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Evaluation of the angular distribution function of particles scattered in an amorphous medium is
improved by deforming the integration path in the Fourier integral representation into the complex plane.
That allows us to present the distribution function as a sum of two positive components, soft and hard, the
soft component being close to a Gaussian, and the hard component vanishing in the forward direction,
while including the Rutherford asymptotics and all the power corrections to it at large scattering angles.
Detailed properties of these components, and their interplay at intermediate deflection angles are discussed.
Comparison with the Molière theory is given.
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I. INTRODUCTION

At passage of ultrarelativistic charged particles through
amorphous matter, they undergo multiple, essentially uncor-
related scattering on atoms, typically through small angles. If
the target is not too thick, the longitudinal momentum of a
high-energyparticlemaybe regarded as conserved.Then, the
transport equation depends only on the particle deflection
angles, and is exactly solvable by means of Fourier trans-
formation [1]. However, conditions of multiple Coulomb
scattering on screened atomic nuclei may require one to
separately treat hard and soft contributions to the distribution
function, as was first pointed out by Williams [2]. That
separationwas cast in the formof a large-thickness expansion
by Molière [3,4], subsequently reviewed by Bethe [5], and
nowadays is recognized as a standard procedure (see [6–8]).
In modern practice, yet a simplified approach is applied at
times, retaining only the Gaussian component with the root
mean square angle inferred fromGaussian fits [9], or derived
analytically from the Molère theory [10]. But in high-
statistics experiments, non-Gaussian “wings” are noticeable
even for rather thick targets.
Although Molière’s expansion provides a formal back-

ground for the theory, from the physical point of view it is
not completely satisfactory. It is known that, in principle, it
does not converge (see, e.g., [11]), and yet, is comprised of
oscillatory functions of deflection angles, which do not
admit independent probabilistic interpretation. At the same
time, there were recent phenomenological indications that
beyond the central Gaussian region, the distribution func-
tion does not immediately switch to the asymptotic power
law corresponding to single scattering, but exhibits some
transient behavior over a sizable range of angles [12,13].
In case such a transition region does exist, the best option

to compute within it the distribution function would
be to resum all the non-Gaussian (at least, power-law)

contributions through all orders, as is done in other physical
problems (see, e.g., [14]). That typically leads to integral
representations for resummed quantities. But in the present
case, one can employ to this end amethod [5,6], in which the
original Fourier integral representation for the distribution
function is extended into the complex plane, and two
principally different (vertical and horizontal) parts of the
integration path are distinguished. That method so far has
never developed to a procedure superior to Molière’s
expansion; nonetheless, with some improvements, it can
be raised to that status, and provide a different view on
behavior of the angular distribution beyond the central
region. The key notion here is that integrals over the
mentioned parts of the path appear to be positive, and
therefore may be interpreted as hard and soft scattering
components, coexisting at any scattering angle. Comparison
of those components will allow us to determine the width of
the transition region between Gaussian and Rutherford
regions in the aggregate distribution, and assess the signifi-
cance of resummation of all the plural hard-scattering
contributions.

II. PRELIMINARY CONSIDERATIONS

A. Fourier-Bessel solution of the transport equation

The probability distribution of fast particles scattered
through small angles θ in an amorphous medium,
fðθ; lÞ ¼ dw

d2θ, is governed by the transport equation

∂f
∂l ¼ n

Z
dσðχÞ½fðθ − χ ; lÞ − fðθ; lÞ�; ð1Þ

where dσðχÞ ¼ d2χ dσ
d2χ is the differential cross-section of

particle scattering on one atom through angle χ, n is the
density of atoms in the medium, and l the traversed target
thickness. Equation (1) conserves the normalization:

Z
d2θfðθ; lÞ ¼ 1. ð2Þ
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Solution of Eq. (1) satisfying the initial condition
fðθ; 0Þ ¼ δðθÞ is obtained by means of Fourier-Bessel
transformation:

fðθ; lÞ ¼
Z

d2ρ
ð2πÞ2 e

iρ·θ−nl
R

dσðχÞð1−e−iρ·χ Þ ð3aÞ

≡ 1

2π

Z
∞

0

dρρJ0ðρθÞe−nl
R

dσðχÞ½1−J0ðρχÞ�: ð3bÞ

In some applications, one may be concerned rather with
the projected angle distribution, which is given by a
1-dimensional Fourier transformation:

fðθx; lÞ ¼
Z

∞

−∞
dθyfðθ; lÞ

¼
Z

∞

−∞
dξ
2π

eiξθx−nl
R

dσðχÞ½1−J0ðξχÞ�: ð4Þ

We shall denote distribution functions (3) and (4) by the
same letter f, distinguishing them just by notation of their
angle arguments.

B. Thick targets: Molière’s theory

At significant target thickness, the random walk in the
plane of deflection angles (which may be viewed as
transverse vectors) must reduce to diffusion. In generic
integral representations (3) and (4), that comes about as
follows: at large nl, the exponential in their integrands is
rapidly decreasing, therefore, the contributing ρ or ξ are
small, permitting one to expand the exponent to leading
order in their values. However, naive expansion 1 −
J0ðρχÞ≃ ρ2χ2=4 in the integrand gives a logarithmically
diverging variance

R
dσðχÞχ2, given that the physical

differential cross-section of fast charged particle scattering
on one atom through large angles obeys the Rutherford
asymptotics

dσ
dχ

≃
χ=χ0a→∞

8πZ2α2

p2χ3
; ð5Þ

with p being the particle momentum, Z the nucleus charge,
and α the fine structure constant. A more accurate calcu-
lation [5] shows that the small-ρ asymptotics of the
exponent in (3), (4) involves a factor logarithmically
depending on ρ:

nl
Z

dσðχÞ½1 − J0ðρχÞ� ≃
ρχ0a→0

χ2cρ
2

2
ln

2

χ0aρ
; ð6Þ

and thereby spoiling the Gaussianity of the Fourier-Bessel
integral. Here χ2cðlÞ ¼ 4πnlZ2α2=p2, and the screening

angle χ0a ∼ 1=Rap, with Ra the atomic radius, characterizes
the scale of angles at which the singularity in (5) is tamed.1

Thus, the diffusion here is anomalous, but only marginally,
in the sense that the anomaly is logarithmic instead of a
power law. That implies that the distribution function does
not approach a Lévy distribution [8], albeit is not strictly
Gaussian either.
Ratio χ2c=χ02a essentially measures the target thickness in

units of the radiation length X0:

χ2c
χ02a

¼ π

αγ2χ02a ln const
2γχ0a

l
X0

;

with const ∼ 1, and γχ0a expressible in terms of X0, as well
[see, e.g., [10], Eq. (42)]. For instance, ratio χc=χ0a ¼ 102

corresponds to targets of solid materials of a few millimeter
thickness. In what follows, we will measure the target
thickness in Z-independent fashion, merely in units
of χ2c=χ02a.
Approximation (6) appreciably simplifies the structure of

integrals (3), (4), but their evaluation still involves non-trivial
aspects. Intuitively, it is clear that the diffusion, at least at
typical angles, must be close to Gaussian, although with
possible logarithmic deviations. To tackle those, Molière [4]
assumed that the typical deflection angle is χc

ffiffiffiffi
B

p
, with B

such that the difference of logarithmically large parameters

B − lnB − ln χ2c
χ02a

is a constant of the order of unity (conven-

tionally set to be zero). Therewith, Bðχ2c=χ02aÞ is a Lambert
(or product logarithm) function, asymptotically equal

B ≃
χc≫χ0a

ln ð χ2c
χ02a

ln χ2c
χ02a
Þ, and the rhs of (6) rewrites as

χ2cρ
2

2
ln

2

χ0aρ
¼ u2

4
− u2

4B
ln
u2

4
;

where u ¼ χc
ffiffiffiffi
B

p
ρ. As long as the logarithmic dependence

on the rescaled integrationvariable u in the exponent appears
to be inversely proportional to the large parameter B, it
suggests expanding this part of the exponential into power
series and formally integrating termwise:

1In terms of the exact scattering differential cross-
section dσ

dχ ¼ 8πZ2α2

p2χ3
qðχÞ, with χ−4qðχÞ!

χ=χ0a→0
const > 0 and

qðχÞ !
χ=χ0a→∞

1, the screening angle expresses as

ln χ0a ¼
Z

dqðχÞ ln χ þ γE − 1; ð7Þ

where γE is the Euler’s constant. This definition [5] differs
from the more conventional χa [4] by γE − 1=2 ¼ 0.077,
but numerically, the difference is small. With definition (7),
the right-hand side (rhs) of Eq. (6) is the shortest, facilitating the
following calculations. Note, too, that while Eq. (6) was written
for pure elastic scattering, inelastic contributions can also be
incorporated there [15], just by redefining χ0a and χc.
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fðθ; lÞ ¼ 1

2πχ2cB

X∞
k¼0

1

Bk f
ðkÞ
�

θ

χc
ffiffiffiffi
B

p
�
; ð8Þ

with

fðkÞðΘÞ ¼ 1

k!

Z
∞

0

duuJ0ðΘuÞe−u2=4
�
u2

4
ln
u2

4

�
k

: ð9Þ

Note that the expansion parameter B−1 here is only loga-
rithmically small, but forB ≥ 4.5, i.e., χc ≫ 10χ0a, expansion
(8) is reported to work reasonably well [4,5]. An important
consequence of (9) is that for all k ≥ 1,

Z
d2θfðkÞðθÞ≡ 0: ð10Þ

Hence, functions fðkÞ at k ≥ 1 are not everywhere positive,
and do not admit probabilistic interpretation.
Analyzing integrals (9), one finds that at large Θ,

components of (8) behave as fð0ÞðΘÞ ¼ 2e−Θ2

, which
corresponds to a perfect Gaussian, and fð1ÞðΘÞ ∼ Θ−4,
which reflects the Rutherford asymptotics fðθÞ≃ nl

2πθ
dσ
dθ.

For k ≥ 2, fðkÞðΘÞ ∼ Θ−2−2k times logarithmic factors
(which will be determined below). Further analysis reveals
that, in fact, functions fðkÞ for k ≥ 1 make several oscil-
lations,2 which are much stronger than the asymptotic
power-law “tails.” At moderate χc=χ0a, they may cause a
spurious warp in between the Gaussian and Rutherford
regions. Yet, despite the factor k! in the denominator in the
rhs of (9), functions fðkÞ grow with k faster than exponen-
tially [see Eq. (11)]. Therefore, in principle, series (8)
diverges, though it may still serve as an asymptotic
expansion in the limit nl → ∞.

C. Thin targets: Power and logarithmic corrections
to the Rutherford asymptotics

Even though at typical angles the number of scatterings
in any macroscopic target is very large, at significant
deflection angles the distribution function may be deter-
mined by just a few hard scatterings. It can thus be useful to
expand the distribution function into perturbation series

fðθx; lÞ ¼
X∞
k¼1

ðnlÞkfkðθxÞ; ð12Þ

and study the behavior of its components fkðθxÞ at large θx.

The lowest-order terms of (12) are

f1ðθxÞ ¼
1

2π

Z
∞

−∞
dξ cosðξθxÞ

Z
dσðχÞ½J0ðxχÞ − 1�

≡ 1

2π

Z
∞

−∞
dξeiξθx

Z
∞

−∞
dχx

dσ
dχx

ðe−ixχx − 1Þ

¼ dσ
dθx

− σδðθxÞ ∼
θx=χ0a→∞

χ2c
2nlθ3x

; ð13Þ

and

f2ðθxÞ¼
1

4π

Z
∞

−∞
dξeiξθx

�Z
∞

−∞
dχx

dσ
dχx

ðe−iξχx −1Þ
�
2

¼ 1

2

Z
∞

−∞
dχx

dσ
dχx

dσ
dðθx− χxÞ

−σ
dσ
dθx

þσ2

2
δðθxÞ: ð14Þ

The dominant contribution to the integral term in (14)
comes from neighborhoods of two points: χx ¼ 0, where

dσ
dðθx−χxÞ may be approximated by a constant, and χx ¼ θx,

where dσ
dχx

≃ dσ
dθx

. The corresponding asymptotics of the

integral thus equals 1
2

R
∞−∞ dχx

dσ
dχx

dσ
dðθx−χxÞ ≃ σ dσ

dθx
, but it is

exactly canceled by the second term of (14). Therefore, to
determine the asymptotics of f2, one has to expand the
slowly varying factors in the integrand to higher orders:

f2ðθxÞ ≃
θx=χ0a→∞

Z
dχx

dσ
dχx

�
−χx d

dθx

dσ
dθx

þ χ2x
2

d2

dθ2x

dσ
dθx

�

¼ 1

2

d2

dθ2x

dσ
dθx

Z
dχxχ2x

dσ
dχx

: ð15Þ

Here d2

dθ2x
dσ
dθx

≃ 6χ2c
nlθ5x

, and
R ∼θx
∼−θx dχxχ

2
x
dσ
dχx

≃ χ2c
nl ln

θx
χ0a
, wherewith

ðnlÞ2f2ðθxÞ ≃
θx=χ0a→∞

3χ4c
θ5x

ln
θx
χ0a

: ð16Þ

Hence, if one considers a “form factor” θ3xfðθxÞ, which
vanishes at θx ¼ 0, and tends to a constant as θx=χ0a → ∞,
it appears to be a nonmonotonous function of θx, and
overshoots the latter constant at some intermediate θx. That
salient feature of the multiple Coulomb scattering angular
distribution was confirmed experimentally (see [5,16]).
Similarly, it can be proven that higher-order terms in (12)

are all positive and asymptotically scale as

ðnlÞkfkðθxÞ ≃
θx=χ0a→∞

kð2k − 1Þ!!χ2kc
2θ1þ2k

x
lnk−1 θx

χ0a
: ð17Þ

For polar angle distribution

fðθ; lÞ ¼
X∞
k¼1

ðnlÞkfkðθÞ; ð18Þ

2That owes to the fact that as k increases, factor e−u2=4ðu2
4
ln u2

4
Þk

in the integrand of (9) becomes sharply peaking at u ∼ 2
ffiffiffi
k

p
.

Therewith, at fixed Θ and increasing k, integral (9) tends to

fðkÞðΘÞ ∼ 2 lnk kJ0ð2
ffiffiffi
k

p
ΘÞ: ð11Þ

At Θ → 0, this coincides with the result obtained in [11].
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the asymptotics of the leading terms of the expansion is

f1ðθÞ ¼
dσ
d2θ

þ σδðθÞ ≃
θ=χ0a→∞

χ2c
πnlθ4

; ð19Þ

f2ðθÞ ≃
θ=χ0a→∞

1

4
Δθ

dσ
d2θ

Z
∼θ=2

0

dχχ2
dσ
dχ

≃ 8χ4c
πðnlÞ2θ6 ln

θ

χ0a
;

ð20Þ
and generally

ðnlÞkfkðθÞ ≃
θ=χ0a→∞

kk!2k−1χ2kc
πθ2þ2k lnk−1 θ

χ0a
: ð21Þ

Note that coefficients at logarithms in Eqs. (17), (21) turn
out to be sizable already at k ¼ 1, and grow with k
factorially. Thus, at moderately large θ, it would be
advantageous to sum such contributions through all orders.
Resummations of that kind are usually carried out via Borel
transformation [17]. But in our case, construction of a new
integral representation is unnecessary, as long as the
original integral representation (3) or (4) is already well
suited for that purpose. Below wewill derive corresponding
resumming expressions directly from integrals (3) and (4).

III. ANALYSIS IN THE COMPLEX PLANE

Since we are interested in the case when the number of
collisions is high, the exponent in integrals (3), (4) will
generally assume large values. The modern approach to
deriving asymptotics of such integrals consists in extending
the integral into a complex plane. With an appropriate
choice of the integration path, the integrand can be made
non-oscillatory, which substantially alleviates derivation of
the asymptotics of the integral. In application to multiple
Coulomb scattering distributions, such a deformation
procedure was first suggested by Bethe (see Appendix A
in [5], and also [6]), but served mainly for the purpose of
deriving the coefficients of large-angle power asymptotic
terms [6], or combining just a few such terms to an
expression, which still worked only in a limited domain
of θ (at large θ) [5]. Here we are going to handle the entire
sequence of asymptotic terms simultaneously, but in order
to make it applicable everywhere, the definition of the
integration path must be improved. The path extension
problem appears to be technically simpler for the projected
angle distribution, which was not considered in [5] at all,
and which we consider here first.

A. Projected angle distribution

The diffusion approximation to Eq. (4) reads (see
footnote 1)

fðθx; lÞ ≃
χc=χ0a→∞

1

πχc
Re

Z
∼χc=χ0a

0

dκei
θx
χc
κþκ2

2
ln

χ0aκ
2χc ; ð22Þ

where we set κ ¼ ξχc. When extending this integral to the
plane of complex κ, it is found that its integrand has a single
saddle point obeying the equation

∂
∂κ

�
i
θx
χc

κþ κ2

2
ln
χ0aκ
2χc

�����
κ¼κ0

¼ i
θx
χc

þ κ0

�
ln
χ0aκ0
2χc

þ 1

2

�
¼ 0:

ð23Þ

As long as Eq. (23) is transcendental, only its approximate
solution can be expressed explicitly, which, though, will
suit us at the present stage. We can choose an approxima-
tion to the solution of (23), which is strictly imaginary:

κ0 ¼ iν0; ν0 ≈
θx

χc ln
�

2χ2c
χ0aθx

ln 2χ2c
χ0aθx

	 ; ð24Þ

with a proviso that this formula is good only for χc=χ0a ≫
10 (and θx < 2χ2c=χ0a, which is usually fulfilled in practice).
To illustrate the accuracy of approximation (24), in Fig. 1 it
is plotted along with the exact solution of equation

θx
χc

þ ν0

�
ln
χ0aν0
2χc

þ 1

2

�
¼ 0; ð25Þ

obtained from (23) by neglecting ln i. It clearly indicates
that approximation (24) begins to fail for χc=χ0a ∼ 10.
The logarithmic factor in the exponent in (22)

induces a singularity of the integrand at the origin,
coinciding with the lower endpoint of the integration
interval. The steepest descent path must then start at the
origin, and go toward the saddle point. For simplicity
of the resulting integral, though, we direct it strictly
along the imaginary axis, rewriting the integration
variable as κ ¼ iν. After reaching a point κ0 defined
by Eq. (25), the path must turn to the right and
proceed along the steepest descent path, but again,
for simplicity, we just direct it parallel to the real axis

0 2 4 6 8 10
x c

0.5

1.0

1.5

2.0

2.5

3.0

3.5
0

FIG. 1. Solid curves, behavior of solution of the corner point
equation for the polar angle distribution [Eq. (25)]. Dashed
curves, approximation (24). Red, for χc=χ0a ¼ 10; green, for
χc=χ0a ¼ 102; blue, for χc=χ0a ¼ 103.

M. V. BONDARENCO PHYSICAL REVIEW D 93, 036008 (2016)

036008-4



(see Fig. 2). Ultimately, the distribution function splits
to a sum of two real-variable integrals:

fðθx; lÞ ¼ fhðθx; lÞ þ fsðθx; lÞ; ð26Þ

where

fhðθx; lÞ ¼
1

πχc

Z
ν0ðθxÞ

0

dνe
−θx

χc
νþν2

2
ln2χc

χ0aν sin
πν2

4
; ð27Þ

fsðθx; lÞ ¼
1

πχc
Re

Z
∼χc=χ0a

iν0ðθxÞ
dκei

θx
χc
κþκ2

2
ln

χ0aκ
2χc : ð28Þ

Below we will show that in spite of the admitted
simplification of the integration path, integrals (27), (28)
can be robustly interpreted as hard and soft scattering
components. Our task now is to investigate their properties.

1. Hard component

Component fh proves to be positive everywhere, even
for an approximate solution of the saddle-point equation,
insofar as typical contributing ν in Eq. (27) are always ≲1,
entailing sin πν2

4
> 0. Furthermore, almost everywhere it is

tolerable to replace in (27) sin πν2

4
≈ πν2

4
. That is strictly

justified in limits of either large or small θx=χc: If
θx=χc ≪ 1, that becomes possible because the upper
integration limit tends to zero, leaving

fhðθx; lÞ ≃
θx=χc≪1

1

4χc

Z θx

χc ln

�
2χ2c
χ0aθx

ln
2χ2c
χ0aθx

	
0

dνν2

¼ θ3x

12χ4cln3
�

2χ2c
χ0aθx

ln 2χ2c
χ0aθx

	 : ð29Þ

If θx=χc → ∞, the sine in (27) can be linearized by virtue of

the rapid decrease of factor e−
θx
χc
ν in the integrand.

Therewith, expansion of the rest of the exponential into
Maclaurin series yields the Rutherford law (13), along with
power corrections to it (beyond the leading logarithmic
accuracy):

fhðθx; lÞ ≃
θx=χc→∞

1

4χc

Z
∞

0

dνν2e−
θx
χc
ν

�
1þ ν2

2
ln
2χc
χ0aν

�

¼ χ2c
2θ3x

þ 3
χ4c
θ5x

�
ln
2θx
χ0a

− ψð5Þ
�
; ð30Þ

with ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ being the digamma function.
Clearly, integral (27) resums also all the higher power
corrections to the Rutherford asymptotics.
The fact that the component fhðθxÞ vanishes in both

extremes θx=χc → 0 and θx=χc → ∞ implies that it must
peak somewhere in between [see Fig. 3]. From the analysis
of integral (27), one generally concludes that the summit of
fhðθxÞ must be reached when ν0 ∼ χc=θx, i.e.,
θx ∼ χc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðχ2c=χ02aÞ

p
, which is nothing but Molière’s typical

angle. More precisely, that corresponds to the rising
slope of the peak, while the maximum is located at a
somewhat greater θx (see Fig. 3). The end of the region
where resummation effects are strong may be assessed
from equating the Rutherford asymptotic term to the
doubled next-to-leading-order power correction in (30):

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

0

Re

Im
c a 102, x c 5

7

0

FIG. 2. Gradient plot of function Reði θxχc κ þ κ2

2
ln χ0aκ

2χc
Þ [the real

part of the exponent in Eq. (22)] in the upper half-plane
of complex integration variable κ, for exemplary values of χc
and θx. The deformed integration path is drawn by the black line,
with ν0 evaluated by Eq. (24).

0 2 4 6 8 10 12 14
x c

0.002

0.004

0.006

0.008

0.010

0.012
c fh x

B B1

FIG. 3. Hard component of the projected angle distribution
function at χc=χ0a ¼ 102, built by Eqs. (27), (25) (solid black
curve), and by Eqs. (27), (24) (solid red curve). Dashed curve,
Rutherford asymptotics (13). Dot-dashed, Rutherford asymp-
totics with the first power correction, Eq. (30). Dotted, low-θx
asymptotics (29).
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χ2c
2θ3x

¼ 2 × 3 χ4c
θ5x
½ln 2θx

χ0a
− ψð5Þ�, i.e., θx ¼ χc

ffiffiffiffiffiffi
B1

p
, where

B1 ¼ 6Bð24e−2ψð5Þχ2c=χ02aÞ. Due to the sizable numerical
coefficients involved therein, interval

χc
ffiffiffiffi
B

p
< θx < χc

ffiffiffiffiffiffi
B1

p
ðsemihard regionÞ

appears to be even wider than the soft central
region 0 < θx < χc

ffiffiffiffi
B

p
.

Besides that, it is noteworthy that fhðθxÞ does not lie
between its asymptotes (in particular, it goes well above the
Rutherford asymptote). This (or rather the corresponding
feature for fhðθÞ proven in the next subsection) may be
responsible for the empirical controversies mentioned in
the Introduction.

2. Soft component

Next, we inspect the soft component, which is defined by
integral (28). This integral is close to Gaussian form, so its
fastest dependence on θx stems from the value of the
exponential at the endpoint:

e
−θx

χc
ν0þ

ν2
0
2
ln 2χc

iχ0aν0 ≃ e−
θx
2χc

ν0 ;

where we used the saddle point equation (23) within the
accuracy to which we neglected ln i in Eq. (25). To account
for the rest of the θx-dependence, the simplest way might be
to replace in the relation

fsðθx; lÞ ¼ e−
θx
2χc

ν0ðθx;lÞgðθx; lÞ ð31Þ

the relatively slowly varying factor gðθx; lÞ by its value in
the origin,

gð0; lÞ ¼ fð0; lÞ ¼ 1

πχc

Z
∼χc=χ0a

0

dκe
−κ2

2
ln2χc

χ0aκ: ð32Þ

More precisely, the width of g is θx ∼ χc ln
2χ2c
χ0aθx

, whereas that

of fs is θx ∼ χc

ffiffiffiffiffiffiffiffiffiffiffi
ln 2χ2c

χ0aθx

q
, which is narrower, but not by a

very large factor. So, in practice it would be certainly worth
taking into account also the slope of gðθx; lÞ in the origin.
That can be implemented to the structure of the leading
exponential in Eq. (31) by approximating

gðθx; lÞ → gð0; lÞe
− θ2x lnC

2χ2c ln2
2χ2c
χ0aθx ; ð33Þ

with C ≈ 2.2. Combining (31), (24), and (33), we obtain a
quasi-Gaussian structure

fsðθx; lÞ ≈ fð0; lÞe
− θ2x

2χ2c ln

h
2χ2c

Cχ0aθx
ln

2χ2c
χ0aθx

i
: ð34Þ

It resembles the zeroth-order approximation fð0Þðθ=χc
ffiffiffiffi
B

p Þ
of Molière’s expansion (applied to the projected angle
distribution), but has a more precise normalization (32),
and yet involves θx under the logarithm in the denominator
of the exponent. Due to the latter dependence, (34) is
narrower than Molière’s fð0Þ at θx > χc, i.e., in fact, at
typical angles (see Fig. 4). A narrowing of that kind was
empirically found in [16]. Besides that, the integral of (34)
over θx, in contrast to the integral of the zeroth component
of Molière’s expansion, is somewhat less than unity,
because part of the probability is left for fh.

3. Aggregate distribution

The circumstance that components (27), (28) in decom-
position (26) peak at different θx might potentially lead to
appearance of a secondary bump in the aggregate distri-
bution. To check whether this happens in reality, let us first
assess the scale at which fsðθxÞ and fhðθxÞ become
commensurable. For large χc=χ0a, that occurs at relatively
large θx, allowing one, oversimplistically, to employ the
Rutherford asymptotics for fh, and equate it to the
Gaussian approximation for fs. Solving the equation
in the leading logarithmic approximation yields θx∼
χc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2χc

χ0a

q
, which is of the order of the scale χc

ffiffiffiffi
B

p
at

which fhðθxÞ reaches its maximum. Therefore, around its
maximum, fhðθxÞ is commensurable with fsðθxÞ, and
consequently, the sum (26) needs not develop a secondary
peak or bump. That is what actually happens in practice,
and is physically natural, because a diffusion process tends
to smear out all the features of the probability distribution.
(But for the rescaled distribution θ3xfðθxÞ, as was men-
tioned in Sec. II C, such a bump does exist [5,16].)
Figure 5 shows the shape of the aggregate distribution,

along with contributions to it from different mechanisms,

2 4 6 8 10
x c

10 4

0.001

0.01

0.1

c fs x

FIG. 4. Soft component of the projected angle distribution
function at χc=χ0a ¼ 102, built by Eqs. (28) and (24) (solid curve).
Dashed curve, the same evaluated for the corner point defined by
(24). Dot-dashed, the quasi-Gaussian approximation, Eqs. (34),
(32), with C ¼ 2.2. Dotted, Molière’s fð0Þ for the projected angle
distribution.
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for χc=χ0a ¼ 102. The figure demonstrates that the aggregate
distribution (solid curve) considerably exceeds the sum of
soft and pure Rutherford components (dot-dashed and
dotted curves, correspondingly). To account for this excess,
one has to employ the resummed hard component (dashed
curve) instead of a single-scattering contribution. So, the
issue of resummation of plural hard scattering contributions
is quite essential in practice. Effectively, it slows down the
transition from aGaussian toRutherford regime, so that over
a substantial angular interval it may mimic a law inter-
mediate betweenGaussian and Rutherford decrease, such as
a simple exponential law (cf. [12]), or a power law with an
index greater than that for the lowest Born approximation, as
is the case, e.g., for hard scattering of hadrons (which are
themselves composite objects) [13].

4. Probabilistic interpretation

Granted the positivity of both functions fsðθxÞ and
fhðθxÞ, in conjunction with the normalization conditionR
∞−∞ dθxfs þ

R
∞−∞ dθxfh ¼ 1, it is tempting further to

interpret them independently as partial probability distri-
butions. Specifically, since fhðθxÞ incorporates all the
power-law contributions, it might be regarded as the
probability distribution of hard-scattered particles, and
fsðθxÞ, since it is nearly Gaussian, should be interpreted
as the probability distribution of soft-scattered particles.
That inevitably involves an element of arbitrariness, as long
as there is no sharp physical boundary between soft- and
hard-scattered particles. Besides that, there are regions at
sufficiently large θx, where fsðθxÞ as evaluated by Eq. (28)
becomes slightly negative [though that is immaterial for
practice, because there it is already overtaken by fhðθxÞ].
For those reasons, it is more appropriate to term the
encountered functions pseudo-probability distributions.
The mentioned arbitrariness then manifests itself as the
residual slight freedom in the choice of the location of the
integration path corner.

Accepting the partial (pseudo-)probability interpretation,
let us assess the corresponding total probability for a
particle to belong to the projected hard component:

wh−xðlÞ ¼ 2

Z
∞

0

dθxfhðθx; lÞ: ð35Þ

At large χc=χ0a, inserting (27) to (35) and interchanging the
order of integrations leads to

wh−x ¼
2

πχc

Z
∞

0

dν sin
πν2

4
e
ν2

2
ln2χc

χ0aν

×
Z

∞

νχc ln
2χc
νχ0a

dθxe
−θx

χc
ν

≃
χc≫χ0a

1

2

Z
∼χc=χ0a

0

dννe
−ν2

2
ln2χc

χ0aν: ð36aÞ

The latter single integral can be evaluated by expanding
e
ν2

2
lnν

2 ≃ 1þ ν2

2
ln ν

2
, and integrating termwise, whereupon

reassembling it to a single fraction within the given
accuracy:

wh−x ≃
χc≫χ0a

1

ln

�
χ2c
χ02a

ln χ2c
χ02a

�
− ψð2Þ

: ð36bÞ

That means that essentially, wh−x ≃ 1=B. Formula (36b)
shows that the fraction of hard-scattered particles decreases
with the increase of the target thickness, as an inverse of its
logarithm. The physical reason for this is that the boundary
beginning from which the particles must be regarded as
hard-scattered moves outwards with the increase of the
target thickness, due to the expanding Gaussian compo-
nent. In contrast, identity (10) in the Molière expansion
does not grant direct access to the number of particles in the
non-Gaussian component.
The exact behavior of wh as a function of χc=χ0a is plotted

in Fig. 6 by the solid curve, along with approximation (36b)
plotted by the dashed curve. It appears that (36b) gives
a fair approximation for wh at χc=χ0a ≳ 102. It may also
be mentioned that the excess of total probability
ws−x þ wh−x − 1, for ws−x ¼ 2

R∞
0 dθxfsðθxÞ and fsðθxÞ

evaluated by approximation (34), (32), with C ¼ 2.2, is
positive but small compared with whard:

ws−x þ wh−x − 1 ∼ 2 × 10−3:

That corroborates self-consistency of our approximations.

B. Polar angle distribution

Let us next turn to the somewhat subtler case of the polar
angle distribution, which is given by Bessel integral (3b).
To appropriately extend the corresponding diffusion
approximation

0 2 4 6 8 10 12 14
x c

5 10 4

0.001

0.005
0.010

0.050
0.100

c f x

FIG. 5. Relative contributions of the hard [dashed curve,
Eqs. (27), (24)] and soft [dot-dashed curve, Eq. (34)] components
to the aggregate projected angle distribution [solid curve,
Eq. (22)], for χc=χ0a ¼ 102. The sum of thus computed hard
and soft component is virtually indistinguishable from the solid
curve. The dotted curve shows the Rutherford asymptotics (13).
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fðθ; lÞ ≃
χc=χ0a→∞

1

2πχ2c

Z
∼χc=χ0a

0

dκκJ0

�
θ

χc
κ

�
e
κ2

2
ln

χ0aκ
2χc ð37Þ

to the complex plane of3 κ ¼ χcρ, one needs to substitute

J0ð θχc κÞ ¼ ReHð1Þ
0 ð θχc κÞ in the integrand, and exploit the

exponential decrease of Hankel function Hð1Þ
0 ðzÞ in the

upper half-plane of complex z. It is also preferable in
the integrand of (37) not to include factor κ (physically
arising as a part of the integration element κdκ ¼ dκ2=2) to
the expression for which the saddle point is sought.
Therewith, the saddle point equation reads

∂
∂κ

�
lnHð0Þ

0

�
θ

χc
κ

�
þ κ2

2
ln
χ0aκ
2χc

�����
κ¼κ0

¼ 0; ð38Þ

and like in the previous subsection, its solution at large
χc=χ0a must be predominantly imaginary.4 Searching a
purely imaginary approximation, i.e., letting κ0 ¼ iν0,

utilizing the relation Hð1Þ
0 ðizÞ ¼ 2

iπK0ðzÞ, and neglecting
imaginary terms ln i compared to the large real logarithm,
leads to a real equation

θ

χc

K1ð θχc ν0Þ
K0ð θχc ν0Þ

þ ν0

�
ln
χ0aν0
2χc

þ 1

2

�
¼ 0: ð39Þ

Unfortunately, now Eq. (39) is difficult to solve by
analytic means even approximately, as long as it requires an
approximation for K0ðzÞ applicable at any positive z.
Simple approximations exist only for large z, where
K1ðzÞ
K0ðzÞ!z→∞

1, implying

ν0 ∼
θ=χc→∞

θ=χc

ln
�
2χ2c
χ0aθ

ln 2χ2c
χ0aθ

	
− 1=2

ð40Þ

[similar to Eq. (24), and different from Bethe’s choice5

ν0 ¼
θ

χc ln
2θ
χ0ak

; ð41Þ

with k ∼ 5], and at small z, where K1ðzÞ
K0ðzÞ ∼

1
z ln1z

, giving in the

leading logarithmic approximation

ν0 ∼
θ=χc→0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln χc

θ ln
2χc
χ0a

q : ð42Þ

The behavior of the solution of Eq. (39) along with its
asymptotes (40), (42) is illustrated in Fig. 7.
Once the solution to Eq. (39) is found, choosing the

integration path similarly to that of Fig. 2 leads to a
decomposition

fðθ; lÞ ¼ fhðθ; lÞ þ fsðθ; lÞ; ð43Þ

100 1000 104 c a
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0.08

0.10
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0.14
wh x

FIG. 6. Total percentage of hard-scattered particles in the
projected angle distribution, calculated by Eqs. (35), (27), (25)
(black solid curve), and by Eqs. (35), (27), (24) (red solid curve).
Dashed curve, approximation (36b).

2 4 6 8 10 12 14
c

0.5

1.0

1.5

2.0

2.5
0

FIG. 7. Behavior of the solution of the corner point equation for
the polar angle distribution [Eq. (39)], for χc=χ0a ¼ 102 (solid
curve). Dashed curve, approximation (40). Dotted curve, approxi-
mation (42). Dot-dashed curve, Bethe’s choice for the corner
point, Eq. (41).

3In [5], κ was denoted as y, but we keep the same notation as
for the projected angle distribution.

4That owes to the fact that Hð0Þ
0 ðzÞ, like eiz, is an even function

ofRez. This would not be the case if the saddle point was sought
for the integrand including the factor κ. The emerging integral
representations for fh and fs would then be too cumbersome.

5In paper [5], the saddle point was actually sought only for part

of the integrand, K0ð θχc νÞe
ν2

2
ln 2θ

χ0ak ≈ e
− θ

χc
νþν2

2
ln 2θ

χ0ak (at real ν, corre-
sponding to purely imaginary κ). Equation (41) corresponds to
effectively replacing ν under the logarithm by χc=θ, rather than by
θ=χc as is suggested by Eq. (40). That still works when dealing
with large-angle asymptotics of the angular distribution, but not
when one aims to find a uniform approximation for all deflection
angles. In the latter case, the saddle point must be sought for the
entire integrand, and the path corner point be chosen as near as
possible to it, as is done in the present paper. Moreover, even
Eq. (40) may be not the perfect approximation for the entire range
of θ (as we will see below), so, generally, it seems best to solve
the corner point equation numerically.
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with

fhðθ; lÞ¼
1

π2χ2c

Z
ν0ðθÞ

0

dννK0

�
θ

χc
ν

�
e
ν2

2
ln2χc

χ0aν sin
πν2

4
; ð44Þ

and

fsðθ; lÞ ¼
1

2πχ2c
Re

Z
∼χc=χ0a

iν0ðθÞ
dκκHð1Þ

0

�
θ

χc
κ

�
e
κ2

2
ln

χ0aκ
2χc : ð45Þ

Again, we interpret them as partial pseudoprobability
distributions for a particle to belong to hard or to soft
scattering probability. Let us now analyze the behavior of
those components, and compare them with the correspond-
ing projected angle distributions.
First of all, similarly to the previous subsection, function

fhðθ; lÞ proves to be everywhere positive: for any θ, typical
ν are less than unity, so the sine in the integrand is positive,
and we effectively have an integral of a positive definite
function. Using the unlimited growth of ν0 with θ, it is
straightforward to derive the Rutherford asymptotics for
integral (44), along with its next-to-leading order power
correction:

fhðθ; lÞ ≃
θ=χc→∞

1

4πχ2c

Z
∞

0

dνν3K0

�
θ

χc
ν

��
1þ ν2

2
ln
2χc
χ0aν

�

¼ χ2c
πθ4

þ 8χ4c
πθ6

�
ln

θ

χ0a
þ γE − 3

2

�
: ð46Þ

The coefficient of the correction term here is in agreement
with the leading log calculation (20). In the opposite limit
θ=χc → 0, using (42), function fhðθÞ can be shown to
decrease much slower than in the case of the projected
angle distribution (29):

fhðθ; lÞ ∼
θ=χc→0

ν40
16πχ2c

ln
χc
θν0

∼
1

16πχ2c ln
χc
θ ln

2 2χc
χ0a

; ð47Þ

but tends to zero, anyway. Hence, it must reach a maximum
at some finite, nonzero θ. Figure 8 plots function (44) with
ν0 evaluated numerically from Eq. (39).
In contrast to the case of projected angle distribution, it

appears now that the use of Eq. (40) does not give a good
approximation for fhðθÞ simultaneously for all typical θ—
because (40) is a much poorer approximation for solution
of Eq. (39) itself. That is demonstrated by Fig. 8, where the
red curve corresponding to approximation (40) falls much
below the calculation with the exact solution of Eq. (39). It
signals that for the polar angle distribution, it is much more
reliable to solve the corner point equation numerically.
Similarly to the previous subsection, we can find that the

support region for function fhðθÞ is concentrated at

χc
ffiffiffiffi
B

p
< θ < χc

ffiffiffiffiffiffi
B2

p
; ðsemihard regionÞ ð48Þ

where B2 ¼ 8Bð8e2γE−3χ2c=χ02aÞ.
Equation (39) also does not permit expressing θ

through ν, which hampers analytic computation of the
total pseudoprobability of hard scattering wh ¼
2π

R∞
0 dθθfhðθ; lÞ by interchanging the order of integra-

tions. Numerically, of course, that presents no difficulty,
and is illustrated in Fig. 9. Qualitatively, function
whðχc=χ0aÞ exhibits a behavior similar to that of
wh−xðχc=χ0aÞ in Sec. III A, but is some 3 times greater,
so that it cannot be even regarded as small. A satisfactory
heuristic approximation of the same structure as Eq. (36b)
may be written as

0 2 4 6 8 10 12
c

0.0005

0.0010

0.0015

0.0020

0.0025

c
2 fh

B B2

FIG. 8. The shape of the hard scattering component (44), (39),
at χc=χ0a ¼ 102 (black solid curve). Red curve, the same for
approximate solution (40) of the path corner point equation.
Dashed curve, Rutherford asymptotics (19); dot-dashed curve,
Rutherford asymptotics with the first power correction, Eq. (46).
Dotted curve, small-angle asymptotics (47).

100 1000 104 c a

0.1

0.2

0.3

0.4

wh

FIG. 9. Total percentage of hard scattered particles, calculated
by Eqs. (44), (39) (solid curve). Dashed curve, interpolation (49).
The red curve shows the probability deficit 1 − wh − ws, for
fhðθÞ evaluated by Eqs. (44), (39), and fsðθÞ by Eqs. (45), (51)
with C ¼ 5.
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wh ≈
3

ln
�
χ2c
χ02a

ln χ2c
χ02a

	
− 1.5

: ð49Þ

In what concerns fsðθ; lÞ, physically it is expected
to exhibit a behavior similar to Eq. (34). Indeed,
approximation

fsðθ; lÞ ¼ fð0; lÞe
− θ2

2χ2c ln

�
2χ2c
Cχ0aθ

ln
2χ2c
χ0aθ

	
ð50Þ

with

fð0; lÞ≃ 1

2πχ2c

Z
∼χc=χ0a

0

dκκe
−κ2

2
ln2χc

χ0aκ ð51Þ

[an integral similar to (36a)] and C ≈ 5 works reasonably
well (see Figs. 10, 11). The total pseudoprobability
corresponding to this approximation equals ws ¼
2π

R
∞
0 dθθfsðθÞ ¼ 1 − wh − Δw, with Δw ∼ 2 × 10−2

(see Fig. 9, red curve), but still tolerably small. Herein,
we will restrict our analysis to this notion.
When comparing the results of this subsection with those

of Sec. III A, it should be borne in mind that6

fhðθx; lÞ <
Z

∞

−∞
dθyfhðθ; lÞ

����
θ¼

ffiffiffiffiffiffiffiffiffi
θ2xþθ2y

p ; ð52Þ

and correspondingly,

fsðθx; lÞ >
Z

∞

−∞
dθyfsðθ; lÞ

����
θ¼

ffiffiffiffiffiffiffiffiffi
θ2xþθ2y

p ; ð53Þ

That is clear as long as the integral from a positive function
in the rhs of (52) cannot vanish at θx → 0, whereas the left-
hand side (lhs) does vanish. It is also natural physically,
because hard collisions which are nearly in the y-direction
are not treated as hard when computing the projected
distribution in θx. But in the large-θ asymptotics, (52) holds
as an equality for all the terms of the descending power
series, by virtue of the identity

2kk!
π

Z
∞

−∞
dθy

ðθ2x þ θ2yÞ1þk ¼
ð2k − 1Þ!!
θ1þ2k
x

ð54Þ

and its derivatives by index k, which generate the loga-
rithmic factors. In turn, inequality (53) explains why
constant C for approximation (50) was greater than that
for approximation (34).

IV. SUMMARY

The main conclusions of our paper can be summarized as
follows. A continuation into the complex plane allows
presenting the angular distribution of probability of par-
ticles scattered in amorphous matter as a sum of hard- and
soft-scattering components, with no restriction on the
number of scatterings. At that, the hard component incor-
porates all the plural-scattering power-law corrections to
the Rutherford single-scattering contribution, while the soft
component is nearly Gaussian, but is narrower than
Molière’s fð0Þ. Due to their positivity almost everywhere,
those components admit independent (pseudo)probabilistic
interpretation. The corresponding total percentage of hard-
scattered particles (not appearing naturally in the Molière
theory) amounts typically wh−x ∼ 10% for the projected
angle distribution, and wh ∼ 25% in case of the polar angle
distribution), and sets the accuracy limit for Gauss-like
approximations for the soft component.
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FIG. 10. The shape of the soft component (45) at χc=χ0a ¼ 102,
built by Eqs. (45) and (39) (solid curve). Dashed curve, the same
evaluated for the corner point defined by Eq. (40). Dot-dashed,
the quasi-Gaussian approximation, Eqs. (50), (51), with C ¼ 5.
Dotted, Molière’s fð0Þ.
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FIG. 11. Relative contributions of the hard [dashed curve,
Eqs. (44), (39)] and soft [dot-dashed curve, Eqs. (50), (51) with
C ¼ 5] components to the full-angle distribution [Eq. (3), solid
curve], for χc=χ0a ¼ 102. The sum of thus computed hard and soft
components is virtually indistinguishable from the solid curve.
The dotted curve represents the Rutherford asymptotics (20).

6Note that in the lhs and in the rhs of Eqs. (52), (53), letter f
represents different functions.
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The second conclusion is that in the aggregate distribu-
tion of scattered particles, there is a significant transition
region between multiple soft and single hard scattering, in
which scattering is multiple but hard. Physically, it is
chained to the fact that at significant target thickness, there
always exists a range of angles, where the probability of
several hard rescatterings is non-negligible. The resummed
hard-scattering component peaks at a nonzero deflection
angle, and around its maximum (in the region here
called semihard), it exceeds the single hard scattering
(Rutherford) contribution by a significant factor.
Nonetheless, no bump emerges in the aggregate distribu-
tion around this angle, inasmuch as in the semihard region,
the hard component is comparable with the soft one.
From the practical point of view, it must be noted that if it

is desired to use a single approximation within the central
region of scattering angles only, it may be reasonable to
employ Molière’s fð0Þ; but if the hard “tail” needs

description, as well, it is advantageous to use the separation
fh þ fs introduced herein. Even after approximating fs by
a quasi-Gaussian, the sum fh þ fs is still numerically more
accurate than a few first terms of the Molière expansion.
Besides that, it should be remembered that the separation

of fh and fs somewhat depends on the choice of the corner
point for the integration path (which does not coincide with
the saddle point of the integrand exactly), and thus may
involve slight ambiguity. Analytic solutions of the corner
point equation provide insight into qualitative dependen-
cies of the particle distribution function on the total
deflection angle and the target thickness, but may some-
times be insufficiently accurate, so, if better precision is
required, the saddle point equation is to be solved numeri-
cally. Thus, depending on the needs of the study, the
proposed construction may be used either for analytic, or
for numerical purposes.
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