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Majorana neutrinos with point interactions
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We propose a realistic model with Majorana neutrinos in the framework of unifying the three generations
of fermions by point interactions in an extra dimension. This model can simultaneously explain the origin
of fermion generations, fermion masses and mixing, and the smallness of the masses of Majorana neutrinos.
We show that there are two mechanisms working together to suppress the neutrino masses significantly, so
we do not have to introduce a very large extra-dimension cutoff scale. One is the type-I seesaw mechanism
and the other is the overlap integration of localized lepton wave functions. A singlet scalar with an
exponential-like vacuum expectation value plays a central role in these two mechanisms. For consistency in
this model we introduce a U(1)’ gauge symmetry, which will be broken by the singlet scalar. Parameters of
our model can fit the masses and flavor mixing data well. These parameters can also predict all CP
violating phases including the Majorana ones and accidentally rescue the proton from decay.
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I. INTRODUCTION

The recent discovery of the Higgs boson is a great
success for the Standard Model (SM) of particle physics. In
the SM, the masses of weak gauge bosons and fermions are
generated by the Higgs mechanism, which predicts the
existence of a CP-even scalar particle, and finally this only
scalar boson was discovered at the Large Hadron Collider
(LHC) in 2012 [1,2].

However, many people believe that the SM should not be
the finale of particle physics. One of the reasons is that it
cannot explain the large hierarchy of fermion masses. In the
SM, all fermion masses, mixing angles and CP phases are
free parameters. If one looks at the mass spectrum of
fermions, one will find a significant hierarchy between
different generations. The hierarchy between quark sector
and lepton sector is even worse.

In the original version of the SM, the neutrino masses are
assumed to be zero. However, to explain the oscillation
phenomena observed in experiments, the neutrinos have to
be massive. Similar to the way used in the SM to give
fermions masses, it can make neutrinos massive by intro-
ducing right-handed neutrinos which couple to the Higgs
field through Yukawa terms. But this way is quite unnatural
due to the large hierarchy. A cosmological observation
from Planck set a 0.23 eV upper bound for the sum of the
three generations of neutrinos [3]. It leads to about 11 order
of magnitude hierarchy between the Yukawa coupling of
top quark and the neutrinos. This unnaturalness indicates to
us a strong motivation to go beyond the SM.

There are three types of canonical seesaw mechanisms
to explain the smallness of neutrino masses. The type-I
seesaw introduces right-handed neutrinos coupled with the
left-handed leptons through Yukawa interactions, and then
the Majorana masses of the left-handed neutrinos will be
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generated by a higher dimensional operator and be sup-
pressed by the heavy Majorana masses of the right-handed
ones [4-6]. The type-II seesaw introduces triplet scalars
coupled with the left-handed lepton doublets, and the
vacuum expectation value (VEV) of the scalar will be
suppressed by its large quadratic masses [7-9]. The type-III
seesaw is similar to the type-I, but it introduces heavy
triplet leptons [10]. All these mechanisms usually need a
high seesaw energy scale, for example the grand unification
theory (GUT) scale, to suppress the induced Majorana
masses of the left-handed neutrinos. Note that there is
another popular mechanism that can generate the higher
dimensional operator for neutrinos. Rather than generating
the operator at tree level, people try to generate the mass for
neutrino radiatively through one-loop [11-13], two-loop
[14-16] and even three-loops [17].

Besides the seesaw mechanism and radiative generation,
an alternative way to explain the mass hierarchy naturally
is to enlarge the spacetime dimension. One interesting case
is the thick wall model [18], in which fermions have
Gaussian wave functions of the fifth dimension coordinate
and their locations are determined by their five-dimensional
(5D) masses. When two fermion wave functions are
separated slightly, their overlap integration with the Higgs
VEV profile will be suppressed exponentially, then a
large hierarchy structure between fermions can be naturally
obtained. Another fascinating case is the Randall-Sundrum
model [19,20], in which right-handed neutrinos localize
near a hidden brane, while the other fermions and the Higgs
field are confined on a visible brane. Thus the right-handed
neutrinos interact with the other fields weakly, and they only
have tiny masses.

Recently, a new extra-dimension model [21,22] was
proposed to unify the three fermion generations. The model
introduces 5D fermion fields living in an extra-dimensional
interval or circle with several point interactions (i.e.
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O-thickness branes). For each 5D fermion, there are three
independent modes between branes. They behave as three
generations, and the hierarchy between generations is
achieved by coupling the 5D fermion field to a scalar field
which has an exponentially increasing extra-dimensional
coordinate-dependent VEV. This specific VEV can be
generated by imposing Robin’s boundary conditions on
the scalar at two boundaries of the fifth dimension (see more
details on the phase structures in [23]). In addition, a twisted
boundary condition is imposed on the Higgs doublet to
create CP violating phases for both quark and lepton sectors
[24]. In Ref. [22], a 5D singlet neutrino field (which has a
right-handed chiral neutrino 0-mode) is introduced to
construct Dirac mass terms for neutrinos, and the smallness
of neutrino masses is obtained from a proper arrangement of
the point interaction positions. A stringent constraint on the
model with a set of fitted parameters is to suppress the proton
decay rates. By a rough analysis with some baryon number
violating dimension-8 operators, the cutoff A~ L7! is
estimated to be as large as the GUT scale (10" GeV).

In this paper, we discuss a possibility to extend the model
of Ref. [22] to a Majorana neutrino case and to avoid the
large cutoff scale. To implement this, we need a Majorana
mass term of the singlet neutrinos. A naive trial is to write
down an explicit Majorana mass term for the singlet
neutrino fields and their charge conjugation. However, it
fails since the equations of motion for the singlet neutrinos
no longer respect the so-called quantum mechanical super-
symmetry (QMSUSY) which is important for acquiring
chiral zero modes [18,25]. The existence of a Majorana
mass term implies that the lepton number is no longer a
conserved quantity, and thus a dimension-7 effective
operator Lo>H*H'6?L¢ may appear in the Lagrangian in
principle. Here L(x,y) is the 5D lepton doublet field,
H(x,y) is the 5D Higgs doublet, and the power counting is
achieved in 5D spacetime. But this effective operator can
induce large Majorana masses of the left-handed neutrinos
after the electroweak symmetry breaking. To avoid large
neutrino masses which violates the experimental bounds, it
requires either a high cutoff scale or a very small coupling
constant for this term.

To overcome this problem and to forbid the harmful
explicit Majorana masses terms at the same time, we
introduce a new U(1)" gauge symmetry. If we let the
singlet neutrino field N and the combination H'6?L¢ be
U(1)’ charged, none of these two annoying terms, NNy
and Le?H*H'6?L¢, can survive, since they are doubly
U(1)" charged. In other words, we increase the symmetry
of the model to prohibit the unwanted operators like
Lo*H*H 6L

We need a natural way to realize the experimentally
acceptable Majorana masses for neutrinos. Consider
another dimension-7 operator (®*)?N%Ny + H.c., which
is available if the U(1)" charge of the singlet scalar ® is
assigned to be the same as that of the singlet neutrino Np.
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Obviously, this term can contribute to a Majorana mass
for the right-handed neutrino 0-mode when the scalar ®
obtains a nonzero VEV and break the U(1) gauge
symmetry. The 5D scalar ®(x,y) is initially introduced
to realize the hierarchy of the three generations of quarks
and leptons, and it is imposed on the Robin’s boundary
condition to get a VEV, (®(y)), as an exponential-like
function of the extra-dimensional coordinate y. This VEV
has the effect of killing two birds with one stone. If the O-
thickness branes’ positions of singlet neutrino are chosen
appropriately, that is, if the third generation singlet neutrino
wave function has a big overlap with the large value side of
(®(y)), it can obtain a mass which is much larger than the
Dirac masses. This large mass turns on the type-I seesaw
mechanism to lower the neutrino masses further.

To make our model self-consistent, we set the U(1)’
charge of each field agreeing with the anomaly free con-
ditions [26]. We also consider the constraint from the proton
decay. By some simple analysis with the dimension-8 baryon
number violating operators, we see that for our best-fit
parameters the proton will not decay. So it is not necessary to
let the cutoff energy be the GUT scale in this model.

An outline of the paper is as follows. In Sec. II, we will
summarize some key elements of the model and building a
realistic model in the framework. We also discuss the
problems of introducing an explicit Majorana mass term. In
Sec. III, we discuss how to generalize the model to include
Majorana neutrinos and how the seesaw mechanism works
with a few TeV extra-dimension energy scale. We will also
fit the data of leptons and do some discussion. Section IV is
a summary. In Appendixes A, B, and C, we supply some
mathematical details of the discussion in Sec. II

II. THE MODEL

To begin with, let us summarize some general setups of
this model (with some mathematical details reviewed in
Appendix A) [21,22]:

(i) The spacetime is extended by a finite size of space-
like extra dimension, i.e. an interval or a circle. The
mode expansion is made as usual and the lowest
modes, i.e., the zero modes, are regarded as the SM
particles. The mass gap between the first Kaluza-
Klein (KK) modes and the zero modes is roughly the
inverse of the fifth dimensional size. In many extra-
dimension models, the mass scale is at least around
the energy scale of the LHC experiment.

(ii) In the free field limit, there is a quantum mechanical
supersymmetry (QMSUSY) between the left-
handed and right-handed components of 5D fermion
[18,25,27]. This symmetry ensures that the left-
handed and right-handed modes at the same level
have equal masses. Thus, their 4D parts can be
separated from the fifth-dimension-coordinate-
dependent parts, and can form a Dirac fermion
satisfying the 4D Dirac equation. In particular, for
the zero mode, the symmetry together with the
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Dirichlet boundary conditions implies that one of the
chiral spinors should vanish and the other one is
massless. This is the method of generating chiral
zero modes.

(iii) An important ingredient for unifying generations is
the point interaction [21,22], which can be regarded
as a Delta-function-like interaction. This specific
interaction is located at a point in the fifth dimension
and results in the Dirichlet boundary condition for the
5D fermion. If we introduce two interacting points,
then they will separate the interval at extra dimension
into three pieces. The modes living in different pieces
are independent from each other although they come
from the same 5D fermion field. These different
modes can be regarded as different generations.

(iv) To achieve the hierarchy among generations, a
singlet scalar field ®(x,y) is introduced to couple
with 5D fermions. A Robin’s boundary condition on
the 5D scalar will force its VEV(®(y)) to be
y-dependent as

(@) =

v

en(y/24 (= y0). &)

where the function cn(x, k) is the Jacobi elliptic
function of x with index k, and k, u, v are defined as

(1)

2

K :ﬂzlibz
uzzﬁf<1+ 1+4ﬁ44g) 2)

VZZM;(./H%?I_Q

with Q, y, being constants of integration determined
by L.. A study of this singlet scalar with Robin’s
boundary condition can be found in Ref. [23].
An important result in their study is that ®(x,y)
can couple with gauge fields corresponding to
some group, such as a U(1)’ group. This symmetry

willbreakiif L < L = gl tanh ! (11572)) [21,23),

I+M2L L_
" 2 1 _
Usually we use the condition M~ < y— Loax =

max(L,, L_), which is sufficient but not necessary.
When we proceed to construct a realistic model comparable
with experiments, some special settings are also needed
[21,22,24]. The requirements are briefly listed as follows:

(1) The fifth dimension needs to be a circle (S!). This is
a part of the requirements from the flavor mixing
behavior of the SM. It is also consistent with the
twisted boundary condition setting of the Higgs
doublet.

(2) We need to specify the 5D matter fields with
appropriate boundary conditions. In the quark sec-
tor, we should introduce an electroweak SU(2)
doublet quark Q(x,y) = (U, (x,y)Dy(x,y))T, and
two singlets quarks Ug(x,y) and Dg(x,y). For the
doublet O, we use a Dirichlet boundary condition
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PrO=0aty=LY =0, L L sothat its zero
modes are left handed, while for the singlets Uy and
Dy, we use Dirichlet boundary conditions P; Ur =

Oaty = Lf)"), LY‘), Lé") and P;Dr =0aty = Léd),

L(1d>, L<2d> so that their zero modes are right handed.
() (u)

Note that in general L;"’ are different from L;”’ and

Ll@. This is necessary for flavor mixing structure.

For the lepton sector, the situation is similar to the
quark case. We just replace the quark doublet by a
lepton doublet and the up and down-type quark
singlet by neutrino and charged lepton singlet.

(3) We need a Higgs doublet H(x,y) to couple with
fermion fields through Yukawa couplings. Of course
it should acquire nonzero VEV (H) to break the
electroweak symmetry. A special treatment is to
impose a twisted boundary condition on H(x,y) as
H(y+L)=eH(y) [24]. This twisted boundary
condition will make the VEV (H) get y dependent
phaseas (H(y)) = \/”z'—LelLﬁ»",thenits overlap integration

with fermions’ wave functions will produce CP phases

for Cabibbo-Kobayashi-Maskawa (CKM) or Ponte-

corvo-Maki-Nakagawa-Sakata (PMNS) matrices.
As an example, the detailed treatment of the quark sector is
presented in Appendix B. We also fit the parameters of
quark sector independently and list them in Table IV. The
fitting will fix the M parameter from the singlet scalar ¢
and the @ from the Higgs H, and they will be regarded as
input data for the lepton case.

Before going to the next section to discuss our treatment
of the lepton sector. It will be helpful to ask what is wrong if
we just write down an explicit Majorana mass term. We will
discuss this briefly as follows, and supply more details in
Appendix C.

One problem of this naive trial is that Majorana mass
term will modify the equation of the motion for the 5D
fermion. This modification breaks the QMSUSY between
the left-handed and right-handed components in the equa-
tion of motion (E.O.M). As we mentioned previously,
generating chiral zero modes rely on this symmetry.

Another problem with this naive trial is that since we are
going to break the lepton number conservation explicitly,
then in principle we should also include an operator as
Lo?’H*H'6?L¢ which has the same dimension with the
terms we used to generate the Dirac masses for leptons.
After the Higgs acquires a nonzero VEV, this operator will
generate Majorana masses for the left-handed neutrino zero
modes. Then a fine-tuning is needed when we diagonalize
the neutrino mass matrix to obtain sub-eV masses.

III. THE LEPTON SECTOR
A. U(1) symmetry and type-I seesaw

For the lepton sector, we introduce an SU(2) doublet
L= (Ny(x,y),E.(x,y))T, and singlets Ng(x,y), Eg(x,y).

036003-3



CHENGFENG CAI and HONG-HAO ZHANG

When we consider the structure of our model, the lepton
number is not necessary to be preserved. The most famous
model which violate lepton number is the type-I seesaw
[7]. In type-1 seesaw a Majorana mass term for the right-
handed neutrino is introduced. If the Majorana mass My, is

extremely large compared to the Dirac mass mg), then after
diagonalizing the mass matrix, a mass for the three lightest

neutrinos taking the form —mg> My! mgw will be suppressed

significantly. But as we discussed in Sec. II, an explicit
Majorana mass term is not allowed to exist. We will assign a
U(1)’ charge to N to forbid such a troublesome term to keep
the chiral 0-mode, and then use the VEV of the scalar ® to
create the Majorana masses for the right-handed neutrino
0-mode.

As we have mentioned in Sec. II, the Lo?H*H 62L¢
operator will bring us a problem of fine-tuning. To solve
this problem it will be forbidden by the U(1)’ symmetry if
we let Lic>?H* be charged. All of these indicate that it
would be better to add the U(1)" symmetry into the model.
Then to justify the model, we should put some constraints
to the undetermined U(1)" charges.

The gauge group in our model is now
SU3)cxSU(2), xU(1), x U(1). Let us denote the
representation of all left-handed zero modes in the form
(Neis Ny Y, Q)), where N.; and N, ; denote the
dimensions of SU(3) and SU(2) representation (conju-
gated representation with a bar) of the ith field, while Y;
and Q! denote the U(1) hypercharge and U(1)" charge of
the ith field. N ;, N,, ;, Y; for each type of field are just the
same as in the Standard Model. Q! s for each type of field
are unknown variables and will be determined later. We list
the representations for fermions in Table 1. Now the
covariant derivatives for each field are

o 1
DY) = Oy — ig,Giyt' ~ igW§,T" ~ i< By ~ iQ9.Cx
) 2 .
DEVU> = 81\/ — lgstvtl - lg_dBN + lQ;gCCN
D) = 0y — ig,Giyti + i g By + iQlg.C
N v —ig,Gyt +l3d N +10,9.Cn
D(L>_a —igWerTe 1 'By —i0'q.C
N = Oy —igW§ +12g v —i019.Cy

D1(\1/V> =0y +i0,9.Cy
D\®) =0y +igBy +i0.g.Cy

1
DY) =y — igW4 T - i59By —i0;9.Cy
DY) = 8y - i0}9.Cy. G)

where C is the gauge field corresponding to U(1)’ and g,
is the gauge coupling. There are six constraints of Q} come
from the consideration of anomaly free [26]. They are as
follows
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TABLE I. Gauge group representations for fermions.

Fields q uf dy
Representations  (3,2,1/6,0;) (3,1,-2/3,0,) (3,1,1/3,0))
Fields [ vy eq

Representations  (1,2,—-1/2,0;)  (1,1,0,0;) (1,1,1,0))

20, + 0, + Q=0
30, + Q) =0

1\2 , 2\ 2 , 1)\?2 ,

6@ Q‘f”[‘(s) ”*(3) Ca

1 2
+2(—§) Q) +0,=0
607 + 307 + Q31+ 207 + 07 + 07 = 0
1 2 1 1

66Q3+3L3Q§+3Qﬂ+0(—QQ?+QZ=0
60, +3[0, + Q] +20)+ 0. + 0, = 0.

(4)

It seems that we have six equations for six variables, but
actually only four of them are independent. We rewrite Q) s
in terms of Q) and Q as follows:

0, =-10,

0, =-30,-0.

/ 4 3/ l / (5)
Qd :§Q1+ Qe

0, =-20,—- Q..

Then when we choose a set (Q}, Q.,), all the other variables
are determined. For our purpose, we will impose more
theoretical constraints on Q' s. One is that we need Yukawa
terms as

¢Q(162H*) UR?
®L(ic>H*)Ng,

O*QHDg,
®*LHE}, (6)

to be gauge invariant. Assign a U(1)" charge Q), to H and
Q;ﬁ to ®, and using (5) finally we find the only constraint is

Q) +0.-0,+0,=0. (7)

Another important constraint is to let Q) = Q; so that
D2NyNy is gauge invariant, or let Q) = —Q;, so that
D*2Ny Ny is gauge invariant. Then we replace Q) by +0),
in (7) and use (5), we obtain Q) = —Q) for P>N§Ny or
0}, =30 + 20, for ®**NiNg. Remember that we want
L(ic’>H*) to be U(1) charged and it requires that
0, ;é_ —Qj, so only Q) =30Q)+2Q, corresponding to
<I>*2N‘,§N & is allowed. Of course, we should have Q), # 0
to kill the explicit Majorana mass term for singlet neutrino
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and this requires that Q) # —2Q). The other constraints
may come from experimental considerations, for example
in Ref. [28], the authors claim that in the hadron collider
experiment, from the parametrization in their Eq. (3.8),
once the new gauge boson is found in the dilepton decay,
one can measure its mass and map it onto the ¢, — ¢, plane,
where ¢, and c; are parameters depending on the charge
Q, and Q) , relatively. Then the gauge coupling for
different models with particular charge assignments can
be fixed. On the other hand, in this model the gauge
coupling is related to the mass of the gauge boson [in
Eq. (22), the other parameters should be fixed by fitting the
masses and flavor mixing data], therefore it might be able to
check which model predicts the right coupling.

There are still many possible choices of Q' s and we only
list three interesting candidates which are similar to [29,30]:

() Ug: Q)=0,=0, 0, =1, 0;=-1, 0, =—
0,=1,0, = 2Q;§:—1.

(2) UB L Ql = ;l = Q;:—%’ Q;:—l,
0, = Q’—lQh -1, 0, =-1

(3) U)(‘ Q;_S’ Q;_S’ Q&:_%’ Q;:_%’ anzl’
1

_1 — 7 —

The mass term of zero-mode leptons will be generated by
Ly == [ D OBWLH N
+ Y@

1
2/dy[ J02NeNy + Hel],  (8)

& (y)LHEg + H.c]

where Y, Y(€) and y( m) are couplings with dimension —2.
Afterthe U(l) and SU(2) x U(1) breaking, two terms in the
first line generate Dirac mass matrices for charged leptons
and neutrinos and the term in the second line generates a
Majorana mass matrix for right-handed neutrinos.

Imposing Dirichlet boundary conditions on fermion
fields, the twisted boundary condition on the Higgs doublet
and the Robin boundary condition on ®, we can expand
fields in modes and finally obtain their profiles:

s (FoOwy ()
L:Z i z + (KKmodes),
= \ o Weir ()

ER—Zf o (9)efy () + (KKmodes)

WAL

Fio () =N tay Lo - y).

+ (KKmodes), N%=CNg!,

T ey

0 () = NG eMo-LE0y — L))o - y), 9)

iR
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where N EIL), N f.;), N E? are normalization constants.
Substituting these profiles into (8), we get the Dirac mass
matrices and Majorana mass matrix:

i0y

) = [ a0 @) 01f g )6

ity

iy = [ YO @S 01 ()7,

JjR

LY
My =3 [ @011, 0 )

(10)
) iR

Obviously, My is a diagonal matrix since the integration

only involves the profile of Np. Now we write the chiral

zero modes in Weyl basis:

(0) 7.
UVig _)UIR’

(11)

0 _ o _
vip ViL.a» €L €iLa>

where a, a are indices of Weyl spinors. Then for neutrinos
we can represent the mass term as

(n) ta
1 0 mpii vir
T i Jij J
Z(UiL,izViR,iz) m<"). ( M) +H.c.

(12)

Er(:gss =

Following Xing’s parametrization and discussion [31], we
introduce a 6 x 6 unitary matrix ¢/ to transform the mass
eigenstates to flavor states. I/ can be decomposed into

0 UO S B 01 U()S"O UOB ’
(13)

where Vy and U, are 3 x 3 unitary matrices and A, B, R, S
are 3 x 3 matrices under the unitary conditions:

AAT + RRT = BBT + 8ST =1,
AST+ RBT = ART + STB =0,

ATA+S'S=B'B+RR=1. (14)

We can use U to diagonalize the mass matrix in (12):

(n) ~
0 mp: M 0
],{T< (n) \T DJ) u = ( OU Vi )7 (15)
(m ';) Mpg ;; My

D,i,
where M, and M, are diagonal matrices: M, =
Diag{m,,my,m3} are very small while My=

Diag{M, M,, M5} should be very large. Finally we can
find approximately
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(@) (H)  (H) (@)
o { o @
AY 7 > . < AY 7
N
v v
FIG. 1. A diagrammatic description of Eq. (16).

i1, = =Vi(my), Mg (m )" )V (16)

The minus sign can be absorbed into charged lepton basis.
Remember that at the beginning of this section, we use the
U(1) symmetry to kill the Lo*H*H'6?L¢ dimension-7
operator. When the U(1)" symmetry breaks spontaneously,
this term comes back by connecting two Yukawa inter-
actions with an internal Majorana sterile neutrino line. A
diagrammatic description of Eq. (16) is shown in Fig. 1.
Thus, the smallness of this Majorana mass is natural.

|

L;
Mgy =3 [ as(@0))0 0F 9 0)
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Masses mg’> and My are determined by model param-

eters and then we can use Takagi diagonalization with the
unitary matrix V, to diagonalize the symmetric complex
matrix mjy;;Mz' (miy);)” [32]. The PMNS matrix V, can
be parametrized as

Sk
C12€13 $12€13 S13

. ~ A A% Ak A iy % Ak
Vo= —S512€23 —€1251353 012023—31251323 C138523 |»

o PN
—C12823 —812513C23 C13C23

(17)

where ¢;; = cos 6;;, §;; = €' sin0;;, §,;s are mixing angles
of active neutrino and J;;s are CP phase angles (three for
Majorana neutrinos).

As we know, to suppress the neutrino masses to sub-eV
with the seesaw mechanism, we need extremely large Ms.
Interestingly, this can be achieved by the exponentially
increasing behavior of the VEV (®(y)). The matrix element
My ;; can be estimated as follows:

$12823 —C128513C23

LY 3
SN [ dyleost (M (y - yo))e )

i-1

(m) 2 2
ymigl M M v My . v
ij Mzzv i {—Mlg -1+ —M]; COSh(zM(L,('—)l - Y0)) + —A/;V s1nh[2M(L§_)1 - ¥0)]
0w [(M> M3 Y My . Y
4 ML L) (M_g —1oh cosh2M(LY) = yo)] + o sinh[2M (L — yo)]>] . (18)

We plot the third element of the diagonal, M 33, as a function in terms of My and let L(3”) - L, L<2”) =0.65L,0.7L,0.75L

in Fig. 2. This function increases when L./

can be as large as S00L~" ~ 10000L!.

increases or My decreases, and we find that if My < 15, Lg”) ~0.75 then My 33

Apparently there are hierarchies Mp ) < Mgy < Mpi; and one may worry that some element of matrix
mg)Mgl(mgA)T is not suppressed by Mpg3;, but by Mp,; instead. So we show the explicit expression of

m Mz (mE)7T as follows:

m%1 m%z i m%3 myymypy  MypNMlyy  My3Mpz My M3y N3y N353
Mpiw Mgy Mpas Mg 1 Mg Mrsz Mgy Mg Mp 33
my My MMy My3Mp3 m%l + m%z + m%3 mymszy  MypMzy  M3Ma3 (19)
Mg 1 Mg Mp 33 Mp1yw Mgy Mg Mg 1y Mg Mp 33
mypymszy  MypMszp  My3Msz3 MyMay MypMszy - 13733 m%l i m%z T ’71%3
Mgy Mg Mp 33 Mgy Mg Mg 33 Mpy Mgy Mpgss

Then we see that all terms contain m33 (which is assumed to
be the largest element of Dirac mass matrix) are suppressed
by Mg 33. Also note that m, my,, etc. are usually much
smaller than 53, so their suppression does not need masses
as large as Mp 3.

[

In conclusion, thanks to the exponential-like VEV
of the scalar, although our scale L' is only about
order of TeV, it is still possible to lower the neutrino
mass m Mz (m)T to sub-eV with the Majorana
mass Mp.
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FIG. 2. Mgsy; vs My with LY > L and LY =0.65L,
0.7L, 0.75L.

B. Numerical results and discussion

Since we have fitted the parameters of the scalar ® and H
in the quark case (see Appendix B), we set them fixed in the
lepton fitting. Although we extend the gauge group in this
model, it will not affect the parameters we obtained in the
quark case. Note that the parameter y™) comes into the

()
and ) separately. In our fitting, we only consider the
normal hierarchy of neutrino mass.

The recent experiment data of leptons used in our fitting
are listed in the following:

(i) Masses of charged leptons: m, = (0.510998928 +

1.1 x 107%) MeV, m, = (105.6583715 £ 3.5 x
107%) MeV, m, = (1776.82 £ 0.16) MeV [33].
(i) Mass squared difference between two generations:
Am}, = (2473 £0.069) x 1073 eV2,  Am}, =
(7.5 £0.19) x 107> eV? [34].
(iii) Mixing angles: sin® @, = 0.302 & 0.012, sin? f,3 =
0.413 £ 0.032, sin? 0,3 = 0.0227 £ 0.0024 [34].
Since there are more free parameters than data, we only
show one set of the possible parameters. They are listed in
Table I1. If we assume that ") ~ O(1) (a parameter with a
tilde means it is scaled by L to be dimensionless), then we
can see that the hierarchy between Ve) and Y is about 3
orders of magnitude which is acceptable. Notice that when

fitting only in a combination so we will not treat y(")

TABLE II. Best fit parameters for leptons.

(1) (1) (0
Ly L LS My
0.378389L 0.670380L 0.908743L —11.792317L""

n n n)

Lé) ( ) L; My
0.062289L 0. 515437L 0.741436L  13.293167L~!
Lf)e) L(Ie) L(ze) ME
0.317799L 0.448665L 0.701578L  36.580911L!
Py Iy Tev . ce

V2 VEm

0.317575 GeV  0.000319953 GeV

PHYSICAL REVIEW D 93, 036003 (2016)

L~" has larger magnitude such as 10 or 100 TeV, ki \/-” may

get closer to \/-” If we compare the Yukawa couplings with

that for the quark sector in Table IV, we will find that y
has the same order with y<d>, so no hierarchy of the
Yukawa couplings between quarks and leptons. All lepton
5D masses M;, M and M are O(10) up to the scale L~!
which also seemed natural.

This set of parameters will give

(i) Masses of charged leptons: m, = 0.510999 MeV,
m, = 105.65837 MeV,  m, = 1776.79963 MeV.
They all deviate the experimental value less than
0.01% as the fitting required.

(i) Masses of neutrinos: m; =0.005074eV, m, =
0.010092 eV, m; = 0.049868 eV. Comparing with
the data, the mass squared differences between the
first and third generation deviates the experimental
one about 0.5%, while the mass squared differences
between the first and second generation deviates the
experimental one about 1.5%.

(iii) Masses of sterile neutrmos M,;=1.2144Ge V)< ,

—4.9870TeV x k=, M;=358.8498TeV .

Both y( m) and the scale L' are undetermmed

But we can see that if y( JL=' ~ 0(1-10 TeV),
the lightest sterile neutrino can be produced by the
LHC, and since it interacts weakly with other
particles, it may only contribute to a little part of
the missing E,.

(iv) Mixing angles: sin’@,,=0.30315, sin’6,; = 0.4359,
sin6,; = 0.0221. They all deviate the experimental
value less than 6%.

(v) CP phases: 6;,=0.1944, 6,3=1.2796, 6,5 = 3.0716.

We can also calculate the effective Majorana mass as

(mgp) = |kang| = 7.43 meV. (20)
x

This quantity is related to the double-beta decay which now
has limit (mg) < 120-250 meV (90% C.L.) [35]. Not
surprisingly, our result is far from the experimental limit
since the masses of active neutrinos are all smaller than
100 meV.

We can also estimate the mass of gauge field C, as
follows:

e, - [aliwroq
which implies
=27 / dy(®)?
2@22|Q|( n (smh(ZM—f—ZMyo)—SIHhZMy0>>
M \2 4Mm

21917 -2 .
ch|Q|L o2M (1)

2M? (22)
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which further leads to

_ /oL
m.~g.———==—

o L1
M(1=30) (124 - §,) TeV | =— |.

(23)

So for g.~0.1-1, L™' ~1-100 TeV, we have m.~
10-10000 TeV. Notice that there is another mixing effect
if His U(1)’ charged. When electroweak symmetry breaks,
there will be a mass term involving Z and C [26], then to
obtain the mass eigenvalues we shall diagonalize a mass
matrix in (Z, C) basis as

m2 m2
MZ — ( VA ﬂ Z > i (24)
pmy  m;
where f is a factor about O(1) or less. Since our m? is
2

apparently much larger than m;, so the mixing would not
2

be significant and the p = % is very closed to 1, where m;
1

is the smaller mass eigenvalue. Notice that this heavy gauge
field will also significantly suppress the effective coupling

PHYSICAL REVIEW D 93, 036003 (2016)

of some process mediated by it. The effective coupling

~2
ich is simi rmi N1
which is similar to the Fermi constant G.. e = ATy N
4(50%_(’;%6\,)2 is much smaller than G, so this process will

not change the whole amplitude.

Interestingly, given the parameters shown in Tables II
and IV, we do not need to worry about the constraints from
the proton decay. Following the analysis of [22], the
dimension-8 operators leading to proton decay are
QQQL,DUQL,UDEU and QQUE. We show the
domains of the first generation wave functions which
involved the operators in Fig. 3. We find that for each
operator, at least two domains do not overlap, and thus the
integration vanishes.

IV. SUMMARY

In this paper, we have discussed the possibility to
generalize the model constructed in Refs. [21,22] to a
Majorana neutrino case. The extra-dimension scale L~! is
about several TeV, which seems far from the scale for
seesaw mechanism and is unlikely to explain the small
neutrino masses naturally. But we note that the smallness of
neutrino masses can be a synthesized effect of the type-I

0)
d) Ro—e
I I
(0) | | (0)
hi ! ! llzL
1 1 (0): : 1 1
I I I I
] ]
i i Ui ' i i
I I s | : I I
i i o ! i i
) ! ! W) ! I I
91,1 ! ! WA ! !
—e | | r————e | |
1 1 | | 1 1 1 1 | |
1 1 | | [ 1 1 | |
! ! 1 1 oAb ! ! 1 1
! ! 1 1 b ! ! 1 1
1 1 \ | [ L 1 1 \ \
1 1 | | 1 :: 1 1 1 | |
| L I Aoy L TR B I |- ! L ! 1 L T— L L 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
y/L y/L
(0)
4\ Ro—o
i i
] ]
I I
I I
I I
0 | | 0
uﬁ}e: i Uy p
s | | -
n | | n
1 | | 1 0)
o | T AW
o 1 r—H—=—9
n | | o 1
1 ] ] 1 1 1
R R o el k
A o [

S N I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
y/lL y/L
FIG. 3. The domains of the first generation wave functions. The left top is for the operator QQ QL; the right top is for the DUQL; the

left bottom is for the UDEU; while the right bottom is for the QQUE.

036003-8



MAJORANA NEUTRINOS WITH POINT INTERACTIONS

seesaw and the overlap integration of the localized lepton
wave functions. We find that a 5D scalar & with an
exponentially warped VEV, which was initially introduced
in Refs. [21,22] to generate a hierarchy between gener-
ations, can also be used to generate large Majorana masses
for the neutrino right-handed 0-modes. The strategy is to
let ® couple with the singlet neutrino field in the manner
®*2N¢N. When & acquires a nonzero vacuum expect-
ation value, (®(y))2, which exponentially depends on the
extra-dimension coordinate y, will be extremely large near
y = L so that the third generation of right-handed neutrino
will be very heavy and turn on the seesaw mechanism.
At the same time, if the positions of the O-thickness
branes and the 5D bulk mass M are properly chosen, the
overlap integration of the left-handed and right-handed
neutrino wave functions will be also smaller than that
of the charged leptons. Both of these effects work
together, and they can significantly suppress the neutrino
masses.

To justify the model, it is necessary to add a U(1)’ gauge
symmetry into the model. This symmetry prohibits some
troublesome terms like Lo?H*H'6?L¢ and the explicit
Majorana terms. When & obtains a nonzero vacuum
expectation value, the U(1)" symmetry will break sponta-
neously. Since the mass of the U(1)" gauge boson is very
large, it will not change the prediction significantly.
For consistency, we also discuss how the anomaly cancel-
lation conditions constrain the U(1)’ charge of each field.
The numerical results of our model parameters have no
significant hierarchy among them. They can fit all masses
and flavor mixing data very well. We use this set of
parameters to calculate some observable quantities such
as the effective Majorana mass, and we find it is consistent
with the double-beta decay experiments. Our parameters
also rescue us from the stringent proton-decay constraint on
the cutoff scale.
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APPENDIX A: THE GENERAL SETUP OF
THE FRAMEWORK

In this Appendix we briefly review the extra-dimension
model with point interactions. The basic setup is to let all
fields live in 5D spacetime and have point interactions
with some O-thickness branes [21,22]. The point inter-
action means a d-function-potential-like interaction which
vanishes everywhere except at a point in the fifth
dimension [21,36,37].

PHYSICAL REVIEW D 93, 036003 (2016)

The action of a 5D fermion field ¥(x, y) is given by [21]

S = /d“x/dy\I/(x,y)(irMaM+MF)\I/(x,y), (A1)

where M. is the 5D bulk mass, and the I" matrices obey the
Clifford algebra {T'y;, Ty} = —2ny with the 5D metric
nun = diag{—1,1,1,1, 1} and the indices M, N = 0, 1, 2,
3,5and u, v =0, 1, 2, 3. An explicit representation of the I"
matrices is I'* = y# and IV = —iys = y%'y?y>. The varia-
tion of the action (A1) is
oS = /d“x/dy[&‘i’(iFMaM + Mp)U
+ U(iTMOy, + M )5Y]
= /d4x/dy[5\If(iFM8M + Mp)¥

—B(iTMD gy — Mp)S + 0y (DITMST)].  (A2)

Thus, 6S/6¥ = 0 implies the equation of motion (EOM)

for U:
ic*d, ><\IJL> 0
Oy+Mp)\ W)

(A3)

=0y +Mp

™0 M)W=
(i v +Mp) < 5,

where the field ¥(x, y) has been decomposed into the left-
handed and right-handed components ¥; p = P; p¥ =
[(1Fy5)/2]¥ in the chiral representation of Dirac matrices
y#. Taking the complex conjugate of Eq. (A3) gives the
EOM for ¥: (il @, — My) = 0. Substituting it and
(A3) into (C8) and taking 6S = 0, we obtain

0= / d*x / dy0y, (VTM5W)

= / d*x / dy[0,(UT#s0) + 0, (VIV6V)].  (A4)

Since the integral of the 4D total divergence vanishes,
[ d*x0,(VI*5¥) = 0, we have

/ dyd, (VIV6W) = 0 (AS5)

which, as we have seen, is required for the consistency of
the EOMs for ¥ and V.

Now let us consider a toy model, in which the extra one-
dimensional space is an interval with length L and in the
fifth dimension there are three boundary points assigned as
0, L (< L), L, respectively. In this case, Eq. (A5) implies
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L,—e€
0= / dyd, (ITV60) ( / / )dya (IT250)
0 Li+e

— (I60)|,_, — (IT60)|,_, + (IT60)|,_, _,

- ( Fya\:[l)|y:L1+e’ (A6)
where € is a positive infinitesimal length. A sufficient
condition to satisfy Eq. (A6) is to let the term vanish at all
the boundary points:

UTV60 = i(WpoW, — U 60g) =0

(aty=0,L; +eL). (A7)
It is sufficient to satisfy Eq. (A7) by imposing the Dirichlet
boundary condition

Upe=0 or U, =0 (aty=0,L,teL). (AS8)
More specifically, we can take Wp = 0 (or ¥, = 0) at all
the boundary points to realize the left-handed (or right-
handed) fermions in the zero-mode sector, as we will
discuss later.

Multiplying the operator (iTV0y —
from the left gives

Mp) on Eq. (A3)

(iTNOy — Mp)(iTMOy, + M)W
_(—DDT—f—a”&‘” >(\PL>_O
-D'D +0,0" ) \ ¥y '
(A9)
where D=0,+Mp, D'=-0,+Mp, and 0,0/=
M, =—0;7+V?* with the 4D metric 7, =

diag(—1,1,1,1). Let us separate variables of the solutions
of Eq. (A9) as follows:

= Zwé'” <x>fw(p ).
ZWR R"

For every particular solution of the left-handed wave

(A10)

function, ¥, (x,y) =y (x) f, (), we have

0= (=DD' + 8,y (x)f o ()
oL () + 8,097 () o (v)

D (x).

- [-pD'y,

=1[(- DDT+M )f (A11)

where we have used the 4D Klein-Gordon equation
(9,0 = M2, )" (x) = 0. Equation (A11) implies

PHYSICAL REVIEW D 93, 036003 (2016)
DD'f e (y)=M 5,<.,>f o () (Al2a)

Likewise, using (9,0" — Mi(n))y/ge") (x) = 0, we obtain

DJerl,,ﬁ:) (y) = Mli(n)f () ()’) (A12b)

Vr

In Egs. (Al2a) and (A12b), we have used the fact that
the operators DD' and DD are supersymmetric quantum
mechanical partners [18,25,27] and thus they have
exactly the same eigenvalues except for the lowest zero
eigenvalue. It can be easily explained as follows. If f ()

is the eigenfunction of DD" with the eigenvalue M 2 and
w # 0, then

D'D[D'f o )] = D[DD'f yo )] =M im [D'f W )]

(A13)

that is, DY f,m(y) is an eigenfunction of DD with the
L

. Define fw(n) (y) DTme) (v) and
R L
(y) have the same normalization as fw(") (y):
L

same eigenvalue Mﬁ/(ﬂ)

let f'lfs:)
Uy Ol 00 = [ 7 o) =1 (AL4)
which implies

/ dy[D'f o »]*D'f yo ()
— [ @5l DI DD o) = 0. (A15)

Then it is sufficient to get (f Yo w ()] f, n>( )) = 1 by letting

DYf (). (Al6a)

Multiplying the operator D on the above equation from the
left gives

f o (¥)-

0 Tl (A16b)

Substituting a pair of chiral modes of (A10) into
Eq. (A3),

<DT ia”aﬂ> s W )
i59, D wi (x)f 0 ()

we have
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vi ()DVf o ()] + li0* B (x)) 0 (v) =0 (AlBa)
(i 0ry” (0))f 0 () + Wi (K)Df i (¥)] = 0 (A18b)

which, together with Egs. (Al6a) and (A16b), lead to

io" Dy (x) + My (x) =0 (Al9)
i 0,y (x) + +M, wyy (x) =0, (A19b)
that is,
M,w ic"0, ()
( ._w( ) > v (%) —o. (A20)
640, M!//(") Wge)(x)

Thus, the combination ") (x) = (y/L ( )s
the 4D Dirac equation (id + M, 0 )yt (x)

Dirac spinor.
Suppose that the eigenequation (A12a) of DD has a zero
eigenvalue M 2 = 0 with the corresponding eigenfunction

fu/ o (y) called the 0-mode. That is, DDTf y(y) =0. It is
sufficient to satisfy the above relation if f (y) is annihi-
lated by D':

yi (x)" obeys
= 0 and forms a

Df () = (=0, + Mp)f o () =0.  (A21)

(i) If the Dirichlet boundary condition ¥ (x,y) =0 is
imposed at y =0, L ¢, L, that is,

[0 (y)=0 (aty=0,L;teL), (A22)
L

then Egs. (A21) and (A22) imply that fv/(m (y) =0at

all points. Thus, the 0-mode eigenfunction of DD*
does not exist in the boundary condition of (A22).

(ii) If the Dirichlet boundary condition Wg(x,y) = 0 is
imposed at y =0, L ¢, L, that is,

f,o()=0

(aty=0,L; +eL).
VR

(A23)
then this boundary condition has no effect on
Eq. (A21), but the setup of the O-thickness branes’
positions itself can split the solutions of (A21) into
two independent degenerate modes:

N]eMFy (Osy<Ll)
= A24a
fa={3"" LT )
0 (0<y<L)
fra0) e @ grety 2

PHYSICAL REVIEW D 93, 036003 (2016)

where N, and N, are normalization constants and, by
using (A14), they can be figured out as

oM,

Ny=eMely, 72
2 e2Mr(L-L1) _q

(A25)

Using the Heaviside step function 6(y), we can also
write the two degenerate zero modes as follows:

V) =\ OO )]
(A26a)
Mr o
x [0(y = L)O(L - y)] (A26D)

The 5D wave function of 0-mode \1120) (x,y) may be
expanded with respect to f,0 m(y) and f_o) ) (y) as

0 0

U (x,3) = Wi 01,0 0, 0) + U5 (0)F o o) (),
(A27)
where the coefficients 1//(1(2) (x) and z,z/<20L> (x) are iden-
tified with the 4D wave functions of two generations

of left-handed fermions in this toy model.

Likewise, consider the 0-mode eigenfunction f, « (y) of
D'D. It obeys the equation DD fw@ (y) = 0. A sufficient

condition of this equation is

Df o(y) = 9y +Mp)f o0(y) =0. (A28)
(1) If the Dirichlet boundary condition (A22) for the
left-handed fermion is imposed, then it is the
location of the point-interaction positions, rather
than Eq. (A22), that affects the solutions of (A28)

and splits them into two degenerate modes:

2M
Fup.) = ?ﬁme‘weme(m - )]
(A29a)
fwg)),(z)(y) - me Ml'(y Ll)
x [0(y = L1)O(L = y)]. (A29b)

The expansion of the SD wave function of 0-mode

\l'g)> (x,y) with respect to the two modes is given by
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0 0 0
v () = v () f 0 1y ) + v ()0 2 ()

(A30)
where the 4D wave functions 1//(1(,)3 (x) and wgg (x)
belong to two generations of right-handed fermions
in this toy model.

(i1) If the Dirichlet boundary condition (A23) for the
right-handed fermion is imposed, then Eqgs. (A28)
and (A23) imply that f o (y) = 0 at all points. That
is, the 0-mode elgenfuncflon of D'D vanishes in this
boundary condition.

To sum up, if the boundary condition ¥; = 0 is imposed at
all the O-thickness branes’ positions, then the 5D fermion
field ¥(x,y) has only right-handed 0-modes mﬁ?’ (x,y) as
given in Eq. (A30); instead, if ¥z = 0 is imposed at all the
boundary points, then ¥(x, y) has only left-handed 0-modes
\II(LO) (x,y) as given in Eq. (A27). In a word, the Dirichlet
boundary condition W, p =0 makes the 0-mode wave
functions of W(x, y) to be chiral. Including the KK modes
(i.e. the modes with M51<”) # 0), the expansion of a 5D

fermion field ¥(x, y) in all modes is given by
(i) For ¥, =0aty=0, Ly, L

Z_L;Mle—m[a(y)e@ — )R ()

—MF y—L)
—2MF Ly)

x [e<y—L1>e<L —y)]wég (x)
+ (KKmodes).

V(x,y)=

(A31)

(ii) For U =0aty=0, L, L

MF}
2MFL1 _ 1
\/ 2MF

0(y — L,)O(L — y>1w§2<>
—i—(KKmodes).

=) (%)

(A32)

To realize both left-handed and right-handed 0-mode fer-
mions in this two-generation toy model, we need at least two
5D fermion fields, ¥, (x, y) and ¥, (x, y). One 5D fermion
U, (x,y) has two left-handed 0-modes due to the boundary
condition Pz¥,(x,y) =0 at points y =0, L, L; while
another 5D fermion W, (x, y) has two right-handed 0-modes
from the boundary condition P;W,(x,y) =0 at points
y =0, L}, L. The locations of L; and L) are in general
not equal. Indeed, it is the inequality of L and L/ that leads
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L

FIG. 4. A schematic diagram of wave functions for chiral
0-mode fermions. The red curves represent the wave functions for
two generations of right-handed 0-mode fermions, while the blue
curves represent the wave functions for two generations of left-
handed 0-mode fermions. The black line is a profile of a scalar
®’s VEV. The overlap integration of the profiles in different
intervals gives the corresponding mass matrix element.

to the mixing of the two generations of fermions. A
schematic picture of the wave functions of these 0-mode
chiral fermions is shown in Fig. 4. To give the chiral
fermions masses, we need to introduce an extra 5D scalar
field ®(x,y), which will acquire a nonzero VEV after the
electroweak symmetry breaking. The mixing structure of the
Dirac mass matrix is also explained in Fig. 4.

In addition, it is worthy to point out that the operators
D=0, + My and D = —0y + M can be used to con-
struct a pair of supersymmetric generators, Q = Dy°P; and
Q" = D'y°Py, which satisfy the supersymmetric algebra
[see the paragraphs between Egs. (8) and (9) in Ref. [18] for
more details]:

0*=0"=0.  {0.0"}=2H,

[0, H] = [0, H] = 0. (A33)

The Hamiltonian operators (up to a constant factor) is
Hx{Q,0"} = DD'Pg + D'DP;, and the pair of modes

(fu/(Ln)(y)l//(L">(x),fW%,> (y)l//gl)(x))T is an eigenstate of H
with eigenvalue Milw.

APPENDIX B: QUARK MASSES HIERARCHY
AND FLAVOR MIXINGS

The Yukawa terms which generate the masses for quarks
are

Lot = / dyYWdQ(ic*H*) Uy

+ YO LHDg + H.c], (B1)
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where Y and )@ are the couplings with dimension —2
for the up-type and down-type quarks, respectively.

Note that we will let ® be U(1)’ charged. Then if we do
not want the U(1)" breaks explicitly, we should also make
Ug, Dg, Q and H be U(1)' charged. We have determined
the U(1)’ charge for each field in Sec. III. We can see that
terms as Q(io>H*)Ug and LHDy, can be forbidden by the
U(1) symmetry.

After the U(1)" and electroweak symmetry breaking, we
obtain Dirac mass terms of quarks. The mixing structure of
the mass matrix will be generated by the overlaps of wave
functions from different generations. Then we can write
down the mass matrices as

u
my mp  myy

m\) = my  myy |,
0 0 mfy
my, mfdz m(113
md) = md  md, (B2)
0 0 m§13

) = Y0 [ dof 0 o ) BONHE). (B4

The integration range (a, b) represents the overlap region
between the profiles f « (v) and f o (y) or f o(y). The
iL JL JL

integration will contribute to a diagonal element when
|
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i = j, and an off diagonal element when i # j. Two Dirac
mass matrices m(®) and m(?9) are apparently complex and

we can diagonalize them with unitary matrices V(L")(Véd))

and Vi (V).

u u u u)t
i), = Vim@ V)

mé‘ija)g = V(Ld>m(d) V(d)T.

Then we can compare the masses with experimental data.

Using matrices V(L”) and V(Ld), we can calculate the CKM
matrix which is defined as

u d)t
Verm = VIOVIT, (B6)
The CKM matrix contains not only information about
flavor mixing angles but also information about the CP
violation. The CP violation can be characterized by the
Jarlskog invariant 7 defined as

3
Im[(VCKM)ij(VCKM)kz(VEKM)H(VEKM)kj] =J Z €ikm€jin

m,n=1

(B7)

We list the experimental data used in our fitting as follows:
(1) The up- and down-type quark masses are shown in
Table III.
(i1)) The absolute values of CKM matrix elements from
Ref. [33] are

0.97425 +£0.00022  0.2252 £ 0.0009 0.00415 £ 0.049

|Verum| = 0.230 £ 0.011 1.006 £0.023  0.0409 + 0.0011 (B8)
0.0084 £ 0.0006  0.0429 +£ 0.0026 0.89 £ 0.07
|
(iii) The Jarlskog invariant from Ref. [33]  did, so the only free parameter of ® is M. Since ¢ and H

is J = (296 £0.18) x 107>.
After fitting the data listed above, we found a set of
parameters, which is compatible with the data, and show
them in Table IV. We have set |4| = [AL| = 0.001, |Q| =
|QL%| = 0.001 and y, = y,L~' = —0.16 fixed as Ref. [21]

TABLE III. Quark masses from Ref. [33].

Up-type Mass Down-type Mass
quark quark

u 2.3+£0.6 MeV d 4.8 £0.5 MeV
c 1.275 £ 0.025 GeV S 95 +£5 MeV

t 173.5 + 1.4 GeV b 4.18 £ 0.03 GeV

also couple to leptons, the values of M and @ which are
found in the quark case will be set fixed to reduce the
number of free parameters in the lepton case. In the

TABLE IV. Best fit parameters for quarks

L(()q) L(]‘i) L;‘i) MQ

0 0.31423L 0.67665L 9.26018L"!
Léu) L(lu) Lgu) MU
0.05218L 0.06095L 0.56328L —4.48152L7!
L(()d) L(Id) L;d) Mp
0.11866L 0.23128L 0.66636L 5.71010L7!
M 57(”)11/\/5 j;(d>y/\/§ 0
9.36099L~'  3.15684 GeV  0.20552 GeV 2.91684
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following, a parameter with a tilde means it has been scaled
to dimensionless by multiplying some power of L.

Note that we can calculate L, in the Robin boundary
condition by

L+ = =5y = —0.118074L

e _
Lo = ;b = 0.104502L.

]
Z

(B9)

Then we find that M = 9.36099 < i = 9.5692, which is

consistent with the condition

IM|* < .

Using the parameters of & we can calculate the tree level
mass of the 4D excitation ¢(x). One of its degrees of
freedom will be gauged out by the gauge boson of U(1)’
when the symmetry breaking occurs. To obtain the mass of
¢(x), we shall consider its excitation around the minimum
of potential

symmetry breaking

L A
o] :/ dy{—q)*a§<1>+M2|q>|2+§lq>|4}. (B10)
0
Substituting the zero mode ®©) = O (y)(v + ¢),
vfO(y) = (®(y)) into £[®] and using the minimized

condition, —82fo(y) + M*fo+ AW2f} =0, we can get
the mass

: 0l s
wy =2 [“avaeps ~ 2 eves
= LQJeZM(l_S’O)L_z

(B11)

which implies

VAol L
my ~ 1\/|1 |eM(1‘>’0)L‘1z5.55 TeV-(m) (B12)

If the scale L™' ~O(1 TeV), this mass is under the
energy scale of LHC. But it is unlikely to be detected in
the recent experiments, because the ¢-fermion-fermion
couplings are so weak. This can be seen by estimating
the couplings as

where

A= V2/L _ \F 2/ M
\/1 + sinh(M) cosh(]f/[ — 21\2&0)/1\2 L oM(1-5)
(B14)
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vz\/i'—QTL‘

M

[N

(B15)

Using the parameters in our fitting, we find the Yukawa
couplings for ¢-quark-quark and ¢-lepton-lepton are

(9) (e)

m;; e m;;
&Y =0.03 x =, ¢ =0.03 x .

(B16)

Both Yukawa couplings are much weaker than the
Yukawa couplings for Higgs-quark-quark and Higgs-
lepton-lepton. Since the coupling is proportional to the
mass, the strongest Yukawa coupling may be the coupl-
ing of ¢-top-top which is about 0.03 x 0.17 = 0.005
when L=! ~ 1 TeV.

Note that there is a C|®|?|H|?> term which may lead to
some problem with the gauge universality as discussed in
Ref. [21]. We will just let C to be small enough (about 10~/
for L' ~ 1 TeV) to resolve this.

APPENDIX C: WHY AN EXPLICIT MAJORANA
MASS TERM DOES NOT WORK

The 5D charge conjugation operator C is defined as
crMe-t = (rmt (C1)
with properties
CT=c'=C=-C. (C2)

It is easy to check that C can be written as C = y'y?(iys)
[18]. We can write it in Weyl basis

€ab
C= o).
( —e“”>

The charge conjugation of a 5D fermion is defined as

(C3)

v = CUr, (C4)

We can also write it down in Weyl basis:

T(x,y) = ((E:_(x,y) ) = T = ( #a(%,3) ) (C5)

x(xy) —EM(x, y)

Note that the relation (¥¢)¢ = W no longer holds in the 5D
case and the correct relation is (¥¢)¢ = —.

Now we consider to add terms as Wil'M9,, ¢ + H.c.
After several lines of calculation, we can get

UirM9,, ¢ = Uir"g,,cu’

= Oy (Wil W) — WilrM9,, we.  (C6)
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This implies that these terms can be absorbed into the
boundary terms and do not contribute to the equations of
motion.

However, the mass terms as M UW¢ + H.c. survive and
will contribute to the equations of motion. Now let us add
the mass terms into the action:

/d4 /dy x,¥)(iITM Oy + Mp)U(x,y)
+5 (MR\I/\IJC +H.c.)].
The variation of the action (C7) is
58 = /d4x / dy {&IrarMaM +Mp)¥
+ U(iTM0y + M )5V + %MR(S@\IJC + %MR@(S\IJC
+ %MRélIﬂ’\IJ + %MR\IF(S\II}
= /d“x/dy[&@(il"MaM + Mp)V

—T(iTM - M5
+ Oy (WiCMSW) + MU W¢ + M U5V, (C8)

Thus, the equation of motion (EOM) becomes

0= (iTM3y + Mp)V + Mp¥¢

<—3y +Mp  ic"d, >< £a(x.y) >
ia"&” 8 + My 'a(x,y)

("))

(©9)

If we try to separate the field in modes as
Eulx.y) = LS 0IES (). 20 = 09" ()24 (x). then
the equations for each mode become
(=0, + Mp)f" (E" () + Mg ()" (x)

+ g (y)ic*d, e (x) = 0 (C10)
@y + Mp)g" ()" (x) = Mg f" (y)€"7 (x)

+ fMizrd, & (x) = 0. (C11)

Apparently, in a general case, it is impossible to factor out
the functions £ (y), g" (y) from the 4D Dirac equations
of spinors &,(x), y,(x). This means a special choice which
can achieve this is to let Mz = 0 and y% = —£7¢_ then the
EOM becomes

PHYSICAL REVIEW D 93, 036003 (2016)
Oy + M), (x.y) +ich;0,64(x,y) =0 (C12)

(=0, + Mg)E¥ (x,y) + i6"4“9,&,(x,y) = 0. (C13)
We can recover the 4D Dirac equation for a Majorana
fermion by setting &,(x, y) = A, (x) where A is a constant
so the profile is independent of the fifth dimension
coordinate y. Thus, this fermion has only one mode with
a Majorana mass M. But this solution requires some
special choice of the 5D fermion.

If we accept this special pattern of fermion to be the
singlet neutrino Np, and generate Dirac masses with the
Yukawa interaction, then the seesaw turns on when
the Majorana mass is much larger than the Dirac ones.
However, an operator as Lo*H*H'6?L¢ is still allowed and
it will contribute to the Majorana masses of left-handed
zero modes. Now we have to diagonalize the following

=

In the large My limit, the light neutrino masses are
m, ~ M; — MpMY /Mp. These masses should be as small
as O(0.1 eV) to fit the current neutrino mass bound and
imply that either we use an unnaturally small coupling for
Lo>H*H' 6> L¢ operator or we fine-tune the parameters to
cancel M; by MpM% /My in high precision.

Actually, in the SM the gauge symmetries and the lepton
number conservation do not allow the explicit Majorana
mass term and Lo2H*H 62L¢ to exist. However, in this
model we are going to add a SM-gauge-group singlet
neutrino field into the model, and try to violate the lepton
number explicitly. Thus, we have to face these annoying
terms unless they are also forbidden by some symmetry. The
strategy we use in the paper is to forbid both Lo? H*H'6*L¢
and MzU W + H.c.. terms by a U(1)’ symmetry. Then the
singlet neutrinos have chiral zero modes as any other
fermions. Their right-handed Majorana masses are gener-
ated by the VEV of ® with the same mechanism as their
Dirac masses generated by the VEV of ® and the Higgs field.
Now the mass matrix we need to diagonalize is

( 0 M D)
M, M)
In the large My limit, the light neutrino masses are m, ~

MpME /My which can be naturally suppressed to
0O(0.1 eV).

(C14)

(C15)
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