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Beginning from the Ashtekar formulation of general relativity, we derive a physical Hamiltonian written
in terms of (classical) loop gravity variables. This is done by defining the gravitational fields within a
complex of three-dimensional cells and imposing that curvature and torsion vanish within each cell. The
resulting theory is holographic, with the bulk dynamics being captured completely by degrees of freedom
living on cell boundaries. Quantization is readily obtainable by existing methods.
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I. INTRODUCTION

The strong equivalence principle is one of the building
blocks of general relativity (GR). It implies that an
appropriate diffeomorphism can make spacetime flat at
any point, while it remains generally curved elsewhere.
This classical notion of locality, however, is thought to
extend only up to the Planck scale where various
approaches to quantum gravity [1–6] suggest that a discrete
spacetime structure emerges. The main challenge facing all
of these programs is to develop a complete, self-consistent
quantum dynamics that agrees with GR in the classical
limit. This is the “bottom-up” view. Here we take the “top-
down” view more in line with [7], beginning from the
continuous theory to first derive a discrete, dynamical
theory of GR before constructing the quantum theory [8].
The main idea is to extend local flatness to small but finite
“cells” of space, over small (continuous) time intervals, and
to impose this explicitly within the canonical formalism
of GR.
We define spatial hypersurfaces in terms of an arbi-

trary number of three-dimensional cells, constraining the
geometrical fields to be intrinsically and extrinsically flat
within each cell. This method yields an invertible map
from the continuous to a discrete phase space written in
terms of holonomy-flux variables for loop gravity [9].
These parametrize equivalence classes of continuous,
piecewise-flat spatial hypersurfaces in terms of finite
degrees of freedom (DOF), in a way which reproduces
the full class of spatial hypersurfaces as the number of
cells grows large [10]. On the reduced phase space the
bulk terms of the canonical action vanish, leaving a
discrete theory written in terms of holonomies and fluxes
on cell boundaries. Maintaining a continuous geometry
dynamically completely fixes the gauge, thereby provid-
ing a physical Hamiltonian. The result is a discrete theory
of gravity, equivalent to GR in the continuum limit,
and suitable for canonical quantization in terms of

the operators and Hilbert space of loop quantum gravity
(LQG).

II. CONVENTIONS AND NOTATION

We use suð2Þ basis elements τi (for i ¼ 1, 2, 3) which
are given by −i=2 times the Pauli matrices. We define a
trace notation such that TrðτiτjÞ≡ −2traceðτiτjÞ ¼ δij,
and a bracket ½·; ·� which implies taking the suð2Þ com-
mutator and wedge product between entries. Elements v ∈
suð2Þ are written in a bold font where v≡ viτi, and suð2Þ
indices are all written “up” for convenience (since the
Cartan-Killing metric is the Kronecker delta). Elements of
suð2Þ represent vectors in R3 via vi ≡ TrðτivÞ, and we
define the modulus jvj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðvvÞp
.

III. CONTINUOUS HAMILTONIAN

A Hamiltonian for GR may be written in terms of the
Ashtekar variables ðA;EÞ [11]. The momentum two-form,
or “electric field,” E describes the intrinsic geometry of
spatial hypersurfaces, being given in terms of the frame-
field e according to E ¼ 1

2
½e; e�. The configuration variable

is the connection one-form A. It contains both intrinsic and
extrinsic information, being given by A ¼ Γþ iK, where K
is the extrinsic curvature and Γ is the (torsion-free) Levi-
Cività connection.
At this point, let us consider the fields to be defined on a

single simply connected three-manifold c which has a
closed boundary ∂c. The fields ðA;EÞ together with the
manifold c define a spatial hypersurface of spacetime. We
begin by analyzing ðA;EÞ within a single cell c, before
discussing how to glue multiple cells together later on.
The canonical action I ¼ Ω −H is composed of the

symplectic term Ω and the Hamiltonian H. The symplectic
term is given by

Ω ¼ i
Z
c
Tr _A∧E; ð1Þ

which implies that ðA;EÞ form a conjugate pair of phase
space variables. The Hamiltonian is a sum of the scalar,
vector and Gauss constraints:
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S½N� þ V½ξ� ¼ Tr
Z
c
ðN1þ ξÞe∧F; ð2aÞ

G½λ� ¼ Tr
Z
c
λdAE; ð2bÞ

where N, ξ and λ are Lagrange multipliers, 1 is the 2 × 2

identity matrix, and F≡ dAþ 1
2
½A;A� is the curvature of

the Ashtekar connection. The scalar constraint generates
dynamics, the vector constraint generates diffeomorphisms
and the Gauss constraint generates SU(2) gauge trans-
formations. The fields ðA;EÞ and Hamiltonian (2) define
GR with vanishing cosmological constant.
In order that the variational principal be well defined, we

add the following boundary terms to the Hamiltonian:

SB½N� þ VB½ξ� ¼ Tr
Z
∂c
ðN1þ ξÞe∧A; ð3Þ

GB½λ� ¼ −Tr
Z
∂c
λE; ð4Þ

and place boundary conditions on the electric field as
follows. Points in c are labeled by a chart x, and for
simplicity we choose this to be a set of Cartesian coor-
dinates in which c takes the form of a tetrahedron. This
shape has no meaning—the physically meaningful geom-
etry is that described by EðxÞ which defines the spatial
metric. We want this physical geometry to be a tetrahedron
as well, but it is important to keep in mind that the
tetrahedron defined by EðxÞ is generally different than
the one described by the chart x. In order that E describe a
tetrahedron, we impose the boundary condition that E be
constant along each face. The value of this constant is left
free, which leaves three DOF in E per face and allows the
faces to move. This boundary dynamics is our main result
and is developed in the remainder of the article.

IV. BOUNDARY THEORY

We now present a parametrization in which the canonical
action vanishes within c and leaves a boundary theory on
∂c. After studying a single three-manifold c, we sub-
sequently consider a collection of these cells which are
glued together to form a larger composite three-manifold
that is not simply connected. In the end we arrive at a
physical Hamiltonian describing the full dynamics of such
a spatial hypersurface, parametrized completely by DOF on
the cell boundaries ∂c.

A. Kinematics

We impose constraints such that ðA;EÞ describe an
intrinsically and extrinsically flat geometry, as in the “flat
cell gauge” of [9] which was further studied in [12]. In
terms of our phase space, this flatness implies [9] that
the connection is flat F ¼ 0 and its torsion vanishes:

T ≡ deþ ½A; e� ¼ 0. With these conditions the fields sat-
isfy the constraints (2a), (2b) and therefore provide initial
data for GR.
The solution to F ¼ T ¼ 0 is given in terms of an

algebra-valued “coordinate” function y and a group-valued
“rotation” function a:

A ¼ a−1da; e ¼ a−1dya: ð5Þ

The rotation function aðxÞ is a holonomy defining parallel
transport from some basepoint to any other point x ∈ c
along an arbitrary path [13]. The coordinate function y
defines the intrinsic geometry of c.
In order to develop an invertible map between the

continuous variables ðA;EÞ and the discrete boundary
variables defined below, we choose a specific representa-
tive of the solutions (5) by defining ða; yÞ as follows. We
choose each function yiðt; xÞ to be linear in x so that the
coordinate function provides a different, time dependant
chart in which c appears as a tetrahedron. We also fix y ¼ 0
at the barycenter so that the tetrahedron is uniquely defined
in terms of y-coordinates. Notice that c may change shape
according to _y, while it is static in terms of the chart x.
To define the rotation function, we must first define some

further structure. Consider a subdivision of c into four
tetrahedron-shaped regions rf, where each face f is the base
of a subtetrahedron, and the barycenter n is at its apex [14].
Now consider a one-parameter family of two-surfaces
labeled by constant values of φðxÞ such that φ ¼ 0 is
the union of “lateral” faces (the faces which intersect at n)
and φ ¼ 1 is the face f. Notice however that φðxÞ is
multiply defined on edges (or “bones,” in analogy with
Regge geometry [15] of the tetrahedron).
In order to make φ well defined, we excise the bones as

follows. Consider a cylinder of radius ϵ with a bone b along
the axis, parametrized by angular and longitudinal coor-
dinates ðϕ; zÞ. The boundary is defined in the limit of ϵ → 0
by keeping the angular points distinct [16]. This “smears”
out the values of φ over the boundary ∂b so that it is now
well defined, varying as one travels around ∂b.
The bones are to be seen as topological defects, and must

remain one-dimensional in terms of y-coordinates. This
requires the following boundary condition [17,18]:

∂φyj∂b ¼ 0: ð6Þ

Nowwe are ready to define the rotation function. Using a
bump function fðφÞ and a “twist” parameter pfðtÞwe define
aðxÞ for all x in rf as

aðt;φÞ ¼ exp
�
pfðtÞ

Z
φ

0

d ~φfð ~φÞ
�
; ð7Þ

for any point in a region rf. Notice that path-ordering is not
required since pf is constant in x. Due to the properties of a
bump function, one can see that the connection is smooth
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everywhere in c and vanishes on faces. Since the chart x is
time independent, the entire dynamics of a is contained
within the twist parameters.
The excision defined above is key for two reasons: (1) it

allows curvature to be supported on bones while the fields
ðA;EÞ remain well defined everywhere else; (2) treating
these sources of curvature as topological defects prevents
the curvature from spreading out as time evolves, so that the
construction is preserved dynamically.

B. Reduction

The discrete boundary theory is obtained by evaluating
the continuous canonical action on fields of the form (5).
Maintaining these conditions throughout the evolution
fixes the Lagrange multipliers, up to undetermined con-
stants, in terms of ða; yÞ and ð _a; _yÞ. The fully determined,
nonconstant parts describe the local diffeomorphisms and
rotations necessary to preserve the form of ða; yÞ given
above. The undetermined components are written as N̄,
a−1λ̄a and a−1ξ̄a where an overbar denotes a constant;
these determine global transformations over c and will be
fixed in the subsequent section.
Let us now impose (5) within the theory by direct

substitution in the canonical action. One finds that the
terms (2a), (2b) each vanish identically, while the sym-
plectic term vanishes in the bulk but leaves behind a
boundary contribution [9,10]:

Ω ¼ −iTr
X
f

h−1f _hfXf: ð8Þ

The four pairs ðhf;XfÞ are a discrete set of boundary
variables:

hf ≡ a−1ðxÞ; Xf ≡ 1

2

Z
f
½dy; dy�; ð9Þ

for any point x on f. Each holonomy hf defines parallel
transport from a face f to the basepoint n. Each “flux” Xf
defines a vector normal to f with a modulus equal to the
area. The geometry of the tetrahedron c is determined by
these four fluxes.
The discrete variables ðhf;XfÞ parametrize a phase space

[19] on each face with the following Poisson algebra:

fhf; hf0g ¼ 0; fXi
f ; X

j
f0g ¼ iδff0ϵijkXk

f ; ð10Þ

fhf; Xi
f0g ¼ iδff0τihf; ð11Þ

where f and f0 are any two faces on the boundary ∂c.
Let us now turn to the boundary terms. The fully

determined parts of the multipliers lead to terms which
do not contribute to the discrete theory. By direct calcu-
lation, the undetermined components yield for (4)

GB½λ̄� ¼ −Trλ̄
X
f

Xf: ð12Þ

This is the well-known discrete Gauss (or closure) con-
straint which tells us that the fluxes add up to zero, as
required for a closed two-surface.
Looking at the boundary terms (3), we find that these

vanish on faces because A is constant along each face.
On the two-surface ∂b surrounding each bone however, we
find

SB½N̄� þ VB½ξ̄� ¼ TrðN1þ ξ̄Þ
X
f

X
b∶∂b∩f≠0

qbpf: ð13Þ

The first sum is over faces, and the second is over bones
which intersect a face. This simple form is obtained using
that

Z
∂b∩rf

dφ∂φaa−1 ¼ pf; ð14Þ

and defining a vector

qb≔
Z
∂b∩rf

dz∂zy; ð15Þ

which gives the length and orientation of the bone.
In order to make use of (13) in the boundary theory, we

need to write it in terms of the phase space variables
ðhf;XfÞ. This is possible because of the way in which the
fields ða; yÞ have been defined. The qb define edges of a
tetrahedron, and these can be written explicitly in terms of
fluxes Xf using simple geometrical arguments. For the
twists, note that an element of the group SU(2) is the
exponential of an suð2Þ algebra element hf ¼ epf , where pf
defines an angle jpfj and axis of rotation. This map is
invertible for 0 ≤ jpfj < 2π.
The canonical theory for ðA;EÞ in c has been expressed

entirely in terms of four sets of boundary variables ðhf;XfÞ.
This discrete theory has the following Hamiltonian:

Hc ¼ SB½N̄� þ VB½ξ̄� þGB½λ̄�; ð16Þ

where each term is given above in (12), (13); the vectors qb
are explicit functions of fluxes, and the twists pf are explicit
functions of the holonomies. At any given time, knowing
the holonomies and fluxes allows one to unambiguously
determine fields ðA;EÞ from (5), using the fact that yi are
Cartesian coordinates for c with yi ¼ 0 at the barycenter,
and a is given by (7). Therefore, evolution in the bulk is
completely determined by (16) in this reduced theory.
For a single manifold c, the holographic correspondence

described above holds for any choice of multipliers
ðN̄; ξ̄; λ̄Þ which are spatially constant in c. In the next
section we glue many c’s together to form a larger space.
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Requiring that the resulting geometry be continuous at all
times fixes the value of each multiplier, within each c.
In the boundary theory, variables ðhf; XfÞ are associated

to each of the four faces in ∂c, giving 6 × 4 ¼ 24
(complex-valued) DOF. These are subject to the (first
class) closure constraint which removes six DOF and
leaves 18 phase space DOF to describe the evolution. It
is interesting that this is the same number of DOF that the
Ashtekar variables possess at each point in the continuous
theory, before taking gauge freedom into account. This
suggests an analogy between points in the continuous
theory and cells in the discrete theory.

V. GLUING

We now generalize to the case where c is but one of
many cells in a CW complex [20], each constructed in the
manner described above. In order that the fields ðA;EÞ
describe a continuous geometry throughout the complex,
certain gluing conditions must hold so that the triangles
shared by adjacent tetrahedra match up. These are gauge
conditions, and as we will see, maintaining these conditions
dynamically fixes a unique solution for ðN; ξ̄; λ̄Þ. We refer
the reader to [18] for a more detailed description (with
illustrations) of a similar gluing in two dimensions, with the
caveat that there are important differences due to the trivial
nature of three-dimensional gravity.
To keep the presentation simple, let us consider a CW

complex with only two cells c and c0, where each face
f ∈ ∂c is identified with a face f0 ∈ ∂c0. The results
presented below generalize to an arbitrary number of cells.
Within each cell the fields satisfy F ¼ T ¼ 0, and the

solution is given in terms of local functions ðac; ycÞ and
ðac0 ; yc0 Þ. In order that the geometry be continuous, both
cells must agree on the value of E at each shared face. From
the form of E given by (5), this implies that differentials of
the coordinate functions must agree, up to a rotation, as one
approaches each face from either side. This provides four
conditions, one for each face. Note that as one approaches a
face, A goes to zero and E goes to a constant. This implies
that all derivatives of the fields vanish on both sides of each
face, so that the resulting geometry is smooth over the
entire cell complex (with bones excised).
Matching E across a face implies that the flux Xf as seen

from c is related to the flux Xf0 seen from c0 by

Xf ¼ −gfXf0g−1f : ð17Þ

This “gluing” condition fixes the areas of f and f0 to be
equal, i.e., jXfj ¼ jXf0 j. The relative orientation is a free
variable gf ¼ h−1f hf0 describing parallel transport from c to
c0 through the face f≡ f0. It is important to note that (17)
combines ðhf;XfÞ and ðhf0 ;Xf0 Þ into a single phase
space parametrized by ðXf; gfÞ, with the same Poisson
brackets [9,10].

Although the areas of each identified pair ðf; f0Þ are now
set equal, the shapes are generally different, so at this point
we have a (discontinuous) “twisted” geometry [21]. To
obtain a continuous geometry we must also impose shape-
matching conditions [22] which identify angles shared by f
and f0 so that the triangles represented by each face are the
same. With these conditions and (17), the fluxes now define
a spatial Regge geometry.
Let us count the number of shape-matching conditions

needed on this two-cell CW complex. A single tetrahedron
is defined by six parameters, so six conditions in total are
needed to give each tetrahedron the same shape. We have
given four above in (17) to match the areas, so we require
two shape-matching conditions to obtain a unique shape for
each face in the two-cell CW complex.
With the gluing and shape-matching conditions we have

obtained a smooth geometry everywhere on the CW com-
plex, except the bones which we excise from the spatial
hypersurface. Each tetrahedron-shaped cell is parametrized
by ðhf;XfÞ subject to these conditions and the closure
constraint. The dynamics is generated by a Hamiltonian
(16) local to each cell, which can be written explicitly in
terms of the holonomy-flux variables defining each cell.
The number of DOF remaining after gluing are counted

as follows. Consider two (so far unglued) cells for a total of
eight faces, with a six parameter phase space ðhf;XfÞ on
each face. We must then subtract: two closure constraints
(one for each cell), four gluing conditions (one for each pair
of faces), and two shape-matching conditions (one for each
cell). The closure constraints and gluing conditions each
contain three equations while shape matching is a single
equation; each equation removes a pair of phase space
DOF. Considering all of this, the total DOF are
6 × ð8 − 2 − 4Þ − 2 × 2 ¼ 8. For an arbitrary number of
cells one finds four DOF per cell, the same number of
physical DOF as GR has per point.
The previous paragraph implies that gluing cells together

to form a continuous geometry completely reduces the
theory. The covariantly constant parts ðNc; ξ̄c; λ̄cÞ of the
Lagrange multipliers must then have been fixed by the
gluing and shape-matching conditions. The equations
which do so come from the time derivatives of these
conditions, using the Hamiltonian equations of motion for
_Xf and _hf. In the two-cell complex these total 14 equations,
linear in ðNc; ξ̄c; λ̄cÞ, exactly fix these 14 multipliers. For an
arbitrary number of cells, one obtains seven equations per
cell to fix seven multipliers per cell. Note that these
solutions are highly nonlocal, involving data from every
cell in the complex.

VI. DISCUSSION

We have obtained a discrete Hamiltonian for gravity
from a reduction of the continuous theory. Beginning from
the Ashtekar variables ðA;EÞ for canonical GR, we reduced
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to fields which are flat and torsion free in a piecewise
manner, satisfying F ¼ T ¼ 0 within each cell of a CW
complex. For such a geometry, curvature and torsion have
support only upon the one-skeleton, i.e., the bones. Gluing
the cells together to form a continuous spatial geometry,
and maintaining continuity at all times, gives conditions
which completely fix the Lagrange multipliers. This yields
a physical Hamiltonian (16) which generates dynamics in
the discrete phase space. The resulting theory is not an
approximation, but rather an exact description of dynami-
cal, piecewise-flat and piecewise-torsion-free geometries.
The piecewise-flat geometries constructed here are a

subset of initial data for a smooth Einstein gravity, as there
are in a given cell solutions of the constraints which are not
gauge equivalent to a flat geometry. This is a particularly
useful subset however, since in the limit of many cells [10]
this discrete parametrization in terms of ðhf;XfÞ can
approach any point in the continuous phase space
ðA;EÞ. In other words, such discrete geometries can
approximate any continuum geometry up to arbitrarily
small length scales. This is evident in the correspondence
between the number of DOF attributed to cells in the
discrete theory and points in the continuum theory.

The discrete theory is written within the holonomy-flux
phase space of loop gravity, from which the Hilbert space
and operators of LQG [3] can be constructed. These well-
established techniques can be readily applied here—the
new feature is a Hamiltonian operator coming from
the quantization of (16). To help develop this operator,
the discrete theory serves as a valuable consistency check
since the quantum dynamics must reproduce the classical
dynamics in the ℏ → 0 limit. Considering then that the
discrete phase space in the continuum limit (when the
number of cells grows large) describes the usual spatial
geometries for canonical GR, quantization of the discrete
theory is a promising avenue toward quantum gravity.
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