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The prospects are explored for testing Lorentz and CPT symmetry in the top-quark sector. We present
the relevant Lagrange density, discuss physical observables, and describe the signals to be sought in
experiments. For top-antitop pair production via quark or gluon fusion with subsequent semileptonic or
hadronic decays, we obtain the matrix element in the presence of Lorentz violation using the narrow-width
approximation. The issue of testing CPT symmetry in the top-quark sector is also addressed. We
demonstrate that single-top production and decay is well suited to a search for CPT violation, and we
present the matrix elements for single-top production in each of the four tree-level channels. Our results are
applicable to searches for Lorentz violation and studies of CPT symmetry in collider experiments,
including notably high-statistics top-antitop and single-top production at the Large Hadron Collider.
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I. INTRODUCTION

The 1995 discovery of the top (t) quark at the Fermilab
Tevatron [1] opened a new era for investigation of the
Standard Model (SM) of particle physics. While exper-
imental observations initially involved comparatively few
events, the advent of the Large Hadron Collider (LHC) has
radically changed the prospects for physics analyses
involving the top quark. Indeed, the LHC can reasonably
be viewed as a top-quark factory, since it is expected to
produce several million single-top or single-antitop events
and even more top-antitop pairs over the next few years,
with ultimately another order of magnitude produced
during the lifetime of the machine [2]. The accompanying
plethora of top-quark data, which is unlikely to be matched
at another collider in the foreseeable future, offers a
remarkable opportunity for precision measurements using
the heaviest elementary fermion in the SM.
Most of the precision measurements involving the top

quark that have been undertaken to date either attempt to
verify basic predictions of the SM or search for new physics
from models constructed within a conventional field-
theoretic context. However, the high statistical power
provided by the LHC data set provides the opportunity
to use top-quark physics to investigate profound issues
involving the validity of underlying features of quantum
field theory and the SM in the third generation. In the
present work, we explore the prospects for studying the
foundational Lorentz and CPT symmetries of the SM at
the scale of the top quark.
Interest in precision tests of spacetime symmetries has

grown significantly in recent years, following the obser-
vation that tiny violations of Lorentz and CPT invariance
could arise naturally in an underlying unified theory such as
strings and be described at accessible energy scales using
effective field theory [3]. At this stage, numerous experi-
ments using methods from a variety of subfields have

sought evidence for Lorentz and CPT violation [4], but to
date only one measurement investigating Lorentz sym-
metry in the top-quark sector has been performed [5]. Some
theoretical motivation for top-quark studies comes from the
notion that Lorentz violation in a complete spacetime
theory involving gravity is expected to be spontaneous
rather than explicit, as the latter is generically incompatible
with conventional Riemann geometry or technically
unnatural [6,7]. Supposing that Lorentz violation indeed
arises spontaneously through the vacuum expectation value
of one or more tensor fields in the underlying theory, then
the sizes of low-energy effects are governed in part by the
couplings to these fields. If the latter follow the familiar
pattern of Yukawa couplings in the SM determining the
hierarchy of quarkmasses, then Lorentz- andCPT-violating
effects might naturally be expected to be largest for the top
quark. Moreover, since the top quark decays before hadro-
nization, it offers a unique arena for studying Lorentz and
CPT symmetry in essentially free quarks. In any case,
independent of deeper potential theoretical motivations, as
a matter of principle it is of interest to establish the laws of
relativity for the top quark on as firm a footing as possible.
The comprehensive realistic effective field theory for

Lorentz and CPT violation, called the Standard-Model
Extension (SME), contains by construction the SM coupled
to general relativity along with all possible operators for
Lorentz violation [6,8]. In realistic effective field theories
CPT violation is accompanied by Lorentz violation [9], so
the SME also describes general CPT violation. A Lorentz-
violating term in the Lagrange density of the SME is an
observer scalar density formed by contracting a Lorentz-
violating operator with a coefficient for Lorentz violation
that controls the size of the associated effects. The operators
can be classified systematically using their mass dimension
d, with arbitrarily large values of d appearing. The
restriction of the SME to include only Lorentz-violating
operators with d ≤ 4, called the minimal SME, is a
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renormalizable theory in Minkowski spacetime. The SME
provides a realistic and calculable framework for analyses
of experimental data searching for deviations from Lorentz
and CPT invariance [10].
During recent years, many measurements have been

performed of fundamental properties of the top quark,
including its mass [11], its charge [12], and its width [13].
However, to date the sole search for Lorentz violation in the
top-quark sector was performed by the D0 Collaboration
[5] using data from the Fermilab Tevatron Collider and the
theoretical formalism of the SME. The production of t − t̄
pairs at the Tevatron is dominated by quark fusion, and the
D0 Collaboration studied data corresponding to an inte-
grated luminosity of 5.3 fb−1 for processes with the t − t̄
pairs decaying into leptonic and jet final states. These
processes are primarily sensitive to certain dimensionless
SME coefficients for CPT-even Lorentz violation, and the
investigation constrains possible Lorentz violation involv-
ing these coefficients to below about the 10% level. The
substantially greater statistical power available at the LHC
offers the opportunity to improve significantly on this
study. However, at the LHC the primary production
mechanism for t − t̄ pairs is gluon fusion, for which the
matrix elements are different and more involved than those
for quark fusion. One goal of the present work is to present
the essential theory appropriate for t − t̄ production by
gluon fusion.
Another interesting issue is the extent to which CPT

symmetry is respected by the top quark. Since CPT
violation comes with Lorentz violation in realistic effective
field theory [8,9], studies of CPT violation necessarily
involve observables that change with energy and orienta-
tion. No experimental investigations of CPT symmetry for
the top quark in this context have been performed to date. In
this work, we partially address this gap in the literature by
demonstrating that studies of single-top or single-antitop
production at the LHC provide the basis for a search for
CPT violation.
The structure of this paper is as follows. We begin in

Sec. II by establishing the basic theory used in this work.
The relevant parts of the SME Lagrange density are
provided, the physical observables are identified, and the
types of signals of relevance are discussed. We then turn in
Sec. III to top-antitop pair production, where we present the
matrix element for production and decay. The Lorentz-
invariant result is given, followed by a demonstration that
pair production is a CPT-even process. We give the explicit
amplitudes for Lorentz-violating pair production and decay
both via quark fusion, which was the dominant process for
the D0 analysis, and via gluon fusion, which dominates at
the LHC. In Sec. IV, we address CPT violation in the top-
quark sector, showing that single-top production offers
access to CPT observables. Four tree-level channels play a
role, and we derive the matrix elements for each. Details of
the spin sum required for calculations of the single-top

matrix elements are relegated to the Appendix. The results
in the paper are summarized in Sec. V, which also includes
an estimate of attainable sensitivities and a brief discussion
of model-building issues associated with the size of
measurable effects and their transmission to other sectors
via radiative corrections. Throughout this work, our con-
ventions match those adopted in Ref. [8].

II. THEORY

This section provides some theoretical comments of
relevance to the derivations in the remainder of the paper.
We present the portion of the SME Lagrange density
applicable to the top-quark searches studied here, discuss
the issues of field redefinitions and physical observables,
and offer some observations about generic signals that
could be sought in experimental analyses.

A. SME Lagrange density for the top quark

In this paper, our focus is on the top-quark sector in the
minimal SME. The part of the SME Lagrange density
involving Lorentz and CPT violation in the top-quark
sector can be extracted from Ref. [8]. Denoting the left-
handed quark doublets by QA and the right-handed charge-
2=3 singlets as UA, the relevant piece of these equations
describing CPT-even Lorentz violation is

LCPTþ ⊃
1

2
iðcQÞμνABQ̄Aγ

μDν
↔
QB

þ 1

2
iðcUÞμνABŪAγ

μDν
↔
UB

−
1

2
ðHUÞμνABQ̄Aϕ

cσμνUB þ H:c:; ð1Þ

where Dμ is the gauge-covariant derivative and ϕ is the
Higgs field. The piece governing CPT-odd Lorentz
violation is

LCPT− ⊃ −ðaQÞμABQ̄Aγ
μQB − ðaUÞμABŪAγ

μUB: ð2Þ

The various coefficients in these equations determine the
size of the Lorentz violation. The dimensionless coeffi-
cients cμνAB are traceless in spacetime indices μ, ν and are
Hermitian in generation indices A, B, while the dimension-
less coefficients HμνAB are antisymmetric in spacetime
indices μ, ν. The coefficients aμAB have dimensions of
mass and are Hermitian in generation indices A, B.
In this work, which focuses on the top quark, we assume

for definiteness and simplicity that the only relevant
Lorentz and CPT violation involves the third generation,
so that A ¼ B ¼ 3. A more general treatment would also be
of interest but lies outside our present scope. The coef-
ficients of relevance here are therefore ðcQÞμν33, ðcUÞμν33,
ðHUÞμν33, ðaQÞμ33, and ðaUÞμ33. The first three control
CPT-even operators, while the last two control CPT-odd
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ones. All coefficients affect the propagator for the top-
quark field t, while ðcQÞμν33 and ðaQÞμ33 also affect the
propagator for the bottom-quark field b, and ðcQÞμν33
affects the t − b −W vertex as well. For convenience in
what follows, we introduce the abbreviated notation

ðaLÞμ ¼ ðaQÞμ33; ðaRÞμ ¼ ðaUÞμ33;
ðcLÞμν ¼ ðcQÞμν33; ðcRÞμν ¼ ðcUÞμν33;

H0
μν ¼ hϕiðHUÞμν33; ~H0μν ¼ 1

2
ϵμνρσH0

ρσ; ð3Þ

where hϕi is the Higgs expectation value. It is also useful to
define certain coefficient combinations as

aμ ¼
1

2
½ðaLÞμ þ ðaRÞμ�; bμ ¼

1

2
½ðaLÞμ − ðaRÞμ�;

cμν ¼
1

2
½ðcLÞμν þ ðcRÞμν�; dμν ¼

1

2
½ðcLÞμν − ðcRÞμν�;

Hμν ¼ ReH0
μν − Im ~H0

μν: ð4Þ

In these expressions, all coefficients are real except for
ðHUÞμν33, H0

μν, and its dual ~H0μν, which may be complex.
For our purposes, the relevant part LSM

t;b of the matter
Lagrange density for the conventional SM involves the t

and b quark fields, their electroweak interactions with the
W�

μ bosons, and their strong interactions with the SU(3)-
adjoint matrix Gμ of gluons. In what follows, the left- and
right-handed fermion fields are defined by

ψL ≡ 1

2
ð1 − γ5Þψ ; ψR ≡ 1

2
ð1þ γ5Þψ ; ð5Þ

as usual. Using this notation,

LSM
t;b ¼ 1

2
it̄γμ∂μ

↔
t −mtt̄tþ

1

2
ib̄γμ∂μ

↔
b −mbb̄b

þ
�
gVtbffiffiffi

2
p W−

μ b̄LγμtL þ H:c:

�
þ gsðt̄γμGμtþ b̄γμGμbÞ; ð6Þ

where mt and mb are the masses of the top and bottom
quarks, respectively; g is the electroweak coupling con-
stant; Vtb is an element of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix; and gs is the strong coupling
constant. The SME corrections involving CPT-even
Lorentz violation can be extracted from Eq. (1) and written
in various equivalent forms,

LCPTþ
t;b ¼ 1

2
iðcLÞμνt̄Lγμ∂ν

↔
tL þ 1

2
iðcRÞμνt̄Rγμ∂ν

↔
tR þ 1

2
iðcLÞμνb̄Lγμ∂ν

↔
bL þ

�
gVtbffiffiffi

2
p ðcLÞμνW−νb̄LγμtL þ H:c:

�

−
1

2
Hμνt̄LσμνtR −

1

2
Hμνt̄RσμνtL þ gscμνðt̄γμGνtþ b̄γμGνbÞ;

¼ 1

2
icμνt̄γμ∂ν

↔
tþ 1

2
idμνt̄γ5γμ∂ν

↔
tþ 1

2
iðcLÞμνb̄Lγμ∂ν

↔
bL þ

�
gVtbffiffiffi

2
p ðcLÞμνW−νb̄LγμtL þ H:c:

�

−
1

2
Hμνt̄σμνtþ gscμνðt̄γμGνtþ b̄γμGνbÞ: ð7Þ

Similarly, the CPT-odd terms obtained from Eq. (2) can be
written

LCPT−
t;b ¼ −ðaLÞμt̄LγμtL − ðaRÞμ t̄RγμtR − ðaLÞμb̄LγμbL

¼ −aμt̄γμt − bμt̄γ5γμt − ðaLÞμb̄LγμbL
¼ −aμt̄γμt − bμt̄γ5γμt −

1

2
ðaLÞμb̄γμb

−
1

2
ðaLÞμb̄γ5γμb: ð8Þ

In subsequent sections, the above expressions are used to
derive the matrix elements for top-antitop production and
decay and to explore the prospects for studying CPT
violation in single-top production.

B. Observables

For top-quark production and decay, the Lorentz-violat-
ing terms listed above can affect Feynman diagrams
through the production vertices, the t and t̄ propagators,
the decay vertices, and the b and b̄ propagators. At leading
order, each contribution from Lorentz violation arises as an
insertion on a propagator or a vertex. The matrix element
for a Lorentz-violating process can then be computed from
the Feynman diagrams in the usual way, except perhaps for
some technical issues involving external legs [14].
However, only a subset of the Lorentz-violating insertions
leads to physically observable effects. Some terms can be
absorbed into unobservable phases in the fields, choices for
the spacetime coordinates, or redefinitions of the spinor
basis [6,8,15,16]. These terms therefore can be expected to
cancel in matrix elements. To minimize calculations, it is
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useful to identify relevant terms beforehand. In this sub-
section, we outline the procedure for this.
For the analysis, one could in principle work with the

SME prior to the SUð2Þ × Uð1Þ breaking, at the level of
Eqs. (1) and (2). The relevant spinor fields subject to
redefinitions would then be QA and UA, but care must be
taken because the two components of each quark doublet
can play independent roles. Here, we work instead with the
terms (7) and (8) belonging to the SME Lagrange density
after the SUð2Þ × Uð1Þ breaking, for which the relevant
spinor fields are tL, tR, bL, bR. It suffices for present
purposes to consider the observability of coefficients at
leading order.
Consider first the terms (7) for CPT-even Lorentz

violation. Each coefficient of the cμν and dμν type is a
sum of three observer Lorentz irreducible pieces: a trace, a
symmetric part, and an antisymmetric part. The traces of
these coefficients are irrelevant for our purposes because
they are Lorentz invariant and can be absorbed into overall
normalizations of the fields, so they can be set to zero
without loss of generality. Also, the symmetric parts of
these coefficients are all physically observable in principle.
Specifying the particle sector used to define the Minkowski
metric normally removes one symmetric coefficient of the
cμν type, but in the present instance we have already tacitly
made such a choice by assuming that the light quark sectors
are conventional. In contrast, only some of the antisym-
metric parts of the coefficients of the cμν and dμν type
can be physically observable due to the possibility of
field redefinitions amounting to a choice of basis in
spinor space.
As an explicit example, consider the redefinition tL →

ð1þ ivμνσμνÞtL where vμν is constant, and perform the same
redefinition on tR, bL, bR. We remark that although this
redefinition superficially resembles an infinitesimal Lorentz
transformation under which the Lagrange density is invari-
ant, here only a subset of the fields are involved and so the
form of the Lagrange density changes. Under this redefi-
nition, the kinetic term for t in Eq. (6) generates a term of the
cμν type for t, while the tmass term is invariant. Similarly, the
b kinetic term generates a term of the cμν type for b, and the b
mass term is invariant. TheW−

μ interaction term produces an
interaction term involving ðcLÞμν, while the gluon couplings
are invariant. These results imply that all the antisymmetric
parts of cμν appearing inEq. (7) can be absorbedby a suitable
choice of vμν, at the cost of introducing a term of the form

iðcLÞμνb̄Rγμ∂ν
↔
bR for the bR field. It then follows, for

example, that the antisymmetric part of cμν is irrelevant
for top-quark production, and also that any effects on top
decays can be attributed to the propagator terms for b and b̄.
A similar line of reasoning reveals that the antisymmetric
part of dμν can be absorbed into Hμν and elsewhere in the
Lagrange density, so it can therefore be viewed as irrelevant
for present purposes as well.

Next, consider the terms (8) for CPT-odd Lorentz
violation. Suppose first that tL is redefined by an unob-
servable position-dependent phase, tL → expð−ivμxμÞtL,
where vμ is constant. The mass term for t in Eq. (6) remains
unaffected provided tR is redefined the same way. The
kinetic term for t in the SM Lagrange density then
generates a term of the aμ type for t. The W−

μ -interaction
term is invariant if bL is redefined in this way, and the mass
term for b is unchanged if bR is too. The kinetic term for b
in the SM Lagrange density then generates a term of the aμ
type for b. These results imply that the freedom in choosing
vμ allows, for example, removing the term − 1

2
ðaLÞμb̄γμb

from the last line of Eq. (8) without loss of generality. A
useful option is to choose vμ to cancel ðaLÞμ in the first and
third terms of the first line of Eq. (8), leaving the physically
equivalent terms

LCPT−
t;b ≡ ½ðaLÞμ − ðaRÞμ�t̄RγμtR þ ðaLÞμb̄RγμbR

¼ bμt̄γμt − bμt̄γ5γμtþ
1

2
ðaLÞμb̄γμb

−
1

2
ðaLÞμb̄γ5γμb ð9Þ

in which only right-handed fields appear.
With the above choices, the description of CPT violation

in the top-quark sector is reduced to considerations of
insertions involving only right-handed fields, thereby
simplifying both practical calculations and physical intu-
ition. For the latter, for example, with the effects of CPT
violation limited to the t propagator according to Eq. (9), a
top quark follows a geodesic in a pseudo-Finsler spacetime
[17]. In a related vein, we remark in passing that no mass
differences between t and t̄ appear, a result in accordance
with Greenberg’s theorem [9] and also with expectations
for CPT violation in realistic effective field theory, where
the antitop particle associated with the field t̄ is defined as
the antiparticle of t and therefore by construction always
has the same Lagrange-density mass.
Further simplifications affecting the observability of

CPT violation appear if one or more of the quark masses
can be neglected in a given process. For example, when the
b mass mb is negligible compared to the b kinetic term,
then the field bR can be independently redefined using a
different phase, bR → expð−iv0μxμÞbR, while leaving unaf-
fected the form of the SM Lagrange density except for
generating a term of the aμ type for b. A suitable choice of
v0 therefore can eliminate all b-quark terms in Eq. (9) when
mb is negligible. Any observableCPT-violating effects on t
processes must then arise from insertions on t-quark
propagators. Moreover, if the t mass mt itself is also
negligible in a given experimental process, then all t-quark
terms in Eq. (9) can be removed via another independent
field redefinition without changing the physics. For this
special limiting case and under the assumptions leading to
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Eqs. (6) and (8), no top-quark CPT violation is observable
at leading order.

C. Signals

Top-quark physics offers a rich variety of options for
seeking Lorentz-invariant physics beyond the SM [18].
However, signals of Lorentz violation have unique features
that cannot be associated with Lorentz-invariant effects. For
example, in a given inertial frame, the presence of Lorentz
violation means that the properties of each quark depend on
its direction of travel and its boost. Moreover, if the Lorentz
violation includes CPT violation, then the properties of the
top and antitop can differ as well. These features lead to
distinctive experimental signals that provide a basis for
searches for Lorentz violation in the top-quark sector, as
outlined in this subsection.
For ease of comparison between experiments, it is useful

to introduce a standard inertial frame to report measure-
ments of coefficients for Lorentz violation. The canonical
frame adopted in the literature is a Sun-centered frame
[4,15,19]. Cartesian coordinates ðT; X; Y; ZÞ in this frame
are defined so that the Z axis points along the direction of
the Earth’s rotation, while the X axis points from the Earth
to the Sun at the vernal equinox 2000. Unlike any Earth-
based reference frame, the Sun-centered frame can be taken
as approximately inertial over a period of years. Its align-
ment also means that the transformation between the Sun-
centered frame and a laboratory frame is comparatively
simple. Suppose, for example, that Cartesian coordinates
ðt; x; y; zÞ in the laboratory are chosen such that the x axis
points south, the y axis points east, and the z axis points
vertically upwards. Since the Earth rotates with sidereal
frequency ω⊕ ≃ 2π=ð23 h 56 mÞ the relationship mapping
coefficients in the laboratory frame to those in the Sun-
centered frame involves a time-dependent rotation RjJ

between the two coordinate systems, which is given
explicitly as [15]

RjJ ¼

0
B@

cos χ cosω⊕T cos χ sinω⊕T − sin χ

− sinω⊕T cosω⊕T 0

sin χ cosω⊕T sin χ sinω⊕T cos χ

1
CA; ð10Þ

where χ is the colatitude of the experiment.
For convenience of use, the expressions derived in the

sections below for the various matrix elements for top-
quark production and decay are expressed as observer
Lorentz scalars, so they can be evaluated in any observer
frame. For example, the laboratory frame can be chosen as
the specified observer frame, and then the expressions for
the matrix elements can be evaluated with all coefficients
and four-momenta taken in that frame. Since the coeffi-
cients in the laboratory frame can be obtained from those
in the Sun-centered frame via the rotation (10), experi-
mental results can readily be reported directly in terms of

coefficients in the Sun-centered frame. The reader is
cautioned here to distinguish the observer Lorentz invari-
ance, which is merely an expression of coordinate inde-
pendence of the physics, from the physical particle Lorentz
violation arising through nonzero coefficients [8]. For
example, in the presence of Lorentz violation, physically
boosting a particle of mass m in any fixed observer frame
produces behavior governed by a modified dispersion
relation involving coefficients for Lorentz violation [20],
instead of the standard dispersion relation p2 ¼ m2.
It is physically reasonable to take the coefficients for

Lorentz violation as constant in the Sun-centered frame
[21]. Since the transformation to the laboratory frame
involves the time-dependent rotation (10), the laboratory-
frame coefficients vary with sidereal time. Lorentz violation
therefore can be expected to produce sidereal oscillations in
the data, with amplitudes and phases governed by the
coefficients for Lorentz violation.Most coefficients produce
signals at the sidereal frequency ω⊕, but the symmetric
components of the coefficient cμν generate ones at the
harmonic 2ω⊕ as well. Note also that the revolution of the
Earth about the Sun introduces an extra time dependence in
the laboratory-frame coefficients with an annual periodicity.
However, this time dependence is suppressed relative to the
previous one by the Earth’s boost β⊕ ≃ 10−4, which in
practice reduces the experimental sensitivity to annual
variations to below the level of interest here.
The above considerations reveal that the data for top-

quark production and decay can be expected to contain
information in the amplitudes and phases of the sidereal
and twice-sidereal harmonics. An analysis including many
coefficients can be cumbersome, but in practice consid-
erable insight can be gained by allowing only one compo-
nent of a coefficient for Lorentz violation to be nonzero at a
time, and extracting the sensitivity to it. This simplified
procedure is common practice in the field [4]. While it
disregards possible interference or cancellation of effects
between coefficient components, it does give a notion of
the maximal sensitivity achieved to each component.
Evidently, if a nonzero result is found for any component,
the question of possible interference would need to be
revisited. This type of analysis has been performed recently
in the context of top-antitop production by the D0
Collaboration [5], who report limits of about 10% on
individual components of the cμν-type coefficients in the
canonical Sun-centered frame.
In addition to studying sidereal signals, which intrinsi-

cally include both CPT-even and CPT-odd Lorentz viola-
tion, an analysis can also seek to isolate CPT-odd effects.
One method to achieve this is to work with a suitable
asymmetry. If the rate for a process is found to be R and the
rate for theCPT-conjugate process is R̄, then the asymmetry

ACPT ≡ R − R̄
Rþ R̄

ð11Þ
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provides a measure of CPT violation for that process.
Asymmetries of this type have been widely used in the
context of SME studies of CPT violation in neutral-meson
oscillations [21,22], where coefficients for various combi-
nations of nontop quarks have been experimentally con-
strained using K0, D0, B0

d, and B0
s mesons [23–27]. The

asymmetry ACPT is proportional to coefficients for CPT-
odd Lorentz violation, and typically it has both a constant
term and a term oscillating with sidereal time. The exper-
imental analysis therefore has several paths available to
extract different information. Constructing the time-
averaged asymmetry hACPTi, for which oscillations average
to zero over many sidereal days, permits constraints on
coefficients entering the constant term, while studying the
amplitudes and phases of the oscillations provides indepen-
dent measures of CPT symmetry.

III. TOP-ANTITOP PAIR PRODUCTION

In this section we discuss the matrix elements for
top-antitop pair production in the presence of Lorentz
violation. We begin by outlining the Lorentz-invariant
case, including top-antitop pair production both from quark
fusion and from gluon fusion. We then consider the
Lorentz-violating situation, showing that the process is
CPT even and deriving the matrix elements for both quark
fusion and gluon fusion at leading order in Lorentz
violation.

A. Lorentz-invariant case

Consider first the matrix elementM for the case without
Lorentz violation. The process of interest involves the
production of a t − t̄ pair, each component of which then
decays. In quark fusion the production is via a single
gluon in the s channel, while in gluon fusion all three s, t,
and u channels contribute. The tree-level diagrams of
relevance are shown in Fig. 1. Note that production via
gluon fusion contributes only at the 15% level at Tevatron
energies [28], while for production at LHC energies the
situation is reversed with gluon fusion dominating the
process.
In the standard narrow-width approximation [29–31], the

squared modulus of M can be written as the product of
three parts,

jMj2 ¼ PFF̄: ð12Þ

The quantities P, F, and F̄ represent the factors from the
t − t̄ pair production, the t decay, and the t̄ decay,
respectively. Next, we consider each factor in turn.
The production factor P is different for quark fusion and

gluon fusion. For quark fusion the production factor Pqq̄ is
given by

Pqq̄ ¼
g4s
9
ð2 − β2 sin2 θÞ

¼ g4s
18E4

½ðpq · ptÞðpq̄ · pt̄Þ þ ðpq · pt̄Þðpq̄ · ptÞ
þ ðpq · pq̄Þm2

t �; ð13Þ

where β is the common speed of the t and t̄ quarks in the
production center-of-mass frame, and θ is the scattering
angle. The second equation above provides the expression
in terms of the four-momenta of the various particles
involved, with E being the common energy of the quark
or antiquark in the production center-of-mass frame, so that
the usual Mandelstam variable for the subprocess
is s ¼ 4E2.
For gluon fusion, the production factor P2g with color

and polarization averaged and spins summed can be
expressed as a sum of six contributions arising from the
three Feynman diagrams in the s, t, and u channels [32–34],

P2g ¼
X

ðjMssj2 þ jMttj2 þ jMuuj2
þ jMstj2 þ jMsuj2 þ jMtuj2Þ; ð14Þ

where

FIG. 1. Tree-level Feynman diagrams for t − t̄ production via
quark fusion (qq̄ → tt̄) and gluon fusion (gg → tt̄).
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X
jMssj2 ¼

3g4s
4

ðt −m2
t Þðu −m2

t Þ
s2

;

X
jMttj2 ¼

g4s
6

ðt −m2
t Þðu −m2

t Þ − 2m2
t ðtþm2

t Þ
ðt −m2

t Þ2
;

X
jMuuj2 ¼

g4s
6

ðu −m2
t Þðt −m2

t Þ − 2m2
t ðuþm2

t Þ
ðu −m2

t Þ2
;

X
jMstj2 ¼

3g4s
8

ðt −m2
t Þðu −m2

t Þ þm2
t ðu − tÞ

sðt −m2
t Þ

;

X
jMsuj2 ¼

3g4s
8

ðu −m2
t Þðt −m2

t Þ þm2
t ðt − uÞ

sðu −m2
t Þ

;

X
jMtuj2 ¼ −

g4s
24

m2
t ðs − 4m2

t Þ
ðt −m2

t Þðu −m2
t Þ
: ð15Þ

In these expressions, s, t, and u are the usual Mandelstam
variables,

s ¼ ðp1 þ p2Þ2 ¼ ðpt þ pt̄Þ2
¼ 2p1 · p2 ¼ 2pt · pt̄ þ 2m2

t ;

t ¼ ðp2 − ptÞ2 ¼ ðp1 − pt̄Þ2
¼ −2p2 · pt þm2

t ¼ −2p1 · pt̄ þm2
t ;

u ¼ ðp1 − ptÞ2 ¼ ðp2 − pt̄Þ2
¼ −2p1 · pt þm2

t ¼ −2p2 · pt̄ þm2
t ; ð16Þ

where p1, p2 are the four-momenta of the two gluons. Each
of the six expressions above represents either the squared
modulus of an individual diagram or the interference
between different channels. The calculation uses the trick
of modifying the s-channel diagram to remove the con-
tribution of the unphysical gluon polarizations [33,35,36].
If instead the unphysical polarizations are handled by
including the contribution from Fadeev-Popov ghosts in
the squared matrix elements, then the individual expres-
sions above differ but their sum remains unchanged.
Within the narrow-width approximation, the decay

factors F, F̄ are independent of the production mechanism.
Suppose for definiteness that the t decays leptonically as

t → Wþb → l̄νb ð17Þ

while the t̄ decays hadronically as

t̄ → W−b̄ → qq̄0b̄: ð18Þ

The factor F in Eq. (12) is then given by [37]

F ¼ g4

4

ðm2
i −m2

l̄ν
Þ

ðmtΓtÞ2
�
m2

i ð1 − c2
l̄b
Þ þm2

l̄ν
ð1þ cl̄bÞ2

ðm2
l̄ν
−m2

WÞ2 þ ðmWΓWÞ2
�

ð19Þ

while the factor F̄ is given by

F̄ ¼ g4

4

ðm̄2
i −m2

qq̄0 Þ
ðmtΓtÞ2

�m̄2
i ð1 − c2

qb̄
Þ þm2

qq̄0 ð1þ cqb̄Þ2
ðm2

qq̄0 −m2
WÞ2 þ ðmWΓWÞ2

�
:

ð20Þ
In these expressions, ml̄ν is the invariant mass of the lepton
and neutrino from the Wþ decay, and mqq̄0 is the 2-jet
invariant mass from theW− decay. Also, mi is the invariant
mass of the lepton, neutrino, and b from the t decay, while
m̄i is the 3-jet invariant mass from the t̄ decay. The width of
the t quark is denoted by Γt, while the mass and width of the
W boson are mW and ΓW . The quantity cl̄b is the cosine of
the angle between the lepton and the b in theWþ rest frame,
and cqb̄ is the cosine of the angle between the light quarks
from theW− and the b̄ in theW− rest frame. For simplicity,
we have omitted the CKM factors. To describe the top line
shape, a correction to the denominator ðmtΓtÞ2 can be
introduced [38], which in principle would involve the
modified top dispersion relation. In terms of four-momenta,
the quantities F and F̄ become

F ¼ −4g4
ðpν · pbÞðpl̄ · ptÞ

ðmtΓtÞ2½ðm2
l̄ν −m2

WÞ2 þ ðmWΓWÞ2�
;

F̄ ¼ −4g4
ðpq · pbÞðpq̄0 · pt̄Þ

ðmtΓtÞ2½ðm2
qq̄0 −m2

WÞ2 þ ðmWΓWÞ2�
: ð21Þ

For other decays of the t and t̄, the corresponding decay-
product momenta can be substituted appropriately.

B. Lorentz-violating case

In the presence of Lorentz violation, additional Feynman
diagrams contribute to the matrix element for t − t̄ pro-
duction and decay. As before, the narrow-width approxi-
mation factors the matrix element into a production part
and two decay parts. The additional contributions to the
Feynman diagrams for each of these parts arise as Lorentz-
violating insertions on the propagators and vertices, in
accordance with the general discussion given in Sec. II B.
The effects of each type of coefficient can be considered
in turn.
Consider first the prospective contributions from the

coefficients associated with CPT violation, which are
contained in the Lagrange-density terms (8) or, equiva-
lently, in Eq. (9). It turns out that these coefficients produce
no relevant effects, as can be seen in several ways. A
general line of reasoning considers the production process
qq̄ → tt̄ or gg → tt̄ at all orders, assuming no polarizations
or spins are detected. If this process were CPT violating,
then its squared amplitude would necessarily have a
contribution proportional to an odd power of coefficients
for CPT violation and therefore should change sign under
the CPT operation. However, the CPT-conjugate squared
amplitude can be obtained by interchanging q↔q̄ for all
quarks including the top, which by inspection of the generic
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Feynman diagram yields the same squared amplitude as the
original process. This is impossible unless no CPT viola-
tion occurs.
To understand more explicitly why CPT violation has no

relevant effect for unpolarized t − t̄ production and decay,
we can consider various specific insertions in turn. Using
the first line of Eq. (9), for example, we see that CPT
violation involves only right-handed t or b fields.
Inspection reveals that every diagram with a corresponding
insertion on a t or b propagator is accompanied by a
conjugate diagram yielding a contribution of the same
magnitude but opposite sign. This cancellation also holds in
the context of the narrow-width approximation. We can
therefore disregard CPT violation in t − t̄ production and
decay without loss of generality.
Next, consider effects involving the coefficients associ-

ated with CPT-even Lorentz-violating operators given by
Eq. (7). Consider first the coefficient Hμν. Insertion of the
associated operator on the production side gives a vanishing
matrix element. Insertion in the decay diagrams gives a
nonzero matrix element, but the result vanishes when the
phase-space integral is performed for the t and t̄ decays. This
suggests that insertion of the Hμν operator generates spin-
correlation effects, which can be neglected for present
purposes. Any real effects of this type could in principle
be observed as angular information in the final state, but they
are suppressed by the coefficients for Lorentz violation
relative to the usual spin correlations that exist in the
Lorentz-invariant top-quark production anddecay andhence
are unlikely to be candidates for precision measurement.
The Lorentz-violating contributions of interest are there-

fore those involving the cμν-type coefficients. To express
these effects, we write the square of the matrix element at
first order in Lorentz violation in the form

jMj2 ¼ PFF̄ þ ðδpPÞFF̄ þ ðδvPÞFF̄
þ PðδFÞF̄ þ PFðδF̄Þ: ð22Þ

The first term is the Lorentz-invariant piece given in the
previous section, while the other terms represent the
corrections arising at leading order in the cμν-type coef-
ficients. The subscripts p and v refer to propagator and
vertex insertions, respectively. In what follows, we discuss
each of the Lorentz-violating corrections in turn.

1. Production via quark fusion

For production via quark fusion, the corrections can
conveniently be expressed in terms of the coefficient cμν
introduced in Eq. (4). The contribution from insertions on
the t and t̄ propagators is

δpP ¼ g4s
18E4

cμν½ðpq · ptÞðpμ
t̄ p

ν
q̄Þ þ ðpq · pt̄Þðpμ

t pν
q̄Þ

þ ðpq̄ · ptÞðpμ
t̄ p

ν
qÞ þ ðpq̄ · pt̄Þðpμ

t pν
qÞ�: ð23Þ

The contribution from the production vertex is

δvP ¼ g4s
18E4

cμν½−ðpq · pq̄Þðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ

− ðpt · pt̄ þm2
t Þðpμ

qpν
q̄ þ pμ

q̄p
ν
qÞ

þ ðpq · ptÞpμ
q̄p

ν
t̄ þ ðpq · pt̄Þpμ

q̄p
ν
t

þ ðpq̄ · ptÞpμ
qpν

t̄ þ ðpq̄ · pt̄Þpμ
qpν

t �: ð24Þ

The above expressions have been used by the D0
Collaboration to perform a search for Lorentz violation
in the top-quark sector using data from the Fermilab
Tevatron [5]. In principle, the statistical power of this
analysis could be enhanced by incorporating also the
production from gluon fusion described in the next section,
which would give additional contributions suppressed at
the 15% level relative to the ones above [28].

2. Production via gluon fusion

For production via gluon fusion, the correction from the
propagators can be separated into six parts, three coming
from squaring the amplitude of each Feynman diagram and
three from the interference between the amplitudes of
diagram pairs. These six contributions represent the dom-
inant ones for t − t̄ production at LHC energies and hence
are well suited for a Lorentz-violation search using data
from the LHC detectors.
Adopting the same notation as in Eq. (16), the squared

moduli for the s, t, and u channels give the three
contributions

δp
X

jMssj2 ¼
3g4scμν
4s2

½sðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ þ ðt −m2

t Þðpμ
1p

ν
t̄ þ pμ

2p
ν
t Þ þ ðu −m2

t Þðpμ
1p

ν
t þ pμ

2p
ν
t̄ Þ�; ð25Þ

δp
X

jMttj2 ¼
g4scμν

6ðt −m2
t Þ3

½ð−t2 þ tu −m2
t uþ 3m2

t t − 10m4
t Þðpμ

1p
ν
2 þ pμ

2p
ν
1Þ þ ðt2 þ tu −m2

t u − 9m2
t tÞðpμ

t pν
t̄ þ pμ

t̄ p
ν
t Þ

þ ð−t2 − tuþm2
t uþ 5m2

t tþ 4m4
t Þðpμ

1p
ν
t þ pμ

t pν
1 þ pμ

2p
ν
t̄ þ pμ

t̄ p
ν
2Þ�; ð26Þ

and
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δp
X

jMuuj2 ¼
g4scμν

6ðu −m2
t Þ3

½ð−u2 þ tu −m2
t tþ 3m2

t u − 10m4
t Þðpμ

1p
ν
2 þ pμ

2p
ν
1Þ þ ðu2 þ tu −m2

t t − 9m2
t uÞðpμ

t pν
t̄ þ pμ

t̄ p
ν
t Þ

þ ð−u2 − tuþm2
t tþ 5m2

t uþ 4m4
t Þðpμ

1p
ν
t̄ þ pμ

t̄ p
ν
1 þ pμ

2p
ν
t þ pμ

t pν
2Þ�: ð27Þ

The three interference terms yield the contributions

δp
X

jMstj2 ¼
3g4scμν

32sðt −m2
t Þ2

½f2ts − ðtþm2
t Þðu −m2

t Þgðpμ
1p

ν
t þ pμ

t pν
1 þ pμ

2p
ν
t̄ þ pμ

t̄ p
ν
2Þ

þ ðt −m2
t Þfð3t − 5m2

t Þðpμ
1p

ν
t̄ þ pμ

t̄ p
ν
1 þ pμ

2p
ν
t þ pμ

t pν
2Þ

þ ðtþ 3u − 8m2
t Þðpμ

1p
ν
2 − pμ

2p
ν
1 − pμ

1p
ν
t̄ þ pμ

t̄ p
ν
1 þ pμ

2p
ν
t̄ − pμ

t̄ p
ν
2Þg

− 2f8m4
t þ ðt − 3m2

t Þð3tþ uÞgðpμ
1p

ν
2 þ pμ

2p
ν
1Þ þ 4ð2tu − 3m2

t t −m2
t uþ 2m4

t Þðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ�; ð28Þ

δp
X

jMsuj2 ¼
3g4scμν

32sðu −m2
t Þ2

½f2us − ðuþm2
t Þðt −m2

t Þgðpμ
1p

ν
t̄ þ pμ

t̄ p
ν
1 þ pμ

2p
ν
t þ pμ

t pν
2Þ

þ ðu −m2
t Þfð3u − 5m2

t Þðpμ
1p

ν
t þ pμ

t pν
1 þ pμ

2p
ν
t̄ þ pμ

t̄ p
ν
2Þ

þ ðuþ 3t − 8m2
t Þðpμ

1p
ν
2 − pμ

2p
ν
1 − pμ

1p
ν
t þ pμ

t pν
1 þ pμ

2p
ν
t − pμ

t pν
2Þg

− 2f8m4
t þ ðu − 3m2

t Þð3uþ tÞgðpμ
1p

ν
2 þ pμ

2p
ν
1Þ þ 4ð2tu − 3m2

t u −m2
t tþ 2m4

t Þðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ�; ð29Þ

and

δp
X

jMtuj2 ¼
g4scμν

24ðu −m2
t Þ2ðt −m2

t Þ2
½ð2sþm2

t Þðt −m2
t Þðu −m2

t Þðpμ
1p

ν
2 þ pμ

2p
ν
1 − pμ

t pν
t̄ − pμ

t̄ p
ν
t Þ

þm2
t fðs2 − 7m2

t s − 3tuþ 3m4
t Þðpμ

1p
ν
2 þ pμ

2p
ν
1 þ pμ

t pν
t̄ þ pμ

t̄ p
ν
t Þ

− ðt −m2
t Þðt − uþ 4m2

t Þðpμ
1p

ν
t̄ þ pμ

t̄ p
ν
1 þ pμ

2p
ν
t þ pμ

t pν
2Þ

þ ðu −m2
t Þðt − u − 4m2

t Þðpμ
1p

ν
t þ pμ

t pν
1 þ pμ

2p
ν
t̄ þ pμ

t̄ p
ν
2Þg�; ð30Þ

arising from the s − t, s − u, and t − u channel interferences, respectively.
The corrections arising via vertex insertions can similarly be written as the sum of six terms. The contributions from the

squared moduli of each Feynman diagram are

δv
X

jMssj2 ¼
3g4scμν
4s2

½tðpμ
t̄ p

ν
1 þ pμ

t pν
2 − pμ

1p
ν
2 − pμ

2p
ν
1Þ þ uðpμ

t̄ p
ν
2 þ pμ

t pν
1 − pμ

1p
ν
2 − pμ

2p
ν
1Þ

−m2
t ððp1 − p2Þμðp1 − p2ÞνÞ�; ð31Þ

δv
X

jMttj2 ¼
g4scμν

3ðt −m2
t Þ2

½ðt − 3m2
t Þðpμ

1p
ν
t þ pμ

t pν
1 þ pμ

2p
ν
t̄ þ pμ

t̄ p
ν
2Þ þ 4m2

t ðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ�; ð32Þ

and

δv
X

jMuuj2 ¼
g4scμν

3ðu −m2
t Þ2

½ðu − 3m2
t Þðpμ

1p
ν
t̄ þ pμ

t̄ p
ν
1 þ pμ

2p
ν
t þ pμ

t pν
2Þ þ 4m2

t ðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ�; ð33Þ

while the remaining contributions give

δv
X

jMstj2 ¼
3g4scμν

32sðt −m2
t Þ
½2ðsþ 4m2

t Þðpμ
1p

ν
2 þ pμ

2p
ν
1Þ þ ð4tþ 3u − 13m2

t Þðpμ
1p

ν
t þ pμ

t pν
1 þ pμ

2p
ν
t̄ þ pμ

t̄ p
ν
2Þ

þ 4ðt − uÞðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ þ ð−2t − 3uþ 7m2

t Þðpμ
t̄ p

ν
1 þ pμ

t pν
2Þ þ ð3u − 9m2

t Þðpμ
1p

ν
t̄ þ pμ

2p
ν
t Þ�; ð34Þ
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δv
X

jMsuj2 ¼
3g4scμν

32sðu −m2
t Þ
½2ðsþ 4m2

t Þðpμ
1p

ν
2 þ pμ

2p
ν
1Þ þ ð4uþ 3t − 13m2

t Þðpμ
1p

ν
t̄ þ pμ

t̄ p
ν
1 þ pμ

2p
ν
t þ pμ

t pν
2Þ

þ 4ðu − tÞðpμ
t pν

t̄ þ pμ
t̄ p

ν
t Þ þ ð−2u − 3tþ 7m2

t Þðpμ
t pν

1 þ pμ
t̄ p

ν
2Þ þ ð3t − 9m2

t Þðpμ
1p

ν
t þ pμ

2p
ν
t̄ Þ�; ð35Þ

and

δv
X

jMtuj2 ¼
g4scμν

6ðt −m2
t Þðu −m2

t Þ
½m2

t fðpμ
1p

ν
2 þ pμ

2p
ν
1Þ − 2ðpμ

t pν
t̄ þ pμ

t̄ p
ν
t Þg� ð36Þ

from the s − t, s − u, and t − u channel interferences, respectively.
Note that the above individual expressions lack manifest symmetry in the indices μ and ν, even though the discussion in

Sec. II B reveals that the antisymmetric contribution must be unphysical. However, only the total sum of the contributions
from all the Feynman diagrams represents a physical observable, and the symmetry of this sum can readily be verified. Note
also that terms involving the trace cμμ can be set to zero in all the expressions for the production process, for reasons
outlined in Sec. II B.

3. Semileptonic decay

For the t and t̄ decays, the Lorentz-violating effects involve only the coefficient ðcLÞμν, as can be seen from Eq. (7).
Assuming as before the decay channels (17) and (18), the decay contributions δF and δF̄ to the matrix element (22) are
given by

δF ¼ 2g4
1

ðmtΓtÞ2½ðm2
l̄ν
−m2

WÞ2 þ ðmWΓWÞ2�
ðcLÞμν½ðpb · ptÞðpμ

νpν
l̄
þ pμ

l̄
pν
νÞ þ ðpb · pνÞðpμ

t pν
l̄
þ pμ

l̄
pν
t Þ

− ðpb · pl̄Þðpμ
t pν

ν þ pμ
νpν

t Þ − ðpt · pνÞðpμ
bp

ν
l̄
þ pμ

l̄
pν
bÞ þ ðpt · pl̄Þðpμ

bp
ν
ν þ pμ

νpν
bÞ þ ðpν · pl̄Þðpμ

bp
ν
t þ pμ

t pν
bÞ� ð37Þ

and

δF̄ ¼ 2g4
1

ðmtΓtÞ2½ðm2
l̄ν
−m2

WÞ2 þ ðmWΓWÞ2�
ðcLÞμν½ðpt̄ ·pb̄Þðpμ

qpν
q̄0 þpμ

q̄0p
ν
qÞ þ ðpt̄ ·pqÞðpμ

b̄
pν
q̄0 þpμ

q̄0p
ν
b̄
Þ

− ðpt̄ ·pq̄0 Þðpμ
b̄
pν
q þpμ

qpν
b̄
Þ− ðpb̄ ·pqÞðpμ

t̄ p
ν
q̄0 þpμ

q̄0p
ν
t̄ Þ þ ðpb̄ ·pq̄0 Þðpμ

t̄ p
ν
q þpμ

qpν
t̄ Þ þ ðpq ·pq̄0 Þðpμ

t̄ p
ν
b̄
þpμ

b̄
pν
t̄ Þ�: ð38Þ

Note that terms proportional to the trace ðcLÞμμ are dis-
regarded in the above equations because they can be set to
zero without loss of generality, as described in Sec. II B.

IV. SINGLE-TOP PRODUCTION

Given that no leading-order CPT violation appears in
t − t̄ production, an interesting issue is whether and how
CPT symmetry can be studied in the top-quark sector. In
this section, we address the prospects for searches for CPT
violation using single-top production. Although thousands
of single top or antitop quarks were produced at the
Tevatron, their observation there is challenging [39] and
so we focus here on single top or antitop production at the
LHC, where millions of single top or antitop quarks are
eventually expected to be produced. Following remarks on
the Lorentz-invariant case, we derive the matrix elements
for each of the relevant tree-level channels and discuss

some issues about extracting CPT observables from the
LHC data set. Our results demonstrate one path to a first
test of CPT symmetry in the top-quark sector in the context
of effective field theory.

A. Lorentz-invariant case

We are interested in the production and subsequent
decay of a single top or antitop quark. Consider first the
Lorentz- and CPT-invariant scenario in the usual SM. In
parallel with the treatment of pair production in Sec. III A
using the narrow-width approximation, the production and
decay processes for a single top or antitop quark can be
viewed as contributing distinct factors to the squared
modulus of the matrix element. The decay factor is
independent of the production mechanism, and examples
of its form are given by the expressions (19) and (20). On
the production side, four basic processes contribute to the
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tree-level amplitude for single-top production: qq̄ annihi-
lation via W in the s channel [40], bq and bq̄ weak
interactions in the t channel [41], and b-gluon production
of tW [42]. In each case, the production factor is the
squared matrix element for the process. The tree-level
diagrams contributing to these processes are shown
in Fig. 2.
Averaging over color and spin in the initial state and

summing over color and spin in the final state, the squared
matrix element for single-top production in qq̄ annihilation
via Wþ in the s channel is given by

X
jMqq̄j2 ¼

1

4
g4jVtbj2jVqq0 j2

uðu −m2
t Þ

ðs −m2
WÞ2

: ð39Þ

In this expression, Vtb and Vqq0 are elements of the CKM
matrix; mt is the mass of the top quark; mW is the mass of
the Wþ boson; and the Mandelstam variables s, t, u are
given by

s ¼ ðp1 þ p2Þ2 ¼ ðp3 þ p4Þ2;
t ¼ ðp2 − p4Þ2 ¼ ðp1 − p3Þ2;
u ¼ ðp1 − p4Þ2 ¼ ðp2 − p3Þ2; ð40Þ

with 1; 2; 3; 4 ¼ q̄0, q, b̄, t. Contributions to Eq. (39) from
CKM-suppressed processes can also occur but are dis-
regarded here for simplicity.
For single-top production via bqweak interaction in the t

channel, the Lorentz-invariant squared matrix element is
found to be

X
jMbqj2 ¼

1

4
g4jVtbj2jVqq0 j2

sðs −m2
t Þ

ðt −m2
WÞ2

; ð41Þ

where the Mandelstam variables (40) are defined with
1; 2; 3; 4 ¼ q, b, q0, t. The analogous result for single-top
production via bq̄ weak interaction in the t channel is

X
jMbq̄j2 ¼

1

4
g4jVtbj2jVqq0 j2

uðu −m2
t Þ

ðt −m2
WÞ2

; ð42Þ

where now 1; 2; 3; 4 ¼ q̄, b, q̄0, t.
The fourth process, bg associated production of tW,

acquires contributions from the last two diagrams in Fig. 2.
Including interference terms between the two diagrams, the
squared matrix element is given in the SM by

X
jMbgj2 ¼

g2g2s
24

jVtbj2
�
−
2m2

t

m2
W

−
�
m2

t

m2
W
þ 2

�

×

�
s

t −m2
t
þm2

t − 2m2
W þ t

s
þ 2ðm2

t −m2
WÞ

t −m2
t

×

�
m2

t

t −m2
t
þm2

t −m2
W

s
þ 1

���
; ð43Þ

where the Mandelstam variables (40) are defined using
1; 2; 3; 4 ¼ b, g, W, t.
The situation for single-antitop production can be

studied in a similar way. The relevant diagrams for the
available tree-level processes can be obtained by changing
the charges on the W bosons and reversing the direction of
all the fermion lines in Fig. 2. The resulting squared matrix
elements have the same forms as those given above,
reflecting the CPT invariance of the SM.
At LHC energies, the cross section for single-top

production in the s channel is several times smaller than
that for the tW mode and more than an order of magnitude
smaller than the dominant t channels [2]. Note that at the
LHC the SM cross sections for the tW and the t̄W modes
are equal by CPT invariance. However, the cross section
for single-t production in either the s or the t channels is
larger than that for single-t̄ production because the LHC is a
proton-proton collider. The CPT transformation in these
channels relates results for the LHC to those for a
hypothetical “anti-LHC” involving antiprotons colliding
with antiprotons.
The s channel has features similar to the quark-annihi-

lation s-channel calculation for t − t̄ production. However,
calculation of the cross sections for the t channels and tW

FIG. 2. Tree-level Feynman diagrams for single-top production
via the s channel (qq̄0 → tb̄), the t channels (bq → tq0 and
bq̄ → tq̄0), and associated t −W production (bg → tW−).
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mode faces a technical obstacle. The b quark involved in
these channels arises as part of the quark-gluon sea of the
colliding proton, so even in the SM the diagrams shown in
Fig. 2 are insufficient to yield accurate predictions for the
cross sections. The b quark can be viewed as emerging
from g → bb̄ pair production in the sea, so in effect the t
channel involves gq → tq0b̄ while the tW mode involves
gg → tW−b̄. In these processes, when the b quark moves
collinear to its parent gluon, a divergence appears that is
regulated by the b-quark mass. The effective perturbation
expansion then contains large logarithms involving
αQCD lnðmW=mbÞ and αQCD lnðmt=mbÞ instead of the usual
αQCD, so standard perturbation theory is unreliable. Instead,
the b quark must be handled via a parton distribution
function obtained from perturbative QCD using gluons and
parton distribution functions for the light quarks [43].
Evolving the parton distribution function for the b-quark
using the Altarelli-Parisi equation sums the large loga-
rithms and enables calculation of the cross sections for
these channels.

B. CPT-violating case

Since single-top and t − t̄ production involve distinct
processes, it is reasonable to expect that studying the
former would provide access to additional SME coeffi-
cients. In particular, as the results of Sec. III show that CPT
violation is inaccessible in t − t̄ production, single-top
processes are of substantial potential interest for studies
of CPT symmetry in the top-quark sector.
To investigate this possibility in a direct and compara-

tively simple way, we can restrict the SME Lagrange
density for the top quark presented in Sec. II A to the
special case where all coefficients for Lorentz violation are
set to zero except those controlling CPT violation in the
top-quark sector. Adopting the field redefinitions leading to
Eq. (9), this corresponds to allowing only CPT violation
involving the right-handed top quark, with the sole nonzero
coefficient then being the coefficient bμ introduced in
Eq. (4). In this simplified model, all leading-order
CPT-even Lorentz violation is absent. Also,CPT-violating
effects are limited to right-handed contributions to the t
propagator.
Paralleling theCPT-invariant case described in Sec. IVA,

the squaredmodulus jMj2 of the amplitude can bewritten in
the narrow-width approximation as the product of a pro-
duction factor and a decay factor. The decay factor is
comparatively straightforward to handle within the above
scenario, since the only possible effect on the decay
Feynman diagrams arises from a right-handed insertion
on the initial t propagator. However, direct calculation
reveals that the CPT-violating contribution to the squared
matrix element vanishes, in analogy with the zero contri-
bution fromHμν discussed in Sec. III B. The decay factor for
single-top production is therefore independent of CPT
violation and can be taken to have a conventional form.

Determining the contributions to the production factor
requires more effort. Within the above assumptions, the
CPT-violating processes in the tree-level Feynman dia-
grams for single-top production involve right-handed
insertions on the t propagators in the diagrams shown in
Fig. 2. At leading order, only one insertion is allowed at a
time, yielding a total of five diagrams to consider.
The corrections to the corresponding matrix element at
leading order therefore involve the interference terms
between these five diagrams and the Lorentz-invariant
ones in Fig. 2. For example, the two Lorentz-invariant
diagrams for the tW mode are supplemented with three
CPT-violating diagrams, each having an insertion on a
t-quark line, so the corrections to the matrix element for this
process contain six terms at leading order.
Several calculational simplifications emerge in the

evaluation of the various contributions to the production
matrix elements. Note first that in all diagrams for pro-
duction the t propagators are connected to a left-handed
weak flavor-changing vertex. This means the right-handed
t-quark insertions are partially canceled by the projections,
which reduces the complexity of some calculations.
Another factor of relevance for simplifications is the ratio
mb=mt ≃ 1=40, which means it is reasonable to neglect the
b-quark mass in the calculations.
One complication appearing in the calculation of the

squared matrix element is the determination of the spin
sums over the top-quark states. The presence of CPT
violation modifies these sums compared to the results for a
conventional Dirac spinor. For the scenario of interest here,
we find

X
α¼1;2

uðαÞūðαÞ ¼ pþmt þ b −
p · b
m2

t
ð1þ γ5Þp;

X
α¼1;2

vðαÞv̄ðαÞ ¼ p −mt − bþ p · b
m2

t
ð1þ γ5Þp; ð44Þ

where uðαÞðpÞ and vðαÞðpÞ are the eigenspinors of the
modified Dirac equation. The derivation of this result is
outlined in the Appendix.
With the above considerations, the calculation of the

leading-order CPT-violating corrections to the squared
matrix elements for the various single-top production
processes can proceed in a straightforward manner. After
some calculation, we find that the correction to the squared
matrix element for single-top production in qq̄ annihilation
via Wþ in the s channel takes the form

δ
X

jMqq̄j2 ¼ −
1

4
g4jVtbj2jVqq0 j2

2b · p1

ðs −m2
WÞ2

; ð45Þ

where the Mandelstam variables (40) are defined with
1; 2; 3; 4 ¼ q̄0, q, b̄, t and contributions from CKM-
suppressed analogues are disregarded as before. To obtain

BERGER, KOSTELECKÝ, and LIU PHYSICAL REVIEW D 93, 036005 (2016)

036005-12



this result, we have averaged over color and spin in the
initial state and summed over color and spin in the final
state, as in the CPT-invariant case.
Similar calculations for single-top production via bq and

via bq̄ weak interactions in the t channel reveal that the
corresponding CPT-violating corrections to the squared
matrix elements are

δ
X

jMbqj2 ¼
1

4
g4jVtbj2jVqq0 j2

2b · p3

ðt −m2
WÞ2

; ð46Þ

where 1; 2; 3; 4 ¼ q, b, q0, t, and

δ
X

jMbq̄j2 ¼ −
1

4
g4jVtbj2jVqq0 j2

2b · p1

ðt −m2
WÞ2

; ð47Þ

where 1; 2; 3; 4 ¼ q̄, b, q̄0, t.
Finally, we can obtain the leading-order CPT-violating

correction to bg associated production of tW, which as
mentioned above arises from the interference of three
CPT-violating amplitudes with two Lorentz-invariant ones.
The correction to the squared matrix element in this case is
given by

δ
X

jMbgj2 ¼ −
g2g2s
12

jVtbj2b ·

�
1

m2
Ws

½p2ðm2
t − 2m2

WÞ þ p3m2
t þ p4t� þ

8m4
t

ðt −m2
t Þ3
�
m2

t

m2
W
p3 − p3 − p1

�

þ 1

m2
Wsðt −m2

t Þ
½p1ð2m4

t − 4m4
W −m2

t sÞ þ p2ð3m4
t − 5m2

t m2
WÞ

þ ðsþm2
t −m2

WÞð4m2
t p3 − sp4Þ þm2

Wsð2p3 þ p4Þ�

þ m2
t

ðt −m2
t Þ2
�
p1

�
3m2

t

m2
W

− 3

�
þ 2p2

�
m4

t

m2
Ws

−
m2

t

s
þ s
m2

W
−
m2

W

m2
t

�

þ p3

�
4m4

t

m2
Ws

þ 8m2
W − 12m2

t

s
þ 9m2

t

m2
W

− 13

�
þ p4

�
4m2

W − 4m2
t

s
−
m2

t þ 3s
m2

W
þ 2s
m2

t
− 5

���
; ð48Þ

where now 1; 2; 3; 4 ¼ b, g, W, t.
The results for single-antitop production can be obtained

in an analogous manner. The Feynman diagrams for the
corresponding processes can be obtained by changing the
charges on the W bosons, reversing the direction of all
the fermion lines in Fig. 2, and inserting the CPT-violating
factor on the various t̄ propagators in turn. Since the
insertion involves a factor of −bμ, and since the leading-
order contributions to the squared matrix elements arise
through interference with the CPT-invariant SM diagrams,
the corrections for single-antitop production are the neg-
atives of those for single-top production given in
Eqs. (45)–(48).
According to the discussion in Sec. II C, the CPT-

violating cross section for each process leading to single-
top or single-antitop production exhibits sidereal variations
that can in principle be used to extract constraints on
components of the coefficient bμ for CPT violation. At the
LHC, the cross sections for single-top production in any
one of the s or t channels is different from that for single-
antitop production in the same channel because the LHC is
a proton-proton collider and the light-quark content of the
system changes under CPT. However, since the tW− and
t̄Wþ modes arise from b and b̄ quarks that in the SM are
equally represented in the sea, the cross sections for the
tW− and t̄Wþ modes are equal in the SM. As a conse-
quence, a comparison of the two cross sections via an
asymmetry ACPT of the form (11) provides a distinct type

of sensitivity to CPT violation. This asymmetry has both a
time-independent piece and a sidereally varying piece, so
careful study of its properties can provide information
about the components bZ and bT that cannot readily be
accessed via sidereal studies of any single process alone.
We remark in passing that all the production processes

involve the weak interactions, and hence the single top or
antitop quarks can be expected to emerge with a strong
degree of polarization. An experimental analysis taking this
into account might in principle achieve an enhanced
sensitivity to CPT violation. However, we have shown
above that interesting signals are already present in the
comparatively simple spin-summed production rates. These
therefore suffice to obtain a first measurement of the
coefficient bμ for CPT violation using the expected
LHC statistics.
In a more general analysis using all the CPT-violating

terms in Eq. (9), additional contributions from right-handed
insertions on the b-quark propagators could also be
included in the calculations. Most of the extra corrections
arise in a straightforward way, generating numerous addi-
tional interference terms in the squared modulus of the
matrix element. One additional complication arises in this
more general case because any incoming b quark in the
production diagrams arises from the gluon sea via pair
production. It is plausible a priori that including Lorentz
and CPT violation in the b sector affects the parton
distribution function for the b quark, which could require
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determining the CPT-violating corrections to the Altarelli-
Parisi equation. Note, however, that at leading order the
CPT-violating contributions to the g → bb̄ vertex appear in
equal and opposite pairs because for every CPT-odd
insertion associated with the b line there is an equal and
opposite contribution associated with the b̄ line. This effect
leads to cancellations in contributions from the quark-gluon
sea of neutral mesons in the context of CPT violation in
meson oscillations [21]. It suggests, for example, that in a
narrow-width approximation for the b production from the
sea it may suffice for some data analyses to use the Lorentz-
invariant parton distribution function for the b quark in
evaluating the CPT-violating contribution to the amplitude
for the tW channel. A detailed investigation of this
intriguing issue lies outside our present scope but would
be of definite interest for future work.

V. SUMMARY AND DISCUSSION

In this work, we investigated the prospects for tests of
Lorentz and CPT invariance in the top-quark sector. The
basic theory is introduced in Sec. II. Relevant terms
involving the top-quark field are extracted from the general
SME framework describing Lorentz and CPT violation
using effective field theory and are presented in Eqs. (7)
and (8). The issue of field and coordinate redefinitions is
addressed in Sec. II B, and a convenient choice limiting
CPT violation to right-handed fields is presented in Eq. (9).
Prospective signals to be sought are discussed in Sec. II C,
including both sidereal variations for Lorentz and CPT
violation and asymmetries for CPT-violating rates.
The main results relevant to Lorentz violation in t − t̄

pair production and decay are discussed in Sec. III. Both
pair production by quark fusion and by gluon fusion are
considered. The squared modulus of the matrix element for
each case in the Lorentz-invariant limit is presented
explicitly in the narrow-width approximation, where it
factors according to Eq. (12). In Sec. III B, CPT symmetry
is shown to be preserved in t − t̄ production and decay
under the theoretical assumptions adopted in this work. The
Lorentz-violating contributions to the squared modulus of
the matrix element take the form (22). The Lorentz-
violating corrections due to production via quark fusion
are presented in Sec. III B 1, while those for gluon fusion
can be found in Sec. III B 2. The contributions on the decay
side are obtained in Sec. III B 3.
The issue of how to study CPT symmetry in the top-

quark sector is addressed in Sec. IV. We show that single-
top and antitop production offers interesting prospects to
search for CPT violation, and we identify a limiting model
for which calculations of the matrix element are simplified.
Comments on the Lorentz-invariant case are provided in
Sec. III A, while the contributions to CPT violation for the
various processes for single-top and single-antitop produc-
tion are derived in Sec. IV B.

Overall, the prospects appear good for studying Lorentz
and CPT symmetry with the top quark. Already the D0
Collaboration has achieved a sensitivity of about 10% to
components of the dimensionless SME coefficients ðcLÞμν
and ðcRÞμν forCPT-even Lorentz violation, using a sidereal
analysis of data from the Fermilab Tevatron. Our derivation
of the matrix element for t − t̄ production via gluon fusion
given in Sec. III B 2 now opens the door to a similar
analysis at the LHC. Since the number of t − t̄ pairs
produced at the LHC is about an order of magnitude
greater than that at the Tevatron, the attainable sensitivity to
components of ðcLÞμν and ðcRÞμν can be expected to be of
the order of a few percent.
Our proposed methodology for studying CPT symmetry

via single-top production, described in Sec. IV B, suggests
access to the CPT-odd coefficient bμ for the top quark via
the LHC data set now lies within reach for the first time.
Since the statistical power in t − t̄ production is around
double that for single-top or antitop production, it is
plausible that the observer-invariant dimensionless ratio
bμpμ=s could be measured to around 5%. The relevant
energy scale is set by the energy of the initial particles in the
production process. These considerations suggest that the
coefficient bμ, which has dimensions of mass, could be
measured at a precision of order 100 GeV. A sidereal study
would provide access to the components bX and bY in the
Sun-centered frame, while a comparison of single-top
events with single-antitop events would give access to
bT and bZ.
The above crude estimate reveals that both dimension-

less Lorentz violation at the level of a few percent and CPT
violation at a scale comparable to the t-quark mass remain
realistic experimental possibilities in the top sector.
Discovery of either or both on these scales would represent
a striking effect. Since no Lorentz violation is observed in
nature, suppressions of Lorentz and CPT violation are
typically expected on experimental grounds to involve one
or more powers of the dimensionless ratio of the weak scale
to the Planck scale. A nonzero signal would therefore raise
two intriguing potential puzzles for model builders, one
concerning its comparatively large size and another con-
cerning the apparent absence of corresponding effects in
other SME sectors. Attempting the construction of a
detailed model resolving these puzzles lies outside our
present scope, but we can offer here a few pertinent
remarks.
Comparatively large but experimentally viable Lorentz

violation, known as countershaded Lorentz violation [44],
can emerge in models when the Lorentz violation is linked
to weaker interactions that make it challenging to detect.
Countershading is of theoretical interest in the context of
the Lorentz hierarchy problem [3] because it has the
potential to associate the scale of Lorentz violation to SM
scales instead of ones suppressed by a power of the ratio
of the weak scale to the Planck scale. Countershaded
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models include, for example, ones with Lorentz violation
that appears only in matter-gravity couplings [44] or in the
pure-gravity sector [45] and hence is hidden by the
comparatively feeble nature of the gravitational interac-
tion, and ones in the neutrino sector involving oscillation-
free Lorentz and CPT violation [46] that is hidden by the
weak neutrino interactions. For the top quark, a counter-
shaded model might take advantage of the absence of top
hadronization and the involvement of the weak inter-
actions in experimental measurements. For example,
countershaded CPT violation remains experimentally
plausible due to the intrinsic difficulty of measuring
properties of the top quark via single-top and single-
antitop production, which in turn is a consequence of the
weak interactions involved.
The second puzzle arises because effects in one sector of

a field theory typically also emerge in other sectors via loop
diagrams, albeit suppressed by masses or couplings. High-
precision experiments searching for Lorentz and CPT
violation outside the top-quark sector can thus generically
be expected to achieve sensitivities to top-quark effects.
Although these would occur at suppressed levels, existing
bounds on Lorentz violation in certain sectors are impres-
sive enough that even some suppressed radiative effects
may well be constrained. For the top quark, a model
restricting the transmission of Lorentz and CPT violation
from one sector to another via radiative corrections might
take advantage of standard tools such as discrete sym-
metries along with features unique to Lorentz violation
such as the requirement of comparison between different
species to produce observable effects. For example, the
coefficient cμν can be interpreted as a modified metric for
the top quark, so its detection via radiative corrections in
other sectors requires comparing two systems with differ-
ing metric contributions. For CPT-odd effects, additional
restrictions occur because effects cancel in loops involving
particle-antiparticle pairs. An analysis extracting detailed
constraints on top-sector Lorentz andCPT violation arising
via radiative corrections from existing experimental mea-
surements in other sectors is an open project of definite
interest.
Whether comparatively large Lorentz and CPT violation

in the top sector is realized in nature ultimately remains
an experimental issue. In any case, it is evident that the
top quark offers an intriguing open arena for future
exploration of foundational properties of quantum field
theory and the SM, including in particular Lorentz and
CPT symmetry.
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APPENDIX: MODIFIED SPIN SUMS

In this appendix, we outline the derivation of the
modified spin sums used in Sec. IV B in the derivation
of the squared matrix elements for single-top production in
the presence of CPT violation. The relevant terms in the
Lagrange density are given by Eq. (9) with ðaLÞμ set to
zero, so all the CPT violation is controlled by the
coefficient bμ. Leading-order solutions to the resulting
modified Dirac equation can be obtained from the equa-
tions in Appendix A of the first paper in Ref. [8] via the
substitution aμ → −bμ.
The spin sum can be readily calculated in the zero-

momentum frame S0. In what follows, variables with primes
denote quantities in this frame. The spinors uðαÞð~p ¼ 0Þ
and vðαÞð~p ¼ 0Þ have eigenenergies given to second order
in Lorentz violation by

EðαÞ0
u ¼ mt þ ð−1Þαj ~b0j − b00 þ

1

2mt
½b00 − ð−1Þαj ~b0j�2;

EðαÞ0
v ¼ EðαÞ0

u jb0
0
→−b0

0
: ðA1Þ

The explicit forms of uðαÞð~p ¼ 0Þ and vðαÞð~p ¼ 0Þ at
leading order in Lorentz violation are

uðαÞð~p ¼ 0Þ ¼ NðαÞ
u

�
ϕðαÞ
u

XðαÞ
u ϕðαÞ

u

�
;

vðαÞð~p ¼ 0Þ ¼ NðαÞ
v

�
XðαÞ
v ϕðαÞ

v

ϕðαÞ
v

�
: ðA2Þ

In these expressions, the two-component spinors ϕðαÞ
u;v take

the form

ϕðαÞ
u;v ¼ ð~κðαÞu;v · ~σ þ ηðαÞu;vÞ

�
0

1

�
; ðA3Þ

with

~κðαÞu ¼ −4mt
~b0½mt − b00 þ ð−1Þαj ~b0j�;

~κðαÞv ¼ −~κðαÞu jb0
0
→−b0

0
;

ηðαÞu;v ¼ −ð−1Þαj~κðαÞu;vj; ðA4Þ

where we have assumed that the components of b0μ are all

smaller than mt. Also, the matrices XðαÞ
u;v in Eq. (A2) are

given by

XðαÞ
u ¼ −XðαÞ

v ¼ 1

2mt
ð ~b0 · ~σ − b00Þ: ðA5Þ

For the solutions (A2), we adopt the normalization
conditions
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ūðαÞuðαÞ ¼ −v̄ðαÞvðαÞ ¼ 2mt; ðA6Þ
which imply

jNðαÞ
u;vj2 ¼ 2mt

ϕðαÞ†
u;v ϕðαÞ

u;v

ðA7Þ

at leading order.
Using the above results to evaluate the spin sums in the

frame S0 yields

X
α¼1;2

uðαÞūðαÞ ¼
 

2mt b00 − ~b0 · ~σ

−b00 þ ~b0 · ~σ 0

!
;

X
α¼1;2

vðαÞv̄ðαÞ ¼
 

0 −b00 þ ~b0 · ~σ

b00 − ~b0 · ~σ −2mt

!
: ðA8Þ

Unlike the Lorentz-invariant case, the difference of these
two results is no longer proportional to the identity matrix,
although each of the two spin sums still acts as a projection
operator on its own subspace. However, the completeness
relation between the two subspaces is guaranteed to hold
only for the original Hamiltonian, prior to the reinterpre-
tation of negative-energy states. The CPT-violating shifts
reflected in the eigenenergies (A1) introduce nonorthogo-
nal behavior of the two subspaces upon reinterpretation [8].

To obtain results valid for the frame S in which the
spinors have nonzero momentum ~p, we can perform an

observer Lorentz transformation. For rapidity ~ζ in S, the
boost takes the form

uðαÞ ¼ Su0ðαÞ; vðαÞ ¼ Sv0ðαÞ; S ¼ expðiζjσ0j=2Þ;
ðA9Þ

where as usual σ0j ¼ i½γ0; γj�=2. Under the observer trans-
formation, the coefficients b0μ are related to those in the
frame S by

b00 ¼ γðb0 − ~v · ~bÞ; ~b0 ¼ ~bþ γ − 1

v2
ð~v · ~bÞ~v − γb0~v;

ðA10Þ

where ~v is the velocity of the particle in S and
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2

p
, as usual. Note that the relationship

between ~p and ~v acquires corrections involving the
coefficients for Lorentz violation [8], but at leading order
this has no effect on the present derivation. Note also that
the transformations of the spinors and of the coefficients
commute. Implementing these calculations leads to the
modified spin sums (44), which hold in the frame S.
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