
the following parametrization of the wave is used:

ξ ¼ hFþðψÞ þ eHF×ðψÞ; ð3:6Þ

~ξ ¼ −HFþðψÞ þ ehF×ðψÞ; ð3:7Þ

where the instantaneous parameters of the signal are as
follows: h and H are the strain amplitudes, ψ is the
polarization angle, and e is the wave ellipticity. Here
and below in the text, we omit the sample index i. In
general, these are the ad hoc wave parameters; however,
they can be related to the astrophysical wave parameters as
described in Sec. III C. For this particular convention, the ξ
and ~ξ are the 0°-phase and −90°-phase network responses,
and the sign of e defines the wave chirality or the sign of the
quadruple product ½ξ × ~ξ� · ½FþðψÞ × F×ðψÞ�. The antenna
pattern vectors FþðψÞ and F×ðψÞ are related to the DPF
vectors fþ and f×,

FþðψÞ ¼ fþ cosðγÞ − f× sinðγÞ; ð3:8Þ

F×ðψÞ ¼ f× cosðγÞ þ fþ sinðγÞ; ð3:9Þ

where γ ¼ Ψ − ψ , andΨ is the DPF angle. The PPT pattern
is obtained by application of the transformation (3.5) to the
vectors ðξ; ~ξÞ (3.6) and (3.7). The resulting PPT pattern is
described by the following tree vectors oriented along the
fþ and f×:

ξþ ¼ fþh∘βþðe; γÞ; ð3:10Þ

ξ× ¼ −f×h∘ 1 − e2

2
sinð2γÞβ−1þ ðe; γÞ; ð3:11Þ

~ξ× ¼ f×eh∘β−1þ ðe; γÞ; ð3:12Þ

where h∘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þH2

p
is the wave amplitude and
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β�ðe; γÞ ¼
1ffiffiffi
2

p ½1þ e2 � ð1 − e2Þ cosð2γÞ�1=2: ð3:13Þ

The product h∘βþðe; γÞ is the norm of sinðλiÞ and cosðλiÞ in
Eq. (3.5). The vectors ξþ and ξ× describe the 0°-phase
network response, and the vector ~ξ× describes the
−90°-phase network response. By measuring these three
vectors for each network data sample, the instantaneous
signal parameters ho, e, and ψ can be determined.
For a given GW event, the collection of vectors

fξþ; ξ×; ~ξ×g describes its unique polarization pattern.
Figure 1 shows the examples of the polarization patterns.
However, this pattern can be significantly distorted by the
network. For example, the detector noise adds random
vectors to the GW responses and randomizes the polari-
zation patterns for a weak GW signal. Also, the measured
polarization pattern strongly depends on the network
alignment factor: α ¼ jf×j=jfþj. For any practical network
α < 1; therefore, the polarization pattern is always distorted
(biased) by the network. The bias correction is straightfor-
ward; however, it becomes increasingly inaccurate when
α ≪ 1. When α ¼ 0, only the ξþ vector can be measured
regardless of what the GW polarization state is. Namely, the
original GW polarization cannot be reconstructed from
such pattern of the network responses. The network of
LIGO detectors has α ≪ 1 for a significant fraction of the
sky (see top of Fig. 2).
Therefore, in most cases the polarization state of a GW

signal cannot be measured. To improve the polarization
coverage, one has to increase the alignment factor by
adding more detectors to the network with optimally
oriented detector arms (see bottom of Fig. 2). The full
polarization coverage is achieved when α is close to unity,
which greatly improves and simplifies the reconstruction.
In this case, the polarization state of an arbitrary GW signal
can be unambiguously identified from the pattern of the
network responses in the network plane. Also, a more
complete polarization coverage helps reconstruction of the
sky coordinates and other source parameters.

C. Polarization constraints

The wave parameters e½i� and ψ ½i� describe the polari-
zation pattern. In some cases, they can be related to the
astrophysical source parameters. In this section, we explic-
itly use the sample index i to demonstrate that the event
parameter may vary during its time-frequency evolution.
For example, for binary systems, e½i� are defined by the
inclination angle of the source, and ψ ½i� are defined by the
polarization angle. The parameters e½i� and ψ ½i� can be
constrained when sources with a certain polarization state
are considered. For unmodeled signals, all e½i� and ψ ½i� are
free parameters, or, in other words, the wave polarization is
random (r waves). In this case, the solution for the network
responses has been already described in the previous
section. By imposing constraints on e½i� and ψ ½i�, the r

waves can be divided into subclasses with more definite
polarization states. For example, most GW signals should
produce patterns with fixed chirality (all e½i� > 0 or all
e½i� < 0). Therefore, the vectors ~ξ× can be constrained to

FIG. 1. Polarization patterns (from top to bottom) for waves with
circular, elliptical, linear, and random polarization, before (left
plots) and after (right plots) the PPT is applied. Dots of two different
colors represent the orientation and amplitude of the 0°-phase (blue)
and −90°-phase (red) response vectors originating at zero. The
network antenna vectors form the coordinate frame with f× and
fþ pointing along the vertical and horizontal axis, respectively.
The patterns are calculated for a sky location where jf×j ≈ jfþj.
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have the same chirality (ι waves). A more narrow subclass
of ι waves is nonprecessing binary systems, where the
parameters e½i� are related to the inclination angle of the
source and, therefore, e½i� ¼ const. The angles ψ ½i� define
the orientation of the reconstructed response vectors in the
network plane. Assuming that the parameters e½i� are free,
the constraint ψ ½i� ¼ const describes a particular class of
GW signals with the same direction of the network
response vectors (Ψ waves). The elliptical, linear, and
circular waves are defined when both angles e½i� and ψ ½i�
are constrained. The constraints for the ι waves and Ψ
waves and their combinations characterizing different
polarization models are summarized in Table I.

The simplest solution is for the waves with the circular
polarization: e½i� ¼ �1. A less strict (loose) circular polari-
zation constraint is when ξ× ¼ 0. In this case, the network
responses are defined by the vectors ξþ and ~ξ×, and the
condition e½i� ¼ �1 is not enforced. For linear waves,
e½i� ¼ 0 and all 0°-phase response vectors are coaligned, or
ψ ½i� ¼ const. Respectively, a less strict (loose) linear
polarization constraint is defined by the condition ~ξ× ¼
0 when the condition ψ ½i� ¼ const is not enforced. The
polarization constraints can be used to construct weakly
modeled burst searches targeting broad classes of GW
transients. The ι-wave constraint can be applied to any
rotating source. The elliptical, circular, and the ψ-wave
constraints can be used to search for compact binary
sources with different spin configurations.

D. Likelihood solutions

The solution for the wave parameters h∘, e, and ψ , and,
hence, the waveforms ξ and ~ξ, can be obtained by
maximizing the likelihood functional in Eqs. (3.3) and
(3.4). For the unconstraints case when all the wave
parameters are free, it is straightforward to show that the
solutions for the network responses are given by the
projections of the data vectors (w, ~w) on the network
plane. As described above, the unmodeled burst analysis
can be constrained to search for GW signals with various
polarization states. In the general case, the constrained
likelihood problem is hard to solve analytically, and the
numerical solutions are computationally prohibitive. To
solve this problem, we apply the phase transformation in
Eq. (3.5) to the data vectors w and ~w. This transformation
reveals the underlying polarization pattern fwþ;w×; ~w×g
smeared by the detector noise. The detector responses can
be reconstructed directly from this pattern. The solutions
for different polarization states can be obtained by impos-
ing the polarization constraints in Table I. As follows from
Eqs. (3.10)–(3.12), for linear (e ¼ 0) and circular (e� 1)
waves, the components ~ξ× ¼ 0 and ξ× ¼ 0, respectively.
Therefore, the reconstructed responses for the loose linear
polarization constraint are (ξþ ¼ wþ, ξ× ¼ w×, ~ξ× ¼ 0)
and for the loose circular polarization constraint they are
(ξþ ¼ wþ, ξ× ¼ 0, ~ξ× ¼ ~w×). The solution for linear waves
is (ξþ ¼ pþ, ξ× ¼ p×, ~ξ× ¼ 0), where the p’s are the
projections of wþ þ w× on their average vector. The
analytic solutions for the other polarization constraints
are straightforward to find, and we present them here. Such
significant simplification of the inverse problem is possible
due to the polarization transformations introduced in this
paper. It enables rapid searches over the entire sky and
reconstruction of source coordinates in real time.

E. Sky localization

As described in Sec. II B, the maximum likelihood and
other coherent statistics are functions of the sky coordinates
θ and ϕ. They are sensitive to the arrival time of a GW

FIG. 2. The distribution of α over the sky for the Livingston-
Hanford network (top), Livingston-Hanford-Virgo (middle), and
Livingston-Hanford-Virgo-LIGO-India-Kagra (bottom). The de-
tector site locations and the orientations of the arms are shown on
the map. The LIGO-India location is just an example: there is no
official site yet.
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signal at the detector sites and can be used for the source
localization. The reconstructed source location is defined at
the maximum of the likelihood statistic Lmaxðθ;ϕÞ or the
sky statistic

Lskyðθ;ϕÞ ¼ ccðθ;ϕÞLmaxðθ;ϕÞ: ð3:14Þ
The Lsky statistic has better performance than Lmax for
networks with two detectors, and both statistics have
comparable performance for larger networks. The proba-
bility distribution over the sky is calculated as

Pskyðθ;ϕÞ ∝ ðjfþj2 þ jf×j2Þn exp
�
S − S∘
2σ2s

�
; ð3:15Þ

where S is either Lmax or Lsky, S∘ is the maximum of S in
the sky, and σs is the scaling parameter close to unity.

The parameter n ¼ 2 invokes the antenna pattern prior
function used for networks with two detectors. For n ¼ 0,
the prior is not used. The scaling parameter σs could vary
depending on the network and used to calibrate the
probability Psky, so it correctly represents the fraction of
sources found in a given error region. Figure 3 shows the
sky localization performance of the advanced Livingston-
Hanford-Virgo network for a population of simulated
signals expected from mergers of compact binary sources.
It is characterized by the median search area defined as the
size of the error region in the sky containing 50% of
sources. Also, Fig. 3 shows that the ψ-wave constraint
significantly improves the source localization. This is an
expected improvement for the sky localization constrained
by the source models [27]. Of course, any modeled sky
localization can be biased when the model does not
accurately match the observation. However, the ψ-wave
constraint uses a very general assumption about the
compact binary sources, and no significant bias is expected.

IV. NETWORK CONSTRAINTS

The polarization constraints should be distinguished
from the network constraints (or regulators), which give
a model-independent way to constrain the wave parameters
ho½i�, ψ ½i�, and e½i�. The main purpose of the regulators is to
eliminate unlikely solutions of the likelihood functional
and, therefore, reduce the false alarm rates due to the
instrumental and environmental artifacts in the data. The
first network regulators were introduced by Klimenko et al.
[25] to utilize the network properties in the likelihood
analysis. Depending on the configuration, detector
noise, and sky location, the detector network may have
much lower sensitivity to the second GW component:
jf×j ≪ jfþj. In this case, most of the network SNR is
produced by the fþ response [see Eq. (2.8)]. The f×
network response is likely to yield low SNR and, therefore,
may not be reconstructed from the noisy data. Such a priori
knowledge can be used in the analysis to constrain the
likelihood solutions and reduce the number of free param-
eters in the wave model.

A. Network and event index

The weight of each detector in the network is defined by
its noise-scaled response [Eq. (2.5)]. Depending on the
spectral characteristics of the detector noise and the source
sky location, the detector can be a key player in the network
or just a spectator. The detector role varies from event to
event and with time, depending on the run conditions. The
quality of the network depends on how many detectors can
contribute to the measurement. It is characterized by the
network index

In ¼
jfþj2 þ jf×j2

jfþj2νðeþÞ þ jf×j2νðe×Þ
; ð4:1Þ

FIG. 3. Fraction of sources (vertical axis) reconstructed by the
advanced Livingston-Hanford-Virgo network (at designed sensi-
tivity) within the error region in square degrees (horizontal axis:
the legend shows the median search area) for a simulated
population of binary black holes: uniform in volume distribution
with component masses between 15 and 25 solar mass and spin
parameter between 0 and 0.9.

TABLE I. The constraints on e (first column), ψ (second
column), and the pattern vector (third column). The correspond-
ing polarization states are shown in the last column.

e constraint ψ constraint
Pattern

constraint
Polarization

state

� � � � � � � � � r waves
signðe½i�Þ ¼ const � � � � � � ι waves
� � � ψ ½i� ¼ const � � � ψ waves
e½i� ¼ const ψ ½i� ¼ const � � � Elliptical
e½i� ¼ 0 ψ ½i� ¼ const � � � Linear
� � � � � � ~ξ× ¼ 0 Loose linear
e½i� ¼ �1 � � � � � � Circular
� � � � � � ξ× ¼ 0 Loose circular
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where νðeÞ ¼ P
ke

4
k for any unit vector e. The network

index is distributed between 1 and K representing the
effective number of detectors available for the measure-
ment. It is useful to introduce also the event index

Ie ¼
jξ0j2 þ j~ξ0j2

jξ0j2νðuÞ þ j~ξ0j2νðvÞ ; ð4:2Þ

where the unit vectors u and v are along the OPT vectors ξ0
and ~ξ0, respectively (see Sec. III A). The event index
represents the effective number of coincident detectors
participating in the measurement. Usually, a low value of Ie
or a significant difference between In and Ie is an indication
of a spurious event produced by the detector noise.
Note, for calculation of the event index and the other

coherent statistics, the reconstructed responses should be
transformed to the OPT pattern fξ0; ~ξ0g, where the vectors u
and v are orthogonal. They define the projection operators
PnmðuÞ and PnmðvÞ, respectively [see Eq. (2.15)]. The
coherent statistics (2.11) and (2.12) are calculated individu-
ally for the 0°-phase and −90°-phase data and combined
together.

B. Regulators

As prescribed by the unconstrained likelihood analysis,
the orientation of the reconstructed response ξ is always
along the unit vector u [see Eq. (2.16)]. However, when
jf×j ¼ 0, which is the case for detectors with coaligned
arms, the true network response must be pointing along the
vector fþ. Therefore, instead of the vector u, the unity
vector along fþ must be selected for the projection. This
constitutes the hard regulator, which constrains the like-
lihood analysis to ignore the × response of the network.
This and several other regulators have been used to analyze
data collected by the initial LIGO and Virgo detectors.
Given a network of detectors, in some cases it is possible

to predict the distributions of the wave parameters and
anticipated network responses to a generic GW signal. The
polarization transformation significantly simplifies the
construction of regulators. After substituting the left side
of Eqs. (3.10)–(3.12) with the data pattern vectors
fwþ;w×; ~w×g, we obtain the following identities

α2jwþj2 ¼ jf×j2h2∘β2þðe; γÞ; ð4:3Þ

jw×j2 þ j ~w×j2 ¼ jf×j2h2∘β2−ðe; γÞ; ð4:4Þ

−αðw× · e×Þjwþj ¼ jf×j2h2∘
1 − e2

2
sinð2γÞ; ð4:5Þ

αð ~w× · e×Þjwþj ¼ jf×j2h2∘e ð4:6Þ

that can be solved for e and sinðγÞ. As prescribed by
Eqs. (3.11) and (3.12), the responses ξ× and ~ξ× vanish when
sinðγÞ → 0 and e → 0, respectively. Figure 4 shows the

distributions of the reconstructed e and sinðγÞ for the noise
and signal, and the Livingston-Hanford network. Unlike
the signal, the noise is clustering at low values of e and
sinðγÞ. The noisy data can be identified by the regulator

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ sin2ðγÞ

q
ð4:7Þ

when Γ is below some threshold Γo. For appropriately
selected Γo, the regulator identifies data pixels with the
marginal signal components ξ× and ~ξ× and zeroes them.
The regulated responses (ξþ ¼ wþ, ξ× ¼ 0, ~ξ× ¼ 0) are

FIG. 4. Distribution of e and sinðγÞ for the Livingston-Hanford
network obtained from the simulation of a single-pixel events
uniformly distributed over the sky. The top plot is for Gaussian
noise, and the bottom plot is for the signal with the random
polarization.
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biased: a small fraction of events can be misreconstructed
and excluded from the analysis. Despite this relatively
small (and controlled) loss, the regulator otherwise is very
efficient in reducing the false alarm rates (FAR) due to
spurious events, with a typical reduction factor of ∼10−6. It
entirely eliminates the single detector FAR and signifi-
cantly suppresses FAR from the accidental coincident
events produced by the detector pairs. To further reduce
the double coincidence FAR, we introduce the second
regulator, which utilizes the network and the event indexes

Δ ¼ I−1e − αjνðeþÞ − νðe×Þj: ð4:8Þ
The condition Δ > 0.5 is used to identify the situation
when two or fewer detectors are used in the measurement.
In this case, the reconstructed responses are constrained to
be (ξþ ¼ wþ, ξ× ¼ 0, ~ξ× ¼ ~w×). Both regulators can be
used to constrain the detector networks when either the
network alignment coverage is insufficient or the effective
number of detectors is fewer than two.

V. CONCLUSION

In this paper, we present the improved analytic frame-
work of the CWB analysis algorithm. The objective of this
analysis is the detection and reconstruction of unmodeled
GW transients. It is achieved by solving the burst inverse
problem—reconstruction of the signal waveforms, wave
polarization, and the sky coordinates of the source. The
reconstruction is performed by using the likelihood for-
malism with the signal waveforms as free parameters. The
waveforms can be described with the wave parameters and
constrained, which enable a range of weakly modeled burst
searches. The likelihood analysis yields a number of
detection statistics used for the ranking of detected events

(the network coherent SNR), the rejection of background
events (the network correlation coefficient), and for the sky
localization.
The novelty of this paper is in the introduction of the

polarization patterns. By imposing a simple phase trans-
formation to the network data, a characteristic pattern
emerges revealing the polarization state of an arbitrary
GW signal. This unique signature of the signal can be
measured independently from the other source parameters.
The polarization transformation significantly simplifies the
solution of the inverse problem: the detector responses can
be reconstructed directly from the pattern. The polarization
constraints can be imposed, which enable weakly modeled
burst searches. The reconstruction is computationally
efficient allowing for rapid searches over the entire sky
and the reconstruction of source coordinates in real time
with a few minutes latency. We also identify factors
limiting reconstruction and how the polarization measure-
ments are affected by the network. A simple metric (net-
work alignment factor α) determines the network ability to
capture polarizations. The network of LIGO and Virgo
detectors has a low alignment coverage for a significant
fraction of the sky. Therefore, in most cases, the polariza-
tion state of a weak GW signal cannot be measured. Adding
Kagra and LIGO-India detectors to the advanced network
will significantly improve the alignment coverage and,
hence, the reconstruction of the signal parameters.
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