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We study in a bottom-up approach the theoretically consistent description of additional resonances in the
electroweak sector beyond the discovered Higgs boson as simplified models. We focus on scalar and tensor
resonances. Our formalism is suited for strongly coupled models, but can also be applied to weakly
interacting theories. The spurious degrees of freedom of tensor resonances that would lead to bad high-
energy behavior are treated using a generalization of the Stückelberg formalism. We calculate scattering
amplitudes for vector-boson and Higgs boson pairs. The high-energy region is regulated by the T-matrix
unitarization procedure, leading to amplitudes that are well behaved on the whole phase space. We present
numerical results for complete partonic processes that involve resonant vector-boson scattering for the
current and upcoming runs of LHC.
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I. INTRODUCTION

Since the discovery of a 125 GeV Higgs boson,
phenomenological high-energy physics has entered a
new era. The new particle fits the expectation of the
minimal Standard Model (SM). This model is thus
established as an effective field theory (EFT) that
correctly describes all current particle data (except for
still missing possible particle signals for dark matter
and additional CP violation). We know about high-
energy scales where the effective theory eventually
breaks down—the scale of neutrino mass generation,
the Planck scale—but those are far outside the reach of
collider physics. The hierarchy between those scales and
the electroweak symmetry breaking scale, combined
with the fact that all known elementary particles are
weakly interacting, puzzles us due to the apparent fine-
tuning in perturbative renormalization. However, the
hierarchy puzzle, as such, has no phenomenological
consequences. In principle, the SM may provide a
complete description of all present and future collider
data, limited only by our ability to do calculations.

Nevertheless, the apparent success of the SM does not
imply that we have full control over the spectrum at
presently accessible energies, say between 100 GeV as
the electroweak mass scale and a few TeV. First of all, there
is the possibility of extra light weakly interacting particles
which escape detection at the LHC. We will not consider
this in the present work but investigate new physics above
the mass scale of W, Z, and Higgs.
The SM is complete as a renormalizable theory and

weakly interacting. Hence, it provides a mechanism for
suppressing the impact of new physics on observables. This
fact is generally expressed by the decoupling theorem [1]:
All heavy particles (heavy compared to the masses ofW, Z,
Higgs) can be integrated out, and their physical effects are
suppressed by powers of m=M or E=M, where E is the
effective energy of the measured elementary interaction,
and M is the mass scale associated with new physics. The
EFT approach, which has been widely adopted for pre-
cision LHC analyses, encodes this in a Lagrangian which
contains operators of dimension six and, in some cases,
eight or even higher [2]. Decoupling of scalar particles in
the case of two-Higgs doublet models (2HDM) has been
considered in [3], as well as in [4,5].
For a new particle with a mass of 1 TeV, the leading

corrections to SM particle properties are at the percent level
and below. This is a challenge for LHC analyses. On the
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other hand, in scattering processes at the LHC, the partonic
energy E can easily enter the TeV range, so direct detection
is favored. Various classes of new-physics models with
extended fermion and gauge sectors can be excluded up to
several TeV. However, the current experimental sensitivity
on details of the Higgs/Nambu-Goldstone sector is still
marginal. This is due to the fact that the effective energy
available for vector-boson scattering in LHC collisions, for
instance, is severely suppressed by steeply falling quark
and W=Z structure functions.
In this paper we study new physics that is coupled to the

Higgs/Nambu-Goldstone sector and manifests itself in
scattering processes of W, Z, and Higgs particles. The
Higgs particle does not occur in the initial state and has its
own experimental issues, so we restrict the discussion to
Nambu-Goldstone bosons [6–8], which the Nambu-
Goldstone boson equivalence theorem [9–17] relates to
longitudinally polarized W and Z bosons. That is, we
investigate processes of the class V�V� → VV (V ¼ W�,
Z, H), where the initial vector bosons are radiated almost
on-shell and collinear off initial energetic quarks in the
colliding protons.

A. New effects in vector-boson scattering

Vector-boson scattering (VBS) as a physical process in
hadronic collisions has been observed recently by the
ATLAS and CMS Collaborations [18–20]. The SM pre-
diction has been confirmed, but the initial limits on extra
interactions are still rather weak, probing an energy scale
close to the pair-production threshold of ∼200 GeV. With
higher energy and better precision becoming available at
the LHC, and at future lepton and hadron colliders, data
will become much more sensitive to new effects in this
sector. There is no reason to restrict the modeling to weak
interactions. In fact, the initially limited experimental
resolution and energy reach encourages us to consider
new strong interactions, as such deviations from the SM are
experimentally most accessible.
For decades, the theory of VBS processes has been the

subject of a vast literature, first in the disguise of the
low-energy theorem [21,22], for questions of unitarity
[10,23–25] and as a means of phenomenological studies
[26–45]. A review of recent work can be found in [46].
Most of those studies were tailored to the Higgs-less case,
which is by now excluded. In the presence of a light Higgs,
in the SM, all VBS processes are perturbative and respect
unitarity at all energies. This situation changes drastically
once non-SM interactions are present.
Regarding the possible scenarios of new physics

affecting VBS, there are no significant restrictions from
low-energy data or from the absence of LHC discoveries.
Asymptotically, the process is determined by the ampli-
tudes of Nambu-Goldstone boson scattering, where the
initial state contains an even number of Nambu-Goldstone
bosons and, thus, no half-integer representations of

SUð2ÞL. Any bosonic excitation coupling to this state also
has integer SUð2ÞL quantum numbers and, thus, cannot
couple left-handed with right-handed SM fermions.
In the limit of exact electroweak symmetry, VBS processes
and ordinary SM (fermionic) processes thus probe distinct
areas of new physics. Electroweak symmetry breaking
mixes those sectors, but the mixing terms are again
suppressed by the electroweak scale (in operators, by
additional factors of the Higgs doublet) and are therefore
subleading.
The only important constraint is quantum-mechanical

unitarity, which is severely violated in a perturbative
calculation if we naively insert the dimension-eight oper-
ators of the EFT. We have discussed this fact in detail in
Ref. [47,48] and proposed a framework of unitarization
which allows us to augment the SM in an arbitrary way,
while maintaining high-energy unitarity and simultane-
ously matching the new effects to the low-energy EFT. We
will adopt this framework, the T-matrix scheme, for the
concrete models below.

B. Outline of the present paper

Extending the work of [48], in the present paper we
consider a wider class of scenarios beyond the SM and
beyond the electroweak mass scale. Instead of just extrapo-
lating the EFT, which generically leads to asymptotic
saturation of amplitudes, we add new states. The quantum
numbers of the new states are chosen such that they retain
unsuppressed interactions with the VBS system in the limit
of vanishing gauge couplings. As mentioned above, this
implies a certain set of quantum-number assignments and,
incidentally, suppresses their couplings to the SM fermion
sector. We may consider strongly coupled states, which we
would classify as resonances in analogy with mesons in
QCD, or weakly coupled states which we would call new
elementary particles. There is a continuous transition
between these extremes, such that we can cover all cases
on equal footing.
We defer the discussion of vector resonances to a future

publication, since those states mix, after EWSB, with W
and Z bosons and thus exhibit a possibly different phe-
nomenology. This limits the model to four distinct cases,
namely scalar and tensor resonances with two different
assignments of electroweak quantum numbers, respec-
tively. We embed these states in an extended EFT and
match this to the low-energy EFTwhere the resonances are
integrated out. For the high-energy limit, we apply the T-
matrix scheme which keeps the model within unitarity
bounds when it eventually becomes strongly interacting at
energies above the resonance.
The case of a tensor resonance requires special consid-

eration. While renormalizable weakly interacting theories
cannot include elementary tensor particles, it is never-
theless possible to set up an effective theory which contains
a tensor particle and remains weakly interacting over a
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considerable range of energies. This has been observed in
the context of gravity in extra dimensions [49–52], where
massive tensor particles arise in the low-energy effective
theory. Massive gravitons provide a very specific pattern of
couplings to the Higgs doublet, gauge bosons and fer-
mions. We will set up a more generic model where such
relations are absent, and construct a Lagrangian description
of the Stückelberg type, where we can separate the genuine
tensor resonance with a controlled high-energy behavior
from unrelated higher-dimensional operators that become
relevant asymptotically. The massive-graviton model
emerges as a special case. (Massive) higher-spin fields
have been discussed e.g. in [53–56].
Given the observation that new resonances cannot

necessarily be distinguished from asymptotic saturation
if the resonance energy is high and event rates are low, we
may ask the question whether the two cases are distinguish-
able, i.e., whether a resonance model yields a different
prediction from a EFT extrapolation with specific coef-
ficients. We will discuss this issue in an exemplary way for
specific parameter sets. Furthermore, the new model allows
for weakly coupled resonances that do not leave a signifi-
cant trace in the low-energy EFT, but could nevertheless
lead to a visible signal in collider data.
To obtain numerical results, we take the unitarized

model, which is originally formulated in the gaugeless
limit, reinsert gauge couplings and continue the amplitudes
off-shell along the lines of [48]. This allows us to set up a
model definition for a Monte Carlo integrator and event
generator, which we use to generate partonic event samples
for the LHC, cross sections and physical distributions. A
more detailed elaboration of the calculations can be found
in [57].

II. EXTENDED EFFECTIVE FIELD
THEORY (EFT)

A. Low-energy EFT

We are going to develop models for the high-energy
behavior of scattering amplitudes of SM particles. This
cannot be done without precisely stating the assumptions
that go into those models, and to cast them into convenient
notation and parametrization.
First of all, we assume that the SM is a reasonable low-

energy effective theory. That is, a weakly interacting
(Lagrangian) gauge field theory with spontaneous
SUð2ÞL ×Uð1ÞY → Uð1ÞEM symmetry breaking mediated
by a complex Higgs doublet, supplemented by the standard
sets of quarks and leptons, describes all particle-physics
data at and below the electroweak scale to a good
approximation.
Regarding the interactions of fermions and vector

bosons, this conclusion can be drawn from the impressive
success in fitting electroweak and flavor data to the SM.We
cannot yet be so sure in the Higgs sector proper. While the

Higgs boson was discovered in accordance with the mass
range that the precision analysis of electroweak observables
suggests, there is still room for sizable deviations from
the SM predictions for its couplings. In particular, the
Higgs self-couplings have not been measured at all.
Nevertheless, we will assume that those couplings are
close to their SM values, such that deviations can be
attributed to higher-dimensional terms in the EFT. Future
data from LHC and beyond will tell whether this is true. If
not, we may generalize our findings to a nonlinearly
realized Higgs sector. We have set up our parametrization
such that this would cause few modifications in the
calculations.
A second assumption regards the low-energy spectrum:

we assume that there are no additional light particles, such
as Higgs singlets or extra doublets, below the EW scale. If
this was not true, it would not invalidate the extended-EFT
approach, but require the low-energy EFT to be revised in
order to include extra particles as building blocks. Again,
the model extensions discussed here would remain
unchanged, but we could expect a richer phenomenology
of final states that emerge from couplings to the extra light
particles.

B. Including resonances

We want to describe massive tensor and scalar reso-
nances as extensions of the SM, coupled to the scattering
channels accessible in VBS. We start from the low-energy
EFT, the SM with higher-dimensional operators included,
and add a resonance with appropriate spin and gauge
quantum numbers to the Lagrangian. Requiring the
assumed symmetries to be manifest, uniquely determines
the form of the couplings, again in an EFT sense, i.e. as an
power series expansion of operators in some inverse mass
scale Λ.
It is tempting to identify Λ with the resonance mass M.

This would imply arbitrary strong interactions at the mass
scale of the resonance. The form of couplings would be
arbitrary since for E ≈M ¼ Λ, there is no viable power
expansion, and there are no reliable predictions. While this
is a conceivable scenario, we rather consider a more
economical setup where the resonance at mass M can be
separated from other effects which are attributed to an
even higher scale Λ. As we will show below, it is possible
and consistent to choose Λ ≫ M, both for scalar and
tensor states. Λ is then the appropriate scale for all
higher-dimensional operators in the extended EFT. In the
low-energy EFT, integrating out the resonance yields
well-defined higher-dimensional couplings suppressed
by powers of M, which combine with the undetermined
Λ-suppressed coefficients inherited from the extended
EFT. Depending on their relative magnitude, we may—
or may not—be able to relate the operator coefficients
in the low-energy EFT to the resonance couplings of the
extended EFT.
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III. RESONANCES: SPIN CLASSIFICATION

A. Scalar resonances

A new massive spin-zero state might appear as another
Higgs boson. Indeed, a new Higgs singlet ϕ can couple to
the SM Higgs doublet H via the renormalizable operators
tr½H†H�ϕ and tr½H†H�ϕ2, while a new Higgs doublet H0

can couple via tr½H†H0�2 and tr½H†H�tr½H0†H0�.1 These
terms contribute to Higgs mixing and self-interactions, but
not directly to VBS. In the EFT formalism, the observed
Higgs boson is the only light scalar by definition, and in the
renormalizable part of the Lagrangian it saturates the
vector-boson couplings. Coupling an extra scalar to VBS
then requires two Higgs-field derivatives DμH and thus
introduces an effective dimension-five operator.
In a renormalizable extension of the SM Higgs sector,

after diagonalization new Higgses may eventually appear in
VBS processes. However, we have just noted that in the
EFT formalism, their couplings are higher-dimensional and
thus power-suppressed. This is an incarnation of the Higgs
decoupling theorem [58].
Renormalizability corresponds to the existence of special

trajectories in parameter space, where all irrelevant (i. e.
higher-dimensional) operators can be removed simultane-
ously from the Lagrangian by a nonlinear field redefinition.
Without a good reason a priori for allowing only points on
these trajectories, we consider the renormalizable (possibly
weakly interacting) case as a special case that is included in
the general framework. This applies, in particular, to Higgs
sector extensions by singlets and doublets, as long as the
extra scalars can be considered heavy in the sense of the
EFT formalism.
For our purposes, the phenomenology of generic scalar

resonances is then very similar to tensor resonances (see
below), namely breaking the renormalizability of the SM
and inducing higher-dimensional operators both in the
low-energy EFT where they are integrated out, and in
the high-energy model where they appear explicitly in the
phenomenological Lagrangian. We will have to apply a
unitarization framework in the energy range at and beyond
the resonance.

B. Tensor resonances: Fierz-Pauli formalism

We now turn to massive spin-two particles, postponing
spin-one for later investigations, as stated above.
The physical particle corresponds to an irreducible

representation of the rotation group in its own rest frame
and thus consists of five component fields, mixing under
rotation. Strictly speaking, there is no reason to develop a
relativistic field theory for a generic interacting spin-two
particle. If there is no UV completion of the interacting
model, it is not possible to construct a complete Hilbert
space and unitary scattering matrix. However, for

convenience of calculation, it is clearly advantageous to
embed the tensor particle in the usual relativistic field-
theory context of the EFT for the SM. We therefore
introduce extra fields, coupled to currents built from SM
fields in a Lorentz- and gauge-invariant way, in a
Lagrangian formalism.
For the scalar case, this is straightforward since a spin-

zero particle is represented by a Lorentz scalar field that
also has a single component. In the tensor case, we have to
deal with the fact that the appropriate Lorentz representa-
tion has more than five components. In the rest frame, the
Lorentz symmetry (or its universal cover SLð2;CÞ) is
kinematically broken down to its SUð2Þ subgroup, the
universal cover of the rotation symmetry. The Lorentz
decuplet decomposes into the irreducible spin states

symmetric tensor→ spin states ð2Þþð1Þþð0Þþð0Þ: ð1Þ

Looking at the symmetric rest-frame polarization tensor
εμν, the irreducible parts correspond to the components εij

(traceless), ε0i, ε00, and
P

εii (trace), respectively. Under
the full Lorentz group, εμν is also reducible and decom-
poses into the traceless and trace parts. However, in the
presence of interactions it is not straightforward to maintain
this decomposition for off-shell amplitudes [56,59,60].
Our model setup requires that, on-shell, only the pure

spin-two state propagates. If we represent the resonance by
a single field, the tensor-field propagator must reduce to the
form [60]

Gμν;ρσ
f ðkÞ ¼

i
P

λε̄
μν
ðλÞðk;mÞερσðλÞðk;mÞ
k2 −m2

f þ iϵ
þ nonresonant ð2Þ

Here, λ sums over a basis of five real-symmetric, mutually
orthogonal polarization tensors that satisfy the constraints

kμε
μν
ðλÞðk;mÞ ¼ 0; εðλÞμμðk;mÞ ¼ 0; ð3Þ

as long as k is an on-shell momentum vector, k2 ¼ m2.
The solution to this problem is unique up to the

nonresonant part [56],

Gμ1μ2;ν1ν2
f ¼ i

Pμ1μ2;ν1ν2ðk;mÞ
k2 −m2 þ iϵ

þ nonresonant; ð4Þ

where the projection operator of spin-two can be written in
terms of the spin-one projection operator,

Pμ1μ2;ν1ν2ðk;mÞ ¼
X
λ

ε̄μ1μ2ðλÞ ðk;mÞεν1ν2ðλÞ ðk;mÞ

¼ 1

2
½Pμ1ν1ðk;mÞPμ2ν2ðk;mÞ

þ Pμ1ν2ðk;mÞPμ1ν2ðk;mÞ�

−
1

3
Pμ1μ2ðk;mÞPν1ν2ðk;mÞ; ð5Þ1For notational conventions, cf. Appendix A 1.
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with

Pμνðk;mÞ ¼
X
λ

ε̄μðλÞðk;mÞενðλÞðk;mÞ ¼ gμν −
kμkν

m2
: ð6Þ

This propagator, with vanishing nonresonant part, can be
obtained from the free Fierz-Pauli Lagrangian [54,61]
coupled to a tensor source Jμνf :

L ¼ 1

2
∂αfμν∂αfμν −

1

2
m2fμνfμν − ∂αfαμ∂βfβμ

− fαα∂μ∂νfμν −
1

2
∂αfμμ∂αfνν

þ 1

2
m2fμμfνν þ fμνJ

μν
f : ð7Þ

In the classical theory, the Lagrangian (7) enforces the
conditions:

∂μfμν ¼ 0 and fμμ ¼ 0: ð8Þ

This is, in principle, a valid Lagrangian description of a
tensor resonance. However, since we have to deal with off-
shell amplitudes for an effective theory, it will be useful to
investigate the role of various terms in more detail.
Returning to the propagator (4), there are momentum
factors kμ in different combinations that project out the
proper spin-two part on the pole. Going to lower energies,
these factors vanish more rapidly than the gμν terms and
therefore reduce to operators of higher dimension. Beyond
the resonance, they will rise more rapidly and therefore
potentially provide the dominant part that enters the
unitarization prescription.

C. Tensor resonances: Stückelberg formulation

As discussed above, the extra momentum factors in the
spin-two propagator represent the mismatch between the
SOð3Þ little group representation of massive on-shell
particles and the full Lorentz-group off-shell representa-
tions in a relativistic description. This is in analogy with a
massive spin-one boson, which in the relativistic case
acquires an extra zero component. In the following, we
identify the extra degrees of freedom for a propagating
spin-two object and separate them for the purpose of
power-counting in an actual calculation.
To this end, inspired by the spin-one case, we will use the

so-called Stückelberg formulation for tensor resonances.
This has been studied in the context of effective field
theories for massive gravity [62–66] and [67]. The work
along these lines has been nicely reviewed in [68].
Given an arbitrary symmetric polarization tensor εμν

that is not restricted by auxiliary conditions, we can
subtract terms constructed from momenta, vector and scalar
polarizations,

ε0μν ¼ εμν −
1

m
ðkμενV þ kνεμVÞ −

kμkν

m2
εS − gμνεT; ð9Þ

and demand that (i) the Fierz-Pauli polarization tensor ε0μν
satisfies the on-shell constraints (3), and (ii) the vector
polarization is transversal kμε

μ
V ¼ 0. The resulting vector

and scalar polarizations εV , εS, εT can be expressed as
contractions of the original εμν,

εμV ¼ 1

m

�
kνεμν −

1

m2
kμkνkρενρ

�
; ð10aÞ

εS ¼
1

3

�
4
kμkν
m2

− gμν

�
εμν; ð10bÞ

εT ¼ 1

3

�
gμν −

kμkν
m2

�
εμν: ð10cÞ

Formally, this subtraction removes the extra representations
in the decomposition (1). We note that this prescription
naturally extends to off-shell wave functions.
For the purpose of calculation, we can reproduce the

effect of the propagator (4) if we remove all kμ factors from
the tensor-field propagator but add a vector and two scalar
fields with their respective propagators. To enforce the on-
shell relations (10) for their polarization (i.e., wave func-
tion) factors, their interactions must be prescribed by the
original tensor interactions. In field theory, such relations
can be enforced by demanding a gauge invariance. Since
the momenta have been banished from the numerators of
the propagators this way, the power-counting in the
resulting Feynman rules will be explicit, in analogy with
the ’t Hooft–Feynman gauge of a gauge theory.
Stückelberg [69–71] originally formulated the algorithm

that systematically introduces the compensating fields
together with the extra gauge invariance in the Lagrangian
formalism. Applying the algorithm to the massive
tensor case, we start with the Fierz-Pauli Lagrangian which
corresponds to the minimal single-field propagator of
the pure spin-two tensor. After removing any explicit
constraints from the tensor field, we introduce first the
Stückelberg vector Aμ that cancels the f0μ components, by
the replacement

fμν → fμν þ 1

m
∂μAν þ 1

m
∂νAμ; ð11Þ

and then cancel the extra unwanted A0 components that
this field introduces, together with f00, by a Stückelberg
scalar σ,

Aμ → Aμ þ 1

m
∂μσ: ð12Þ

Finally, we introduce another Stückelberg scalar ϕ for
canceling the trace by
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fμν → fμν þ gμνϕ ð13Þ
This scheme guarantees that the interactions of the new
fields in the Lagrangian are correctly related to the
original interactions of the tensor field. The resulting
Lagrangian exhibits the gauge invariances that reflect the

redundancy of the Stückelberg fields and there is a gauge
(called unitary gauge) in which all Stückelberg fields
vanish and the original Fierz-Pauli Lagrangian is recov-
ered. The new Fierz-Pauli Lagrangian with the additional
scalar and vector modes reads

L ¼ 1

2
∂αfμν∂αfμν −

1

2
m2fμνfμν − ∂αfαμ∂βfβμ − fαα∂μ∂νfμν −

1

2
∂αfμμ∂αfνν þ

1

2
m2fμμfνν − ∂μAν∂μAν þ ∂μAμ∂νAν

− 2mfμν∂μAν þ 2mfμμ∂νAν þ 6mϕ∂μAμ − 2fμν∂μ∂νσ þ 2fμμ∂2σ − 2fμν∂μ∂νϕþ 2fμμ∂2ϕ − 3∂μϕ∂μϕþ 6m2ϕϕ

þ 3m2fμμϕþ
�
fμν þ gμνϕþ 2

m
∂μAν þ

2

m2
∂μ∂νσ

�
Jμνf : ð14Þ

The scheme simplifies slightly since both scalars are related
to the original tensor, so their interactions are not inde-
pendent. We can choose the gauge

ϕ ¼ −σ ð15Þ
and arrive at a minimal Stückelberg Lagrangian [72]
(adjusted by partial integration and simplified),

L ¼ 1

2
∂αfμν∂αfμν −

1

2
m2fμνfμν

−
�
∂αfαμ −

1

2
∂μfρρ −mAμ

�
2

−
1

4
∂αfμμ∂αfνν

þ 1

4
m2fμμfνν − ∂μAν∂μAν þm2AμAμ

þ
�
∂μAμ − 3mσ þ 1

2
mfμμ

�
2

þ 3∂μσ∂μσ − 3m2σσ

þ
�
fμν − gμνσ þ 2

m
∂μAν þ

2

m2
∂μ∂νσ

�
Jμνf : ð16Þ

For perturbative calculations we have to fix the gauge up to
residual gauge transformations λðxÞ that decouple on-shell,
i.e. satisfy the harmonic condition ð∂2 þm2Þλ ¼ 0. To this
end, we choose linear gauge conditions,

∂μAμ − 3mσ þ 1

2
mfμμ ¼ 0 ð17aÞ

∂αfαμ −
1

2
∂μfρρ −mAμ ¼ 0; ð17bÞ

and end with a diagonalized Lagrangian,

L ¼ 1

2
fμνð−∂2 −m2Þfμν þ 1

2
fμμ

�
−
1

2
ð−∂2 −m2Þ

�
fνν

þ 1

2
Aμð−2ð−∂2 −m2ÞÞAμ þ 1

2
σð6ð−∂2 −m2ÞÞσ

þ
�
fμν − gμνσ þ 1

m
ð∂μAν þ ∂νAμÞ þ

2

m2
∂μ∂νσ

�
Jμνf :

ð18Þ

Next, we normalize the fields canonically

L ¼ 1

2
fμνð−∂2 −m2Þfμν þ 1

2
fμμ

�
−
1

2
ð−∂2 −m2Þ

�
fνν

þ 1

2
Aμð∂2 þm2ÞAμ þ 1

2
σð−∂2 −m2Þσ

þ
�
fμν −

1ffiffiffi
6

p gμνσ þ 1ffiffiffi
2

p
m
ð∂μAν þ ∂νAμÞ

þ
ffiffiffi
2

pffiffiffi
3

p
m2

∂μ∂νσ

�
Jμνf ; ð19Þ

and find the canonical propagators,

Δμν;ρσðfÞ¼
i

k2−m2

�
1

2
gμρgνσþ

1

2
gμσgνρ−

1

2
gμνgρσ

�
ð20Þ

ΔμνðAÞ ¼
−i

k2 −m2
gμν ð21Þ

ΔðσÞ ¼ i
k2 −m2;

ð22Þ

for the resulting unconstrained tensor, vector and scalar
fields, respectively.2 As desired, these propagators do not
contain any momentum factors. This fact turns out to be
essential for a Monte Carlo calculation for physical

2For a complete formulation at the quantum level, the gauge-
fixed Lagrangian has to be embedded in a BRST formalism.
Introducing appropriate Faddeev-Popov ghosts and auxiliary
Nakanishi-Lautrup fields, the classical action can be rendered
BRST invariant. The quantum effective action with resonance
exchange is then defined as the solution to a Slavnov-Taylor
equation, to all orders in the EW perturbative expansion. The
gauge-fixing terms become BRST variations which do not
contribute to physical amplitudes, and the Stückelberg fields
combine with the ghosts and auxiliary fields to BRST represen-
tations that can be consistently eliminated from the Hilbert space.
For free fields, this procedure is detailed in [55].
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processes, where all bosons are off-shell in a generic
momentum configuration.

D. Tensor resonances: Summary

Given this lengthy derivation, we may ask again
whether the Stückelberg formulation has any advantage
over the original Fierz-Pauli Lagrangian. Algebraically,
both are equivalent and result in identical on-shell
amplitudes.
This should be viewed in analogy with massive vector

bosons, for which the Stückelberg approach reproduces the
usual reformulation as a spontaneously broken gauge
theory. Again, this is mathematically equivalent to the
original model, as has been pointed out repeatedly [73].
However, once the accessible energy in a process exceeds
the resonance mass, there is a conceptual difference. In the
gauge-theory version, there is no higher-dimensional oper-
ator with a 1=M coefficient. Any additional effects would
come with a new cutoff 1=Λ. Scattering amplitudes are
bounded beyond the resonance as long as Λ is considered
large. By contrast, in the formulation with massive vector
bosons, there are kμ=M terms in the propagator which
a priori require the inclusion of a whole series of operators
with 1=M factors. The model is strongly interacting from
the onset and has no predictivity. If actual data show that
interactions are indeed weak, this fact would be interpreted
as a fine-tuned cancellation among terms.
Turning this argument around, if a vector boson is

observed to interact weakly over a significant range of
scales above its mass, it is natural to describe it as a gauge
boson, which in turn determines the allowed interaction
pattern. Analogously, if we assume that a tensor resonance
interacts weakly over a significant range of scales above its
mass, it is natural to describe it by the Stückelberg
approach. We will therefore adopt the Stückelberg
Lagrangian as the basis of a tensor-EFT with a minimum
set of free parameters.
Clearly, we can always add extra interactions with

further free parameters. Those interactions take the form
of higher-dimensional operators which do not contribute
on the resonance. They describe unrelated new-physics
effects.

IV. LAGRANGIAN FOR THE EXTENDED EFT

We now combine the findings of the previous section in
order to set up a Lagrangian description of the resonances,
as an extension of the low-energy EFT which already
(implicitly) includes the complete set of higher-
dimensional operators. Apart from the Lorentz representa-
tions as scalar or tensor, we have to consider the
representation of the internal symmetry group. As we will
argue in detail below, we take this as the Higgs-sector
global symmetry SUð2ÞL × SUð2ÞR, where only the
SUð2ÞL ×Uð1ÞY subgroup is gauged. SUð2ÞR breaking

terms can be systematically included, but we do not
consider those in the present work.

A. Isospin

In the literature on VBS, resonances have traditionally
been categorized in terms of weak isospin, i.e., custodial
SUð2ÞC multiplets. This is appropriate for a Higgsless
scenario, where the actual scale of EWSB is given by its
natural value 4πv ≈ 3 TeV (cf. e.g. [74]). Without a light
Higgs boson, VBS scattering at the LHC would probe the
physics at energies below the true EWSB scale, so the
(approximate) low-energy symmetry applies.
However, since the discovery of the Higgs boson, we

know that VBS processes probe a scale above the masses of
the physical Higgs and the electroweak gauge bosons.
We have to impose the unbroken high-energy symmetry
on the theoretical description. Neglecting hypercharge,
this is SUð2ÞL × SUð2ÞR. We therefore describe new
resonances coupled to the SM Higgs sector in terms of
SUð2ÞL × SUð2ÞR multiplets.
It is not obvious that new physics coupled to the Higgs

sector actually has this symmetry. SUð2ÞL × SUð2ÞR is,
first of all, an accidental approximate symmetry of the SM
EWSB sector. There are no possible terms in the dimen-
sion-four Higgs potential that break SUð2ÞR, so EWSB
leaves the diagonal custodial SUð2Þ symmetry untouched.
However, hypercharge and top-quark couplings are not
consistent with SUð2ÞR. Nevertheless, in the gaugeless
limit the hypercharge coupling vanishes, and top quarks are
irrelevant for VBS anyway, so SUð2ÞR remains a good
symmetry of VBS (at high pT) in the SM. Beyond the SM,
new effects in VBS are transmitted only via the Higgs
doublet. In the low-energy EFT, they require higher-
dimensional operators. These would cause power correc-
tions to the ρ parameter and are therefore constrained by the
observed agreement of the measured ρ parameter with the
pure SM prediction. For our purposes, we thus adopt
SUð2ÞR as a symmetry of new physics in the Higgs sector,
to keep things simple. We have to keep in mind that this
need not be the case, and leave the discussion of SUð2ÞR
breaking in this context to future work.
Resonances of even spin with unsuppressed couplings to

a pair of Higgs/Nambu-Goldstone bosons, must reside in
the symmetric part of the decomposition of the product
representation of the SUð2ÞL × SUð2ÞR symmetry,
ð1
2
; 1
2
Þ ⊗ ð1

2
; 1
2
Þ. In the effective interaction operator, this

representation appears as a H ⊗ H† factor. There are only
two possibilities:
(1) (0,0): a neutral singlet (isoscalar).
(2) (1,1): a 3 × 3 matrix, which contains nine compo-

nents. After EWSB, the multiplet decomposes into
an isotensor (five components), an isovector (three
components), and an isoscalar (one component). In
terms of the gauged SUð2ÞL × Uð1ÞY subgroup, the
nonet decomposes into a complex SUð2ÞL triplet
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with a doubly charged component and a real
SUð2ÞL triplet, as described in [75]. The relative
mass splitting between these states is of order
ðmW=MÞ2, where M is the average resonance mass.
For our purposes where we assume M ≫ mW , we
ignore that splitting and thus deal with a nonet of
degenerate resonance components.

We note that due to the existence of the light Higgs, the
close analogy between spin and isospin is broken at this
point: tensor states have just five physical degrees of
freedom, but an isotensor resonance in VBS, given the
symmetry assumptions of the present paper, does not
exist in isolation. The distinction comes into play once
physical Higgs bosons are involved in a process. In VBS
amplitudes, the symmetry relates, for any given resonance
multiplet, Nambu-Goldstone pairs with Higgs pairs, i.e.,
VVðV ¼ W;ZÞ to HH production.
For simplicity of notation, we will continue to denote the

(0,0) case as isoscalar and the (1,1) as isotensor, respec-
tively, keeping in mind that the latter case actually is always
accompanied by isovector and isoscalar components.
For a scalar isoscalar resonance σ, we may consider

couplings of the form

σtr½H†H� ð23aÞ

or

σtr½ðDμHÞ†ðDμHÞ�: ð23bÞ

The former operator is of lower dimension and might
therefore be considered the dominant contribution. It is part
of the Higgs potential and influences Higgs mixing and
production processes. In the present work, we assume that
the scalar state has been broken down in terms of the SM
Higgs doublet and further states, which themselves arrange
as multiplets. Since the SM Higgs couplings in the lowest-
order EFT, the pure SM, saturate the Higgs couplings to
SM particles and are fixed by definition, residual mixing
and potential terms arrange into higher-dimensional oper-
ators. In particular, a resonance coupled to Nambu-
Goldstone bosons is represented by the term (23b), while
the lower-dimensional term (23a) does not enter. We
therefore do not consider (23a) and concentrate on the
dimension-five coupling (23b).
This leads to a current for the scalar isoscalar resonance

of the form

Jσ ¼ Fσtr½ðDμHÞ†DμH�: ð24Þ

B. The isotensor representation

While the description of an isoscalar is simple, we have
to look at the interactions of the isotensor more carefully.
For simplicity, we will first restrict ourselves to a scalar
field multiplet.

A resonance with chiral SUð2ÞL × SUð2ÞR quantum
numbers (1,1) has nine scalar degrees of freedoms. In
the chiral representation these nine degrees of freedom can
be represented as the tensor Φab with the indices
a; b ∈ f1; 2; 3g. Therefore, the Lagrangian describing an
isotensor resonance in the Nambu-Goldstone/Higgs boson
sector can be written as

LΦ ¼ 1

2
∂μΦab∂μΦab −

m2
Φ

2
ΦabΦab þ JabΦ Φab; ð25Þ

where the current has a SUð2ÞL and a SUð2ÞR index:

JabΦ ¼ Fϕtr½ðDμHÞ†τaDμHτb�: ð26Þ

Analogously to the isoscalar case, the coupling Fϕ is
suppressed by a new-physics scale Λ. To expose the
coupling structure to the Nambu-Goldstone/Higgs boson
sector, the current can be expanded in the gaugeless limit:

tr½ðDμHÞ†τaDνHτb� ¼ 1

2
ð∂μh∂νh−∂μwi∂νwiÞδab

−
1

2
ð∂μwi∂νhþ∂νwi∂μhÞεabi

þ1

2
ð∂μwa∂νwbþ∂μwb∂νwaÞ: ð27Þ

Here, the decomposition into isotensor, isovector and
isoscalar is already manifest. The resonance Φab can be
represented in a basis constructed from tensor products of
SUð2Þ generators by the Clebsch-Gordon decomposition:

1 ⊗ 1 ¼ 2þ 1þ 0: ð28Þ

Using the basis in Appendix A 2, the resonance Φab is
rewritten into its SUð2ÞC components,

Φab → Φt þ Φv þ Φs; ð29Þ

with

Φt ¼ ϕþþ
t τþþ

t þ ϕþ
t τ

þ
t þ ϕ0

t τ
0
t þ ϕ−

t τ
−
t þ ϕ−−

t τ−−t ; ð30aÞ

Φv ¼ ϕþ
v τ

þ
v þ ϕ0

vτ
0
v þ ϕ−

v τ
−
v ; ð30bÞ

Φs ¼ ϕsτs: ð30cÞ

The Lagrangian (25) can be written in terms of the SUð2ÞC
basis:

Lϕ ¼ 1

2

X
i¼s;v;t

tr½ð∂μΦiÞ†∂μΦi −m2
ΦΦ

2
i �

þ tr

��
Φt þ

1

2
Φv −

2

5
Φs

�
Jϕ

�
ð31aÞ
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Jϕ ¼ Fϕ

�
ðDμHÞ† ⊗DμHþ 1

8
tr½ðDμHÞ†DμH�

�
ðτa ⊗ τaÞ:

ð31bÞ

In absence of the Higgs boson, the coefficient of the second
term is chosen in such a way, that the trace of the current
vanishes. In this scenario, the isovector and isoscalar degree
of freedoms decouple from the model and only the
isotensor is needed to describe this resonance. However,
including a Higgs the Lagrangian (31) guarantees the
amplitude relation between the Higgs and Nambu-
Goldstone bosons that will be introduced in Sec. VA.
The crossing relations are manifest in the scattering
amplitudes for the Nambu-Goldstone/Higgs boson, which
can be determined most easily in the gaugeless limit.
One prominent example for such scalar isotensor reso-

nances appears in the context of composite Higgs models of
the Little Higgs type, particularly in the so-called Littlest
Higgs model [76]. These resonances predominantly couple
to the (electro)weak gauge sector of the SM.

C. The tensor current

We now construct the effective current that is coupled to
a tensor resonance multiplet. By assumption, the resonance
should be produced in VBS processes. We have to consider
independent couplings to the gauge and Higgs/Nambu-
Goldstone sectors. The gauge-sector couplings should
vanish in the gaugeless limit, so we are led to consider
the Higgs-sector coupling.
For a tensor isoscalar resonance, the lowest-dimensional

current consists of two terms,

Jμνf ¼ Ff

�
tr½ðDμHÞ†DνH� − cf

4
gμνtr½ðDρHÞ†DρH�

�
:

ð32Þ

The second term actually couples to the trace of the tensor
field, which vanishes on-shell. It is therefore part of the
nonresonant continuum and can alternatively be replaced
by higher-dimensional operators in the EFT. Nevertheless,
it is required if, for instance, we want to construct a
traceless current. For now, we leave the coefficient cf
undetermined.
The tensor-field coupling then reads

fμνJ
μν
f ð33Þ

in the Fierz-Pauli formulation (Sec. III B), and

fμνJ
μν
f − σJfμμ −

1

m
Aμ∂νJ

μν
f þ 2

m2
σ∂μ∂νJ

μν
f ð34Þ

in the Stückelberg formulation (Sec. III C). In the second
version, the momentum factors in the propagator have been
turned into derivatives that act on the current. There is also
a coupling to the trace of the current.
The formally dominant high-energy (s → ∞) behavior

of the amplitude thus is given by the exchange of
Stückelberg vector and scalar. The contribution would
vanish if the current was conserved. Evaluating the diver-
gence of first and second order, using (A3) and (A6a) in the
Appendix,

∂μJ
μν
f ¼ Fftr½ðD2HÞ†DνH� þ Ff

4
ðcf þ 2Þtr½ðDμHÞ†½Dμ;Dν�H� − Ff

4
ðcf − 2Þtr½ðDμHÞ†fDμ;DνgH�

¼ −Ffλtr½ dH†H�tr½H†DνH� − igFftr½ðDμHÞ†WμνH� − ig0Fftr½HBμνðDμHÞ†�; ð35Þ

∂ν∂μJ
μν
f ¼ Fftr

h
ðDμHÞ†

�
DνDμDνHþDμD2H −

cf
2
D2DμH

�i
þ Fftr½ðD2HÞ†D2H� þ Fftr½ðDμDνHÞ†DνDμH�

−
cf
2
Fftr½ðDμDνHÞ†DμDνH�

¼ −Ffλtr½ dH†H�tr½DμH†DμH� − Ffλtr½ dH†H�tr½H†D2H� − 2Ffλtr½H†DμH�tr½H†DμH�

þ g2Ff

2
ðtr½ðDμHÞ†HðDμHÞ†H� − tr½ðDμHÞ†ðDμHÞH†H�Þ

þ g02Ff

2
ðtr½ðDμHÞ†HðDμHÞ†H� − tr½ðDμHÞ†ðDμHÞH†H�Þ þ g2Ff

2
tr½H†WμνWμνH� þ g02Ff

2
tr½HBμνBμνH†�

þ gg0Fftr½H†WμνHBμν� − igFftr½ðDμHÞ†WμνDνH� − igFftr½ðDμHÞBμνðDμHÞ†�; ð36Þ

we observe that the current is not conserved. However, none of the nonvanishing terms contributes to the VV → VV process
at high energy. The Stückelberg fields effectively decouple, and the high-energy behavior can be calculated from the
propagator (20).
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If we take EWSB into account, we do get a nonvanishing
divergence also at the two-particle level. New terms arise
that are proportional to powers of v, and thus to the W, Z,
and Higgs masses. The Stückelberg vector transmits, via
EWSB mixing, a coupling to transversal vector bosons. In
amplitudes, these factors are accompanied by factors of
1=m. In the limit of a heavy resonance, the Stückelberg
terms are thus parametrically suppressed and become
relevant only for energies significantly beyond the reso-
nance mass. Conversely, if the resonance mass is compa-
rable to the electroweak scale, the Stückelberg terms are
significant.
The remainder of the amplitude that corresponds to the

genuine tensor propagator (20) does not contain momen-
tum factors. Nevertheless, the interaction is of dimension
five, so we expect contributions that rise with energy.
This occurs for external longitudinally polarized vector
bosons which carry a momentum factor. We obtain a
factor s2 in the numerator that asymptotically cancels
with the denominator, so the effective rise is proportional
to s=m2. Qualitatively, this is the same result as for the
case of a scalar resonance, or for a Higgs-less theory.
We conclude that we can unitarize the amplitude

uniformly for all spin-isospin channels, starting from
the gaugeless Nambu-Goldstone boson limit, without
having to account for transversal gauge bosons or higher
powers of s beyond the resonance. The algorithm can be
taken unchanged from the pure-EFT case [48]. However,
we have to restrict the allowed values of resonance
masses and couplings such that the Stückelberg terms
discussed above remain numerically small within some
finite energy range. Outside this range, we can no longer
separate the Higgs/Nambu-Goldstone sector of the theory
but are sensitive to unknown strong interactions that
involve all channels of longitudinal, transversal and
Higgs exchange simultaneously. While the unitarization
scheme of [48] is also applicable in that situation, it
becomes technically more involved; we defer this case to
future work.

D. Complete model definition

We now list the effective Lagrangians that we consider in
the subsequent calculations. In all cases, the basic theory is
the SM EFT, i.e., the SM with the observed light Higgs
boson in linear representation, extended by higher-dimen-
sional operators. We add four different resonance multip-
lets, corresponding to all combinations of spin and isospin
0 and 2, respectively. The Lagrangians can be combined.
The spin-two Lagrangian is presented in the Stückelberg

gauge. Regarding the resonance fields, we should further
select electroweak quantum numbers, as discussed in
Sec. IVA, by defining the precise form of the covariant
derivative acting on the resonance field in the kinetic
operator. However, as long as we are not interested in
EW radiative corrections, we may work with a simple

partial derivative and omit the gauge couplings toW, Z, and
photon.
The Lagrangian for the isoscalar-scalar σ, the isotensor-

scalar ϕ, the isoscalar-tensor f and the isotensor-tensor X
are given by

Lσ ¼
1

2
∂μσ∂μσ −

1

2
m2

σσ
2 þ σJσ ð37aÞ

Lϕ ¼ 1

2

X
i¼s;v;t

tr½∂μΦi∂μΦi −m2
ΦΦ

2
i �

þ tr

��
Φt þ

1

2
Φv −

2

5
Φs

�
Jϕ

�
; ð37bÞ

Lf ¼
1

2
ffμνð−∂2 −m2

fÞfμνf þ 1

2
fμfμ

�
−
1

2
ð−∂2 −m2

fÞ
�
fνfν

þ 1

2
Afμð−∂2 −m2

fÞAμ
f þ

1

2
σfð−∂2 −m2

fÞσf

þ
�
ffμν −

1ffiffiffi
6

p gμνσ þ 1ffiffiffi
2

p
mf

ð∂μAν þ ∂νAμÞ

þ
ffiffiffi
2

pffiffiffi
3

p
m2

f

∂μ∂νσ

�
Jμνf ; ð37cÞ

LX¼
1

2

X
i¼s;v;t

tr
�
Xiμνð−∂2−m2

XÞXμν
i þXμ

iμ

�
−
1

2
ð−∂2−m2

XÞ
�
Xν
iν

þAiμð−∂2−m2
XÞAμ

i þσið−∂2−m2
XÞσi

�
þ tr

��
Xtμν−

gμνffiffiffi
6

p σtþ
∂μAtνþ∂νAtμffiffiffi

2
p

mX

þ
ffiffiffi
2

pffiffiffi
3

p
m2

X

∂μ∂νσt

�
JμνX

þ1

2

�
Xvμν−

gμνffiffiffi
6

p σvþ
∂μAvνþ∂νAvμffiffiffi

2
p

mX

þ
ffiffiffi
2

pffiffiffi
3

p
m2

X

∂μ∂νσv

�
JμνX

−
2

5

�
Xsμν−

gμνffiffiffi
6

p σsþ
∂μAsνþ∂νAsμffiffiffi

2
p

mX

þ
ffiffiffi
2

pffiffiffi
3

p
m2

X

∂μ∂νσs

�
JμνX

�
;

ð37dÞ

respectively, where the tensor resonances are formulated in
the Stückelberg formalism with associated fields σf, Af and
ff denoting the scalar, vector and tensor degrees of
freedom, respectively. The corresponding Stückelberg
fields for the isotensor-tensor receive extra indices
fs; v; tg which represent the isoscalar, isovector and iso-
tensor fields of the SUð2ÞC multiplet, respectively. The
couplings to the Nambu-Goldstone boson current in each
case is given by

Jσ ¼ Fσtr½ðDμHÞ†DμH�; ð38aÞ

Jϕ¼Fϕ

�
ðDμHÞ†⊗DμHþ1

8
tr½ðDμHÞ†DμH�

�
τaa; ð38bÞ
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Jμνf ¼ Ffðtr½ðDμHÞ†DνH� − cf
4
gμνtr½ðDρHÞ†DρH�Þ;

ð38cÞ

JμνX ¼ FX

�
1

2
ððDμHÞ† ⊗ DνHþ ðDνHÞ† ⊗ DμHÞ

−
cX
4
gμνðDρHÞ† ⊗ DρH

þ 1

8

�
tr½ðDμHÞ†DνH�− cX

4
gμνtr½ðDρHÞ†DρH�

��
τaa:

ð38dÞ

V. UNITARY AMPLITUDES
FOR VBS AT THE LHC

A. Gaugeless limit

For a first estimate of the impact of generic resonances to
vector-boson scattering processes at the LHC, we study the
on-shell Nambu-Goldstone boson scattering amplitudes.
When treating vector-boson scattering as 2 → 2 process of
massless scalars at high energies, it is convenient to
describe kinematic dependencies using Mandelstam vari-
ables s, t, u. Using custodial symmetry and crossing
symmetries, the different 2 → 2 Nambu-Goldstone boson
scattering amplitudes are determined by the master ampli-
tudes Aðwþw− → zzÞ. In the gaugeless limit, the ampli-
tudes for the resonance multiplets σ, ϕ, f, and X are
calculated in the gaugeless limit via the Feynman rules
given in Appendix B.

1. Isoscalar-Scalar

Aσðw�w� → w�w�Þ ¼ −
1

4
Fσ

2

�
t2

t −m2
σ
þ u2

u −m2
σ

�
;

ð39aÞ

Aσðw�z → w�zÞ
Aσðhw� → hw�Þ
Aσðhz → hzÞ

9=; ¼ −
1

4
Fσ

2
t2

t −m2
σ
; ð39bÞ

Aσðw�w∓ → w�w∓Þ ¼ −
1

4
Fσ

2

�
s2

s −m2
σ
þ t2

t −m2
σ

�
;

ð39cÞ

Aσðw�w∓ → zzÞ
Aσðhh → w�w∓Þ
Aσðhh → zzÞ

9=; ¼ −
1

4
Fσ

2
s2

s −m2
σ
; ð39dÞ

Aσðzz → zzÞ
Aσðhh → hhÞ

	
¼ −

1

4
Fσ

2

�
s2

s −m2
σ
þ t2

t −m2
σ
þ u2

u −m2
σ

�
:

ð39eÞ

2. Isotensor-Scalar

Aϕðw�w� → w�w�Þ

¼ −
Fϕ

2

8

�
2

s2

s −m2
ϕ

þ 1

2

u2

u −m2
ϕ

þ 1

2

t2

t −m2
ϕ

�
; ð40aÞ

Aϕðw�z→w�zÞ
Aϕðhw� → hw�Þ
Aϕðhz→ hzÞ

9=;¼Fϕ
2

8

�
1

2

t2

t−m2
ϕ

−
u2

u−m2
ϕ

−
s2

s−m2
ϕ

�
;

ð40bÞ

Aϕðw�w∓ → w�w∓Þ

¼ −
Fϕ

2

8

�
1

2

s2

s −m2
ϕ

þ 2
u2

u −m2
ϕ

þ 1

2

t2

t −m2
ϕ

�
; ð40cÞ

Aϕðw�w∓ → zzÞ
Aϕðhh→w�w∓Þ
Aϕðhh→ zzÞ

9>=>;¼Fϕ
2

8

�
1

2

s2

s−m2
ϕ

−
u2

u−m2
ϕ

−
t2

t−m2
ϕ

�
;

ð40dÞ

Aϕðzz→ zzÞ
Aϕðhh→ hhÞ

	
¼ −

3Fϕ
2

16

�
s2

s−m2
ϕ

þ u2

u−m2
ϕ

þ t2

t−m2
ϕ

�
:

ð40eÞ

3. Isoscalar-Tensor

Afðw�w� → w�w�Þ

¼ −
1

24
Ff

2

�
t2

t −m2
f

P2ðt; s; uÞ þ
u2

u −m2
f

P2ðu; s; tÞ
�
;

ð41aÞ

Afðw�z → w�zÞ
Afðhw� → hw�Þ
Afðhz → hzÞ

9=; ¼ −
1

24
Ff

2
t2

t −m2
f

P2ðt; s; uÞ; ð41bÞ

Afðw�w∓ → w�w∓Þ

¼ −
1

24
Ff

2

�
s2

s −m2
f

P2ðs; t; uÞ þ
t2

t −mf
P2ðt; s; uÞ

�
;

ð41cÞ
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Afðw�w∓→ zzÞ
Afðhh→w�w∓Þ
Afðhh→ zzÞ

9>>=>>;¼−
1

24
Ff

2
s2

s−m2
f

P2ðs; t;uÞ; ð41dÞ

Afðzz→ zzÞ
Afðhh→ hhÞ

	
¼−

1

24
Ff

2

�
s2

s−m2
f

P2ðs; t;uÞ

þ t2

t−m2
f

P2ðt;s;uÞþ
u2

u−m2
f

P2ðu;s; tÞ
�
:

ð41eÞ

Here and in the following, P2ðs;t;uÞ¼½3ðt2þu2Þ−2s2�=s2
is the second order Legendre polynomial in terms of the
Mandelstam variables.

4. Isotensor-Tensor

AXðw�w� → w�w�Þ ¼ −
FX

2

96

�
4s2

s −m2
X
P2ðs; t; uÞ

þ t2

t −m2
X
P2ðt; s; uÞ

þ u2

u −m2
X
P2ðu; s; tÞ

�
; ð42aÞ

AXðw�z → w�zÞ
AXðhw� → hw�Þ
AXðhz → hzÞ

9=; ¼ FX
2

96

�
−

2s2

s −m2
X
P2ðs; t; uÞ

þ t2

t −m2
X
P2ðt; s; uÞ

−
2u2

u −m2
X
P2ðu; s; tÞ

�
; ð42bÞ

AXðw�w∓ → w�w∓Þ ¼ −
FX

2

96

�
s2

s −m2
X
P2ðs; t; uÞ

þ t2

t −m2
X
P2ðt; s; uÞ

þ 4u2

u −m2
X
P2ðu; s; tÞ

�
; ð42cÞ

AXðw�w∓ → zzÞ
AXðhh → w�w∓Þ
AXðhh → zzÞ

9=; ¼ FX
2

96

�
s2

s −m2
X
P2ðs; t; uÞ

−
2t2

t −m2
X
P2ðt; s; uÞ

−
2u2

u −m2
X
P2ðu; s; tÞ

�
; ð42dÞ

AXðzz → zzÞ
AXðhh → hhÞ

	
¼ −

1

32
FX

2

�
s2

s −m2
X
P2ðs; t; uÞ

þ t2

t −m2
X
P2ðt; s; uÞ

þ u2

u −m2
X
P2ðu; s; tÞ

�
: ð42eÞ

B. Decomposition of eigenamplitudes

Since the leading-order amplitudes as listed above are
unbounded both at the pole and at high energy, we use the
T-matrix scheme [48] to restore unitarity. In order to
implement the scheme in [48], we decompose the ampli-
tudes into isospin-spin eigenamplitudes (the S-wave,
P-wave and D-wave kinematic functions Si, Pi and Di
can be found in Appendix B 3):

1. Isoscalar-Scalar

A00 ¼ F2
σ

�
−
3

4

s2

s −m2
σ
−
1

2
S0

�
; ð43aÞ

A02 ¼ −
1

2
F2
σS2; ð43bÞ

A11 ¼ −
1

2
F2
σS1; ð43cÞ

A13 ¼ −
1

2
F2
σS3; ð43dÞ

A20 ¼ −
1

2
F2
σS0; ð43eÞ

A22 ¼ −
1

2
F2
σS2 ð43fÞ

2. Isotensor-Scalar

A00 ¼ F2
ϕ

�
−

1

16

s2

s −m2
ϕ

−
7

8
S0

�
; ð44aÞ

A02 ¼ −
7

8
F2
ϕS2; ð44bÞ

A11 ¼
3

8
F2
ϕS1; ð44cÞ

A13 ¼
3

8
F2
ϕS3; ð44dÞ

A20 ¼ F2
ϕ

�
−
1

4

s2

s −m2
ϕ

−
1

8
S0

�
; ð44eÞ
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A22 ¼ −
1

8
F2
ϕS2 ð44fÞ

3. Isoscalar-Tensor

A00 ¼ −
1

12
F2
fD0; ð45aÞ

A02 ¼ −
1

40
F2
f

s2

s −m2
f

−
1

12
F2
f

�
1þ 6

s
m2

f

þ 6
s2

m4
f

�
S2; ð45bÞ

A11 ¼ −
1

12
F2
fD1; ð45cÞ

A13 ¼ −
1

12
F2
f

�
1þ 6

s
m2

f

þ 6
s2

m4
f

�
S3; ð45dÞ

A20 ¼ −
1

12
F2
fD0; ð45eÞ

A22 ¼ −
1

12
F2
f

�
1þ 6

s
m2

f

þ 6
s2

m4
f

�
S2 ð45fÞ

4. Isotensor-Tensor

A00 ¼ −
7

48
F2
XD0; ð46aÞ

A02 ¼ −
1

480
F2
X

s2

s −m2
X

−
7

48
F2
X

�
1þ 6

s
m2

X
þ 6

s2

m4
X

�
S2; ð46bÞ

A11 ¼
1

16
F2
XD1; ð46cÞ

A13 ¼
1

16
F2
X

�
1þ 6

s
m2

X
þ 6

s2

m4
X

�
S3; ð46dÞ

A20 ¼ −
1

48
F2
XD0; ð46eÞ

A22 ¼ −
1

120
F2
X

s2

s −m2
X

−
1

48
F2
X

�
1þ 6

s
m2

X
þ 6

s2

m4
X

�
S2: ð46fÞ

C. Width

As argued below in Sec. V E, for the numerical off-shell
calculation of scattering processes we will need approxi-
mate values for the resonance decay widths. If suffices to
compute those in the gaugeless limit. Contributions propor-
tional to the masses of the vector bosons and the Higgs
boson are assumed to be small at high resonance masses
and are therefore neglected.

Γσ ¼
m3

σ

32π
F2
σ; ð47aÞ

Γϕ ¼ m3
ϕ

128π
F2
ϕ; ð47bÞ

Γf ¼
m3

f

960π
F2
f; ð47cÞ

ΓX ¼ m3
X

3840π
F2
X: ð47dÞ

D. Matching to the low-energy EFT

For later convenience, we compute the coefficients of the
effective dimension-eight operators LS;0 and LS;1 [48],

LS;0 ¼ FS;0tr½ðDμHÞ†DνH�tr½ðDμHÞ†DνH�; ð48aÞ

LS;1 ¼ FS;1tr½ðDμHÞ†DμH�tr½ðDνHÞ†DνH�: ð48bÞ

which result from integrating out the resonances σ, ϕ, f, X,
one at a time.

FS;1 ¼
F2
σ

2m2
σ
; ð49Þ

FS;0 ¼
F2
ϕ

2m2
ϕ

; FS;1 ¼ −
F2
ϕ

8m2
ϕ

; ð50Þ

FS;0 ¼
F2
f

2m2
f

; FS;1 ¼ −
F2
f

6m2
f

; ð51Þ

FS;0 ¼
F2
X

24m2
X
; FS;1 ¼ −

7F2
X

24m2
X
: ð52Þ

E. Tensor exchange in unitary gauge

Beyond the resonance, the Nambu-Goldstone bosons
scattering amplitudes rise proportional to powers of the
invariant mass of the scattering system. They eventually
violate unitarity at a certain energy, depending on the
resonance coupling.
Computing the wþw− → zz amplitude in the presence of

an isoscalar tensor resonance, for instance,

RESONANCES AT THE LHC BEYOND THE HIGGS BOSON: … PHYSICAL REVIEW D 93, 036004 (2016)

036004-13



Afðwþw− → zzÞ¼−
F2
f

96
ðcf−2Þ2 s

3

m4
f

−
F2
f

48
ðcf−2Þcf

s2

m2
f

−
F2
f

24
ð3ðt2þu2Þ−2s2Þ 1

s−m2
f

; ð53Þ

we observe that choosing cf ≠ 2 results in a high degree of
divergence. This is due to contributions of the vector
and scalar degree of freedoms in the Stückelberg para-
metrization for the tensor coupled to the derivatives
of the current (35) and (36). As discussed above, such terms
can be written in a nonresonant form and should be
interpreted as coefficients of undetermined higher-
dimensional local operators. Setting thus cf ¼ 2, we obtain
an amplitude AfðsÞ which rises proportional to s beyond
the resonance.
However, the scalar and vector degree of freedoms

provide additional contributions which are not manifest
in the gaugeless limit. A calculation of the tensor scattering
amplitude in the unitary gauge is necessary. The
longitudinal on-shell WW → ZZ amplitude for cf ¼ 2 is
given by

AfðWLWL → ZLZLÞ

¼ −
1

24

F2
f

s −m2
f

�
ðP2½cosðθÞ� − 1Þs2 þ 12m2

Wm
2
Z

− 12
m2

Wm
2
Z

m2
f

þ ðs − 2m2
WÞðs − 2m2

ZÞ

þ 4
m2

Wm
2
Z

m4
f

s2 þ 2
ðm2

W þm2
ZÞs2 − 4m2

Zm
2
Ws

m2
f

�
: ð54Þ

The first line represents the tensor contribution in the
Stückelberg parametrization. Due to its suppression by a
power of s, the vector part in the second line can be
neglected for the longitudinal scattering amplitude. Besides
the scalar contribution originating from the trace of the
current, additional contributions related to the double
derivative of the current and its mixing with the trace part
written in the fourth line will rise with energy. However,
they are suppressed by m2

W=m
2
f or m4

W=m
4
f and can be

neglected if the mass of the tensor resonance is large in
comparison to the vector boson masses. In this case, the
longitudinal amplitude of the vector bosons calculated in
the unitary gauge coincides with the amplitude in gauge-
less limit.
Furthermore, due to the coupling to the derivatives of

the scalar and vector degrees of freedom, also ampli-
tudes in channels with transverse polarization rise with
the energy of the vector-boson scattering system. A full
list of these channels in the high-energy limit is
displayed in Table I. We observe that all channels
which include at least one transversally polarized vector

boson are suppressed by m2
W=m

2
f. Therefore, a calcu-

lation within the gaugeless limit is sufficient to estimate
the high-energy behavior for high masses of the tensor
resonance.
For the tensor-isotensor amplitude, the analogous result

with cX ¼ 2 is

AXðW�
LW

∓
L → ZLZLÞ

¼ FX
2

96

�
s2

s −m2
X
P2ðs; t; uÞ −

2t2

t −m2
X
P2ðt; s; uÞ

−
2u2

u −m2
X
P2ðu; s; tÞ

�
þ FX

2

24

m2
whz

m2
X

�
s2

s −m2
X
−

2t2

t −m2
X
−

2u2

u −m2
X

�
−
FX

2

48

ðm2
W −m2

ZÞ2
m4

X

�
t2

t −m2
X
þ u2

u −m2
X

�
þOðs0Þ;

ð55Þ
containing t-channel and u-channel contributions, as
expected.

TABLE I. High energy limit of theWþW− → ZZ amplitude for
each polarization channel that rises with energy due to a isoscalar-
tensor resonance (cf ¼ 2).

ðþ;þ;þ;þÞ
−

c2fm
2
Wm2

Z

24m2
f

F2
fs

ðþ;þ;−;−Þ
ð−;−;þ;þÞ
ð−;−;−;−Þ
ðþ; 0; 0;þÞ

mWmZ

8m2
f
F2
ft

ð0;þ;þ; 0Þ
ð0;−;−; 0Þ
ð−; 0; 0;−Þ
ðþ; 0;þ; 0Þ

mWmZ

8m2
f
F2
fu

ð0;þ; 0;þÞ
ð0;−; 0;−Þ
ð−; 0;−; 0Þ
ðþ; 0;−; 0Þ

− mWmZ

8m2
f
F2
ft

ð0;þ; 0;−Þ
ð0;−; 0;þÞ
ð−; 0;þ; 0Þ
ðþ; 0; 0;−Þ

− mWmZ

8m2
f
F2
fu

ð0;þ;−; 0Þ
ð0;−;þ; 0Þ
ð−; 0; 0;þÞ
ðþ;þ; 0; 0Þ m2

fþ2m2
Z

12m4
f

m2
WF

2
fsð−;−; 0; 0Þ

ð0; 0;þ;þÞ m2
fþ2m2

W

12m4
f

m2
ZF

2
fsð0; 0;−;−Þ

(0, 0, 0, 0) F2
f

24
2s2−3t2−3u2

s þ m2
fðm2

Wþm2
ZÞþ2m2

Wm2
Z

12m4
f

F2
fs
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F. Unitarized amplitudes

The tree-level exchange amplitudes that directly result
from evaluating Feynman rules, exhibit two distinct sources
of unitarity violation. Firstly, the amplitude develops a pole
at the resonance mass, on the real axis. Secondly, terms
that rise with energy asymptotically violate unitarity
bounds.
In principle, the T-matrix unitarization scheme would be

sufficient to regulate both issues simultaneously. At the
pole, this boils down to standard Dyson resummation,
introducing the particle width as an imaginary part in the
denominator. It can easily be verified that this actually
happens for the on-shell scattering amplitudes of external
Nambu-Goldstone bosons. We obtain the correct value for
the resonance width in the gaugeless limit.
However, we want to evaluate the amplitudes off-shell

for physical W and Z bosons. The simplified unitarization
scheme that we describe above is not exactly accurate as
soon as we include finite corrections due to transversal
gauge bosons and finite W=Z mass. As a result, there are
contributions which are not canceled on the resonance pole,
and a narrow but unbounded peak remains.
To avoid this problem, we simply insert an a prioriwidth

in the resonant propagator. We thus start from a complex
model amplitude. Therefore, we take the T-matrix scheme
of [48] at face value, and drop the reference to the usual K-
matrix scheme which implies an intermediate projection
onto the real axis. By construction, in the gaugeless limit,
the correct result is invariant with respect to the introduc-
tion of this width, if it has the correct on-shell value. For
finite gauge couplings and masses, the result acquires a
subleading dependence on this initial value since the model
amplitude is neither on the real axis nor exactly on the
Argand circle. However, the amplitude after unitarization is
now bounded near the resonance pole, as required.
In the asymptotic regime, the simplified T-matrix scheme

renders the amplitude unitary at all energies, if the
exchanged resonance is scalar. This enables us to compute
cross sections and generate event samples in this model for
complete processes at the LHC (cf. Sec. VI).
For a tensor resonance, in the Stückelberg approach, the

genuine tensor exchange terms are also regulated com-
pletely by this (simplified) scheme. The extra Stückelberg
vector and scalar terms, however, generate higher powers of
s which enter when trading Nambu-Goldstone bosons for
physical vector bosons in unitary gauge, suppressed by
powers of mh, mW , mZ. Applying the unitarization frame-
work for those extra terms would require a complete
diagonalization of all vector-boson helicity amplitudes in
unitary gauge. In any case, parameter ranges where these
terms play a role correspond to a regime where all degrees
of freedom of the SM interact strongly via these couplings.
We therefore stay away from this range and choose
parameters where those terms are subleading within the
accessible energy range.

Computing the scale where the Stückelberg vector-scalar
terms violate the relevant unitarity bounds, we obtain the
energy limit

ffiffiffi
s

p ≲
ffiffiffiffiffiffiffiffiffi
1

5

mf

Γf

s
m2

f

mwhz
; ð56Þ

for the model which contains an isoscalar tensor, and

ffiffiffi
s

p ≲
ffiffiffiffiffiffiffiffiffiffiffiffi
1

30

mx

Γx

s
m2

X

mwhz
: ð57Þ

for the isotensor tensor multiplet. Here, mwhz indicates the
common mass scale of electroweak bosons W, H, Z.
Inserting the accessible energy for the LHC collider, we
can invert those relations to extract parameter regions
where the simplified models with a tensor resonance are
valid. The numerical results in the following sections have
been obtained for parameter values that satisfy the bounds.

VI. SCENARIOS FOR VBS AT THE LHC

A. Implementation

In the previous section, we have derived the analytic
expressions that determine the on-shell VBS amplitudes in
the presence of a resonance. The amplitudes include
correction terms that enforce quantum-mechanical unitarity
without altering the physical content of the model.
Ultimately, we are interested in measurable effects in

LHC data. For a complete calculation, the unitarized
amplitudes that are originally defined for on-shell VBS
processes, have to be extrapolated off-shell in a practically
meaningful way. As long as the kinematical conditions are
approximately met, we can evaluate the interactions in
unitary gauge, eliminating all explicit references to Nambu-
Goldstone bosons in favor of physical vector fields, and
derive the Feynman rules in that gauge. The effective
Feynman rules for the unitarity corrections become
momentum dependent and involve theta functions that
restrict the insertions to the s channel of VBS where
partial-wave projection and unitarization is defined.
In the physical processes at the LHC,

pp → qq → qqVV ð58Þ

where q generically denotes a quark and V is eitherW or Z,
the final-state quarks are detected as jets in the forward
direction. With suitable cuts, we can arrange that there is
significant contribution from the subprocess VV → VV
where the initial-state vector bosons are spacelike but
approximately on-shell, in the limit of high invariant VV
mass. This subprocess, i.e., the associated off-shell ampli-
tude, obtains contributions from resonance exchange and is
affected by unitarization.
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We have implemented this prescription as a model in
the Monte Carlo integration and event generation pack-
age WHIZARD [77–80]. This is a universal event
generator for simulations at hadron and lepton colliders
at leading order and next-to-leading (QCD) [81] order.
Though interfaces to automated tools for beyond the SM
models exist [82], they cannot be used for the imple-
mentation of unitarization projections for operators and
resonances. The reason is the global structure of the

unitarization projection. Therefore the models described
in the current paper have been manually added to the
framework.
For each resonance type (σ, ϕ, f, X), we can compute the

relation of the resonance width (Sec. V C) to the operator
coefficients in the low-energy EFT (Sec. V D) which result
when the resonance is integrated out. These relations are
listed in Table II.
The analysis of LHC run-I data by the ATLAS experi-

ment [18] has been cast into bounds on the EFT parameters
FS;0 and FS;1, namely

jFS;0j < 480 TeV−4 jFS;1j < 480 TeV−4; ð59Þ

where only one parameter was varied at a time. This
analysis covered the same-sign leptonic decay channel of
WþWþ andW−W−. It was based on the T-matrix unitarized
version of the extrapolated EFTas its reference model, with

FIG. 1. Differential cross sections for isoscalar scalar resonances. Upper plots show a weakly coupled isoscalar scalar with mσ ¼
800 GeV and Γσ ¼ 80 GeV, for the processes pp → WþWþjj (left) and pp → ZZjj (right), respectively. In the lower plot, there is a
low-lying isoscalar scalar with mσ ¼ 650 GeV and Γσ ¼ 260 GeV for the process pp → ZZjj. Solid line: unitarized results, dashed
lines: naive result, black dashed line: limit of saturation of A20 ðWþWþÞ or A00 (ZZ), respectively. Cuts:Mjj > 500 GeV; Δηjj > 2.4;
pj
T > 20 GeV; jηjj > 4.5.

TABLE II. Relation of resonance width Γ and mass M to the
corresponding D ¼ 8 operator coefficients in the low-energy
EFT, for all resonance types considered in this paper. The factors
listed in the table have to be multiplied by 32πΓ=M5.

σ ϕ f X

FS;0
1
2

2 15 5
FS;1 – − 1

2
−5 −35
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the pure SM as the limit for vanishing parameters. A CMS
analysis can be found in [20].

B. On-shell Invariant Mass Distributions

In the following, we will present results both for on-shell
W=Z final states and for complete partonic final states.
On-shell vector bosons cannot be detected directly but their
distributions directly reflect the actual features of the
physical model. Observable distributions of fermions in
the final state, which may be quarks (jets), charged leptons,
or neutrinos, are less directly linked to the physical process
and require detailed analysis along the lines of [18]. This
concerns, in particular, the separation of signal and back-
ground based on detector data, which is beyond the scope
of the present paper.
We show results for particular parameter sets where

we add one resonance at a time on top of the SM, namely
a scalar-isoscalar, tensor-isoscalar, or scalar-isotensor

resonance, respectively. All extra higher-dimensional oper-
ator coefficients are set to zero. By varying the resonance
parameters within reasonable limits, this gives an overview
of the expected phenomenology.
For definiteness, we choose to plot the invariant mass of

the vector-boson pair system in the final state, which is the
energy scale of the actual VBS process. The initial state is
convoluted with the parton structure functions, so the
results hold for the LHC (

ffiffiffi
s

p ¼ 14 TeV), and we apply
standard VBS cuts to enhance the signal. The final-state
vector bosons are taken on-shell. We show the distribution
for the WþWþ and ZZ final states, where the latter case as
the golden channel of VBS is distinguished by the fact that
the ZZ invariant mass can be reconstructed from the
leptonic Z decays. This is not possible for WþWþ, but
the corresponding same-sign lepton channel is distin-
guished by a favorable signal-to-background ratio. Note
that in the on-shell plots, the vector-boson decay branching
ratios have not been included.

FIG. 2. Differential cross sections of an isoscalar tensor resonance. Upper plots show a resonance with mf ¼ 1000 GeV and Γf ¼
100 GeV for the processes pp → WþWþjj (left), and pp → ZZjj (right), respectively. The lower plot is for a strongly interacting
isoscalar tensor with mf ¼ 1200 GeV and Γf ¼ 480 GeV. Solid line: unitarized results, dashed lines: naive result, black dashed line:
Limit of saturation of A22 ðWþWþÞ or A02 (ZZ), respectively. Cuts are the same as in Fig. 1.
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In all invariant-mass plots, we display the distribution for
the unitarized resonance model (blue curves) together with
the pure SM prediction (black). We also plot the unitarity
bound for the appropriate partial wave, extrapolated off-
shell by the same algorithm, as a dashed curve (black). For
illustrative purposes, we also display, in each case, the
unitarized extrapolation of the low-energy EFT (red, solid),
where we choose the operator coefficients equal to the
formal result of integrating out the resonance. Finally, we
also display numerical results for the EFT without unitar-
ization (red, dashed) and the resonance with correct width
but no further unitarization (blue, dashed).

1. Isoscalar-Scalar

The simplest case is a scalar-isoscalar resonance. This is
a single isolated resonance, as it could arise, e.g., as the
extra scalar particle in a singlet-doublet Higgs model or as a
low-energy signal of a strongly interacting Higgs sector
that is neutral under the SM gauge group.

In Fig. 1, upper row, we have selected a moderate mass
of 800 GeV and a rather narrow width of 80 GeV, which
corresponds to a weak coupling. The isolated resonance is
clearly visible in the ZZ channel, while theWþWþ channel
is barely affected. For such weak coupling, the operator
coefficient in the EFT is small and more than one order of
magnitude below the current LHC run-I limit. We can draw
the conclusion that in this case the resonance should be
detectable for sufficient luminosity, but the EFT approxi-
mation is not useful.
Turning to a stronger coupling, we show the correspond-

ing distribution in the ZZ channel for mσ ¼ 650 GeV and
Γσ ¼ 260 GeV in Fig. 1, lower row.
Here, the EFT parameters are within the range that

should become accessible at LHC run II and beyond. The
EFT curve (red, solid) appears correctly as the Taylor
expansion of the resonance curve (blue) for low energy.
However, the energy region where the deviation from the
SM becomes sizable, already coincides with the resonance
peak region, so the EFT considerably underestimates the

FIG. 3. Differential cross sections of an isotensor scalar resonance. Upper plots show a resonance with mϕ ¼ 800 GeV and Γϕ ¼
80 GeV for the processes pp → WþWþjj (left), and pp → ZZjj (right), respectively. The lower plot shows a low-lying isotensor scalar
withmϕ ¼ 650 GeV and Γϕ ¼ 260 GeV for the process pp → WþWþjj. Solid line: unitarized results, dashed lines: naive result, black
dashed line: Limit of saturation of A20 ðWþWþÞ or A00 (ZZ), respectively. Cuts are the same as in Fig. 1.
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event yield. Beyond the resonance, the EFT misses the fact
that the distribution falls down again, approaching the SM
prediction (black) from above.
The result also demonstrates that the additional unitar-

ization of the scalar resonance beyond the Breit-Wigner
approximation with constant width is essential, as is seen
by comparing the blue and blue-dashed curves. The naive
EFT result without unitarization (red, dashed) grossly
overshoots all conceivable models, which should not cross
the unitarity limit (black-dashed).

2. Isoscalar-tensor

As can be observed from Table II, a tensor resonance has
a stronger impact on the low-energy EFT than a scalar
resonance of equal width. In Fig. 2, upper row, we display
the distributions for a tensor isoscalar resonance with mass
mf ¼ 1000 GeV and width Γf ¼ 100 GeV.

The resonance visibly modifies the distribution already
at low energy, such that the EFT analysis, given sufficient
sensitivity, should catch the deviation from the SM.
Nevertheless, the excess at the peak in the ZZ channel
is sizable. Beyond the resonance, unitarization is essential
in the tensor case. In theWþWþ final state the tensor enters
only as t-channel exchange, so there is no resonance but a
broad enhancement. This enhancement is rather well
described by the corresponding unitarized EFT.3

As in the scalar case, the curves without unitarization do
not provide a useful phenomenological description.
In Fig. 2, lower row, we consider a heavy tensor-isoscalar

with strong coupling,mϕ ¼ 1200GeV and Γϕ ¼ 480 GeV.
The resonance peak appears as a broad enhancement,

FIG. 4. Differential cross sections of an isotensor tensor resonance. Upper plots show a resonance with mX ¼ 1400 GeV and
ΓX ¼ 140 GeV for the processes pp → WþWþjj (left), and pp → ZZjj (right), respectively. The lower plot shows a strongly
interacting isotensor tensor with mX ¼ 1800 GeV and ΓX ¼ 720 GeV for the process pp → WþWþjj. Solid line: unitarized results,
dashed lines: naive result, black dashed line: Limit of saturation of A22 ðWþWþÞ or A02 (ZZ), respectively. Cuts are the same as
in Fig. 1.

3Tensor resonances resulting in peaks in diboson spectra to
explain a recent excess in ATLAS data around 2 TeV can be
found e.g. in [83].
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which extends to both low and high energies. The EFT
approximation, with sizable coefficients, is rather accurate
in this case. The actual resonance curve shows a nontrivial
threshold structure which corresponds to the interplay of all
partial waves which are excited by s-channel and t-channel
exchange contributions. However, we should keep in mind
that the prediction for such a strong coupling is uncertain in
any case and should not be taken too seriously.

3. Isotensor-scalar

Turning to the isotensor case, we now get a resonance in
all final states including WþWþ. This is illustrated by the
plots in Fig. 3 for mϕ ¼ 800 GeV and Γϕ ¼ 80 GeV.
Due to the large number of degrees of freedom (nine

states which are degenerate in mass), the peak is rather
prominent while the low-energy EFT parameters are again
small. We observe that the peak value is slightly below

(WþWþ) and above (ZZ) the appropriate unitarity limit,
respectively. This is the effect of t-channel exchange which
also contributes and can have either sign.
Contrary to the weakly interacting scenario, a nonuni-

tarized low-lying and strongly interacting isotensor-scalar
with mass of mϕ ¼ 650 GeV and width Γϕ ¼ 260 GeV
violates the A20 slightly above the resonance as illustrated
in Fig. 3. Therefore, a unitarization is needed for this
strongly interacting resonance. The low-energy effective
field theory approach does only coincide in the unitarized
case at high energies, because the eigenamplitudes of the
isotensor-scalar as well as the dimension-eight operators
are already saturated through the T-matrix formalism.

4. Isotensor-tensor

Similarly to the isotensor-scalar, every vector-boson
scattering channel receives a resonant contribution from

FIG. 5. pp → eþe−μþμ−jj at
ffiffiffi
s

p ¼ 14 TeV with luminosity of 3000 fb−1 with isoscalar tensor at mf ¼ 1000 GeV
and Γf ¼ 100 GeV. Cuts: Mjj > 500 GeV; Δηjj > 2.4; pj

T > 20 GeV; jηjj > 4.5; 100 GeV > Meþe− > 80 GeV;
100 GeV > Mμþμ− > 80 GeV.
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the isotensor-tensor multiplet. TheWþWþ and ZZ channel
distributions of the isotensor-tensor resonance with mass
mX ¼ 1400 GeV width ΓX ¼ 140 GeV are plotted in
Fig. 4, upper row. Due to the bound of equation (57),
the mass of the isotensor-tensor has to be chosen slightly
higher than the mass of the isoscalar-tensor in Fig. 2 when
leaving the ratio of width and mass invariant.
The effective field theory with the dimension-eight

operators coincides with the onset of the isotensor-tensor
peak. Starting slightly below the resonance, the resonant
cross section deviates from the effective field theory
description. Analogously to the isotensor-scalar, the very
distinctive peak of the isotensor-tensor is not captured by
the dimension-eight operators. In theWþWþ channel, even
the nonunitarized resonance contribution stays within the
unitarity bound ofA22. Contrary to the isotensor-scalar, the
isotensor-tensor needs unitarization for the ZZ final state
due to the large tensor contributions in the t and u channel.
The nonunitarized amplitudes violate the A02 unitarity
already below the mass of the resonance. Even the
resonance peak is hardly visible. The unitarized resonance
curve shows a peak, although it is slightly above the
unitarity bound.
In a strongly interacting scenario (ΓX ¼ 720 GeV), the

unitarized isotensor-tensor resonance peaks below its actual
mass at mX ¼ 1800 GeV. This peak originates from the
already saturated eigenamplitudes, which then fall due to
the parton distribution functions at high energies. Besides
the resonance peak, the low-energy effective field theory
coincides with the isotensor-tensor for both unitarized and
nonunitarized results. This is shown in the lower plot
of Fig. 4.

C. Results for Complete Processes

The actual analysis of LHC data will have to exploit
cross sections and distributions for the complete final state
which consists of the two tagging jets and the decay
products of the vector bosons. In this paper, we only
investigate the ZZ channel with its decay into four leptons,
selecting the eþe−μþμ− final state. This process is straight-
forward to analyze, but suffers from the low leptonic
branching ratio, so for our simulation we assume the
high-luminosity mode of the LHC with integrated lumi-
nosity of 3 ab−1. We anticipate that by including also the
leptonicWW final state and hadronic final states, the results
can be considerably improved.
The simulation generates event samples for the complete

process with all Feynman graphs, so there is no restriction
on resonant vector bosons as the origin of the final-state
leptons. We apply standard VBS cuts and compare, in
Fig. 5, various distributions for the SM (blue), resonance
model with a single isoscalar-scalar (red), and the unita-
rized low-energy EFT (purple).
The resonance with massm ¼ 1000 GeV and width Γ ¼

100 GeV appears, as expected, in the invariant mass

distribution and, more indirectly, in other plots. Clearly,
this parameter set is at the margin of observability in this
single channel. The situation obviously improves if we
consider resonances with lower mass, larger coupling, in
higher representations, and add other analysis channels.

VII. CONCLUSIONS

The Higgs sector of the SM, after the discovery of a light
Higgs, is a new field of study for the experiments at the
LHC, and beyond. While the SM yields precise predictions
in accordance with the notion of a weakly coupled theory, a
thorough analysis of electroweak data should be guided by
reference simplified models which differ from the SM.
Extending the EFT by higher-dimensional operators is
useful for analyzing observables with bounded energy,
but open scattering data require enforcing unitarity and
extrapolating into a region where perturbation theory in the
EFT is insufficient.
Without reference to any particular high-energy model,

we have augmented the EFT by resonances with even spin,
namely scalar or tensor. Assuming exact SUð2ÞL ×Uð1ÞY
gauge invariance and, for simplicity, approximate custodial
symmetry both in the EFT and beyond, we can distinguish
four distinct resonance multiplets with a single free mass
and coupling parameter each. This class of models includes
the decoupling limit of multi-Higgs models and certain
aspects of massive-graviton models.
The models are set up such that we need only take the

interaction with the Higgs sector into account, while cou-
plings to the gauge and fermion sectors occur only via
mixing. This is consistent with the symmetry assumptions
and with our knowledge about electroweak precision data,
although it is clearly not guaranteed. The models allow for
arbitrary higher-dimensional operators in the EFT, unrelated
to resonance exchange, so we do not lose generality.
All amplitude calculations are meaningless unless we

enforce quantum-mechanical unitarity, since naive extrap-
olations yield event rates in the high-energy region that can
exceed the unitarity bounds by orders of magnitude. We
have consistently implemented the T-matrix unitarization
scheme which works on the complex scattering matrix of
the model directly, simplified for the asymptotic range
where longitudinal and transveral degrees of freedom
decouple.
We have studied the case of a tensor resonance in detail.

Since we do not necessarily restrict ourselves to states that
are related to gravity, the model differs from the various
massive-graviton models and studies that can be found in
the literature. To our knowledge, the coupling of a generic
tensor resonance to the Higgs sector and the resulting
predictions for the LHC have not been considered in detail
before. We find that by employing a Stückelberg procedure
for the implementation in the Lagrangian, instead of the
classic Fierz-Pauli approach, we are able to set up the
extended EFT for an isolated tensor resonance manifestly
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separated from nonresonant effects. Scalar and tensor
resonances can be handled in close analogy. It turns out
that it is possible to extend an effective theory with an
isolated tensor resonance up to a cutoff of order
Λ≲M2=mH, where M is the resonance mass, and mH is
the physical Higgs mass.
We have implemented the models in the Monte Carlo

package WHIZARD and computed exemplary distribu-
tions and simulated event samples for the LHC. The
numerical results illustrate that resonances in VBS may
be detected at the LHC within a certain range of mass and
coupling values. For a final verdict, it will be necessary to
perform a complete experimental study and analysis, based
on exclusive event samples in combination with back-
ground and detector description. We also find that the
comparison with pure-EFT results can be misleading if
resonance and background cannot be clearly separated, as it
is typical for the situation at the LHC. We conclude that
data should be analyzed on base of resonance models as
well as pure-EFT simulations. This holds, in particular, if
limits or values are to be combined between distinct final
states or with data obtained at a future lepton collider like
the ILC [84,85]. There has been a first study similar to the
one presented here, investigating resonances of spins and
isospins zero, one and two in 1 TeV lepton collisions [86],
where issues of unitarization did not play a role.
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APPENDIX A: NOTATION AND CONVENTIONS

1. Fields

H ¼ 1

2

�
vþ h − iw3 −i

ffiffiffi
2

p
wþ

−i
ffiffiffi
2

p
w− vþ hþ iw3

�
: ðA1Þ

To avoid adding terms proportional to the vacuum expect-
ation value, when adding a Higgs pair, we introduce

tr½H†H� → tr½ dH†H� ≔ tr

�
H†H −

v2

4

�
: ðA2Þ

Wμν ≡Wμν
i
τi
2
¼ þ i

g
½Dμ

W;D
ν
W �

¼ ð∂μWν
k − ∂νWμ

k þ gεijkW
μ
i W

ν
jÞ
τk
2

¼ ∂μWν − ∂νWμ − ig½Wμ;Wν�; ðA3Þ

Bμν ≡ Y
2
Bμν ¼ þ i

g0
½Dμ

B;D
ν
B�

¼ Y
2
ð∂μBν − ∂νBμÞ ¼ ∂μBν − ∂νBμ:

The covariant derivative is defined via

DμH ¼ ∂μH − igWμH ðA4Þ

and

DμWν ¼ ∂μWν − igWμWν: ðA5Þ

The equations of motion for the Standard Model yield

ðD2HÞ ¼ μ2H − λtr½H†H�H; ðA6aÞ

ðD2HÞ† ¼ μ2H† − λtr½H†H�H†; ðA6bÞ

∂μBμν ¼ −i
g0

2
ðH†DνH − ðDνHÞ†HÞ; ðA6cÞ

DμWμν ¼ −i
g
2
ðDνHH† −HðDνHÞ†Þ: ðA6dÞ

2. SUð2Þ tensor products

The tensor products of Pauli matrices for the isospin
quintet τt, the isospin vector τv, and the isospin scalar τs are
defined, respectively, as

τþþ
t ¼ τþ ⊗ τþ; ðA7aÞ

τþt ¼ 1

2
ðτþ ⊗ τ3 þ τ3 ⊗ τþÞ; ðA7bÞ

τ0t ¼
1ffiffiffi
6

p ðτ3 ⊗ τ3 − τþ ⊗ τ− − τ− ⊗ τþÞ; ðA7cÞ

τ−t ¼ 1

2
ðτ− ⊗ τ3 þ τ3 ⊗ τ−Þ; ðA7dÞ

τ−−t ¼ τ− ⊗ τ−; ðA7eÞ

τþv ¼ i
2
ðτþ ⊗ τ3 − τ3 ⊗ τþÞ; ðA7fÞ

τ0v ¼
iffiffiffi
2

p ðτþ ⊗ τ− − τ− ⊗ τþÞ; ðA7gÞ

τ−v ¼ −
i
2
ðτ− ⊗ τ3 − τ3 ⊗ τ−Þ; ðA7hÞ

τs ¼
1

2
ffiffiffi
3

p ðτ3 ⊗ τ3 þ 2τþ ⊗ τ− þ 2τ− ⊗ τþÞ; ðA7iÞ
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where the Pauli matrix for the isospin singlet is related to

τaa ≡ τa ⊗ τa ¼ 2
ffiffiffi
3

p
τs: ðA8Þ

All nonzero traces of a product of two tensor products
are normalized:

tr½τþþ
t τ−−t � ¼ tr½τþt τ−t � ¼ tr½τ0t τ0t � ¼ tr½τþv τ−v �

¼ tr½τ0vτ0v� ¼ tr½τsτs� ¼ 1: ðA9Þ

From the properties of the tensor product,

ðA ⊗ BÞðC ⊗ DÞ ¼ AC ⊗ BD; ðA10Þ

and the trace,

tr½A ⊗ B� ¼ tr½A�tr½B�; ðA11Þ

we find

tr½ðA ⊗ BÞðC ⊗ DÞ� ¼ tr½AC�tr½BD�: ðA12Þ

This reduces the trace of an isospin singlet:

tr½ðA ⊗ BÞτaa� ¼ 2tr½AB� − tr½A�tr½B�: ðA13Þ

Multiplying the two Pauli matrices related to the isospin
singlet leads to

τaaτbb ¼ 3 · 1 ⊗ 1 − 2τaa: ðA14Þ

APPENDIX B: FEYNMAN RULES

The Feynman rules which are used to calculate the
vector-boson scattering amplitudes are summarized in
this appendix. Focusing only on weak vector-boson
scattering, the Feynman rules are determined from the
Lagrangian, where gluons, photons and fermions are
omitted.

1. Lagrangian

All Lagrangians are defined within the Higgs matrix
realization whose definition can be found in appendix A 1.
The Standard Model Lagrangian is given by

LSM ¼ −
1

2
tr½WμνWμν� − 1

2
tr½BμνBμν� þ tr½ðDμHÞ†DμH�

þ μ2tr½H†H� − λ

2
ðtr½H†H�Þ2: ðB1Þ

Dimension-six and -eight operators affecting only the
Higgs/Nambu-Goldstone boson sector are discussed in
Secs. V D and are given by

LHD ¼ FHDtr

�
H†H −

v2

4

�
· tr½ðDμHÞ†DμH�; ðB2aÞ

LS;0 ¼ FS;0tr½ðDμHÞ†DνH� · tr½ðDμHÞ†DνH�; ðB2bÞ

LS;1 ¼ FS;1tr½ðDμHÞ†DμH� · tr½ðDνHÞ†DνH�: ðB2cÞ

As an extension to model generic new physics, additional
resonances are introduced. The scalar resonance σ and the
tensor resonance fμν represent singlets of the chiral
symmetry group, whereas Φ has the quantum numbers
1 ⊗ 1 under SUð2ÞL × SUð2ÞR. Φ is referred to as iso-
tensor for historical reasons, but it actually includes an
isovector Φv and isoscalar Φs besides the isotensorΦt. Also
the Fierz-Pauli tensor f can be reformulated into a tensor
ff, a vector Af and a scalar σf such that canonical
propagators can be used for each degree of freedom
separately instead of the complicated tensor propagator,

Δμν;ρσðfÞ ¼
i

k2 −m2 þ iϵ
Pμν;ρσðk;mÞ; ðB3aÞ

Δμν;ρσðf0Þ ¼
i

k2 −m2 þ iϵ

�
1

2
gμρgνσ þ

1

2
gμσgνρ −

1

2
gμνgρσ

�
;

ðB3bÞ

ΔμνðAÞ ¼
−i

k2 −m2 þ iϵ
gμν; ðB3cÞ

ΔðσÞ ¼ i
k2 −m2 þ iϵ

; ðB3dÞ

where the projection operator of spin-two states can be
written in terms of the spin-one projection operator,

Pμ1μ2;ν1ν2ðk;mÞ ¼ 1

2
½Pμ1ν1ðk;mÞPμ2ν2ðk;mÞ

þ Pμ1ν2ðk;mÞPμ1ν2ðk;mÞ�

−
1

3
Pμ1μ2ðk;mÞPν1ν2ðk;mÞ; ðB4Þ

with

Pμνðk;mÞ ¼
X
λ

ε̄μðλÞðk;mÞενðλÞðk;mÞ ¼ gμν −
kμkν

m2
: ðB5Þ

2. Unitary gauge

The Feynman rules in unitary gauge of the Lagrangians
defined in this paper are listed in this section. Only the
relevant vertices for the vector-boson scattering process are
shown. In other words, vertices above four fields for
effective operators and above three fields for resonances
are neglected.
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a. Standard model

Aμ1W
þ
μ2W

−
μ3∶ − ie½ðp1μ3 − p2μ3Þgμ1μ2 þ ðp3μ2 − p1μ2Þgμ1μ3

þ ðp2μ1 − p3μ1Þgμ2μ3 �; ðB6aÞ

Zμ1W
þ
μ2W

−
μ3∶ − icwg½ðp1μ3 − p2μ3Þgμ1μ2 þ ðp3μ2 − p1μ2Þgμ1μ3

þ ðp2μ1 − p3μ1Þgμ2μ3 �; ðB6bÞ

hWþ
μ2W

−
μ3∶imWggμ2μ3 ; ðB6cÞ

hZμ2Zμ3∶imZggμ2μ3 ; ðB6dÞ

Wþ
μ1W

þ
μ2W

−
μ3W

−
μ4∶− ig2ðgμ1μ4gμ2μ3 þgμ1μ3gμ2μ4 −2gμ1μ2gμ3μ4Þ;

ðB6eÞ

Zμ1Zμ2W
þ
μ3W

−
μ4∶ic

2
wg2ðgμ1μ4gμ2μ3 þ gμ1μ3gμ2μ4 − 2gμ1μ2gμ3μ4Þ;

ðB6fÞ

Aμ1Aμ2W
þ
μ3W

−
μ4∶ie

2ðgμ1μ4gμ2μ3 þ gμ1μ3gμ2μ4 − 2gμ1μ2gμ3μ4Þ;
ðB6gÞ

Aμ1Zμ2W
þ
μ3W

−
μ4∶iecwgðgμ1μ4gμ2μ3 þ gμ1μ3gμ2μ4 − 2gμ1μ2gμ3μ4Þ;

ðB6hÞ

hhWþ
μ3W

−
μ4∶

i
2
g2gμ3μ4 ; ðB6iÞ

hhZμ3Zμ4∶
i
2

g2

c2w
gμ3μ4 : ðB6jÞ

b. LHD

hWþ
μ W−

ν ∶
ig2v3

4
FHDgμν; ðB7aÞ

hZμZν∶
ig2v3

4s2w
FHDgμν; ðB7bÞ

hðp1Þhðp2Þhðp3Þ∶− ivFHDðp1 · p2 þ p1 · p3 þ p2 · p3Þ;
ðB7cÞ

hhWþ
μ W−

ν ∶
5ig2v2

4
FHDgμν; ðB7dÞ

hhZμZν∶
5ig2v2

4s2w
FHDgμν; ðB7eÞ

hðp1Þhðp2Þhðp3Þhðp4Þ∶− iFHDðp1 ·p2 þp1 ·p3 þp1 ·p4

þp2 ·p3 þp2 ·p4 þp3 ·p4Þ:
ðB7fÞ

c. LS

Wþ
μ1W

þ
μ2W

−
μ3W

−
μ4∶

ig4v4

16
½ðFS;0þ2FS;1Þðgμ1μ3gμ2μ4þgμ1μ4gμ2μ3Þ

þ2FS;0gμ1μ2gμ3μ4 �; ðB8aÞ

Zμ1Zμ2W
þ
μ3W

−
μ4∶

ig4v4

16c2w
½FS;0ðgμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3Þ

þ 2FS;1gμ1μ2gμ3μ4 �; ðB8bÞ

Zμ1Zμ2Zμ3Zμ4∶
ig4v4

8c4w
ðFS;0 þ FS;1Þ½gμ1μ2gμ3μ4 þ gμ1μ3gμ2μ4

þ gμ1μ4gμ2μ3 �; ðB8cÞ

hðp1Þhðp2ÞWþ
μ3W

−
μ4∶ −

ig2v2

4
½FS;0ðp1μ3p2μ4 þ p1μ4p2μ3Þ

þ 2FS;1gμ3μ4p1 · p2�; ðB8dÞ

hðp1Þhðp2ÞZμ3Zμ4∶ −
ig2v2

4c2w
½FS;0ðp1μ3p2μ4 þ p1μ4p2μ3Þ

þ 2FS;1gμ3μ4p1 · p2�; ðB8eÞ

hðp1Þhðp2Þhðp3Þhðp4Þ∶2iðFS;0 þ FS;1Þ½ðp1 · p2Þðp3 · p4Þ
þ ðp1 · p3Þðp2 · p4Þ
þ ðp1 · p4Þðp2 · p3Þ�: ðB8fÞ

d. Lσ

σWþ
μ W−

ν ∶
ig2v2

4
Fσgμν; ðB9aÞ

σZμZν∶
ig2v2

4c2w
Fσgμν; ðB9bÞ

σhðp1Þhðp2Þ∶ − iFσp1 · p2: ðB9cÞ

e. Lϕ

ϕ��
t W∓

μ W
∓
ν ∶

ig2v2

4
Fϕgμν; ðB10aÞ

ϕ�
t W

∓
μ Zν∶

ig2v2

4
ffiffiffi
2

p
cw

Fϕgμν; ðB10bÞ
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ϕ0
t W

∓
μ W�

ν ∶ −
ig2v2

4
ffiffiffi
6

p Fϕgμν; ðB10cÞ

ϕ0
t ZμZν∶

ig2v2

2
ffiffiffi
6

p
c2w

Fϕgμν; ðB10dÞ

ϕsW
∓
μ W�

ν ∶
ig2v2

8
ffiffiffi
3

p Fϕgμν; ðB10eÞ

ϕsZμZν∶
ig2v2

8
ffiffiffi
3

p
c2w

Fϕgμν; ðB10fÞ

ϕ�
v hðpÞW∓

μ ∶ −
gv

2
ffiffiffi
2

p Fϕpμ; ðB10gÞ

ϕ�
v hðpÞZμ∶

gv

2
ffiffiffi
2

p
cw

Fϕpμ; ðB10hÞ

ϕshðp1Þhðp2Þ∶
ffiffiffi
3

p

2
iFϕp1 · p2: ðB10iÞ

f. Lf

fμνWþ
ρ W−

σ ∶
ig2v2

8
Ff

�
gμσgνρ þ gμρgνσ −

cf
2
gμνgρσ

�
;

ðB11aÞ

fμνZρZσ∶
ig2v2

8c2w
Ff

�
gμσgνρ þ gμρgνσ −

cf
2
gμνgρσ

�
; ðB11bÞ

fμνhðp1Þhðp2Þ∶ −
i
2
Ff

�
p1μp2ν þ p1νp2μ −

cf
2
gμνp1 · p2

�
:

ðB11cÞ

g. Lf in Stückelberg formalism

ffμνWþ
ρ W−

σ ∶
ig2v2

8
Ff

�
gμσgνρ þ gμρgνσ −

cf
2
gμνgρσ

�
;

ðB12aÞ

ffμνZρZσ∶
ig2v2

8c2w
Ff

�
gμσgνρþgμρgνσ −

cf
2
gμνgρσ

�
; ðB12bÞ

ffμνhðp1Þhðp2Þ∶ −
i
2
Ff

�
p1μp2ν þ p1νp2μ −

cf
2
gμνp1 · p2

�
:

ðB12cÞ

Because of ∂νJ
μν
f ≠ 0:

AfμðpÞWþ
ρ W−

σ ∶
g2v2

4
ffiffiffi
2

p
mf

Ff

�
pρgμσ þ pσgμρ −

cf
2
pμgσρ

�
;

ðB13Þ

AfμðpÞZρZσ∶
g2v2

4c2w
ffiffiffi
2

p
mf

Ff

�
pρgμσ þ pσgμρ −

cf
2
pμgσρ

�
;

ðB14Þ

Afμhðp1Þhðp2Þ∶
1ffiffiffi
2

p
mf

Ff

�
p2
1p2μ þ p2

2p1μ ðB15Þ

þ 1

2
ð2 − cfÞp1 · p2ðp1 þ p2Þμ

�
: ðB16Þ

Because of ∂μ∂νJ
μν
f ≠ 0 and Jfμμ ≠ 0:

σfðpÞWþ
ρ W−

σ ∶

ig2v2

4
ffiffiffi
6

p Ff

�
ðcf − 1Þgρσ −

1

m2
f

�
2kρkσ −

cf
2
k2gρσ

��
;

ðB17aÞ

σfðpÞZρZσ∶

ig2v2

4
ffiffiffi
6

p
c2w

Ff

�
ðcf − 1Þgρσ −

1

m2
f

�
2kρkσ −

cf
2
k2gρσ

��
;

ðB17bÞ

σfhðp1Þhðp2Þ∶ −
iffiffiffi
6

p Ff

�
ðcf − 1Þðp1 · p2Þ

−
1

m2
f

�
2p1 · ðp1 þ p2Þp2 · ðp1 þ p2Þ

−
cf
2
p1 · p2ðp1 þ p2Þ2

��
: ðB17cÞ

h. LX

X��
tμνW

∓
ρ W

∓
σ ∶

ig2v2

8
FX

�
gμσgνρ þ gμρgνσ −

cX
2
gμνgρσ

�
;

ðB18aÞ

X�
tμνW

∓
ρ Zσ∶

ig2v2

8
ffiffiffi
2

p
cw

FX

�
gμσgνρ þ gμρgνσ −

cX
2
gμνgρσ

�
;

ðB18bÞ

X0
tμνW

∓
ρ W�

σ ∶ −
ig2v2

8
ffiffiffi
6

p FX

�
gμσgνρ þ gμρgνσ −

cX
2
gμνgρσ

�
;

ðB18cÞ
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X0
tμνZρZσ∶

ig2v2

4
ffiffiffi
6

p
c2w

FX

�
gμσgνρ þ gμρgνσ −

cX
2
gμνgρσ

�
;

ðB18dÞ

XsμνW
∓
ρ W�

σ ∶
ig2v2

16
ffiffiffi
3

p FX

�
gμσgνρ þ gμρgνσ −

cX
2
gμνgρσ

�
;

ðB18eÞ

XsμνZρZσ∶
ig2v2

16
ffiffiffi
3

p
c2w

FX

�
gμσgνρ þ gμρgνσ −

cX
2
gμνgρσ

�
;

ðB18fÞ

X�
vμνhðpÞW∓

ρ ∶ −
gv

4
ffiffiffi
2

p FX

�
pμgνρ þ pνgμρ −

cX
2
pρgμν

�
;

ðB18gÞ

XvμνhðpÞZρ∶
gv

4
ffiffiffi
2

p
cw

FX

�
pμgνρ þ pνgμρ −

cX
2
pρgμν

�
;

ðB18hÞ

Xsμνhðp1Þhðp2Þ∶
ffiffiffi
3

p

4
iFX

�
p1μp2νþp1νp2μ−

cX
2
gμνp1 ·p2

�
:

ðB18iÞ

3. Partial wave functions

In this appendix we collect expressions appearing in the
partial-wave expansion of amplitudes.

S0ðs;mÞ ¼ m2 þm4

s
log

�
m2

sþm2

�
−
s
2
; ðB19aÞ

S1ðs;mÞ ¼ 2
m4

s
þm4

s2
ð2m2 þ sÞ log

�
m2

sþm2

�
þ s
6
;

ðB19bÞ

S2ðs;mÞ¼m4

s2
ð6m2þ3sÞ

þm4

s3
ð6m4þ6m2sþs2Þlog

�
m2

sþm2

�
; ðB19cÞ

P0ðs;mÞ ¼ 1þm2 þ 2s
s

log

�
m2

sþm2

�
; ðB19dÞ

P1ðs;mÞ ¼ m2 þ 2s
s2

�
2sþ ð2m2 þ sÞ log

�
m2

sþm2

��
;

ðB19eÞ

D0ðs;mÞ¼m2þ11

2
s

þ1

s
ðm4þ6m2sþ6s2Þ log

�
m2

sþm2

�
; ðB19fÞ

D1ðs;mÞ¼ 2
m4

s
þ12m2þ73

6
s

þ 1

s2
ð2m2þ sÞðm4þ6m2sþ6s2Þ log

�
m2

sþm2

�
:

ðB19gÞ

APPENDIX C: T-MATRIX COUNTERTERMS

In the T-matrix unitarization scheme, the unitarization
corrections are expressed as momentum-dependent coun-
terterms for the use as effective Feynman rules in the
complete amplitude evaluation. Starting from the spin-
isospin eigenamplitudes in the gaugeless limit, Sec. V B,
the straightforward application of the algorithm in [48]
yields s-dependent amplitude corrections ΔAIJðsÞ. The
insertion as effective Feynman rules proceeds in the form of
the following expressions:

W�
μ1W

�
μ2 → W�

μ3W
�
μ4∶

g4v4

4

�
ðΔA20ðsÞ − 10ΔA22ðsÞÞ

gμ1μ2gμ3μ4
s2

þ 15ΔA22ðsÞ
gμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3

s2

�
; ðC1aÞ

W�
μ1W

∓
μ2 → Zμ3Zμ4∶

g4v4

4c2w

��
1

3
ðΔA00ðsÞ − ΔA20ðsÞÞ−

10

3
ðΔA02ðsÞ − ΔA22ðsÞÞ

�
gμ1μ2gμ3μ4

s2

þ 5ðΔA02ðsÞ − ΔA22ðsÞÞ
gμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3

s2

�
; ðC1bÞ

W�
μ1Zμ2 → W�

μ3Zμ4∶
g4v4

4c2w

��
1

2
ΔA20ðsÞ − 5ΔA22ðsÞÞ

gμ1μ2gμ3μ4
s2

þ
�
−
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
gμ1μ3gμ2μ4

s2

þ
�
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
gμ1μ4gμ2μ3

s2

�
; ðC1cÞ

KILIAN, OHL, REUTER, and SEKULLA PHYSICAL REVIEW D 93, 036004 (2016)

036004-26



W�
μ1W

∓
μ2 → W�

μ3W
∓
μ4∶

g4v4

4

��
1

6
ð2ΔA00ðsÞ þ ΔA20ðsÞÞ −

5

3
ð2ΔA02ðsÞ þ ΔA22ðsÞÞ

�
gμ1μ2gμ3μ4

s2

þ
�
5ΔA02ðsÞ −

3

2
ΔA11ðsÞ þ

5

2
ΔA22ðsÞ

�
gμ1μ3gμ2μ4

s2

þ
�
5ΔA02ðsÞ þ

3

2
ΔA11ðsÞ þ

5

2
ΔA22ðsÞ

�
gμ1μ4gμ2μ3

s2

�
; ðC1dÞ

Zμ1Zμ2 → Zμ3Zμ4∶
g4v4

4c4w

��
1

3
ðΔA00ðsÞ þ 2ΔA20ðsÞÞ −

10

3
ðΔA02ðsÞ þ 2ΔA22ðsÞÞ

�
gμ1μ2gμ3μ4

s2

þ 5ðΔA02ðsÞ þ 2ΔA22ðsÞÞ
gμ1μ3gμ2μ4 þ gμ1μ4gμ2μ3

s2

�
: ðC1eÞ

These relations are the generalizations of the corresponding formulae in reference [48] for the case of resonances. Scattering
processes involving a Higgs boson have a different off-shell extrapolation. Therefore, the Higgs momentum is included in
the Feynman rules for the analogous effective vertices given by

W�μ1W∓μ2 → hh∶ − g2v2
��

1

3
ðΔA00ðsÞ − ΔA20ðsÞÞ −

10

3
ðΔA02ðsÞ − ΔA22ðsÞÞ

�
gμ1μ2ðk3 · k4Þ

s2

þ 5ðΔA02ðsÞ − ΔA22ðsÞÞ
kμ13 k

μ2
4 þ kμ14 k

μ2
3

s2

�
; ðC1fÞ

Zμ1Zμ2 → hh∶ −
g2v2

c2w

��
1

3
ðΔA00ðsÞ − ΔA20ðsÞÞ−

10

3
ðΔA02ðsÞ − ΔA22ðsÞÞ

�
gμ1μ2ðk3 · k4Þ

s2

þ 5ðΔA02ðsÞ − ΔA22ðsÞÞ
kμ13 k

μ2
4 þ kμ14 k

μ2
3

s2

�
; ðC1gÞ

W�μ1h → W�μ3h∶ − g2v2
��

1

2
ΔA20ðsÞ − 5ΔA22ðsÞ

�
kμ12 k

μ3
4

s2
þ
�
−
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
gμ1μ3ðk2 · k4Þ

s2

þ
�
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
kμ14 k

μ3
2

s2

�
; ðC1hÞ

Zμ1h → Zμ3h∶ −
g2v2

c2w

��
1

2
ΔA20ðsÞ − 5ΔA22ðsÞ

�
kμ12 k

μ3
4

s2
þ
�
−
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
gμ1μ3ðk2 · k4Þ

s2

þ
�
3

2
ΔA11ðsÞ þ

15

2
ΔA22ðsÞ

�
kμ14 k

μ3
2

s2

�
; ðC1iÞ

hh → hh∶4
��

1

3
ðΔA00ðsÞ þ 2ΔA20ðsÞÞ −

10

3
ðΔA02ðsÞ þ 2ΔA22ðsÞÞ

� ðk1 · k2Þðk3 · k4Þ
s2

þ 5ðΔA02ðsÞ þ 2ΔA22ðsÞÞ
ðk1 · k4Þðk2 · k3Þ þ ðk1 · k4Þðk2 · k3Þ

s2

�
: ðC1jÞ
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