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We propose a realistic model with Majorana neutrinos in the framework of unifying the three generations
of fermions by point interactions in an extra dimension. This model can simultaneously explain the origin
of fermion generations, fermion masses and mixing, and the smallness of the masses of Majorana neutrinos.
We show that there are two mechanisms working together to suppress the neutrino masses significantly, so
we do not have to introduce a very large extra-dimension cutoff scale. One is the type-I seesaw mechanism
and the other is the overlap integration of localized lepton wave functions. A singlet scalar with an
exponential-like vacuum expectation value plays a central role in these two mechanisms. For consistency in
this model we introduce a Uð1Þ0 gauge symmetry, which will be broken by the singlet scalar. Parameters of
our model can fit the masses and flavor mixing data well. These parameters can also predict all CP
violating phases including the Majorana ones and accidentally rescue the proton from decay.
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I. INTRODUCTION

The recent discovery of the Higgs boson is a great
success for the Standard Model (SM) of particle physics. In
the SM, the masses of weak gauge bosons and fermions are
generated by the Higgs mechanism, which predicts the
existence of a CP-even scalar particle, and finally this only
scalar boson was discovered at the Large Hadron Collider
(LHC) in 2012 [1,2].
However, many people believe that the SM should not be

the finale of particle physics. One of the reasons is that it
cannot explain the large hierarchy of fermion masses. In the
SM, all fermion masses, mixing angles and CP phases are
free parameters. If one looks at the mass spectrum of
fermions, one will find a significant hierarchy between
different generations. The hierarchy between quark sector
and lepton sector is even worse.
In the original version of the SM, the neutrino masses are

assumed to be zero. However, to explain the oscillation
phenomena observed in experiments, the neutrinos have to
be massive. Similar to the way used in the SM to give
fermions masses, it can make neutrinos massive by intro-
ducing right-handed neutrinos which couple to the Higgs
field through Yukawa terms. But this way is quite unnatural
due to the large hierarchy. A cosmological observation
from Planck set a 0.23 eV upper bound for the sum of the
three generations of neutrinos [3]. It leads to about 11 order
of magnitude hierarchy between the Yukawa coupling of
top quark and the neutrinos. This unnaturalness indicates to
us a strong motivation to go beyond the SM.
There are three types of canonical seesaw mechanisms

to explain the smallness of neutrino masses. The type-I
seesaw introduces right-handed neutrinos coupled with the
left-handed leptons through Yukawa interactions, and then
the Majorana masses of the left-handed neutrinos will be

generated by a higher dimensional operator and be sup-
pressed by the heavy Majorana masses of the right-handed
ones [4–6]. The type-II seesaw introduces triplet scalars
coupled with the left-handed lepton doublets, and the
vacuum expectation value (VEV) of the scalar will be
suppressed by its large quadratic masses [7–9]. The type-III
seesaw is similar to the type-I, but it introduces heavy
triplet leptons [10]. All these mechanisms usually need a
high seesaw energy scale, for example the grand unification
theory (GUT) scale, to suppress the induced Majorana
masses of the left-handed neutrinos. Note that there is
another popular mechanism that can generate the higher
dimensional operator for neutrinos. Rather than generating
the operator at tree level, people try to generate the mass for
neutrino radiatively through one-loop [11–13], two-loop
[14–16] and even three-loops [17].
Besides the seesaw mechanism and radiative generation,

an alternative way to explain the mass hierarchy naturally
is to enlarge the spacetime dimension. One interesting case
is the thick wall model [18], in which fermions have
Gaussian wave functions of the fifth dimension coordinate
and their locations are determined by their five-dimensional
(5D) masses. When two fermion wave functions are
separated slightly, their overlap integration with the Higgs
VEV profile will be suppressed exponentially, then a
large hierarchy structure between fermions can be naturally
obtained. Another fascinating case is the Randall-Sundrum
model [19,20], in which right-handed neutrinos localize
near a hidden brane, while the other fermions and the Higgs
field are confined on a visible brane. Thus the right-handed
neutrinos interact with the other fields weakly, and they only
have tiny masses.
Recently, a new extra-dimension model [21,22] was

proposed to unify the three fermion generations. The model
introduces 5D fermion fields living in an extra-dimensional
interval or circle with several point interactions (i.e.*zhh98@mail.sysu.edu.cn
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0-thickness branes). For each 5D fermion, there are three
independent modes between branes. They behave as three
generations, and the hierarchy between generations is
achieved by coupling the 5D fermion field to a scalar field
which has an exponentially increasing extra-dimensional
coordinate-dependent VEV. This specific VEV can be
generated by imposing Robin’s boundary conditions on
the scalar at two boundaries of the fifth dimension (see more
details on the phase structures in [23]). In addition, a twisted
boundary condition is imposed on the Higgs doublet to
createCP violating phases for both quark and lepton sectors
[24]. In Ref. [22], a 5D singlet neutrino field (which has a
right-handed chiral neutrino 0-mode) is introduced to
construct Dirac mass terms for neutrinos, and the smallness
of neutrinomasses is obtained from a proper arrangement of
the point interaction positions. A stringent constraint on the
modelwith a set of fitted parameters is to suppress the proton
decay rates. By a rough analysis with some baryon number
violating dimension-8 operators, the cutoff Λ ∼ L−1 is
estimated to be as large as the GUT scale (1015 GeV).
In this paper, we discuss a possibility to extend the model

of Ref. [22] to a Majorana neutrino case and to avoid the
large cutoff scale. To implement this, we need a Majorana
mass term of the singlet neutrinos. A naive trial is to write
down an explicit Majorana mass term for the singlet
neutrino fields and their charge conjugation. However, it
fails since the equations of motion for the singlet neutrinos
no longer respect the so-called quantum mechanical super-
symmetry (QMSUSY) which is important for acquiring
chiral zero modes [18,25]. The existence of a Majorana
mass term implies that the lepton number is no longer a
conserved quantity, and thus a dimension-7 effective
operator L̄σ2H�H†σ2Lc may appear in the Lagrangian in
principle. Here Lðx; yÞ is the 5D lepton doublet field,
Hðx; yÞ is the 5D Higgs doublet, and the power counting is
achieved in 5D spacetime. But this effective operator can
induce large Majorana masses of the left-handed neutrinos
after the electroweak symmetry breaking. To avoid large
neutrino masses which violates the experimental bounds, it
requires either a high cutoff scale or a very small coupling
constant for this term.
To overcome this problem and to forbid the harmful

explicit Majorana masses terms at the same time, we
introduce a new Uð1Þ0 gauge symmetry. If we let the
singlet neutrino field NR and the combination H†σ2Lc be
Uð1Þ0 charged, none of these two annoying terms, Nc

RNR

and L̄σ2H�H†σ2Lc, can survive, since they are doubly
Uð1Þ0 charged. In other words, we increase the symmetry
of the model to prohibit the unwanted operators like
L̄σ2H�H†σ2Lc.
We need a natural way to realize the experimentally

acceptable Majorana masses for neutrinos. Consider
another dimension-7 operator ðΦ�Þ2Nc

RNR þ H:c:, which
is available if the Uð1Þ0 charge of the singlet scalar Φ is
assigned to be the same as that of the singlet neutrino NR.

Obviously, this term can contribute to a Majorana mass
for the right-handed neutrino 0-mode when the scalar Φ
obtains a nonzero VEV and break the Uð1Þ0 gauge
symmetry. The 5D scalar Φðx; yÞ is initially introduced
to realize the hierarchy of the three generations of quarks
and leptons, and it is imposed on the Robin’s boundary
condition to get a VEV, hΦðyÞi, as an exponential-like
function of the extra-dimensional coordinate y. This VEV
has the effect of killing two birds with one stone. If the 0-
thickness branes’ positions of singlet neutrino are chosen
appropriately, that is, if the third generation singlet neutrino
wave function has a big overlap with the large value side of
hΦðyÞi, it can obtain a mass which is much larger than the
Dirac masses. This large mass turns on the type-I seesaw
mechanism to lower the neutrino masses further.
To make our model self-consistent, we set the Uð1Þ0

charge of each field agreeing with the anomaly free con-
ditions [26]. We also consider the constraint from the proton
decay. By some simple analysiswith the dimension-8 baryon
number violating operators, we see that for our best-fit
parameters the proton will not decay. So it is not necessary to
let the cutoff energy be the GUT scale in this model.
An outline of the paper is as follows. In Sec. II, we will

summarize some key elements of the model and building a
realistic model in the framework. We also discuss the
problems of introducing an explicit Majorana mass term. In
Sec. III, we discuss how to generalize the model to include
Majorana neutrinos and how the seesaw mechanism works
with a few TeV extra-dimension energy scale. We will also
fit the data of leptons and do some discussion. Section IV is
a summary. In Appendixes A, B, and C, we supply some
mathematical details of the discussion in Sec. II.

II. THE MODEL

To begin with, let us summarize some general setups of
this model (with some mathematical details reviewed in
Appendix A) [21,22]:

(i) The spacetime is extended by a finite size of space-
like extra dimension, i.e. an interval or a circle. The
mode expansion is made as usual and the lowest
modes, i.e., the zero modes, are regarded as the SM
particles. The mass gap between the first Kaluza-
Klein (KK) modes and the zero modes is roughly the
inverse of the fifth dimensional size. In many extra-
dimension models, the mass scale is at least around
the energy scale of the LHC experiment.

(ii) In the free field limit, there is a quantum mechanical
supersymmetry (QMSUSY) between the left-
handed and right-handed components of 5D fermion
[18,25,27]. This symmetry ensures that the left-
handed and right-handed modes at the same level
have equal masses. Thus, their 4D parts can be
separated from the fifth-dimension-coordinate-
dependent parts, and can form a Dirac fermion
satisfying the 4D Dirac equation. In particular, for
the zero mode, the symmetry together with the
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Dirichlet boundary conditions implies that one of the
chiral spinors should vanish and the other one is
massless. This is the method of generating chiral
zero modes.

(iii) An important ingredient for unifying generations is
the point interaction [21,22], which can be regarded
as a Delta-function-like interaction. This specific
interaction is located at a point in the fifth dimension
and results in theDirichlet boundary condition for the
5D fermion. If we introduce two interacting points,
then they will separate the interval at extra dimension
into three pieces. Themodes living in different pieces
are independent from each other although they come
from the same 5D fermion field. These different
modes can be regarded as different generations.

(iv) To achieve the hierarchy among generations, a
singlet scalar field Φðx; yÞ is introduced to couple
with 5D fermions. A Robin’s boundary condition on
the 5D scalar will force its VEVhΦðyÞi to be
y-dependent as

hΦðyÞi ¼ ν

cnð
ffiffi
λ
2

q
μ
k ðy − y0Þ; kÞ

; ð1Þ

where the function cnðx; kÞ is the Jacobi elliptic
function of x with index k, and k, μ, ν are defined as

k2 ¼ μ2

μ2þν2

μ2 ¼ M2

λ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λjQj

M4

q �

ν2 ¼ M2

λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λjQj

M4

q
− 1

� ð2Þ

with Q; y0 being constants of integration determined
by L�. A study of this singlet scalar with Robin’s
boundary condition can be found in Ref. [23].
An important result in their study is that Φðx; yÞ
can couple with gauge fields corresponding to
some group, such as a Uð1Þ0 group. This symmetry
will break ifL < Lc ¼ 1

jMj tanh
−1ðjMjðLþþL−Þ

1þM2LþL−
Þ [21,23].

Usually we use the condition M2 < 1
Lmax

, Lmax ¼
maxðLþ; L−Þ, which is sufficient but not necessary.

When we proceed to construct a realistic model comparable
with experiments, some special settings are also needed
[21,22,24]. The requirements are briefly listed as follows:
(1) The fifth dimension needs to be a circle (S1). This is

a part of the requirements from the flavor mixing
behavior of the SM. It is also consistent with the
twisted boundary condition setting of the Higgs
doublet.

(2) We need to specify the 5D matter fields with
appropriate boundary conditions. In the quark sec-
tor, we should introduce an electroweak SUð2Þ
doublet quark Qðx; yÞ ¼ ðULðx; yÞDLðx; yÞÞT , and
two singlets quarks URðx; yÞ and DRðx; yÞ. For the
doublet Q, we use a Dirichlet boundary condition

PRQ ¼ 0 at y ¼ LðqÞ0 ¼ 0, LðqÞ1 , LðqÞ2 so that its zero
modes are left handed, while for the singlets UR and
DR, we use Dirichlet boundary conditions PLUR ¼
0 at y ¼ LðuÞ0 , LðuÞ1 , LðuÞ2 and PLDR ¼ 0 at y ¼ LðdÞ0 ,

LðdÞ1 , LðdÞ2 so that their zero modes are right handed.

Note that in general LðqÞi are different from LðuÞi and

LðdÞi . This is necessary for flavor mixing structure.
For the lepton sector, the situation is similar to the
quark case. We just replace the quark doublet by a
lepton doublet and the up and down-type quark
singlet by neutrino and charged lepton singlet.

(3) We need a Higgs doublet Hðx; yÞ to couple with
fermion fields through Yukawa couplings. Of course
it should acquire nonzero VEV hHi to break the
electroweak symmetry. A special treatment is to
impose a twisted boundary condition on Hðx; yÞ as
Hðyþ LÞ ¼ eiθHðyÞ [24]. This twisted boundary
condition will make the VEV hHi get y dependent
phase as hHðyÞi ¼ vffiffiffiffi

2L
p e

iθ
Ly, then its overlap integration

with fermions’wave functionswill produceCP phases
for Cabibbo-Kobayashi-Maskawa (CKM) or Ponte-
corvo-Maki-Nakagawa-Sakata (PMNS) matrices.

As an example, the detailed treatment of the quark sector is
presented in Appendix B. We also fit the parameters of
quark sector independently and list them in Table IV. The
fitting will fix the M parameter from the singlet scalar Φ
and the θ from the Higgs H, and they will be regarded as
input data for the lepton case.
Before going to the next section to discuss our treatment

of the lepton sector. It will be helpful to ask what is wrong if
we just write down an explicit Majorana mass term. Wewill
discuss this briefly as follows, and supply more details in
Appendix C.
One problem of this naive trial is that Majorana mass

term will modify the equation of the motion for the 5D
fermion. This modification breaks the QMSUSY between
the left-handed and right-handed components in the equa-
tion of motion (E.O.M). As we mentioned previously,
generating chiral zero modes rely on this symmetry.
Another problem with this naive trial is that since we are

going to break the lepton number conservation explicitly,
then in principle we should also include an operator as
L̄σ2H�H†σ2Lc which has the same dimension with the
terms we used to generate the Dirac masses for leptons.
After the Higgs acquires a nonzero VEV, this operator will
generate Majorana masses for the left-handed neutrino zero
modes. Then a fine-tuning is needed when we diagonalize
the neutrino mass matrix to obtain sub-eV masses.

III. THE LEPTON SECTOR

A. Uð1Þ0 symmetry and type-I seesaw

For the lepton sector, we introduce an SUð2Þ doublet
L ¼ ðNLðx; yÞ; ELðx; yÞÞT , and singlets NRðx; yÞ, ERðx; yÞ.
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When we consider the structure of our model, the lepton
number is not necessary to be preserved. The most famous
model which violate lepton number is the type-I seesaw
[7]. In type-I seesaw a Majorana mass term for the right-
handed neutrino is introduced. If the Majorana mass MR is

extremely large compared to the Dirac mass mðνÞD , then after
diagonalizing the mass matrix, a mass for the three lightest

neutrinos taking the form−mðνÞD M−1
R mðνÞTD will be suppressed

significantly. But as we discussed in Sec. II, an explicit
Majorana mass term is not allowed to exist. We will assign a
Uð1Þ0 charge toNR to forbid such a troublesome term to keep
the chiral 0-mode, and then use the VEVof the scalar Φ to
create the Majorana masses for the right-handed neutrino
0-mode.
As we have mentioned in Sec. II, the L̄σ2H�H†σ2Lc

operator will bring us a problem of fine-tuning. To solve
this problem it will be forbidden by the Uð1Þ0 symmetry if
we let L̄iσ2H� be charged. All of these indicate that it
would be better to add the Uð1Þ0 symmetry into the model.
Then to justify the model, we should put some constraints
to the undetermined Uð1Þ0 charges.
The gauge group in our model is now

SUð3ÞC × SUð2ÞL ×Uð1ÞY ×Uð1Þ0. Let us denote the
representation of all left-handed zero modes in the form
(Nc;i, Nw;i, Yi, Q0i), where Nc;i and Nw;i denote the
dimensions of SUð3Þ and SUð2Þ representation (conju-
gated representation with a bar) of the ith field, while Yi
and Q0i denote the Uð1Þ hypercharge and Uð1Þ0 charge of
the ith field. Nc;i, Nw;i, Yi for each type of field are just the
same as in the Standard Model. Q0i s for each type of field
are unknown variables and will be determined later. We list
the representations for fermions in Table I. Now the
covariant derivatives for each field are

DðQÞN ¼ ∂N − igsGi
Nt

i − igWa
NT

a − i
1

6
g0BN − iQ0qgcCN

DðUÞN ¼ ∂N − igsGi
Nt

i − i
2

3
g0BN þ iQ0ugcCN

DðDÞN ¼ ∂N − igsGi
Nt

i þ i
1

3
g0BN þ iQ0dgcCN

DðLÞN ¼ ∂N − igWa
NT

a þ i
1

2
g0BN − iQ0lgcCN

DðNÞN ¼ ∂N þ iQ0ngcCN

DðEÞN ¼ ∂N þ ig0BN þ iQ0egcCN

DðHÞN ¼ ∂N − igWa
NT

a − i
1

2
g0BN − iQ0hgcCN

DðΦÞN ¼ ∂N − iQ0ϕgcCN; ð3Þ

where CN is the gauge field corresponding to Uð1Þ0 and gc
is the gauge coupling. There are six constraints of Q0i come
from the consideration of anomaly free [26]. They are as
follows

2Q0q þQ0u þQ0d ¼ 0

3Q0q þQ0l ¼ 0

6

�
1

6

�
2

Q0q þ 3

�
−
�
2

3

�
2

Q0u þ
�
1

3

�
2

Q0d

�

þ2
�
−
1

2

�
2

Q0l þQ0e ¼ 0

6Q03q þ 3½Q03u þQ03d � þ 2Q03l þQ03e þQ03n ¼ 0

6 ·
1

6
Q02q þ 3

�
−
2

3
Q02u þ

1

3
Q02d

�
þ 2

�
−
1

2

�
Q02l þQ02e ¼ 0

6Q0q þ 3½Q0u þQ0d� þ 2Q0l þQ0e þQ0n ¼ 0:

ð4Þ
It seems that we have six equations for six variables, but
actually only four of them are independent. We rewriteQ0i s
in terms of Q0l and Q0e as follows:

Q0q ¼ − 1
3
Q0l

Q0u ¼ − 2
3
Q0l −Q0e

Q0d ¼ 4
3
Q0l þQ0e

Q0n ¼ −2Q0l −Q0e:

ð5Þ

Then when we choose a set ðQ0l; Q0eÞ, all the other variables
are determined. For our purpose, we will impose more
theoretical constraints onQ0i s. One is that we need Yukawa
terms as

ΦQ̄ðiσ2H�ÞUR; Φ�Q̄HDR;

ΦL̄ðiσ2H�ÞNR; Φ�L̄HER; ð6Þ

to be gauge invariant. Assign a Uð1Þ0 charge Q0h to H and
Q0ϕ to Φ, and using (5) finally we find the only constraint is

Q0l þQ0e −Q0h þQ0ϕ ¼ 0: ð7Þ

Another important constraint is to let Q0ϕ ¼ Q0n so that

Φ2Nc
RNR is gauge invariant, or let Q0ϕ ¼ −Q0n so that

Φ�2Nc
RNR is gauge invariant. Then we replace Q0ϕ by �Q0n

in (7) and use (5), we obtain Q0h ¼ −Q0l for Φ2Nc
RNR or

Q0h ¼ 3Q0l þ 2Q0e for Φ�2Nc
RNR. Remember that we want

L̄ðiσ2H�Þ to be Uð1Þ0 charged and it requires that
Q0h ≠ −Q0l, so only Q0h ¼ 3Q0l þ 2Q0e corresponding to
Φ�2Nc

RNR is allowed. Of course, we should have Q0n ≠ 0

to kill the explicit Majorana mass term for singlet neutrino

TABLE I. Gauge group representations for fermions.

Fields q ucR dcR

Representations ð3;2;1=6;Q0qÞ ð3̄;1;−2=3;Q0uÞ ð3̄;1;1=3;Q0dÞ
Fields l νcR ecR
Representations ð1;2;−1=2;Q0lÞ ð1;1;0;Q0nÞ ð1;1;1;Q0eÞ
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and this requires that Q0e ≠ −2Q0l. The other constraints
may come from experimental considerations, for example
in Ref. [28], the authors claim that in the hadron collider
experiment, from the parametrization in their Eq. (3.8),
once the new gauge boson is found in the dilepton decay,
one can measure its mass and map it onto the cu − cd plane,
where cu and cd are parameters depending on the charge
Q0q and Q0u;d relatively. Then the gauge coupling for
different models with particular charge assignments can
be fixed. On the other hand, in this model the gauge
coupling is related to the mass of the gauge boson [in
Eq. (22), the other parameters should be fixed by fitting the
masses and flavor mixing data], therefore it might be able to
check which model predicts the right coupling.
There are still many possible choices ofQ0i s and we only

list three interesting candidates which are similar to [29,30]:
(1) UR: Q0l ¼ Q0q ¼ 0, Q0u ¼ 1, Q0d ¼ −1, Q0e ¼ −1,

Q0n ¼ 1, Q0h ¼ −2, Q0ϕ ¼ −1.
(2) UB−L: Q0q ¼ 1

3
, Q0u ¼ Q0d ¼ − 1

3
, Q0l ¼ −1,

Q0n ¼ Q0e ¼ 1, Q0h ¼ −1, Q0ϕ ¼ −1.
(3) Uχ : Q0q ¼ 1

5
, Q0u ¼ 1

5
, Q0d ¼ − 3

5
, Q0l ¼ − 3

5
, Q0n ¼ 1,

Q0e ¼ 1
5
, Q0h ¼ − 7

5
, Q0ϕ ¼ −1.

The mass term of zero-mode leptons will be generated by

Lyuk ¼ −
Z

dy½YðnÞΦðyÞL̄ðiσ2H�ÞNR

þ YðeÞΦ�ðyÞL̄HER þ H:c:�

−
1

2

Z
dy½yðmÞΦ�2Nc

RNR þ H:c:�; ð8Þ

where YðnÞ, YðeÞ and yðmÞ are couplings with dimension −2.
After theUð1Þ0 andSUð2Þ × Uð1Þ breaking, two terms in the
first line generate Dirac mass matrices for charged leptons
and neutrinos and the term in the second line generates a
Majorana mass matrix for right-handed neutrinos.
Imposing Dirichlet boundary conditions on fermion

fields, the twisted boundary condition on the Higgs doublet
and the Robin boundary condition on Φ, we can expand
fields in modes and finally obtain their profiles:

L¼
X3
i¼1

0
@f

lð0ÞiL
ðyÞνð0ÞiL ðxÞ

f
lð0ÞiL
ðyÞeð0ÞiL ðxÞ

1
AþðKKmodesÞ;

ER¼
X3
i¼1

f
eð3ÞiR
ðyÞeð0ÞiR ðxÞþðKKmodesÞ;

NR¼
X3
i¼1

f
νð3ÞiR
ðyÞνð0ÞiR ðxÞþðKKmodesÞ; Nc

R¼CNR
T;

f
lð0ÞiL
ðyÞ¼NðlÞiL e

MLðy−LðlÞi−1Þθðy−LðlÞi−1ÞθðLðlÞi −yÞ;

f
eð0ÞiR
ðyÞ¼NðeÞiR e

−MEðy−LðeÞi−1Þθðy−LðeÞi−1ÞθðLðeÞi −yÞ;

f
νð0ÞiR
ðyÞ¼NðνÞiR e

−MNðy−LðνÞi−1Þθðy−LðνÞi−1ÞθðLðνÞi −yÞ; ð9Þ

where NðlÞiL , NðeÞiR , NðνÞiR are normalization constants.
Substituting these profiles into (8), we get the Dirac mass
matrices and Majorana mass matrix:

mðeÞij ¼
Z

dyYðeÞ
vffiffiffiffiffiffi
2L
p hΦðyÞif

lð0ÞiL
ðyÞf

eð0ÞjR
ðyÞeiθy

L ;

mðnÞD;ij ¼
Z

dyYðnÞ
vffiffiffiffiffiffi
2L
p hΦðyÞif

lð0ÞiL
ðyÞf

νð0ÞjR
ðyÞe−iθy

L ;

MR;ij ¼ yðmÞ
Z

LðνÞi

LðνÞi−1

dyhΦðyÞi2f
νð0ÞiR
ðyÞf

νð0ÞjR
ðyÞ: ð10Þ

Obviously, MR is a diagonal matrix since the integration
only involves the profile of NR. Now we write the chiral
zero modes in Weyl basis:

νð0ÞiL → νiL;a; eð0ÞiL → eiL;a; νð0ÞiR → ν†; _aiR ; ð11Þ

where a, _a are indices of Weyl spinors. Then for neutrinos
we can represent the mass term as

LðνÞmass¼−
1

2
ðν†iL; _aν†iR; _aÞ

0
B@ 0 mðnÞD;ij

ðmðnÞD;ijÞT MR;ij

1
CA
 
ν†; _ajL

ν†; _ajR

!
þH:c:

ð12Þ

Following Xing’s parametrization and discussion [31], we
introduce a 6 × 6 unitary matrix U to transform the mass
eigenstates to flavor states. U can be decomposed into

U ¼
�
1 0

0 U0

��
A R

S B

��
V0 0

0 1

�
¼
�

AV0 R

U0SV0 U0B

�
;

ð13Þ

where V0 and U0 are 3 × 3 unitary matrices and A, B, R, S
are 3 × 3 matrices under the unitary conditions:

AA† þ RR† ¼ BB† þ SS† ¼ 1;

AS† þ RB† ¼ AR† þ S†B ¼ 0;

A†Aþ S†S ¼ B†Bþ R†R ¼ 1: ð14Þ

We can use U to diagonalize the mass matrix in (12):

U†

 
0 mðnÞD;ij

ðmðnÞD;ijÞT MR;ij

!
U� ¼

�
M̂ν 0

0 M̂N

�
; ð15Þ

where M̂ν and M̂N are diagonal matrices: M̂ν ¼
Diagfm1; m2; m3g are very small while M̂N ¼
DiagfM1;M2;M3g should be very large. Finally we can
find approximately
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M̂ν ≃ −V†
0ðmðnÞD;ijM

−1
R ðmðnÞD;ijÞTÞV�0: ð16Þ

The minus sign can be absorbed into charged lepton basis.
Remember that at the beginning of this section, we use the
Uð1Þ0 symmetry to kill the L̄σ2H�H†σ2Lc dimension-7
operator. When the Uð1Þ0 symmetry breaks spontaneously,
this term comes back by connecting two Yukawa inter-
actions with an internal Majorana sterile neutrino line. A
diagrammatic description of Eq. (16) is shown in Fig. 1.
Thus, the smallness of this Majorana mass is natural.

Masses mðnÞD and MR are determined by model param-
eters and then we can use Takagi diagonalization with the
unitary matrix V0 to diagonalize the symmetric complex

matrix mðnÞD;ijM
−1
R ðmðnÞD;ijÞT [32]. The PMNS matrix V0 can

be parametrized as

V0¼

0
B@

c12c13 ŝ�12c13 ŝ�13
−ŝ12c23−c12ŝ13ŝ�23 c12c23− ŝ�12ŝ132̂3

� c13ŝ�23
ŝ12ŝ23−c12ŝ13c23 −c12ŝ23− ŝ�12ŝ13c23 c13c23

1
CA;

ð17Þ

where cij ≡ cos θij, ŝij ≡ eiδij sin θij, θijs are mixing angles
of active neutrino and δijs are CP phase angles (three for
Majorana neutrinos).
As we know, to suppress the neutrino masses to sub-eV

with the seesaw mechanism, we need extremely largeMRs.
Interestingly, this can be achieved by the exponentially
increasing behavior of the VEV hΦðyÞi. The matrix element
MR;ij can be estimated as follows:

MR;ij ¼ yðmÞ
Z

Li

Li−1

dyhΦðyÞi2f
νð0ÞiR
ðyÞf

νð0ÞjR
ðyÞ

≈ yðmÞNðνÞ2iR δij

Z
LðνÞi

LðνÞi−1

dyν2cosh2ðMðy − y0ÞÞe−2MNðy−LðνÞi−1Þ

≈ δij
yðmÞjQj
M2

N −M2

�
M2

N

M2
− 1þM2

N

M2
coshð2MðLðνÞi−1 − y0ÞÞ þ

MN

M
sinh½2MðLðνÞi−1 − y0Þ�

þ e−2MNðLðνÞi −LðνÞi−1Þ
�
M2

N

M2
− 1þM2

N

M2
cosh½2MðLðνÞi − y0Þ� þ

MN

M
sinh½2MðLðνÞi − y0Þ�

��
: ð18Þ

We plot the third element of the diagonal,MR;33, as a function in terms ofMN and let LðνÞ3 → L, LðνÞ2 ¼ 0.65L, 0.7L, 0.75L

in Fig. 2. This function increases when LðνÞ2 increases or ~MN decreases, and we find that if ~MN < 15, LðνÞ2 ∼ 0.75 thenMR;33

can be as large as 500L−1 ∼ 10000L−1.
Apparently there are hierarchies MR;11 ≪ MR;22 ≪ MR;33 and one may worry that some element of matrix

mðνÞD M−1
R ðmðνÞD ÞT is not suppressed by MR;33, but by MR;11 instead. So we show the explicit expression of

mðνÞD M−1
R ðmðνÞD ÞT as follows:0

BBBBBBBB@

m2
11

MR;11
þ m2

12

MR;22
þ m2

13

MR;33

m11m21

MR;11
þm12m22

MR;22
þm13m23

MR;33

m11m31

MR;11
þm12m32

MR;22
þm13m33

MR;33

m11m21

MR;11
þm12m22

MR;22
þm13m23

MR;33

m2
21

MR;11
þ m2

22

MR;22
þ m2

23

MR;33

m11m31

MR;11
þm12m32

MR;22
þm13m33

MR;33

m11m31

MR;11
þm12m32

MR;22
þm13m33

MR;33

m11m31

MR;11
þm12m32

MR;22
þm13m33

MR;33

m2
31

MR;11
þ m2

32

MR;22
þ m2

33

MR;33

1
CCCCCCCCA
: ð19Þ

Then we see that all terms containm33 (which is assumed to
be the largest element of Dirac mass matrix) are suppressed
by MR;33. Also note that m11, m22, etc. are usually much
smaller thanm33, so their suppression does not need masses
as large as MR;33.

In conclusion, thanks to the exponential-like VEV
of the scalar, although our scale L−1 is only about
order of TeV, it is still possible to lower the neutrino

mass mðνÞD M−1
R ðmðνÞD ÞT to sub-eV with the Majorana

mass MR.

FIG. 1. A diagrammatic description of Eq. (16).
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B. Numerical results and discussion

Since we have fitted the parameters of the scalarΦ andH
in the quark case (see Appendix B), we set them fixed in the
lepton fitting. Although we extend the gauge group in this
model, it will not affect the parameters we obtained in the
quark case. Note that the parameter yðmÞ comes into the

fitting only in a combination YðnÞffiffiffiffiffiffi
yðmÞ
p , so we will not treat yðmÞ

and YðnÞ separately. In our fitting, we only consider the
normal hierarchy of neutrino mass.
The recent experiment data of leptons used in our fitting

are listed in the following:
(i) Masses of charged leptons:me ¼ ð0.510998928 �

1.1 × 10−8Þ MeV, mμ ¼ ð105.6583715� 3.5×
10−6Þ MeV, mτ ¼ ð1776.82� 0.16Þ MeV [33].

(ii) Mass squared difference between two generations:
Δm2

31 ¼ ð2.473 � 0.069Þ × 10−3 eV2, Δm2
21 ¼

ð7.5� 0.19Þ × 10−5 eV2 [34].
(iii) Mixing angles: sin2 θ12 ¼ 0.302� 0.012, sin2 θ23 ¼

0.413� 0.032, sin2 θ13 ¼ 0.0227� 0.0024 [34].
Since there are more free parameters than data, we only
show one set of the possible parameters. They are listed in
Table II. If we assume that ~yðmÞ ∼Oð1Þ (a parameter with a
tilde means it is scaled by L to be dimensionless), then we
can see that the hierarchy between YðeÞ and YðnÞ is about 3
orders of magnitude which is acceptable. Notice that when

L−1 has larger magnitude such as 10 or 100 TeV,
~YðnÞvffiffi

2
p may

get closer to
~YðeÞvffiffi

2
p . If we compare the Yukawa couplings with

that for the quark sector in Table IV, we will find that YðeÞ

has the same order with YðdÞ, so no hierarchy of the
Yukawa couplings between quarks and leptons. All lepton
5D masses ML, ME and MN are O(10) up to the scale L−1

which also seemed natural.
This set of parameters will give
(i) Masses of charged leptons: me ¼ 0.510999 MeV,

mμ ¼ 105.65837 MeV, mτ ¼ 1776.79963 MeV.
They all deviate the experimental value less than
0.01% as the fitting required.

(ii) Masses of neutrinos: m1¼ 0.005074 eV, m2 ¼
0.010092 eV, m3 ¼ 0.049868 eV. Comparing with
the data, the mass squared differences between the
first and third generation deviates the experimental
one about 0.5%, while the mass squared differences
between the first and second generation deviates the
experimental one about 1.5%.

(iii) Masses of sterile neutrinos: M1¼1.2144GeV
~yðmÞL−1

TeV ,

M2¼4.9870TeV×
~yðmÞL−1

TeV , M3¼358.8498TeV
~yðmÞL−1

TeV .

Both ~yðmÞ and the scale L−1 are undetermined.

But we can see that if ~yðmÞL−1 ∼Oð1–10 TeVÞ,
the lightest sterile neutrino can be produced by the
LHC, and since it interacts weakly with other
particles, it may only contribute to a little part of
the missing Et.

(iv) Mixing angles: sin2θ12¼0.30315, sin2θ23 ¼ 0.4359,
sin2θ13 ¼ 0.0221. They all deviate the experimental
value less than 6%.

(v) CP phases: δ12¼0.1944, δ23¼1.2796, δ13 ¼ 3.0716.
We can also calculate the effective Majorana mass as

hmββi≡ j
X
k

mkU2
ekj ¼ 7.43 meV: ð20Þ

This quantity is related to the double-beta decay which now
has limit hmββi≲ 120–250 meV (90% C.L.) [35]. Not
surprisingly, our result is far from the experimental limit
since the masses of active neutrinos are all smaller than
100 meV.
We can also estimate the mass of gauge field Cμ as

follows:

1

2
m2

cCμCμ ¼
Z

dy
1

L
g2chΦi2CμCμ ð21Þ

which implies

m2
c¼ 2~g2c

Z
dyhΦi2

¼ 2~g2c
2jQj
M

�
L
2
þ L

4 ~M
ðsinhð2 ~Mþ2 ~M ~y0Þ− sinh2 ~M ~y0Þ

�

≈
~g2cj ~QjL−2

2 ~M2
e2 ~Mð1−~y0Þ ð22Þ

L2 0.65L

L2 0.7L

L2 0.75L

10 5 0 5 10 15 20
MN L 1

100

200

500

1000

2000

5000

1 104

MR,33 y m L 1

FIG. 2. MR;33 vs MN with LðνÞ3 → L and LðνÞ2 ¼ 0.65L,
0.7L, 0.75L.

TABLE II. Best fit parameters for leptons.

LðlÞ0 LðlÞ1 LðlÞ2 ML

0.378389L 0.670380L 0.908743L −11.792317L−1

LðnÞ0 LðnÞ1 LðnÞ2
MN

0.062289L 0.515437L 0.741436L 13.293167L−1

LðeÞ0 LðeÞ1 LðeÞ2
ME

0.317799L 0.448665L 0.701578L 36.580911L−1

~YðeÞvffiffi
2
p ~YðnÞvffiffiffiffiffiffiffiffi

2~yðmÞ
p

ffiffiffiffiffiffi
TeV
L−1

q � � � � � �

0.317575 GeV 0.000319953 GeV � � � � � �
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which further leads to

mc ≈ ~gc

ffiffiffiffiffiffiffi
j ~Qj

q
L−1ffiffiffi

2
p

~M
e ~Mð1−~y0Þ ≈ ð124 · ~gcÞ TeV

�
L−1

TeV

�
:

ð23Þ

So for ~gc ≈ 0.1–1, L−1 ≈ 1–100 TeV, we have mc≈
10–10000 TeV. Notice that there is another mixing effect
ifH isUð1Þ0 charged. When electroweak symmetry breaks,
there will be a mass term involving Z and C [26], then to
obtain the mass eigenvalues we shall diagonalize a mass
matrix in ðZ;CÞ basis as

M2 ¼
�

m2
Z βm2

Z

βm2
Z m2

c

�
; ð24Þ

where β is a factor about Oð1Þ or less. Since our m2
c is

apparently much larger than m2
Z, so the mixing would not

be significant and the ρ ¼ m2
Z

m2
1

is very closed to 1, where m1

is the smaller mass eigenvalue. Notice that this heavy gauge
field will also significantly suppress the effective coupling

of some process mediated by it. The effective coupling

which is similar to the Fermi constant Gc ∼
~g2c
m2

c
¼ 1
ð124L−1Þ2 ≈

GF
ð500L−1=TeVÞ2 is much smaller than GF, so this process will

not change the whole amplitude.
Interestingly, given the parameters shown in Tables II

and IV, we do not need to worry about the constraints from
the proton decay. Following the analysis of [22], the
dimension-8 operators leading to proton decay are
QQQL;DUQL;UDEU and QQUE. We show the
domains of the first generation wave functions which
involved the operators in Fig. 3. We find that for each
operator, at least two domains do not overlap, and thus the
integration vanishes.

IV. SUMMARY

In this paper, we have discussed the possibility to
generalize the model constructed in Refs. [21,22] to a
Majorana neutrino case. The extra-dimension scale L−1 is
about several TeV, which seems far from the scale for
seesaw mechanism and is unlikely to explain the small
neutrino masses naturally. But we note that the smallness of
neutrino masses can be a synthesized effect of the type-I

FIG. 3. The domains of the first generation wave functions. The left top is for the operator QQQL; the right top is for the DUQL; the
left bottom is for the UDEU; while the right bottom is for the QQUE.
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seesaw and the overlap integration of the localized lepton
wave functions. We find that a 5D scalar Φ with an
exponentially warped VEV, which was initially introduced
in Refs. [21,22] to generate a hierarchy between gener-
ations, can also be used to generate large Majorana masses
for the neutrino right-handed 0-modes. The strategy is to
let Φ couple with the singlet neutrino field in the manner
Φ�2N̄c

RNR. When Φ acquires a nonzero vacuum expect-
ation value, hΦðyÞi2, which exponentially depends on the
extra-dimension coordinate y, will be extremely large near
y ¼ L so that the third generation of right-handed neutrino
will be very heavy and turn on the seesaw mechanism.
At the same time, if the positions of the 0-thickness
branes and the 5D bulk mass MN are properly chosen, the
overlap integration of the left-handed and right-handed
neutrino wave functions will be also smaller than that
of the charged leptons. Both of these effects work
together, and they can significantly suppress the neutrino
masses.
To justify the model, it is necessary to add a Uð1Þ0 gauge

symmetry into the model. This symmetry prohibits some
troublesome terms like L̄σ2H�H†σ2Lc and the explicit
Majorana terms. When Φ obtains a nonzero vacuum
expectation value, the Uð1Þ0 symmetry will break sponta-
neously. Since the mass of the Uð1Þ0 gauge boson is very
large, it will not change the prediction significantly.
For consistency, we also discuss how the anomaly cancel-
lation conditions constrain the Uð1Þ0 charge of each field.
The numerical results of our model parameters have no
significant hierarchy among them. They can fit all masses
and flavor mixing data very well. We use this set of
parameters to calculate some observable quantities such
as the effective Majorana mass, and we find it is consistent
with the double-beta decay experiments. Our parameters
also rescue us from the stringent proton-decay constraint on
the cutoff scale.
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APPENDIX A: THE GENERAL SETUP OF
THE FRAMEWORK

In this Appendix we briefly review the extra-dimension
model with point interactions. The basic setup is to let all
fields live in 5D spacetime and have point interactions
with some 0-thickness branes [21,22]. The point inter-
action means a δ-function-potential-like interaction which
vanishes everywhere except at a point in the fifth
dimension [21,36,37].

The action of a 5D fermion field Ψðx; yÞ is given by [21]

S ¼
Z

d4x
Z

dyΨ̄ðx; yÞðiΓM∂M þMFÞΨðx; yÞ; ðA1Þ

whereMF is the 5D bulk mass, and the Γ matrices obey the
Clifford algebra fΓM;ΓNg ¼ −2ηMN with the 5D metric
ηMN ¼ diagf−1; 1; 1; 1; 1g and the indices M, N ¼ 0, 1, 2,
3, 5 and μ, ν ¼ 0, 1, 2, 3. An explicit representation of the Γ
matrices is Γμ ¼ γμ and Γy ¼ −iγ5 ¼ γ0γ1γ2γ3. The varia-
tion of the action (A1) is

δS ¼
Z

d4x
Z

dy½δΨ̄ðiΓM∂M þMFÞΨ

þ Ψ̄ðiΓM∂M þMFÞδΨ�

¼
Z

d4x
Z

dy½δΨ̄ðiΓM∂M þMFÞΨ

− Ψ̄ðiΓM ∂ M −MFÞδΨþ ∂MðΨ̄iΓMδΨÞ�: ðA2Þ

Thus, δS=δΨ̄ ¼ 0 implies the equation of motion (EOM)
for Ψ:

ðiΓM∂MþMFÞΨ¼
�−∂yþMF iσμ∂μ

iσ̄μ∂μ ∂yþMF

��
ΨL

ΨR

�
¼ 0;

ðA3Þ

where the field Ψðx; yÞ has been decomposed into the left-
handed and right-handed components ΨL;R ¼ PL;RΨ ¼
½ð1∓γ5Þ=2�Ψ in the chiral representation of Dirac matrices
γμ. Taking the complex conjugate of Eq. (A3) gives the

EOM for Ψ̄: Ψ̄ðiΓM ∂ M −MFÞ ¼ 0. Substituting it and
(A3) into (C8) and taking δS ¼ 0, we obtain

0 ¼
Z

d4x
Z

dy∂MðΨ̄ΓMδΨÞ

¼
Z

d4x
Z

dy½∂μðΨ̄ΓμδΨÞ þ ∂yðΨ̄ΓyδΨÞ�: ðA4Þ

Since the integral of the 4D total divergence vanishes,R
d4x∂μðΨ̄ΓμδΨÞ ¼ 0, we have

Z
dy∂yðΨ̄ΓyδΨÞ ¼ 0 ðA5Þ

which, as we have seen, is required for the consistency of
the EOMs for Ψ and Ψ̄.
Now let us consider a toy model, in which the extra one-

dimensional space is an interval with length L and in the
fifth dimension there are three boundary points assigned as
0, L1ð< LÞ, L, respectively. In this case, Eq. (A5) implies
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0 ¼
Z

L

0

dy∂yðΨ̄ΓyδΨÞ ¼
�Z

L1−ϵ

0

þ
Z

L

L1þϵ

�
dy∂yðΨ̄ΓyδΨÞ

¼ ðΨ̄ΓyδΨÞjy¼L − ðΨ̄ΓyδΨÞjy¼0 þ ðΨ̄ΓyδΨÞjy¼L1−ϵ

− ðΨ̄ΓyδΨÞjy¼L1þϵ; ðA6Þ

where ϵ is a positive infinitesimal length. A sufficient
condition to satisfy Eq. (A6) is to let the term vanish at all
the boundary points:

Ψ̄ΓyδΨ ¼ iðΨ†
RδΨL −Ψ†

LδΨRÞ ¼ 0

ðat y ¼ 0; L1 � ϵ; LÞ: ðA7Þ

It is sufficient to satisfy Eq. (A7) by imposing the Dirichlet
boundary condition

ΨR ¼ 0 or ΨL ¼ 0 ðat y ¼ 0; L1 � ϵ; LÞ: ðA8Þ

More specifically, we can take ΨR ¼ 0 (or ΨL ¼ 0) at all
the boundary points to realize the left-handed (or right-
handed) fermions in the zero-mode sector, as we will
discuss later.
Multiplying the operator ðiΓN∂N −MFÞ on Eq. (A3)

from the left gives

ðiΓN∂N −MFÞðiΓM∂M þMFÞΨ

¼
�−DD† þ ∂μ∂μ

−D†Dþ ∂μ∂μ

��
ΨL

ΨR

�
¼ 0;

ðA9Þ

where D≡∂yþMF, D†≡−∂yþMF, and ∂μ∂μ≡
ημν∂μ∂ν¼−∂2

t þ∇2 with the 4D metric ημν ¼
diagð−1; 1; 1; 1Þ. Let us separate variables of the solutions
of Eq. (A9) as follows:

ΨLðx; yÞ ¼
X
n

ψ ðnÞL ðxÞfψ ðnÞL
ðyÞ;

ΨRðx; yÞ ¼
X
n

ψ ðnÞR ðxÞfψ ðnÞR
ðyÞ: ðA10Þ

For every particular solution of the left-handed wave

function, ΨLðx; yÞ ¼ ψ ðnÞL ðxÞfψ ðnÞL
ðyÞ, we have

0 ¼ ð−DD† þ ∂μ∂μÞψ ðnÞL ðxÞfψ ðnÞL
ðyÞ

¼ ½−DD†f
ψ ðnÞL
ðyÞ�ψ ðnÞL ðxÞ þ ½∂μ∂μψ ðnÞL ðxÞ�fψ ðnÞL

ðyÞ

¼ ½ð−DD† þM2
ψ ðnÞ Þfψ ðnÞL

ðyÞ�ψ ðnÞL ðxÞ; ðA11Þ

where we have used the 4D Klein-Gordon equation

ð∂μ∂μ −M2
ψ ðnÞ Þψ

ðnÞ
L ðxÞ ¼ 0. Equation (A11) implies

DD†f
ψ ðnÞL
ðyÞ ¼ M2

ψ ðnÞfψ ðnÞL
ðyÞ: ðA12aÞ

Likewise, using ð∂μ∂μ −M2
ψ ðnÞ Þψ

ðnÞ
R ðxÞ ¼ 0, we obtain

D†Df
ψ ðnÞR
ðyÞ ¼ M2

ψ ðnÞfψ ðnÞR
ðyÞ: ðA12bÞ

In Eqs. (A12a) and (A12b), we have used the fact that
the operators DD† and D†D are supersymmetric quantum
mechanical partners [18,25,27] and thus they have
exactly the same eigenvalues except for the lowest zero
eigenvalue. It can be easily explained as follows. If f

ψ ðnÞL
ðyÞ

is the eigenfunction of DD† with the eigenvalue M2
ψ ðnÞ and

M2
ψ ðnÞ ≠ 0, then

D†D½D†f
ψ ðnÞL
ðyÞ� ¼ D†½DD†f

ψ ðnÞL
ðyÞ� ¼ M2

ψ ðnÞ ½D†f
ψ ðnÞL
ðyÞ�;
ðA13Þ

that is, D†f
ψ ðnÞL
ðyÞ is an eigenfunction of D†D with the

same eigenvalue M2
ψ ðnÞ . Define f

ψ ðnÞR
ðyÞ ∝ D†f

ψ ðnÞL
ðyÞ and

let f
ψ ðnÞR
ðyÞ have the same normalization as f

ψ ðnÞL
ðyÞ:

hf
ψ ðnÞL
ðyÞjf

ψ ðnÞL
ðyÞi≡

Z
dy½f

ψ ðnÞL
ðyÞ��f

ψ ðnÞL
ðyÞ ¼ 1 ðA14Þ

which implies

Z
dy½D†f

ψ ðnÞL
ðyÞ��D†f

ψ ðnÞL
ðyÞ

¼
Z

dy½f
ψ ðnÞL
ðyÞ��DD†f

ψ ðnÞL
ðyÞ ¼ M2

ψ ðnÞ : ðA15Þ

Then it is sufficient to get hf
ψ ðnÞR
ðyÞjf

ψ ðnÞR
ðyÞi ¼ 1 by letting

f
ψ ðnÞR
ðyÞ ¼ 1

Mψ ðnÞ
D†f

ψ ðnÞL
ðyÞ: ðA16aÞ

Multiplying the operator D on the above equation from the
left gives

f
ψ ðnÞL
ðyÞ ¼ 1

Mψ ðnÞ
Df

ψ ðnÞR
ðyÞ: ðA16bÞ

Substituting a pair of chiral modes of (A10) into
Eq. (A3),

�
D† iσμ∂μ

iσ̄μ∂μ D

�0@ψ ðnÞL ðxÞfψ ðnÞL
ðyÞ

ψ ðnÞR ðxÞfψ ðnÞR
ðyÞ

1
A ¼ 0; ðA17Þ

we have
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ψ ðnÞL ðxÞ½D†f
ψ ðnÞL
ðyÞ� þ ½iσμ∂μψ

ðnÞ
R ðxÞ�fψ ðnÞR

ðyÞ ¼ 0 ðA18aÞ

½iσ̄μ∂μψ
ðnÞ
L ðxÞ�fψ ðnÞL

ðyÞ þ ψ ðnÞR ðxÞ½Df
ψ ðnÞR
ðyÞ� ¼ 0 ðA18bÞ

which, together with Eqs. (A16a) and (A16b), lead to

iσμ∂μψ
ðnÞ
R ðxÞ þMψ ðnÞψ

ðnÞ
L ðxÞ ¼ 0 ðA19aÞ

iσ̄μ∂μψ
ðnÞ
L ðxÞ þ þMψ ðnÞψ

ðnÞ
R ðxÞ ¼ 0; ðA19bÞ

that is,

�Mψ ðnÞ iσμ∂μ

iσ̄μ∂μ Mψ ðnÞ

� 
ψ ðnÞL ðxÞ
ψ ðnÞR ðxÞ

!
¼ 0: ðA20Þ

Thus, the combination ψ ðnÞðxÞ≡ ðψ ðnÞL ðxÞ;ψ ðnÞR ðxÞÞT obeys
the 4D Dirac equation ði∂ þMψ ðnÞ Þψ ðnÞðxÞ ¼ 0 and forms a
Dirac spinor.
Suppose that the eigenequation (A12a) ofDD† has a zero

eigenvalueM2
ψ ðnÞ ¼ 0with the corresponding eigenfunction

f
ψ ð0ÞL
ðyÞ called the 0-mode. That is, DD†f

ψ ð0ÞL
ðyÞ ¼ 0. It is

sufficient to satisfy the above relation if f
ψ ð0ÞL
ðyÞ is annihi-

lated by D†:

D†f
ψ ð0ÞL
ðyÞ ¼ ð−∂y þMFÞfψ ð0ÞL

ðyÞ ¼ 0: ðA21Þ

(i) If the Dirichlet boundary condition ΨLðx; yÞ ¼ 0 is
imposed at y ¼ 0, L1 � ϵ, L, that is,

f
ψ ð0ÞL
ðyÞ ¼ 0 ðat y ¼ 0; L1 � ϵ; LÞ; ðA22Þ

then Eqs. (A21) and (A22) imply that f
ψ ð0ÞL
ðyÞ ¼ 0 at

all points. Thus, the 0-mode eigenfunction of DD†

does not exist in the boundary condition of (A22).
(ii) If the Dirichlet boundary condition ΨRðx; yÞ ¼ 0 is

imposed at y ¼ 0, L1 � ϵ, L, that is,

f
ψ ð0ÞR
ðyÞ ¼ 0 ðat y ¼ 0; L1 � ϵ; LÞ: ðA23Þ

then this boundary condition has no effect on
Eq. (A21), but the setup of the 0-thickness branes’
positions itself can split the solutions of (A21) into
two independent degenerate modes:

f
ψ ð0ÞL ;ð1ÞðyÞ ¼

�
N1eMFy ð0 ≤ y < L1Þ
0 ðL1 ≤ y < LÞ ðA24aÞ

f
ψ ð0ÞL ;ð2ÞðyÞ ¼

�
0 ð0 ≤ y < L1Þ
N2eMFy ðL1 ≤ y < LÞ; ðA24bÞ

where N1 and N2 are normalization constants and, by
using (A14), they can be figured out as

N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF

e2MFL1 − 1

r
;

N2 ¼ e−MFL1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

e2MFðL−L1Þ − 1

r
: ðA25Þ

Using the Heaviside step function θðyÞ, we can also
write the two degenerate zero modes as follows:

f
ψ ð0ÞL ;ð1ÞðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

e2MFL1 − 1

r
eMFy½θðyÞθðL1 − yÞ�

ðA26aÞ

f
ψ ð0ÞL ;ð2ÞðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

e2MFðL−L1Þ − 1

r
eMFðy−L1Þ

× ½θðy − L1ÞθðL − yÞ�: ðA26bÞ

The 5D wave function of 0-mode Ψð0ÞL ðx; yÞ may be
expanded with respect to f

ψ ð0ÞL ;ð1ÞðyÞ and fψ ð0ÞL ;ð2ÞðyÞ as

Ψð0ÞL ðx; yÞ ¼ ψ ð0Þ1L ðxÞfψ ð0ÞL ;ð1ÞðyÞ þ ψ ð0Þ2L ðxÞfψ ð0ÞL ;ð2ÞðyÞ;
ðA27Þ

where the coefficients ψ ð0Þ1L ðxÞ and ψ ð0Þ2L ðxÞ are iden-
tified with the 4D wave functions of two generations
of left-handed fermions in this toy model.

Likewise, consider the 0-mode eigenfunction f
ψ ð0ÞR
ðyÞ of

D†D. It obeys the equation D†Df
ψ ð0ÞR
ðyÞ ¼ 0. A sufficient

condition of this equation is

Df
ψ ð0ÞR
ðyÞ ¼ ð∂y þMFÞfψ ð0ÞR ðyÞ ¼ 0: ðA28Þ

(i) If the Dirichlet boundary condition (A22) for the
left-handed fermion is imposed, then it is the
location of the point-interaction positions, rather
than Eq. (A22), that affects the solutions of (A28)
and splits them into two degenerate modes:

f
ψ ð0ÞR ;ð1ÞðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

1 − e−2MFL1

r
e−MFy½θðyÞθðL1 − yÞ�

ðA29aÞ

f
ψ ð0ÞR ;ð2ÞðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MF

1 − e−2MFðL−L1Þ

r
e−MFðy−L1Þ

× ½θðy − L1ÞθðL − yÞ�: ðA29bÞ

The expansion of the 5D wave function of 0-mode

Ψð0ÞR ðx; yÞ with respect to the two modes is given by
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Ψð0ÞR ðx; yÞ ¼ ψ ð0Þ1R ðxÞfψ ð0ÞR ;ð1ÞðyÞ þ ψ ð0Þ2R ðxÞfψ ð0ÞR ;ð2ÞðyÞ;
ðA30Þ

where the 4D wave functions ψ ð0Þ1R ðxÞ and ψ ð0Þ2R ðxÞ
belong to two generations of right-handed fermions
in this toy model.

(ii) If the Dirichlet boundary condition (A23) for the
right-handed fermion is imposed, then Eqs. (A28)
and (A23) imply that f

ψ ð0ÞR
ðyÞ ¼ 0 at all points. That

is, the 0-mode eigenfunction ofD†D vanishes in this
boundary condition.

To sum up, if the boundary conditionΨL ¼ 0 is imposed at
all the 0-thickness branes’ positions, then the 5D fermion

field Ψðx; yÞ has only right-handed 0-modes Ψð0ÞR ðx; yÞ as
given in Eq. (A30); instead, if ΨR ¼ 0 is imposed at all the
boundary points, thenΨðx; yÞ has only left-handed 0-modes

Ψð0ÞL ðx; yÞ as given in Eq. (A27). In a word, the Dirichlet
boundary condition ΨL;R ¼ 0 makes the 0-mode wave
functions of Ψðx; yÞ to be chiral. Including the KK modes
(i.e. the modes with M2

ψ ðnÞ ≠ 0), the expansion of a 5D

fermion field Ψðx; yÞ in all modes is given by
(i) For ΨL ¼ 0 at y ¼ 0, L1, L

Ψðx;yÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF

1−e−2MFL1

r
e−MFy½θðyÞθðL1−yÞ�ψ ð0Þ1R ðxÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF

1−e−2MFðL−L1Þ

r
e−MFðy−L1Þ

× ½θðy−L1ÞθðL−yÞ�ψ ð0Þ2R ðxÞ
þðKKmodesÞ: ðA31Þ

(ii) For ΨR ¼ 0 at y ¼ 0, L1, L

Ψðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF

e2MFL1 − 1

r
eMFy½θðyÞθðL1 − yÞ�ψ ð0Þ1L ðxÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MF

e2MFðL−L1Þ − 1

r
eMFðy−L1Þ

× ½θðy − L1ÞθðL − yÞ�ψ ð0Þ2L ðxÞ
þ ðKKmodesÞ: ðA32Þ

To realize both left-handed and right-handed 0-mode fer-
mions in this two-generation toymodel, we need at least two
5D fermion fields, Ψ1ðx; yÞ and Ψ2ðx; yÞ. One 5D fermion
Ψ1ðx; yÞ has two left-handed 0-modes due to the boundary
condition PRΨ1ðx; yÞ ¼ 0 at points y ¼ 0, L1, L; while
another 5D fermionΨ2ðx; yÞ has two right-handed 0-modes
from the boundary condition PLΨ2ðx; yÞ ¼ 0 at points
y ¼ 0, L01, L. The locations of L1 and L01 are in general
not equal. Indeed, it is the inequality of L1 and L01 that leads

to the mixing of the two generations of fermions. A
schematic picture of the wave functions of these 0-mode
chiral fermions is shown in Fig. 4. To give the chiral
fermions masses, we need to introduce an extra 5D scalar
field Φðx; yÞ, which will acquire a nonzero VEV after the
electroweak symmetry breaking. Themixing structure of the
Dirac mass matrix is also explained in Fig. 4.
In addition, it is worthy to point out that the operators

D≡ ∂y þMF and D† ≡ −∂y þMF can be used to con-
struct a pair of supersymmetric generators,Q≡Dγ0PL and
Q† ≡D†γ0PR, which satisfy the supersymmetric algebra
[see the paragraphs between Eqs. (8) and (9) in Ref. [18] for
more details]:

Q2 ¼ Q†2 ¼ 0; fQ;Q†g ¼ 2H;

½Q;H� ¼ ½Q†; H� ¼ 0: ðA33Þ

The Hamiltonian operators (up to a constant factor) is
H ∝ fQ;Q†g ¼ DD†PR þD†DPL, and the pair of modes

ðf
ψ ðnÞL
ðyÞψ ðnÞL ðxÞ; fψ ðnÞR

ðyÞψ ðnÞR ðxÞÞT is an eigenstate of H

with eigenvalue M2
ψ ðnÞ .

APPENDIX B: QUARK MASSES HIERARCHY
AND FLAVOR MIXINGS

The Yukawa terms which generate the masses for quarks
are

LYuk
quarks ¼ −

Z
dy½YðuÞΦQ̄ðiσ2H�ÞUR

þ YðdÞΦ�L̄HDR þ H:c:�; ðB1Þ

FIG. 4. A schematic diagram of wave functions for chiral
0-mode fermions. The red curves represent the wave functions for
two generations of right-handed 0-mode fermions, while the blue
curves represent the wave functions for two generations of left-
handed 0-mode fermions. The black line is a profile of a scalar
Φ’s VEV. The overlap integration of the profiles in different
intervals gives the corresponding mass matrix element.
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where YðuÞ and YðdÞ are the couplings with dimension −2
for the up-type and down-type quarks, respectively.
Note that we will let Φ be Uð1Þ0 charged. Then if we do

not want the Uð1Þ0 breaks explicitly, we should also make
UR, DR, Q and H be Uð1Þ0 charged. We have determined
the Uð1Þ0 charge for each field in Sec. III. We can see that
terms as Q̄ðiσ2H�ÞUR and L̄HDR can be forbidden by the
Uð1Þ0 symmetry.
After the Uð1Þ0 and electroweak symmetry breaking, we

obtain Dirac mass terms of quarks. The mixing structure of
the mass matrix will be generated by the overlaps of wave
functions from different generations. Then we can write
down the mass matrices as

mðuÞ ¼

0
B@
mu

11 mu
12 mu

13

0 mu
2 mu

23

0 0 mu
33

1
CA;

mðdÞ ¼

0
B@

md
11 md

12 md
13

0 md
2 md

23

0 0 md
33

1
CA ðB2Þ

mðuÞij ¼ YðuÞ
Z

b

a
dyf

qð0ÞiL
ðyÞf

uð0ÞjR
ðyÞhϕðyÞihHðyÞ�i ðB3Þ

mðdÞij ¼ YðdÞ
Z

b

a
dyf

qð0ÞiL
ðyÞf

dð0ÞjR
ðyÞhϕðyÞihHðyÞi: ðB4Þ

The integration range ða; bÞ represents the overlap region
between the profiles f

qð0ÞiL
ðyÞ and f

uð0ÞjL
ðyÞ or f

dð0ÞjL
ðyÞ. The

integration will contribute to a diagonal element when

i ¼ j, and an off diagonal element when i ≠ j. Two Dirac
mass matrices mðuÞ and mðdÞ are apparently complex and

we can diagonalize them with unitary matrices VðuÞL ðVðdÞL Þ
and VðuÞR ðVðdÞR Þ:

mðuÞdiag ¼ VðuÞL mðuÞVðuÞ†R

mðdÞdiag ¼ VðdÞL mðdÞVðdÞ†R :
ðB5Þ

Then we can compare the masses with experimental data.

Using matrices VðuÞL and VðdÞL , we can calculate the CKM
matrix which is defined as

VCKM ¼ VðuÞL VðdÞ†L : ðB6Þ

The CKM matrix contains not only information about
flavor mixing angles but also information about the CP
violation. The CP violation can be characterized by the
Jarlskog invariant J defined as

Im½ðVCKMÞijðVCKMÞklðV�CKMÞilðV�CKMÞkj� ¼J
X3
m;n¼1

ϵikmϵjln

ðB7Þ

We list the experimental data used in our fitting as follows:
(i) The up- and down-type quark masses are shown in

Table III.
(ii) The absolute values of CKM matrix elements from

Ref. [33] are

jVCKMj ¼

0
B@

0.97425� 0.00022 0.2252� 0.0009 0.00415� 0.049

0.230� 0.011 1.006� 0.023 0.0409� 0.0011

0.0084� 0.0006 0.0429� 0.0026 0.89� 0.07

1
CA: ðB8Þ

(iii) The Jarlskog invariant from Ref. [33]
is J ¼ ð2.96� 0.18Þ × 10−5.

After fitting the data listed above, we found a set of
parameters, which is compatible with the data, and show
them in Table IV. We have set j~λj≡ jλLj ¼ 0.001, j ~Qj≡
jQL5j ¼ 0.001 and ~y0 ≡ y0L−1 ¼ −0.16 fixed as Ref. [21]

did, so the only free parameter of Φ is M. Since Φ and H
also couple to leptons, the values of M and θ which are
found in the quark case will be set fixed to reduce the
number of free parameters in the lepton case. In the

TABLE III. Quark masses from Ref. [33].

Up-type
quark

Mass Down-type
quark

Mass

u 2.3� 0.6 MeV d 4.8� 0.5 MeV
c 1.275� 0.025 GeV s 95� 5 MeV
t 173.5� 1.4 GeV b 4.18� 0.03 GeV

TABLE IV. Best fit parameters for quarks

LðqÞ0 LðqÞ1 LðqÞ2
MQ

0 0.31423L 0.67665L 9.26018L−1

LðuÞ0 LðuÞ1 LðuÞ2
MU

0.05218L 0.06095L 0.56328L −4.48152L−1

LðdÞ0 LðdÞ1 LðdÞ2
MD

0.11866L 0.23128L 0.66636L 5.71010L−1

M ~YðuÞv=
ffiffiffi
2
p

~YðdÞv=
ffiffiffi
2
p

θ

9.36099L−1 3.15684 GeV 0.20552 GeV 2.91684
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following, a parameter with a tilde means it has been scaled
to dimensionless by multiplying some power of L.
Note that we can calculate L� in the Robin boundary

condition by

Lþ ¼ − Φð0Þ
∂yΦð0Þ ¼ −0.118074L

L− ¼ ΦðLÞ
∂yΦðLÞ ¼ 0.104502L:

ðB9Þ

Then we find that M ¼ 9.36099 < 1
L−
¼ 9.5692, which is

consistent with the symmetry breaking condition
jMj2 < 1

L2
max
.

Using the parameters of Φ we can calculate the tree level
mass of the 4D excitation ϕðxÞ. One of its degrees of
freedom will be gauged out by the gauge boson of Uð1Þ0
when the symmetry breaking occurs. To obtain the mass of
ϕðxÞ, we shall consider its excitation around the minimum
of potential

E½Φ� ¼
Z

L

0

dy

�
−Φ†∂2

yΦþM2jΦj2 þ λ

2
jΦj4

�
: ðB10Þ

Substituting the zero mode Φð0Þ ¼ fð0ÞðyÞðνþ ϕÞ,
νfð0ÞðyÞ ¼ hΦðyÞi into E½Φ� and using the minimized
condition, −∂2

yf0ðyÞ þM2f0 þ λν2f30 ¼ 0, we can get
the mass

m2
ϕ ¼ 2

Z
L

0

dyð2λhΦðyÞi2f20Þ ≈
λjQj
M2

e2MðL−y0Þ

¼
~λj ~Qj
~M2

e2 ~Mð1−~y0ÞL−2 ðB11Þ

which implies

mϕ ≈

ffiffiffiffiffiffiffiffiffi
~λj ~Qj

q
~M

e ~Mð1−~y0ÞL−1 ≈ 5.55 TeV ·
�
L−1

TeV

�
: ðB12Þ

If the scale L−1 ∼ Oð1 TeVÞ, this mass is under the
energy scale of LHC. But it is unlikely to be detected in
the recent experiments, because the ϕ-fermion-fermion
couplings are so weak. This can be seen by estimating
the couplings as

ζðqÞij ¼
mðqÞij · A

ν
; ζðeÞij ¼

mðeÞij · A

ν
; ðB13Þ

where

A ¼
ffiffiffiffiffiffiffiffi
2=L

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinhð ~MÞ coshð ~M − 2 ~M ~y0Þ= ~M

q ≃
ffiffiffiffi
2

L

r
2
ffiffiffiffiffi
~M

p
e ~Mð1−~y0Þ

ðB14Þ

ν≃
ffiffiffiffiffiffiffiffiffi
2j ~Qj

q
~M

L−3
2: ðB15Þ

Using the parameters in our fitting, we find the Yukawa
couplings for ϕ-quark-quark and ϕ-lepton-lepton are

ζðqÞij ≃ 0.03 ×
mðqÞij

L−1 ; ζðeÞij ≃ 0.03 ×
mðeÞij
L−1 : ðB16Þ

Both Yukawa couplings are much weaker than the
Yukawa couplings for Higgs-quark-quark and Higgs-
lepton-lepton. Since the coupling is proportional to the
mass, the strongest Yukawa coupling may be the coupl-
ing of ϕ-top-top which is about 0.03 × 0.17 ≈ 0.005
when L−1 ∼ 1 TeV.
Note that there is a CjΦj2jHj2 term which may lead to

some problem with the gauge universality as discussed in
Ref. [21]. We will just let C to be small enough (about 10−7

for L−1 ∼ 1 TeV) to resolve this.

APPENDIX C: WHY AN EXPLICIT MAJORANA
MASS TERM DOES NOT WORK

The 5D charge conjugation operator C is defined as

CΓMC−1 ¼ ðΓMÞT ðC1Þ
with properties

CT ¼ C−1 ¼ C† ¼ −C: ðC2Þ
It is easy to check that C can be written as C ¼ γ0γ2ðiγ5Þ
[18]. We can write it in Weyl basis

C ¼
�
ϵab

−ϵ _a _b

�
: ðC3Þ

The charge conjugation of a 5D fermion is defined as

Ψc ¼ CΨ̄T: ðC4Þ

We can also write it down in Weyl basis:

Ψðx; yÞ ¼
�

ξaðx; yÞ
χ† _aðx; yÞ

�
⇒ Ψc ¼

�
χaðx; yÞ
−ξ† _aðx; yÞ

�
: ðC5Þ

Note that the relation ðΨcÞc ¼ Ψ no longer holds in the 5D
case and the correct relation is ðΨcÞc ¼ −Ψ.
Now we consider to add terms as Ψ̄iΓM∂MΨc þ H:c:

After several lines of calculation, we can get

Ψ̄iΓM∂MΨc ¼ Ψ̄iΓM∂MCΨ̄T

¼ ∂MðΨ̄iΓMΨcÞ − Ψ̄iΓM∂MΨc: ðC6Þ
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This implies that these terms can be absorbed into the
boundary terms and do not contribute to the equations of
motion.
However, the mass terms as MRΨ̄Ψc þ H:c: survive and

will contribute to the equations of motion. Now let us add
the mass terms into the action:

S ¼
Z

d4x
Z

dy½Ψ̄ðx; yÞðiΓM∂M þMFÞΨðx; yÞ

þ 1

2
ðMRΨ̄Ψc þ H:c:Þ�: ðC7Þ

The variation of the action (C7) is

δS ¼
Z

d4x
Z

dy

�
δΨ̄ðiΓM∂M þMFÞΨ

þ Ψ̄ðiΓM∂M þMFÞδΨþ
1

2
MRδΨ̄Ψc þ 1

2
MRΨ̄δΨc

þ 1

2
MRδΨ̄cΨþ 1

2
MRΨ̄cδΨ

�

¼
Z

d4x
Z

dy½δΨ̄ðiΓM∂M þMFÞΨ

− Ψ̄ðiΓM ∂ M −MFÞδΨ
þ ∂MðΨ̄iΓMδΨÞ þMRδΨ̄Ψc þMRΨ̄cδΨ�: ðC8Þ

Thus, the equation of motion (EOM) becomes

0 ¼ ðiΓM∂M þMFÞΨþMRΨc

¼
�−∂y þMF iσμ∂μ

iσ̄μ∂μ ∂y þMF

��
ξaðx; yÞ
χ† _aðx; yÞ

�

þ
�
MR

MR

��
χaðx; yÞ
−ξ† _aðx; yÞ

�
: ðC9Þ

If we try to separate the field in modes as

ξaðx; yÞ ¼
P

nf
ðnÞðyÞξðnÞa ðxÞ, χa ¼

P
ng
ðnÞðyÞχðnÞa ðxÞ, then

the equations for each mode become

ð−∂y þMFÞfðnÞðyÞξðnÞa ðxÞ þMRgðnÞðyÞχðnÞa ðxÞ
þ gðnÞ�ðyÞiσμ∂μχ

ðnÞ† _aðxÞ ¼ 0 ðC10Þ

ð∂y þMFÞgðnÞ�ðyÞχðnÞ† _aðxÞ −MRfðnÞ�ðyÞξðnÞ† _aðxÞ
þ fðnÞiσ̄μ∂μξ

ðnÞ
a ðxÞ ¼ 0: ðC11Þ

Apparently, in a general case, it is impossible to factor out
the functions fðnÞðyÞ, gðnÞðyÞ from the 4D Dirac equations
of spinors ξaðxÞ, χaðxÞ. This means a special choice which
can achieve this is to let MF ¼ 0 and χ† _a ¼ −ξ† _a, then the
EOM becomes

ð∂y þMRÞξaðx; yÞ þ iσμa _a∂μξ
† _aðx; yÞ ¼ 0 ðC12Þ

ð−∂y þMRÞξ† _aðx; yÞ þ iσ̄μ _aa∂μξaðx; yÞ ¼ 0: ðC13Þ

We can recover the 4D Dirac equation for a Majorana
fermion by setting ξaðx; yÞ ¼ AξaðxÞ where A is a constant
so the profile is independent of the fifth dimension
coordinate y. Thus, this fermion has only one mode with
a Majorana mass MR. But this solution requires some
special choice of the 5D fermion.
If we accept this special pattern of fermion to be the

singlet neutrino NR, and generate Dirac masses with the
Yukawa interaction, then the seesaw turns on when
the Majorana mass is much larger than the Dirac ones.
However, an operator as L̄σ2H�H†σ2Lc is still allowed and
it will contribute to the Majorana masses of left-handed
zero modes. Now we have to diagonalize the following
mass matrix:

M ¼
�
ML MD

MT
D MR

�
: ðC14Þ

In the large MR limit, the light neutrino masses are
mν ≈ML −MDMT

D=MR. These masses should be as small
as O(0.1 eV) to fit the current neutrino mass bound and
imply that either we use an unnaturally small coupling for
L̄σ2H�H†σ2Lc operator or we fine-tune the parameters to
cancel ML by MDMT

D=MR in high precision.
Actually, in the SM the gauge symmetries and the lepton

number conservation do not allow the explicit Majorana
mass term and L̄σ2H�H†σ2Lc to exist. However, in this
model we are going to add a SM-gauge-group singlet
neutrino field into the model, and try to violate the lepton
number explicitly. Thus, we have to face these annoying
terms unless they are also forbidden by some symmetry. The
strategy we use in the paper is to forbid both L̄σ2H�H†σ2Lc

and MRΨ̄Ψc þ H:c:. terms by a U(1)’ symmetry. Then the
singlet neutrinos have chiral zero modes as any other
fermions. Their right-handed Majorana masses are gener-
ated by the VEV of Φ with the same mechanism as their
Diracmasses generated by theVEVofΦ and theHiggs field.
Now the mass matrix we need to diagonalize is

M ¼
�

0 MD

MT
D MR

�
: ðC15Þ

In the large MR limit, the light neutrino masses are mν ≈
MDMT

D=MR which can be naturally suppressed to
O(0.1 eV).
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