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Within the Dyson-Schwinger equation framework, a gluon propagator model incorporating a quark’s
feedback through operator product expansion is introduced to investigate the QCD phase diagram in the
temperature-chemical-potential (T − μ) plane. Partial restoration of chiral symmetry at zero temperature
and finite temperature are both studied, suggesting a first order phase transition point on the μ axis and a
critical end point at ðTE; μEÞ=Tc ¼ ð0.85; 1.11Þ, where Tc is the pseudocritical temperature. In addition, we
find the pseudocritical line can be well parametrized with the curvature parameter κ and a consistent
decrease in κ, with more of the gluon propagator distributed to the quark’s feedback.
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I. INTRODUCTION

The Universe went through a quark epoch approximately
10−12 seconds after the big bang. Nowadays, the nucleus-
nucleus collisions at the RHIC and the LHC with a high
center of mass energy can reproduce a state known as the
quark-gluon plasma (QGP) [1,2]. It consists of unbound
quarks/gluons and behaves as a nearly perfect fluid [3,4]
with very small viscosity. While progress is being made in
studying the QGP concerning the high temperature (T) and
low chemical-potential (μ) region in the QCD phase dia-
gram, little is known about the territory with a higher μ.
Hence, the RHIC is planning a beam energy scan program
phase II (BES II) based on the BES I completed in 2014
[5,6]. With statistical errors largely reduced, strong con-
clusions on QCD phase transition boundary and the critical
end point (CEP) are hopefully to be drawn.
On the theoretical side, with finer lattices and physical

quark masses, lattice simulations observed the analytical
crossover behavior at T ≠ 0, μ ¼ 0 and investigated various
thermodynamic quantities of the QGP [7–9]. However, its
extrapolation to μ ≠ 0 is a yet unsolved problem due to
the notorious sign problem [10–12]. Therefore, alternative
approaches to the QCD phase diagram like (Polyakov–)
Nambu–Jona-Lasinio [(P)NJL] models [13,14], quark-
meson models [15–17], and the Dyson-Schwinger equation
(DSE) method [18–21] could provide valuable insights at
present [22].
In thiswork,wewill resort toDSEs,which is a continuous

nonperturbative approach that describes QCD’s several

important features, e.g., dynamical chiral symmetry break-
ing (DCSB) and confinement [23]. It has been employed
in extensive study on the QCD phase diagram. For instance,
chiral phase restoration was studied over the T − μ space
and, generally speaking, the existence of the CEP is
suggested, consistent with most model predictions. It is
further supplemented by the investigation of certain phases,
e.g., strongly interacting QGP at high temperature [24,25]
and color superconductivity at low temperature [26].
The effect of chiral imbalance on the QCD phase structure
is also studied, extending the phase diagram to T − μ − μ5
space [27,28].
As an infinite tower of equations, DSEs always require

truncation schemes, in practice. For example, the quark’s
DSE, namely, the quark gap equation, has two unknown
ingredients: the quark-gluon vertex and the gluon propa-
gator. For the quark-gluon vertex, commonly used are the
following. (i) Rainbow truncation, namely, the bare vertex
which had been widely used in combination with the ladder
truncation in bound state problems. (ii) The Ball-Chiu
ansatz [29] and its modified versions that concern the
Abelian and non-Abelian dressing effects [30]. (iii) The
Ball-Chiu ansatz plus a dressed-quark anomalous chromo-
magnetic moment term [24]. In spite of the fact that the
latter two vertices are more refined, rainbow truncation
suffices to give qualitative descriptions of the QCD phase
diagram in almost all aspects. Therefore, we will use it
throughout this work for simplicity.
With rainbow truncation, our main focus in the work will

be on the other ingredient of the quark self-energy, the
gluon propagator. A popular choice is to directly generalize
models determined in hadron physics, e.g., a separable
model [31,32], the Maris-Tandy model [33], the Qin-Chang

*liuxiaojun@nju.edu.cn
†zonghs@nju.edu.cn

PHYSICAL REVIEW D 93, 036006 (2016)

2470-0010=2016=93(3)=036006(9) 036006-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.036006
http://dx.doi.org/10.1103/PhysRevD.93.036006
http://dx.doi.org/10.1103/PhysRevD.93.036006
http://dx.doi.org/10.1103/PhysRevD.93.036006


model [34], etc.,1 to the finite temperature case [18,38].
However, flaws in these generalized models are apparent.
They receive no feedback from quarks and do not evolve
with temperature or chemical potential, and they therefore
do not meet the requirements of QCD in essence. A specific
example is the first order chiral phase transition at low
temperature and high density. There, the gluon propagators
in the Nambu-Goldstone phase and in the Wigner phase
should be different, and a discontinuous change is expected.
In the face of this situation, the authors of [19,39] incorpo-
rate the quark’s feedback into the gluon propagator by
considering the contribution of quark loops in the gluon’s
DSE. Nevertheless, the quenched part of the gluon propa-
gator relies on analyzing and fitting the lattice data.
In this paper, we will investigate an alternative treatment

based on the operator product expansion (OPE), which
provides an explicit form for the quark’s feedback on gluon
self-energy in terms of local quark condensates [40,41]. In
this way, we derive a modified gluon propagator model and
the consequent QCD phase diagram is studied within the
DSE framework. Since the extraction of the quark’s feed-
back on the gluon remains an open question, our model
study will hopefully help us gain useful insights.
This paper is organized as follows. In Sec. II we

introduce the quark gap equation and the truncation
scheme. Then a gluon propagator model is derived from
the gluon DSE with the help of the OPE. With this model,
we study the transition behavior of QCD on the T − μ plane
in remaining sections, where the case of T ¼ 0, μ ≠ 0 is
discussed in Sec. III and T ≠ 0, μ ≠ 0 is studied in Sec. IV.
Finally, we summarize our results and give our conclusions
in Sec. V.

II. QUARK GAP EQUATION AND GLUON
PROPAGATOR MODEL

To study the QCD chiral phase transition, we employ the
Dyson-Schwinger equation formalism, in which the quark
gap equation at finite temperature and the chemical
potential can be written as

½Gð~p; ~ωnÞ�−1¼ ½G0ð~p; ~ωnÞ�−1þT
X∞
l¼−∞

Z
d3q
ð2πÞ3

×

�
g2Dμνð~p− ~q; ~ωn− ~ωlÞ

λa

2
γμGð~q; ~ωlÞΓa

ν

�
;

ð1Þ

where the superscript 0 refers to free propagators. ~ωn ¼
ð2nþ 1ÞπT þ iμ and the color index in gluon propagator
Dμν has been contracted. λa represents the Gell-Mann

matrices and Γa
ν is the full quark-gluon vertex. Here, we

have set all renormalization constants to one since we will
use gluon models that are heavily suppressed in the
ultraviolet region, rendering the integral in quark self-
energy convergent. In this sense, the g2 here is not a running
coupling constant in the sense of the renormalization group
but is rather an effective coupling, and therefore it has no
medium dependence. We use Landau gauge here, which is
a fixed point of the renormalization group and is therefore
widely used in DSE studies [42]. The quark propagator can
further be decomposed as

G−1ð~p; ~ωn;T;μÞ¼ i~γ · ~pAð~p2; ~ω2
n;T;μÞ

þ iγ4 ~ωnCð~p2; ~ω2
n;T;μÞþBð~p2; ~ω2

n;T;μÞ:
ð2Þ

For the free quark propagator G0ð~p; ~ωnÞ, scalar functions
A ¼ 1, B ¼ m, and C ¼ 1, where m is the current quark
mass. Rainbow truncation has been popular in meson study
because its combination with ladder truncation preserves
the axial-vector Ward-Takahashi identity [43]. And in our
case, as far as we know, no existing complicated vertices
bring qualitative changes to the phase diagram. So, for
simplicity, we will employ the rainbow truncation through-
out this work, namely,

Γa
νðp; qÞ ¼

λa

2
γν: ð3Þ

In this way, we are left with the gluon propagator, which is
undetermined. Generally, it can also be expressed through
two scalar functions, DT and DL,

Dμνð~k;ΩlÞ ¼ PT
μνð~k;ΩlÞDTð~k2;Ω2

l Þ
þPL

μνð~k;ΩlÞDLð~k2;Ω2
l Þ; ð4Þ

with PL
μν and PT

μν being longitudinal and transverse pro-
jection operators, respectively,

PT
μνðkÞ ¼ ð1 − δμ4Þð1 − δν4Þ

�
δμν −

kμkν
~k2

�
; ð5Þ

PL
μνðkÞ ¼ PμνðkÞ − PT

μνðkÞ: ð6Þ

Ωl ¼ 2lπT is the boson Matsubara frequency. Normally,
one can now resort to the aforementioned models, e.g., the
Qin-Chang model for DT and DL. However, since we are
trying to incorporate the quark’s feedback, further consid-
eration is needed. Let us start with the case at zero
temperature and density.
As we mentioned in Sec. I, extracting the quark’s

feedback from the gluon propagator is tricky. Inspired
by the QCD sum rule [44], the authors of [41] suggested a
relatively simple way, as follows. As we know, in the OPE

1Our work will be based on these bottom-up-scheme models
which are determined by fitting hadron properties [35]. The other
scheme, the top-down scheme, which aims to perform an ab initio
computation of the gauge-sector DSEs, can be tracked in [36,37].
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framework, the current-current correlation function can be
expressed through the various local scalar operators’
vacuum expectation values, namely, vacuum condensates.
These vacuum condensates characterizing the nonpertur-
bative feature of QCD are treated as parameters in the QCD
sum rules; they have been calculated elsewhere [45],
including the DSEs [43,46]. For the gluon propagator,
the gluon self-energy contains a quark condensate, which is
the lowest dimension vacuum condensate generated by the
quarks. The gluon vacuum polarization tensor involves the
term [40,41]

ΠQ
μνðkÞ ¼ −g2

Z
d4ðy − zÞ

Z
d4q
ð2πÞ4 e

iðp−qÞ·ðy−zÞ

× tr

�
γμ

1

iqþm
γνhψ̄ðyÞψðzÞi

�

¼ PμνðkÞk2ΠQðk2Þ

¼ −PμνðkÞ
g2mhψ̄ψi

3k2
þ…; ð7Þ

where mhψ̄ψi ¼ muhψ̄ψiu þmdhψ̄ψid, and the ellipsis
represents terms of higher order in m2=k2 which are
neglected. The superscript Q stands for quark. Now, we
can extract from the full gluon propagator a quark-
unaffected part Dq, where q stands for quenched. Then
the full gluon propagator is divided into two parts,

DμνðkÞ ¼ PμνDðk2Þ ð8Þ

¼ PμνðDqðk2Þ þDQðk2ÞÞ: ð9Þ

Accordingly, with the DSE for the gluon propagator,
we have

DμνðkÞ ¼ Dq
μνðkÞ þD0

μρðkÞΠQ
ρσðkÞDσνðkÞ; ð10Þ

which is diagrammatically shown in Fig. 1. With Eqs. (7),
(9), and (10), we have

Dðk2Þ ¼ Dqðk2Þ
1þ g2mhψ̄ψi0

3k4

≈
Dqðk2Þ
1þ hψ̄ψi0

Λ3

; ð11Þ

where the subscript 0 refers to T ¼ 0 and μ ¼ 0. Here, we
introduce the momentum scale Λ as in [41], which absorbs
the constants m, g and the momentum k and serves as a
parameter in our model. With such simplification, the gluon
propagator remains finite in the infrared region and the
ultraviolet region will not be affected since Dqðk2Þ will be
heavily ultraviolet suppressed.
Then we extend Eq. (11) to finite temperature and

chemical potential via k→kl¼ð~k;ΩlÞ and hψ̄ψi0→
hψ̄ψiT;μ, so

Dð~k2 þΩ2
l Þ ¼

Dqð~k2 þ Ω2
l Þ

1þ hψ̄ψiT;μ
Λ3

: ð12Þ

Note that there is an implicit approximation DL ¼ DT ,
which actually does not hold at finite temperature, as shown
by lattice simulation [47,48]. However, for a sketchy study
of the quark’s feedback on the chiral phase diagram, we
will continue to use this approximation, following earlier
studies [18,38].
To specify the function Dqðk2Þ, we will employ the Qin-

Chang model as the full gluon propagator at zero temper-
ature and density,

g2Dμνðk2Þ ¼ Gðk2ÞPμν ð13Þ

Gðk2Þ ¼ 8π2

ω4
De−

k2

ω2 ; ð14Þ

where the parameters D and ω are determined in hadron
physics. D characterizes the interaction strength and ω
controls the confinement length. In the rainbow-ladder
truncation, the ground state pseudoscalar and the vector-
meson observables, like the mass and the electroweak decay
constant, are roughly constant while Dw ¼ ð0.8 GeVÞ3,
with ω ∈ ½0.4; 0.6� GeV. Therefore, the parameters are not
completely constrained by hadron physics: a change in D
can be compensated for by an alteration of ω. The Qin-
Chang model qualitative agrees with modern DSEs and
lattice studies in the gluon propagator’s infrared region; e.g.,
it gives a typical value for the gluon screeningmass [34].2 So
with Eqs. (8), (11), and (13), we have

Dqðk2Þ ¼ Gðk2Þ
g2

�
1þ hψ̄ψi0

Λ3

�
: ð16Þ

Substituting it into Eq. (12), we finally arrive at the OPE-
modified model

FIG. 1. Gluon DSE with a vacuum polarization term which
contains a local quark condensate; see Eqs. (7) and (10).

2The Qin-Chang model improves upon a similar model, the
Maris-Tandy model,

Gðk2Þ ¼ 4π2

ω6
Dk2e−

k2

ω2 ; ð15Þ
in the deep-infrared region of the gluon propagator.
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g2Dð~k2 þ Ω2
l Þ ¼ Gð~k2 þ Ω2

l Þ
1þ hψ̄ψi0

Λ3

1þ hψ̄ψiT;μ
Λ3

: ð17Þ

Apparently, the form of g2Dð~k2 þ Ω2
l Þ changes as hψ̄ψi

evolves through theT − μ plane.AtT ¼ 0 andμ ¼ 0, it goes
back to the Qin-Chang model; therefore, all hadron proper-
ties are preserved.
In the following calculation, we will choose

D¼ 1.0GeV2, ω¼ 0.6GeV, and mu ¼ md ¼ 0.005 GeV
in Eq. (14) for demonstration of almost all of the figures. As
for the parameter Λ, from Eq. (17) we know that it
characterizes the strength of the quark’s feedback on the
gluon: the larger that Λ is, the less the quark contributes.
When Λ → þ∞, Eq. (17) becomes

g2Dð~k2 þΩ2
l Þ ¼Λ→þ∞ g2Dsð~k2 þ Ω2

l Þ ¼ Gð~k2 þΩ2
l Þ: ð18Þ

Here, we add a subscript s for static to this special case for
later use. To determine Λ, we try to infer its value by
comparing it with existing studies. For example, under
rainbow truncation, [36] suggests about a 20% increase in
−hψ̄ψiu=d with the unquenching effect. In our case, we have
hψ̄ψiu=d ¼ −ð244 MeVÞ3, obtained fromDμνðkÞ, compared
with hψ̄ψiqu=d ¼ −ð227 MeVÞ3 from Dq

μνðkÞ by setting
Λ ¼ 0.56 GeV.3 We will show the responses of the CEP
location and the pseudocritical line to these parameters at the
end of Sec. IV.

III. PARTIAL RESTORATION OF CHIRAL
SYMMETRY AT T ¼ 0, μ ≠ 0

The research on QCD at zero temperature and finite
density is abundant and results in a lot of interest for
researchers of cold QCD matter, e.g., compact stars
[51,52]. For example, the equation of state of cold QCD
matter plays an important role in calculating and under-
standing the structure and evolution of these stars [53–57].
There have also been studies suggesting a first order phase
transition of chiral symmetry on the μ axis [58,59]. It is
therefore interesting to see the picture from our model.
To solve the quark gap equation, we take the limit

T → 0. Then Eq. (1) becomes

½Gð~p; ~p4Þ�−1¼ ½G0ð~p; ~p4Þ�−1þ
Z

d4q
ð2πÞ4

×

�
g2Dμνð~p− ~q; ~p4− ~q4Þ

λa

2
γμGð~q; ~q4ÞΓa

ν

�
;

ð19Þ

where ~p4 ¼ p4 þ iμ. Accordingly, the quark propagator
can be decomposed as

G−1ð~p; ~p4; μÞ ¼ i~γ · ~pAð~p2; ~p4; μÞ þ iγ4 ~p4Cð~p2; ~p4; μÞ
þ Bð~p2; ~p4; μÞ: ð20Þ

We can also calculate the renormalized quark condensate
with

hψ̄ψi ¼ −
Z

dp4

ð2πÞ4 Trf;c;d½Gð~p; ~p4; μÞ −G0ð~p; ~p4; μÞ�

¼ −4NcNf

Z
dp4

ð2πÞ4
B

A2 ~p2 þ C2 ~p4
2 þ B2

; ð21Þ

where the trace should be taken over flavor, color, and
Dirac indices assuming the u, d quark symmetry.
Substitute Eqs. (17), (20), and (21) into Eq. (19),

multiply both sides of Eq. (19) with i~γ · ~p, iγ4 ~p4, and
I4, respectively, and then take the trace. One can obtain
three coupled nonlinear equations of the functions A, B,
and C. These nonlinear equations can be numerically
solved with the iterative method. In this way, we can
obtain the scalar functions A, B, C and the corresponding
quark condensate.
Both the Nambu-Goldstone solution and the Wigner

solution are found, corresponding to the Nambu-Goldstone
phase and the Wigner phase, respectively. Figure 2 shows
the Bð~p2 ¼ 0; p4 ¼ 0; iμÞ for both solutions and Fig. 3
displays the quark condensates. Both quantities are indica-
tors of DCSB and exhibit a discontinuous drop at the same
chemical potential.
One can notice from Fig. 3 that the hψ̄ψi in the Nambu

phase basically remains unchanged. This indicates that the
partition function of QCD stays unchanged before μ
reaches a critical value (roughly 1=3 of the baryon mass)
[60]. Here, we would like to point out that this condition
can be used as a rule in constraining gluon propagator

FIG. 2. Solution of the quark gap equation at zero temperature:
Bð~p2; p4; iμÞ with ~p2 ¼ 0, p4 ¼ 0. The two solutions correspond
to the Nambu-Goldstone solution (the red solid curve) and the
Wigner solution (the blue dashed curve), respectively.

3−hψ̄ψiu=d ¼ ð244 MeVÞ3 satisfies −ðmu þmdÞhψ̄ψiu=d ≈
m2

πf2π (the Gell-Mann–Oakes–Renner relation [49]) within our
parameter setting, although it is relatively small compared to the
current lattice prediction −hψ̄ψiu=d ≈ ð270 MeVÞ3 [50].
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models, which, however, was not satisfied at all times. For
instance, in Refs. [21,61,62], a chemical-potential sup-
pressed gluon propagator model is employed to study the
QCD phase diagram, while hψ̄ψi in that case actually
varies with chemical potential and, therefore, breaks this
rule to a certain extent. In our model here, this condition is
satisfied because the whole quark’s feedback is incorpo-
rated into a term solely described by quark condensate,
which was already unchanged in the Nambu-Goldstone
phase with static gluon models.
To study the possible phase transition between two

phases, one should calculate the effective potential and
obtain the pressure difference between them, whose zero
point at μc is where the first order phase transition takes
place. However, the Cornwall-Jackiw-Tomboulis effective
potential action could only be used consistently with the
rainbow truncation and a static gluon propagator model [63]
and thus is invalid here. Nevertheless, suggested by other
studies beyond the rainbow truncation, e.g., the Ball-Chiu
vertex, first order phase transition should take place within
the coexistence region of two solutions [18,64]. An intuitive
guess for the first order phase transition point is [64]

μχc ≈
μNG
c þ μWc

2
¼ 0.4 GeV; ð22Þ

where μNG
c is where the Nambu-Goldstone solution dis-

appears, while μWc is where Wigner solution turns up. We
would also like to point out that the μWc fromDðk2Þ is about
20 MeV lower than that from Dsðk2Þ, indicating a small
decrease in μχc within our model.
Finally, one could infer from Fig. 3 and Eq. (17) that our

gluon propagator takes different forms in the Nambu-
Goldstone phase and the Wigner phase, DNGðk2Þ ¼
Dsðk2Þ, compared with DWðk2Þ≃Dqðk2Þ. Therefore, our
gluon propagator has a clear distinction between theNambu-
Goldstone phase and the Wigner phase, which gives a
solution to the problem we proposed in Sec. I. In this
way, not only quark but also gluon propagators take
discontinuous changes while the system goes through a
first order phase transition. This gives a general picture about

how the gluon propagator evolves at a finite μ, through the
inclusion of the quark’s feedback.

IV. PARTIAL RESTORATION OF CHIRAL
SYMMETRY AT T ≠ 0

We now move on to the finite temperature case and solve
the gap equation at a finite T and μ. The quark condensate
at finite temperature is

hψ̄ψi ¼ −T
Xþ∞

n¼−∞

Z
dp3

ð2πÞ3 Trf;c;d½Gð~p; ~ωn;T; μÞ

−G0ð~p; ~ωn;T; μÞ�: ð23Þ
Taking the limit T → 0 in this equation leads to Eq. (21).
Following similar steps as introduced in Sec. III (replace ~p4

with ~ω4), we can again obtain the dressing functions and
the corresponding quark condensate.
Let us first look at the results on the temperature axis,

namely, μ ¼ 0. As we can see from Fig. 4, introducing the
quark’s feedback does not change the qualitative behavior
of the quark condensate on the T axis. hψ̄ψi is basically a
monotonic decreasing function of T with an inflection
point. If we use the susceptibility

χT ¼ ∂hψ̄ψi
∂T ð24Þ

as the criterion [65,66], this inflection point is the so-called
pseudocritical temperature. Another choice is the chiral
susceptibility χm:

χm ¼ −
∂hψ̄ψi
∂m : ð25Þ

FIG. 3. Quark condenstate in the Nambu-Goldstone phase (the
red solid curve) and the Wigner phase (the blue dashed curve).

FIG. 4. Evolution of hψ̄ψi at T ≠ 0 and μ ¼ 0. hψ̄ψi (the black
solid curve) from our modified model Eq. (17) decreases faster
than hψ̄ψis (blue dashed curve) from the static model equa-
tion (18). The other hψ̄ψi (the gray dot-dashed curve) and hψ̄ψis
(the red dotted curve) were obtained by setting the parameter
D ¼ 1.4 and Λ ¼ 0.62, whose choice is explained in the text.
The data (the black error bars) are taken from the lattice
calculation [8].
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The maxima of χT and χm, namely, the pseudocritical
temperatures—the Tc’s—do not necessarily coincide with
each other [67], although within our model they are closer
(see Fig. 5). Nevertheless, all of these susceptibilities
exhibit smooth change; hence, it is a crossover in this area.
However, some quantitative changes are noticeable. In

Fig. 5, the Tc’s from the two gluon propagator models are
not the same: Dðk2Þ gives a relatively low Tc. This can be
understood with the help of Fig. 4: when T goes up, −hψ̄ψi
drops continuously, so Dðk2Þ gets smaller and leads to a
weakening of the interaction between the quarks. This then,
in turn, accelerates the dropping of the quark condensate,
producing relatively low Tc’s. Compared with that of the
static gluon model, this “quicker” transition brought by the
quark’s feedback is closer to the lattice result concerning
the slopes of the hψ̄ψi curves near the Tc. We notice that
the hψ̄ψi and the Tc’s we give are relatively low compared
to the lattice predictions Tc ≈ 160 MeV and hψ̄ψiu=d ≈
−ð280 MeVÞ3 given in [8]. This is due to our simplified
truncation scheme and gluon model. In order to perform a
direct comparison with the lattice result, we primitively
raise the interaction strength to D ¼ 1.4 and Λ ¼ 0.62 (the
choice of Λ is explained in the caption of Table I), which
produces hψ̄ψiu=d ¼ −ð277 MeVÞ3. The hψ̄ψiT still agrees
with lattice data better than a static model, as shown in
Fig. 4. Therefore, we conclude that our modified model

persists to give more realistic descriptions of transition
behavior at the finite temperature T ≤ Tc.
It is worth noting that, in contrast to that on the μ axis

where Dðk2Þ takes a sudden change, here Dðk2Þ decreases
continuously. Such behavior is naturally generated in our
model and qualitatively agrees with the lattice result on
DTðk2Þ [68].
With the results on the μ axis and the T axis, we are led to

believe transition behaviors like crossover and first order
phase transition will remain on the T − μ plane, while the
transition lines will somehow vary. Consequently, the CEP,
which is the end point of the first order phase transition line,
may shift.
hψ̄ψi at T ≠ 0 and μ ≠ 0 are shown in Fig. 6, where

hψ̄ψi undergoes continuous change with a low μ, while
exhibiting a discontinuous transition with a larger μ.
Figure 7 shows that the corresponding susceptibilities
display different behaviors, e.g., at μ ¼ 110 MeV and μ ¼
80 MeV they are continuous, while at μ ¼ 130 MeV they

FIG. 5. Susceptibilities at finite temperature and zero chemical
potential. χT and χm are defined in Eqs. (24) and (25) with the
subscript s for static.

FIG. 6. hψ̄ψi at finite μ and T.

TABLE I. Parameter dependence of the CEP location and
curvature parameter κ defined in Eq. (26). In row 4 and row
5, Λ is determined by the same criterion as in row 2:
hψ̄ψiq0=hψ̄ψi0 ¼ 0.8.

D ω Λ (GeV) Tc (GeV) ðTE; μEÞ=Tc κ

1.0 0.6 0.5 0.125 (0.89,1.01) 0.116
1.0 0.6 0.56 0.131 (0.85,1.11) 0.126
1.0 0.6 þ∞ 0.141 (0.82,1.13) 0.143
1.0 0.5 0.52 0.156 (0.93,0.41) 0.333
1.4 0.6 0.62 0.176 (0.93,0.46) 0.323

FIG. 7. Crossover and first order phase transition characterized
by susceptibilities. The peaks go to infinity, approaching the
critical end point.
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are not. One could also see there is a tendency for the
susceptibilities to diverge at some point when μ is larger
than 110 MeV. This point is then the second order phase
transition point, namely, the CEP.
We therefore determine the pseudocritical lines in Fig. 8

by taking the maxima of χT . For comparison, again we also
add the result of Dsðk2Þ. It shows, with the quark’s
feedback on the gluon propagator, the pseudocritical line
gets flattened. This can be seen more clearly with the
parametrization formula [12,69]:

TcðμÞ ¼ Tcð0Þ½1 − κμ2=T2
cð0Þ þOðμ4=T4

cð0ÞÞ�; ð26Þ

where TcðμÞ parametrizes the pseudotransition line. We
extract κ by least-squares fit and plot the functions TcðμÞ in
Fig. 8. The root-mean-square deviation in this fitting,

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðTcðμiÞ − Ti
cÞ2

vuut ; ð27Þ

is RMSD < 0.2 MeV for all curves.
The first three rows in Table I show κ’s from different

Λ’s, along with the Tc’s and the CEP locations in Fig. 8. We
can see that there is a consistent decrease in κ and an
increase in TE=Tc as Λ decreases. The same conclusion can
be drawn when we employ the Maris-Tandy model,
namely, Eq. (15), for which the calculation will not be
detailed here. Note that lattice QCD suggests that
κ ≈ 0.05–0.06 [11,12,69] and estimates ðTE; μEÞ=Tc ≈
ð0.9–0.95; 1.0–1.4Þ [70]. Given that, in general, model
studies tend to give a relatively large κ and a low TE=Tc
[71], our model therefore provides a means for improve-
ment in these cases.

In the last two rows of Table I, the response of the CEP’s
location to varying the parameters D and ω, respectively, is
shown. As explained at the end of [18], if we consider
r ¼ 1=ω as a confinement length scale, then when r goes to
zero, which represents a NJL-type model, the CEP would
rotate toward the chemical-potential axis. Therefore, the
CEP rotates toward the temperature axis from row 2 to row
4. In row 5, the interaction strengthD is raised to produce a
larger −hψ̄ψiu=d ≈ ð280 MeVÞ3, which corresponds to the
gray dot-dashed curve in Fig. 4. The CEP in this case also
rotates toward the temperature axis. So, generally speaking,
reducing ω would make the CEP rotate toward the temper-
ature axis under the constraint of Dω ≈ ð0.8 GeVÞ3.

V. DISCUSSION AND SUMMARY

To summarize, we incorporate the quark’s feedback into
the gluon propagator based on the idea of the OPE and
derive a gluon propagator that evolves through the T − μ
plane. It is characterized and determined by a quark
condensate at finite temperature and density. The QCD
phase diagram is then studied with this gluon model within
the DSE framework.
At zero temperature and finite chemical potential, the

coexistence region of the Nambu-Goldstone solution and
the Wigner solution is found, indicating a first order phase
transition point. Moreover, we have shown that our model
preserves two important features of QCD; e.g., QCD
remains vacuum at low chemical potential and discontinu-
ous change in the gluon propagator at the first order phase
transition. Then we move on to T ≠ 0 case and find that the
quark’s feedback accelerates the decrease of quark con-
densate, leading to a quicker crossover on the temperature
axis. Such a picture agrees with the lattice simulation at
finite temperature. We further studied the crossover region
and the CEP location. It shows a consistent decrease in
curvature parameter κ and an increase in TE=Tc, with more
of a gluon propagator distributed to the quark’s feedback.
For example, it brings a CEP location from ðTE; μEÞ=Tc ¼
ð0.82; 1.13Þ to ðTE; μEÞ=Tc ¼ ð0.85; 1.11Þ and κ from
0.143 to 0.126, both closer to the lattice estimation. We
therefore believe our scheme could provide a means for
improvement in model studies which have not considered
the quark’s feedback.
Finally, it is worth noting that this work is a supplement

to existing investigations of refined quark-gluon vertices
beyond rainbow truncation. The authors of [18] have
shown that with the Ball-Chiu vertex, the QCD phase
diagram is improved in several aspects; e.g., it has a
significantly narrower metastable region and a more
reasonable CEP location. Since the dressing effect in the
Ball-Chiu vertex is also expressed in terms of the quark’s
dressing functions and therefore consists of the quark’s
feedback, it is evident that the incorporation of the
quark’s feedback within the DSE framework could produce
a QCD phase diagram that is more realistic.

FIG. 8. From top to bottom, pseudotransition points obtained
from Λ ¼ þ∞ (the blue dotted curve) Λ ¼ 0.56 (the black dot-
dashed line), and Λ ¼ 0.5 (the red dashed curve), respectively, are
all well fitted by Eq. (26). The area between the gray solid curves
is the metastable region of the Nambu-Goldstone phase and the
Wigner phase.
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