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While it is often stated that the notion of electroweak (EW) naturalness in supersymmetric models is
subjective, fuzzy and model dependent, here we argue the contrary: electroweak naturalness can be elevated
to a principle which is both objective and predictive. We demonstrate visually when too much fine-tuning
sets in at the electroweak scale which corresponds numerically to the measure ΔBG ∼ ΔEW ≳ 30. While
many constrained supersymmetry models are already excluded by this value, we derive updated upper
bounds on sparticle masses within the two-extra parameter nonuniversal Higgs model (NUHM2).
We confirm the classic Barbieri-Giudice (BG) result that ΔBG < 30 implies μ < 350 GeV. However,
by combining dependent soft terms which appear as multiples of m3=2 in supergravity models, then we
obtain m~g ≲ 4 TeV as opposed to the BG result that m~g ≲ 350 GeV. We compare the NUHM2 results to a
similar scan in the phenomenological minimal supersymmetric standard model (pMSSM) with 19 weak
scale parameters. In the pMSSM with complete one-loop scalar potential plus dominant two-loop terms,
then a m~g < 7 TeV bound is found. Our tabulation of upper bounds provides a target for experimenters
seeking to discover or else falsify the existence of weak scale supersymmetry. In an Appendix, we show
contributions to the naturalness measure from one-loop contributions to the weak scale scalar potential.
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I. INTRODUCTION

Weak scale supersymmetry (SUSY) [1] is a highly
motivated paradigm for physics beyond the Standard
Model (SM). The principal motivation is that it offers a
technical solution to the gauge hierarchy problem or
naturalness problem of the SM in that it ensures can-
cellation of quadratic divergences of scalar field masses
to all orders in perturbation theory [2]. This is especially
relevant now that a bona fide fundamental scalar has
been discovered [3,4]: i.e. the Higgs boson h. The SUSY
technical solution is accomplished in a highly simple
manner: merely extending the set of spacetime sym-
metries which underlies quantum field theory to their
most general structure based upon a graded Lie algebra.
In fact the SUSY paradigm is supported indirectly via
three sets of measurements:
(1) the measured values of the three gauge forces at the

weak scale are exactly what is needed for SUSY
gauge coupling unification [5],

(2) the measured value of the top quark mass is
exactly what is needed to properly drive a
radiative breakdown in electroweak (EW) sym-
metry [6] and

(3) the measured value of the Higgs boson mass
mh ¼ 125.09� 0.24 GeV falls squarely within the
predicted narrow band of allowed minimal super-
symmetric standard model (MSSM) values [7].

On the negative side of the ledger, there is as of yet no sign
of supersymmetric matter after extensive runs of LHC atffiffiffi
s

p ¼ 7–8 TeV [8,9]. This fact has led many theorists to
question the validity of SUSY in light of the oft-repeated
mantra that weak scale naturalness requires weak scale
sparticles. It is also baffling on the experimental side as
to when the weak scale SUSY hypothesis is ruled out, and
when one ought to move on to alternative directions. This is
especially vexing in that many theoretical predictions tend
to lie just beyond current exclusion limits: when the
exclusion limits increase, then the theoretical predictions
retreat towards higher mass values again just beyond the
latest lower mass bounds. This leads to the important
question: what does it take to falsify the weak scale SUSY
hypothesis? When is the job done? Are new accelerators and
experiments required, or does LHC with

ffiffiffi
s

p
∼ 13–14 TeV

and high luminosity have the necessary resolving power?
Historically, an answer to this question was provided

in the classic paper by Barbieri and Giudice (BG) [10]
wherein—based upon the “naturalness criterion”—they
derived upper bounds on various sparticle masses.1

These upper bounds could serve as targets for experimental
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facilities with the intent to discover or disprove weak scale
SUSY. Following earlier work by Ellis et al. [12], they
introduced the naturalness measure2

ΔBG ≡maxi

���� ∂ logm
2
Z

∂ logpi

����; ð1Þ

where the pi are fundamental parameters of the theory
labeled by the index i. Working within the MSSM with
unified GUT scale soft breaking terms m0; m1=2; A0 and B,
they presented upper bounds on sparticle masses and
parameters as a function of the top-quark mass (which
of course was not yet known at the time). In light of
our present knowledge of the top quark mass
(mt ¼ 173.21� 0.87 GeV PDG value with combined stat-
istical/systematic errors), they would conclude that in order
to accommodate ΔBG < 10 (or better than 10% fine-tuning
in mZ), then m0 ≲ 300 GeV, m1=2 ≲ 100 GeV and μ≲
200 GeV. These upper bounds implied that the lighter
charginos m ~W1

≲ 100 GeV and gluinos m~g ≲ 350 GeV.
Explorations at LEP2 resulted in limits of m ~W1

>
103.5 GeV [14] so that weak scale SUSYalready appeared
somewhat fine-tuned by the post-LEP and pre-LHC era
[15]. The current limits on gluino mass from LHC8 require
m~g ≳ 1300 GeV. Thus, in the post LHC8 era, the natural-
ness issue has intensified, and based upon these theory/
experiment confrontations, one might well be tempted to
conclude that weak scale SUSY has been disproved [16].
In this paper, we reexamine upper bounds on sparticle

masses from the naturalness principle. In Sec. II, we discuss
naturalness and fine-tuning and articulate the Naturalness
Principle. In Sec. III, we apply the Naturalness Principle
at the weak scale to derive the electroweak fine-tuning
measure ΔEW. In Sec. IV we discuss Barbieri-Giudice fine-
tuning ΔBG, how it depends on the selection of an indepen-
dent parameter set and how it relates toΔEW: when properly
applied by combining dependent contributions, then
ΔBG ≃ ΔEW. In Sec. V, we demonstrate visually when too
much fine-tuning sets in and what values ofΔEW ≃ ΔBG are
too much. In Sec. VI we derive upper bounds on sparticle
masses in the two-extra parameter nonuniversal Higgs
model (NUHM2) and compare them to upper bounds from
the classic BGpaper. In Sec. VII, we derive alternative upper
bounds arising from a scan over the 19 dimensional weak
scale pMSSM parameter space. We compare these against
results from the 19 parameter SUGRAmodelwith soft terms
defined at Q ¼ mGUT. In Sec. VIII, we conclude by
presenting a bar chart of upper bounds on sparticle masses
which form a target for experimenters seeking to confirm or
refute weak scale supersymmetry. The hard target is that
μ < 350 GeV in anymodels (defined at a high scale or weak

scale) based on theMSSM. Inmodelswith RG running from
mGUT to mweak, then m~g ≲ 2ð4Þ TeV for ΔBG ≃ ΔEW <
10ð30Þ. If one dispenses with RG running as in the pMSSM,
then no bound is obtained on m~g using the one-loop RG-
improved effective potential. By including leading two-loop
contributions to the scalar potential,we find a boundofm~g <
7 TeV for ΔEW < 30 in the pMSSM. In an Appendix,
we discuss the contributions to ΔEW from various radiative
corrections Σu

uðiÞ and plot their magnitudes in two-
dimensional parameter planes.

II. THE NATURALNESS PRINCIPLE

Several definitions of naturalness can be found in the
literature: some are more abstract while others are more
pragmatic. Here we articulate the following Naturalness
Principle.3,4

An observable O is natural if all independent contribu-
tions to O are less than or of order O.
Suppose O can be calculated in terms of n independent

contributions O ¼ o1 þ � � � þ on. If one of the contribu-
tions, say on, is far larger than O, then it would have to be
the case that one or more of the oi would have to be a large
opposite sign contribution which would require fine-tuning
of oi ∼ −on such that O ≪ on. This is the link between
naturalness and fine-tuning: a quantity O is natural if it
requires no large fine-tuning of independent contributions
to maintain its measured value.
A common pitfall in evaluating when a quantity is

natural is to split it into dependent contributions: if O ¼
o1 þ o2 þ � � �, but as one increases o1 then o2 necessarily
increases to large opposite sign, then o1 and o2 should be
combined before the final evaluation of naturalness. This
pitfall has been dubbed the “fine-tuning rule” [19].
To see how ΔBG is a measure of naturalness, consider

the observable O expressed as a linear combination of n
fundamental parameters pi:

O ¼ a1p1 þ � � � þ anpn; ð2Þ

where the ai are numerical coefficients. Applying the ΔBG
measure, we would find

ΔBG ¼ maxi

����pi

O
∂O
∂pi

���� ¼ maxijaipi=Oj; ð3Þ

i.e. the BG measure just picks off each term on the
right-hand side of Eq. (2) and compares it to O.5 To avoid

2The authors of Ref. [13] note the link between naturalness and
Bayesian statistics wherein naturalness corresponds to “more
probable.”

3Dimopoulos and Susskind articulate: “Naturalness: no param-
eter needs to be adjusted to unreasonable accuracy” [17].

4Weinberg states: “The appearance of fine-tuning in a scientific
theory is like a cry of distress from nature, complaining that
something needs to be better explained” [18].

5If terms include powers of pi, e.g. O ¼ P
iaip

ni
i , then each

sensitivity coefficient contains an additional factor of ni.
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fine-tunings, then ΔBG should be less than some value
(typically 10–100) depending on howmuch fine-tuning one
is willing to tolerate.

III. WEAK SCALE NATURALNESS

Starting with the weak scale scalar (Higgs) potential of
the MSSM, the minimization conditions ∂V

∂h0�u ¼ ∂V
∂h0�d ¼ 0

allow one to determine the Higgs field VEVs in terms of the
soft SUSY breaking parameters and the μ parameter [1].
Then, since m2

Z ¼ ðg2 þ g02Þðv2u þ v2dÞ=2, we can relate
the observed value of mZ to the weak scale SUSY
parameters as

m2
Z

2
¼ ðm2

Hd
þ Σd

dÞ − ðm2
Hu

þ Σu
uÞtan2β

ðtan2β − 1Þ − μ2

≃ −m2
Hu

− μ2: ð4Þ

Here, m2
Hu

and m2
Hd

are the weak scale soft SUSY breaking
Higgs masses, μ is the supersymmetric Higgsino mass term
and Σu

u and Σd
d contain an assortment of loop corrections

to the effective potential.6 Already at this stage (not yet
worrying about high scale parameters), the naturalness
principle requires each term on the right-hand side (rhs) of
Eq. (4) to be comparable to or less than m2

Z=2. From the
partial equality on the rhs, it is plain to see that the weak
scale values of m2

Hu
, μ2 and the various Σu

uðiÞ (i labels the
various loop contributions) should all be comparable to or
less than m2

Z=2 [20]. This allows us to define the electro-
weak fine-tuning measure ΔEW as

ΔEW ¼ max jeach term on rhs of Eq: ð4Þj=ðm2
Z=2Þ: ð5Þ

In gravity mediation, the GUT scale soft terms are
expected to be of order the gravitino mass m3=2. Since
the physical sparticle masses are derived from the soft
terms, we thus expect the weak scale soft terms also to be of
order m3=2. Since LHC8 requires multi-TeV values of m~g

andm ~q, then it seems LHC8 is telling us thatm3=2 is also in
the multi-TeV range. This is good news for the SUSY
flavor and CP problems [21] and the gravitino problem
[22]: all these are ameliorated by multi-TeV values of m3=2

and sparticle masses. The puzzle then is: why is mZ (and
mW and mh) not also at the multi-TeV scale? There is one
soft term whose weak scale value may be very different
from its GUT scale value. The term m2

Hu
may hold multi-

TeV values at mGUT but is necessarily driven through zero
to negative values at Q ¼ mweak in order to break electro-
weak symmetry [6]. If it is driven to small values

comparable to −m2
Z=2 rather than large negative values,

then one naturalness condition may be satisfied. This case
has been dubbed radiatively driven naturalness [23,24].
The other condition for naturalness is that μ2 ∼m2

Z=2.
7 In

this case, we note that μ is SUSY conserving and not SUSY
breaking. It is a very different entity from the soft terms:
naively, it would be present even in the absence of SUSY
breaking. In this case, one expects its value to be of order
the GUT or Planck scale MP. How it comes instead to be
∼mZ is known as the SUSY μ problem [28]. There are
two parts to the solution of the SUSY μ problem: first, one
must forbid it (via some symmetry) from attaining values
∼MP, and second, one must regenerate it of order mZ (via
symmetry breaking). In the original Kim-Nilles formu-
lation [28], it was noted that in the SUSY DFSZ [29] axion
model, Peccei-Quinn symmetry forbids the μ term. The
spontaneous breaking of Peccei-Quinn (PQ) symmetry at
scale fa ∼ 1011 GeV generates an axion (thus solving the
notorious strong charge conjugation times parity symmetry
problem), but also generates a μ term of order f2a=MP [30].
Since one expects the gravitino mass (and hence soft terms)
to be of order m3=2 ∼m2

hidden=MP, where mhidden is an
intermediate mass scale associated with hidden sector
SUGRA breaking, then the apparent Little Hierarchy μ ≪
m3=2 is just a consequence of a mismatch between PQ
breaking scale and hidden sector mass scale: fa ≪ mhidden.
In fact, in models such as the Murayama-Suzuki-Yanagida
(MSY) SUSY axion model [31], PQ symmetry is radia-
tively broken as a consequence of SUSY breaking. In
the MSY model, for canonical parameter values a small
value of μ ∼ 100–200 GeV can be easily generated from
m3=2 ∼ 5–20 TeV [32].
Finally, the radiative corrections Σu

u should be less than
or ∼m2

Z=2. Typically, the top-squark contributions are the
largest of these. The top-squark contributions Σu

uð~t1;2Þ are
minimized for TeV-scale highly mixed top squarks, which
also lift the Higgs mass to mh ∼ 125 GeV [23].
The EW fine-tuning measure is the most conservative of

the fine-tuning measures in that any model with large ΔEW
is surely fine-tuned. Also, ΔEW clearly agrees with ΔBG for
SUSY models defined purely at the weak scale such as the
pMSSM [33].8 Another virtue of ΔEW is that its value is
model-independent (within the MSSM) in that it does not
depend on how the weak scale spectrum was generated.

6We will not consider tan β as an independent parameter here.
Its value is determined also by the minimization conditions in
terms of the SUSY parameters.

7In this regard, we rely on Einstein’s advice to maintain the
theory as simple as possible, but no simpler. By adding various
exotica to the MSSM, then one can create models with heavy
Higgsinos which may still be natural [25–27]. These often
involve adding exotic states such as scalar gluons. It is not clear
whether such constructs admit a UV completion.

8The pMSSM, or phenomenological MSSM, is the MSSM
defined with weak scale input parameters where all CP violating
and flavor violating soft terms have been set to zero. Also, usually
first/second generation soft terms are set equal to each other to
avoid flavor violations.
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Also, from a pragmatic point of view, the fine-tuning
encapsulated in ΔEW is exactly where spectrum generators
invoke explicit fine-tuning. In such codes, usually m2

Hu
and

other soft terms are calculated at the weak scale via RG
running, and then the value of μ is dialed/fine-tuned to
enforce that the measured value of mZ is obtained. Without
such fine-tuning, the generated value ofmZ would typically
lie in the multi-TeV region [19].
But does ΔEW encapsulate all the fine-tuning, including

high-scale effects, or is it just a lower bound on fine-
tuning [34]?

IV. BG FINE-TUNING AND INDEPENDENT
MODEL PARAMETERS

For models defined in terms of high scale parameters, the
BG measure can be evaluated by expanding the terms on
the rhs of Eq. (4) using semianalytic RG solutions in terms
of fundamental high scale parameters [10,35]. For the case
of tan β ¼ 10 and taking the high scaleΛ ¼ mGUT, then one
finds [36–38]

m2
Z ≃ −2.18μ2 þ 3.84M2

3 − 0.65M3At − 1.27m2
Hu

− 0.053m2
Hd

þ 0.73m2
Q3

þ 0.57m2
U3

þ � � � : ð6Þ

The problem with most applications of the BG measure
is that in any sensible model of SUSY breaking, the
high scale SUSY parameters are not independent. For
instance in gravity mediation, for any given hidden sector,
the soft SUSY breaking terms are all calculated as
numerical coefficients times the gravitino mass [39–41]:
e.g. M3ðΛÞ ¼ aM3

m3=2, At ¼ aAt
m3=2, m2

Q3
¼ aQ3

m2
3=2,

etc. where the ai are just numerical constants. (For
example, in string theory with dilaton-dominated SUSY
breaking [40,41], then we expect m2

0 ¼ m2
3=2 with m1=2 ¼

−A0 ¼
ffiffiffi
3

p
m3=2.) The reason one scans multiple SUSY

model soft term parameters is to account for a wide variety
of hidden sector possibilities. But this does not mean each
soft term is independent from the others. By writing the soft
terms in Eq. (6) as suitable multiples of m2

3=2, then large
positive and negative contributions can be combined/
canceled and one arrives at the simpler expression [19,42]:

m2
Z ≃ −2μ2ðΛÞ þ a ·m2

3=2 ð7Þ

since the SUSY μ term hardly evolves. The value of a is just
some number which is the sum of all the coefficients of the
terms ∝ m2

3=2.
Using the BG measure applied to Eq. (7), then it is found

that naturalness requires μ2 ∼ μ2ðΛÞ ∼m2
Z and also that

am2
3=2 ∼m2

Z. The first requirement is the same as in ΔEW.
The second requirement is fulfilled either by m3=2 ∼mZ

(which seems unlikely in light of LHC Higgs mass

measurement and sparticle mass bounds) or when m3=2

is large but the coefficient a is small [19]: i.e. there are large
cancellations in Eq. (6). By equating m2

Z in terms of weak
scale parameters [Eq. (4)] with m2

Z in terms of high scale
parameters Eq. (7), and using the fact that μðΛÞ≃ μðweakÞ,
then also am2

3=2 ≃m2
Hu
ðweakÞ and so a low value of ΔBG

also requires a low value of m2
Hu
ðweakÞ ∼ −m2

Z. By
properly evaluating BG fine-tuning in terms of independent
SUGRA parameters, namely m3=2 and μðΛÞ, then we are
lead back to the same sort of conditions as implied by low
ΔEW: i.e. that m2

Hu
is driven radiatively to small negative

values. In this manner
(i) ΔEW encompasses both high scale and weak scale

fine-tuning.
The ambiguity between fine-tuning measures is removed.9

For electroweak naturalness in SUSY theories, it is not the
case that sparticles need to be near the scale ∼100 GeV: it
is just the weak scale Lagrangian parametersmHu

and μ: the
remaining soft breaking terms may lie comfortably in the
multi-TeV range at little cost to naturalness.

V. HOW MUCH FINE-TUNING IS TOO MUCH?

Once a reliable measure of fine-tuning is established,
then the next question is: for which values of ΔEW is a
model natural, and for which can it be considered fine-
tuned? The original BG paper considered ΔBG < 10 to
be natural. However, as experimental limits on sparticle
masses grew, then much higher values of ΔBG were
tolerated—up to ∼100 [38] or even ∼1000 [46]. This
increased tolerance perhaps reflected a reluctance to easily
give up on an amazingly beautiful and simple paradigm
even in the face of apparent large fine-tuning.
By properly evaluating ΔBG in terms of Eq. (7), or

equivalently ΔEW (which includes one-loop radiative cor-
rections), thenwe can reevaluate howmuch fine-tuning is too
much. In Fig. 1, we show the dominant contributions
to ΔEW for a simple NUHM2 benchmark model with
m0 ¼ 5 TeV, m1=2 ¼ 700 GeV, A0 ¼ −8.3 TeV and
tan β ¼ 10 with mA ¼ 1 TeV and variable μ. In the first

9Another common fine-tuning measure [43–45] is known as
Higgs mass or large log fine-tuning ΔHS. In its usual imple-
mentation, ΔHS requires the radiative correction δm2

Hu
to the

Higgs mass m2
h ≃ μ2 þm2

Hu
ðΛÞ þ δm2

Hu
be comparable to m2

h.

This contribution is usually written as δm2
Hu
jrad ∼ − 3f2t

8π2
ðm2

Q3
þ

m2
U3

þ A2
t Þ ln ðΛ2=m2

SUSYÞ which is used to claim that third
generation squarks m~t1;2; ~b1

be approximately less than
500 GeV and At be small for naturalness. This expression for
δm2

Hu
makes several approximations—the worst of which is to

neglect that the value of m2
Hu

itself contributes to δm2
Hu
. By

combining dependent contributions, then instead one requires
that the two contributions m2

h ¼ μ2 þ ðm2
Hu
ðΛÞ þ δm2

Hu
Þ be

comparable to m2
h. Since m2

Hu
ðΛÞ þ δm2

Hu
¼ m2

Hu
ðweakÞ, then

we are lead back to the same conditions as lowΔEW and low ΔBG.
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case, with μ ¼ 110 GeV and ΔEW ¼ 13.6, we display the
several largest contributions to ΔEW. Some are positive
and some are negative but all are comparable to �10.
This case is visually highly natural: the Z mass is
∼100 GeV because its various contributions are
∼100 GeV. In the second column, with μ ¼ 200 GeV and
ΔEW ¼ 22.8, theHu contribution to ΔEW is largest but is on
the whole balanced by several comparable positive terms:
again, one would not claim it as unnatural. The third column
withμ ¼ 300 GeV,we see that theHu contribution toΔEW is
again the largest, but in this case now a value of μ must
be selected as large positive to compensate and enforce that
mZ ¼ 91.2 GeV: this case is starting to already become
unnatural. By the fourth column with μ ¼ 400 GeV and
ΔEW ¼ 51.5, the fine-tuning is visually striking: themodel is
no longer natural. The unnaturalness is only accentuated in
columns five and six for μ ¼ 500 and 600 GeV respectively.
To be conservative, it is evident that fine-tuning has set in

for μ values ∼300–400 GeV. For such cases one would
expect the value of mZ also to be in the 300–400 GeV
range. With a value of μ ¼ 350 GeV as a conservative
upper estimate, and with the contribution ΔEWðμÞ ¼
μ2=ðm2

Z=2Þ, we would then expect already values ofΔEW >
30 to be overly fine-tuned. This is somewhat above the
values expected in the original BG paper where they
adopted Δmax

BG ¼ 10. If we increase the mass bounds from
BG by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δmax

EW =10
p

then we expect from BG with
mt ¼ 173.2 GeV that μ < 350 GeV and m~g ≲ 350 GeV.
From scans over the popular mSUGRA/CMSSM [47,48]

model, it is found that with mh ¼ 125� 2 GeV, the lowest
value of ΔEW which can be obtained is ∼100 [19,49,50]. In
this case, the mSUGRA/CMSSM model is highly fine-
tuned and is already ruled out. In addition, an assortment of
other models—including mGMSB, mAMSB and mirage
unification models—are also ruled out [19]. What remains
is a region of NUHM2 parameter space where small μ ∼
100–300 GeV is allowed and where highly mixed top
squarks may live in the few TeV range. This region of
NUHM2 parameter space is labeled as RNS, standing for
models with radiatively driven natural supersymmetry
[23,24]. RNS models are characterized by light

Higgsinos with mass ∼μ ∼ 100–300 GeV. The LSP is a
Higgsino-like weakly interacting massive particles (WIMP)
with a thermally produced underabundance of dark matter.
However, solving the QCD sector naturalness problem via
the axion [51] leads also to axion dark matter [52] so that
one expects two dark matter particles: the axion along with
a Higgsino-like WIMP [53]. Variants of this model with
greater parameter freedom, such as nonuniversal gaugino
masses leading to natural SUSYwith bino-like or wino-like
LSPs—are also allowed [54].

VI. MASS BOUNDS FROM NATURALNESS
IN NUHM2

To derive sparticle mass bounds from the naturalness
principle, we will generate SUSY spectra using ISAJET
[55,56] in the two-parameter nonuniversal Higgs model
[57] (NUHM2) which allows for very low values of
ΔEW < 10. The parameter space is given by

m0; m1=2; A0; tan β; μ; mA; ðNUHM2Þ: ð8Þ

The NUHM2 spectra and parameter spread versus ΔEW
were evaluated in Ref. [24] but with mA restricted to <
1.5 TeV and m1=2 < 2 TeV. Here, we update these results
by ensuring that we use a sufficiently large range of input
parameters that our upper bounds on sparticle masses
surely come from ΔEW < 30 rather than from artificial
upper limits on scan parameters. Some previous mass
bounds were extracted in Refs. [24,58,59]. Here, we
enlarge the scan region to include

m0∶ 0–20 TeV;

m1=2∶ 0.3–3 TeV;

−3 < A0=m0 < 3;

μ∶ 0.1–1.5 TeV;

mA∶ 0.15–20 TeV;

tan β∶ 3–60: ð9Þ

We require of our solutions that
(i) electroweak symmetry be radiatively broken

(REWSB),
(ii) the neutralino ~Z1 is the lightest MSSM particle,
(iii) the light chargino mass obeys the model indepen-

dent LEP2 limit, m ~W1
> 103.5 GeV [14],

(iv) LHC8 search bounds on m~g and m ~q from the m0 vs
m1=2 plane [8] are respected,

(v) mh ¼ 125� 2 GeV.
It is important to note in this section that some of our
upper bounds come from the specific model we sample. For
instance, the extracted upper bound on the gluino mass
comes from RG running effects where the gluino mass
feeds into the top-squark soft terms, and the top-squark soft

FIG. 1. Plot of contributions to ΔEW for various values of
superpotential μ parameter.
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terms are mainly constrained by the Σu
uð~t1;2Þ contributions

to ΔEW. In this respect also, ΔEW is sensitive to high scale
effects since it measures if a particular model defined by
high scale parameters can generate the weak scale charac-
terized by mW;Z;h ∼ 100 GeV. In the next section, we will
discuss model-independent upper bounds which do not
depend on high scale physics.
The first results of our scan are shown in Fig. 2. In frame

(a), we plot ΔEW vs m~g. The symbols are color-coded
according to low (≤ 15), intermediate (15–30) and high
(> 30) values of tan β. From the plot, we see first that there
is indeed an upper bound to m~g provided by naturalness. If
we enforce ΔEW < 30, then we find that

(i) m~g ≲ 4 TeV.
This is to be compared to the reach of LHC for gluinos via
gluino pair production followed by cascade decays. For the
case of heavy squarks m ~q ≫ m~g and with ∼1000 fb−1,
LHC13 has a reach up to m~g ∼ 2 TeV [60,61]. Thus, while
natural SUSY may well be discovered by LHC13,10 there is

also plenty of natural SUSY parameter space well beyond
the LHC reach for ~g ~g production. This bound may also be
compared to the original BG result for mt ¼ 173.2 GeV
and withΔBG < 30: there it was found thatm~g ≲ 350 GeV.
The discrepancy between results arises because BG evalu-
ated ΔBG within the four-parameter mSUGRA/CMSSM
effective theory where m0, m1=2, A0 and B are assumed as
independent. By recognizing the soft terms as dependent
multiples of m3=2, then using Eq. (7) we have ΔBG ≃ ΔEW

and much larger values of m~g are allowed while preserving
naturalness. Our result may also be compared with Feng
[38] who uses an upper bound of 1% fine-tuning in a
multiparameter SUSY effective theory: he then finds
m~g ≲ 1.4 TeV, slightly beyond the latest bound of m~g ≳
1.3 TeV from LHC8 searches. If we scale this back to 3.3%
fine-tuning to compare with our result, then Feng would
obtain m~g ≲ 770 GeV, well below the LHC8 lower limit
on m~g.
In Fig. 2, we also show ΔEW versus (b) the Higgsino

mass μ and (c) and (d) versus the gaugino masses M1

and M2. Since m ~W1
∼m ~Z1;2

∼ jμj in models with a
Higgsino-like LSP, then we expect that

FIG. 2. Plot of ΔEW vs m~g, μ, M1 and M2 from a scan over the NUHM2 model. Points with ΔEW < 30 (below dotted line) are
considered natural.

10For an overview of what natural SUSY looks like at LHC13,
see Ref. [62].
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(i) m ~W1
; m ~Z1;2

≲ 350 GeV
(the lighter the better). While the Higgsino-like electro-
weak-ino masses are necessarily not too far frommZ;h, they
are notoriously difficult to see at LHC due to their com-
pressed spectrum [61,63]. A possible way forward may be
via pp → ~Z1

~Z2g production followed by ~Z2 → μþμ− ~Z1. In
this case, the hard gluon initial state radiation serves as a
trigger so that events containing soft dimuons may be
visible above SM backgrounds [64–66]. In contrast, the
required light Higgsinos should be easily visible at an eþe−

collider operating with
ffiffiffi
s

p
> 2μ [63,67] where also their

masses and mixings can be extracted to high precision. In
this, we are in accord with the conclusion of BG [10] that
lepton colliders provide a more powerful probe of SUSY
electroweak naturalness than do hadron colliders.
The bound extracted from frame (c) is that the bino mass

M1 ≲ 900 GeV for ΔEW < 30. Since the NUHM2 model
assumes gaugino mass unification, this translates to the
mass on the third lightest neutralino ~Z3 which is then
mainly bino-like.
The bound on the wino mass M2 shown in frame

(d) translates to a bound on the wino-like electroweakinos

of m ~W2; ~Z4
≲ 1600 GeV. As noted in Refs. [61,68], wino

pair production at LHC13 (via ~W�
2
~Z4 and ~Wþ

2
~W−
2 produc-

tion) forms the dominant visible reaction. In fact, the
reach of LHC13 via the same-sign diboson (SSdB) sig-
nature (pp → ~W�

2
~Z4 → W�W� þ ET) exceeds the reach

via gluino pair production for integrated luminosities
≳300 fb−1. The reach of LHC13 for wino pairs via the
SSdB signature extends to m ~W2

≲ 680 GeV.
In Fig. 3, we show updated upper bounds on third

generation squark masses. From frame (a), we see that
(i) m~t1 ≲ 3 TeV.

This upper bound is much higher than previous incarna-
tions of natural SUSY based on large-log fine-tuning [45]
(where it was claimed that naturalness required three third
generation squarks with mass m~t1;2; ~b1

≲ 600 GeV). The

projected reach of LHC13 for m~t1 in various simplified
models extends up to m~t1 ∼ 1 TeV. Thus, the lighter top
squark may also lie well beyond LHC13 search capabilities
with little cost to naturalness. From frames (b), (c) and (d),
we find successively that m~t2 ≲ 9 TeV, m ~b1

≲ 9 TeV
and m ~b2

≲ 10 TeV.

FIG. 3. Plot of ΔEW vs m~t1 , m~t2 , m ~b1
and m ~b2

from a scan over the NUHM2 model.
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In Fig. 4 we show plots of ΔEW versus various matter
scalar masses (a) m ~uL , (b) m ~lL

, (c) m~τ1 and (d) mA. Frame
(a) is typical of all first/second generation matter scalars.
Here, we extract an upper bound of m ~uL ≲ 10 TeV. The
bound on first/second generation matter scalars arises from
D-term contributions to Σu

u [24]. For certain mass degen-
eracy patterns listed in Ref. [69], these contributions nearly
cancel amongst themselves. The limits become much
stronger for nondegenerate matter scalars. The limits are
also affected by two-loop RG effects where heavy first/
second generation matter scalars feed into third generation
and Higgs soft term evolution. In this case, large m0ð1; 2Þ
can drivem2

Hu
to large instead of small negative values [70].

The limit on first/second generation sleptons, shown in
frame (b), is similar. If we allow for nondegenerate
generations, i.e. m0ð1; 2Þ ≠ m0ð3Þ, then the upper bounds
on first/second generation squarks and sleptons can
increase to ∼20 TeV [24].
In frame (c), we show ΔEW vsm~τ1 . In this case, the upper

bound on third generation sleptons is also m~τ1 ≲ 10 TeV.
An upper bound on mA can be extracted from frame (d) of

Fig. 4. Here we find mA ≲ 5ð8Þ TeV for tan β < 15ð50Þ.
Thus, the heavy Higgs bosons with mass mH ∼mH� ∼mA
may also be well beyond the reach of LHC13 at little cost to
naturalness.

A. Comparison of original BG results to this paper

In Table I, we compare the upper limits on sparticle
masses and the μ parameter extracted from the original
BG paper [10] as compared to this paper. The BG results
are presented for mt ¼ 173.2 GeV and scaled to impose
ΔBG < 30 instead of ΔBG < 10. The BG results used m0,
m1=2, A0 and μ as independent parameters whereas our
results combine these contributions to m2

Z since each is
computed as a multiple of m3=2 in gravity mediation
models. To include radiative corrections, we use the
ΔEW measure.
Since both groups use μ as an independent parameter,

then both groups agree on the upper bound μ≲ 350 GeV
leading to relatively light Higgsinos: the closer to mh the
better. However, for other sparticle masses, then our results
differ markedly. Whereas BG find m~g ≲ 350 GeV, we find

FIG. 4. Plot of ΔEW vs m ~uL , m ~lL
, m~τ1 and mA from a scan over the NUHM2 model.
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m~g ≲ 4 TeV—possibly well out of range of LHC13. Also,
for the bino massM1, BG findM1 ≲ 90 GeV while we find
M1 ≲ 900 GeV. For the wino mass M2, BG find M2 ≲
170 GeV (leading to the suggestion that charginos should
appear at LEP2 if SUSY is not fine-tuned) while we find
M2 ≲ 1700 GeV (possibly out of range of LHC13 even via

wino pair production with decays to same-sign dibosons
[68]). Meanwhile, for matter scalars, BG found m ~uR ≲
700 GeV whereas we find m ~uR ≲ 10 TeV. If we allow for
nondegenerate matter scalar generations [m0ð1; 2Þ ≠
m0ð3Þ] then our limit can increase to ∼20 TeV [24].
Likewise, BG found m~eR ≲ 520 GeV whereas we expect
m~eR ≲ 10 TeV (20 TeV for split families).

VII. UPPER BOUNDS FROM THE
19 PARAMETER PMSSM

The mass bounds from the previous section depend on
(reasonable) assumptions about high scale physics which
are implicit in the NUHM2 model. The previous NUHM2
bounds were derived from requiring that no contributions
to the renormalization-group-improved one-loop scalar
potential be far larger than m2

Z=2. The RG-improved scalar
potential contains in fact leading two-loop terms since the
parameters entering the scalar potential contain the effects
of RG running. For instance, the bound on the gluino mass
arises mainly from its RG contribution to the stop masses: a

FIG. 5. Plot of ΔEW vs m~g, μ, M1 and M2 from a scan over the 19 weak scale pMSSM parameters. Points with ΔEW < 30 (below
dotted line) are considered natural.

TABLE I. Upper bounds on masses (in GeV) from naturalness
with Δ < 30 from original BG paper compared to Sec. VI of this
paper in the NUHM2 model. The entries in parentheses would
result if one allows for nondegenerate generations of soft scalar
masses m0ð1; 2Þ ≠ m0ð3Þ [24].
Mass bound (GeV) BG This work

μ 350 350
m~g 350 4000
M1 90 900
M2 170 1700
muR 700 10 000 (20 000)
meR 520 10 000 (20 000)
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large value of M3 pushes m~t1;2 to large values leading to
large Σu

uð~t1;2Þ contributions to mZ. Likewise, other soft
terms contribute to the evolution of m2

Hu
to small negative

values at the weak scale.
It is popular in recent years to dispense with RG running

and examine physics within the phenomenological MSSM,
a model with 19 free weak scale parameters [33]. Results
from the pMSSM will look in some cases very different
from those obtained with high scale models even though in
some sense the pMSSM contains models like NUHM2, and
even though a given spectra generated within either of the
NUHM2 or the pMSSM models will yield up exactly the
same value of ΔEW. The main difference is that the two-
loop contribution to the scalar potential arising from RG
running of M3 will no longer occur, thus obviating any
bound on the gluino mass. In this case, we add in the
explicit leading two-loop terms of order αtαs as computed
by Dedes and Slavich [71]. These terms contain sensitivity
to m~g and to m~t1;2 .
To obtain mass bounds from the pMSSM, we implement

a scan over the 19-dimensional weak scale parameter space
with the following limits:

(i) m~tL ; m~tR ; m ~bR
; m~τL ; m~τR : 0.2–20 TeV,

(ii) m ~uL ; m ~dR
; m ~dR

;m~eL ; m~eR : 0.1–20 TeV,
(iii) At; Ab; Aτ: −40 → þ40 TeV,
(iv) M1∶ 0.05–10 TeV, M2∶ 0.1–10 TeV, M3∶

0.4–10 TeV,
(v) μ∶ 100–500 GeV, mA∶ 0.15–20 TeV,
(vi) tan β∶ 3–60.

We actually input the pMSSM parameters at a scale
ΛpMSSM ¼ 20 TeV—just above the maximal soft masses.
This ensures the reduced scale dependence of the scalar
potential from the interplay between the RG running of the
soft terms and the logðQ2Þ dependence of the loop
contributions Σu

uðiÞ and Σd
dðjÞ. The contributions of

Σd
dðiÞ to ΔEW are suppressed by tan2 β and so typically

are of little consequence.
The pMSSM tree-level bounds from ΔEW < 30 can be

read off directly from Eq. (4) without the need for any scan:
(i) μ ≲ 350 GeV,
(ii) mHu

ðweakÞ ≲ 350 GeV,
(iv) mHd

≲ 350 GeV tan β.
For largemHd

, thenmHd
≃mA so the latter bound translates

to a bound on mA.

FIG. 6. Plot of ΔEW vs m~t1 , m~t2 , m ~b1
and m ~b2

from a scan over 19 weak scale pMSSM parameters.
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In Fig. 5, we plot the value of ΔEW vs the same
parameters as in Fig. 2: (a) m~g, (b) μ, (c) M1 and
(d) M2. From frame (a) we see a very important result:
in the pMSSM, the bound on m~g for ΔEW < 30 has moved
up to about 7 TeV, well beyond what was obtained for the
NUHM2model. This bound arises after the inclusion of the
order αtαs two-loop contribution to the scalar potential
which includes sensitivity to m~g [71].
From frame (b), we see that, as expected, μ is once again

bounded by μ ≲ 350 GeV for ΔEW < 30, as is required by
the tree-level contribution to Eq. (4). In frame (c), we plot
ΔEW vs the bino mass M1. For the pMSSM, mass bounds
on M1 arise from the Σu

uð ~ZiÞ. Here, we see that M1 can
range as high as 9 TeV—far beyond the bounds obtained in
the NUHM2 model where gaugino mass unification is
required. In that case, the upper limit on m~g ≲ 4 TeV
translates to a bound onM1 ≲ 0.8 TeV. Likewise, in frame
(d) we plot ΔEW vs wino mass M2. In this case, we find
M2 ≲ 6 TeV. This bound mainly arises from the contribu-
tions Σu

uð ~WiÞ. It is also far beyond the mass bound from
NUHM2 where M2 ≲ 1.6 TeV was found.

In Fig. 6 we display values of ΔEW vs (a) m~t1 , (b) m~t2 ,
(c) m ~b1

and (d) m ~b2
. From frame (a), we find that

m~t1 ≲ 3.5 TeV, just slightly larger than the bound arising
in the NUHM2 model. This bound arises mainly due to
the contributions Σu

uð~t1;2Þ to the scalar potential. In frame
(b), we find that m~t2 ≲ 10 TeV. This again is slightly
beyond the bound arising from the NUHM2 case with
unified matter scalars at mGUT. From frames (c) and (d),
we find thatm ~b1

≲ 9 TeV andm ~b2
≲ 10 TeV. These results

are in rough accord with values obtained from the
NUHM2 model.
In Fig. 7, we attempt to extract upper mass bounds on

squarks, sleptons, staus and heavy Higgs bosons in analogy
to Fig. 4. From frame (a), we find naively that
m ~uL ≲ 10 TeV. This mass bound arises from D-term
contributions to first/second generation scalar masses that
enter the scalar potential via Σu

uð ~uLÞ. As pointed out in
Ref. [69], these D-term contributions all cancel amongst
themselves provided that one of several mass degeneracy
patterns exist: (i) separately squark and slepton mass
degeneracy, (ii) separately left- and right-sfermion

FIG. 7. Plot of ΔEW vs m ~uL , m ~lL
, m~τ1 and mA from a scan over 19 weak scale pMSSM parameters.
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degeneracy, (iii) degeneracy within SUð5Þ multiplets and
(iv) degeneracy within an entire generation, as expected in
SOð10Þ GUTs. In these cases, the contributions—which
are all proportional to weak isospin and hypercharge
assignments—necessarily sum to zero for degenerate
masses. When these contributions thus sum to zero, then
there are no bounds on first/second generation squark and
slepton masses. However, since it is highly improbable to
generate these degeneracy patterns from a random pMSSM
scan, then mass bounds do arise from our random scan. As
seen from frame (a), we expect m ~uL ≲ 10 TeV. But this
mass bound would disappear if we invoked degeneracy
conditions amongst the physical masses within any of
the patterns listed above. Likewise, in frame (b), we see
that m ~lL

≲ 10 TeV and from frame (c) we expect
m~τ1 ≲ 9 TeV. The mass bound on mA which arises from
the loop contributions Σu

uðh;H;H�Þ are shown in frame
(d). These constraints are actually somewhat stronger than
the naive tree-level constraint of mA ≲ 350 GeV tan β
which is ∼18 TeV for large tan β ∼ 50. Instead, we find
mA ≲ 10 TeV from our scan over 19 weak scale pMSSM
parameters.

A. Comparison between pMSSM and SUGRA19 model

It may be worthwhile to compare the preceding results
from the 19 parameter pMSSM model—with inputs
defined at the weak scale—with results from Ref. [72]
where naturalness was examined in the context of the
SUGRA19 model with 19 input parameters defined at the
GUT scale. The goal of Ref. [72] was to see how low in
ΔEW one might go within the context of a general SUGRA
model, but not to establish upper bounds (which require a
thorough rather than a focused parameter space scan). To
compare sparticle mass upper bounds between pMSSM
and SUGRA19, we have rerun SUGRA19 including the
aforementioned two-loop Σu

u corrections with a thorough
parameter space scan. In both the pMSSM model and the
SUGRA19 model, the SUSY μ parameter is bounded as
μ < 350 GeV for ΔEW < 30 since this quantity enters the
scalar potential at tree level.
The results from the SUGRA19 model are shown in

Fig. 8 for ΔEW versus (a) m~g, (b) m~t1 , (c) m~t2 and (d) m ~b1
.

The upper bound on the gluino mass is very similar in the
two cases where we find m~g ≲ 7 TeV. Also, for both
the SUGRA19 and pMSSM models, the third generation

FIG. 8. Plot of ΔEW vs m~g, m~t1 , m~t2 and m ~b1
from a scan over the SUGRA19 model.
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squark masses have similar upper bounds: m~t1 ≲
3–3.5 TeV and m~t2; ~b2

≲ 8–10 TeV.
From this comparison, and in the spirit of providing a

target for experimenters seeking to verify or disprove
SUSY, we would conclude that a negative search for light
Higgsinos with mass≲350 GeVwould rule out naturalness
in the context of the MSSM (more complicated beyond-the-
MSSM extensions could always be built to circumvent
these bounds [25–27]). Thus, nonobservation of light
Higgsinos would rule out both high scale and weak scale
renditions of SUSY based on the MSSM. Alternatively,
failure to find a gluino with mass m~g ≲ 4 TeV would
rule out constrained SUSY models such as NUHM2 with
unified soft parameters defined as high as Q ¼ mGUT.
Colliders with the ability to probe beyond m~g ∼ 7 TeV
would be needed to test/exclude gluino pair production
within the pMSSM or SUGRA19 context [73].

VIII. CONCLUSIONS

In this paper, our goal was to sharpen the upper bounds
on sparticle masses arising from naturalness in order to
provide a target for experimenters seeking to confirm or
rule out the weak scale supersymmetry hypothesis.
While most sparticle search results are presented as

lower bounds in simplified or complete model parameter
space, the question arises: how far out in parameter space
ought one to go before discovering weak scale SUSY or
claiming it is dead? While earlier papers by others have
presented naturalness as a subjective, fuzzy and model-
dependent notion, instead here we argue that naturalness is

(i) objective,
(ii) model independent in that different models giving

rise to the same spectra have the same value of
naturalness, and

(iii) predictive.
The previous confusion on this subject arose from what
constitutes independent model parameters. In the case of
gravity mediation, for any given hidden sector the soft
terms are calculable as multiples of the gravitino massm3=2,
i.e. they are dependent. By appropriately combining de-
pendent terms, then the BG measure implies the same
general consequences as the model independent electro-
weak measure ΔEW. We show visually that fine-tuning
already arises at ΔEW ∼ 20–30. To be conservative, we take
ΔEW < 30 to derive upper bounds on parameters and
sparticle masses.
In Sec. VI, we sharpened up previous bounds on

sparticle masses by increasing the range of parameters
enough to ensure that upper bounds arose from ΔEW < 30
and not from some artificial cutoff imposed on our scan
limits. For the NUHM2 model which allows SUGRA
grand unification and values of ΔEW below 10, we found
m~g ≲ 4 TeV, well beyond the reach of even high luminos-
ity LHC. This bound is much higher than previous

estimates which assumed that the various soft SUSY
breaking terms are independent. Alternatively, we find
the superpotential μ term to be μ≲ 350 GeV. The range
of NUHM2 input parameters which are allowed is shown
in Fig. 9.
The allowed ranges of sparticle masses from NUHM2

are shown in Fig. 10 as the colored histograms. As
remarked before, the all-important gluino mass can range
from m~g ∼ 1.3–4 TeV. Third generation squarks, which
were argued to exist in the sub-TeV regime in previous
natural SUSY papers, are found to be consistent with
naturalness when m~t1 ≲ 3 TeV while m~t2; ~b1

≲ 9 TeV and
m ~b2

≲ 10 TeV. A large At parameter here acts to reduce
EW fine-tuning whilst lifting mh up to ∼125 GeV. The
manifestation of large At is a splitting of the top-squark
mass eigenstates. First and second generation sfermions
can have masses ranging into the 10 TeV regime so long as
they are sufficiently degenerate that naturalness contribu-
tions from D-terms largely cancel amongst themselves

FIG. 9. Range of NUHM2 model parameters allowed by
naturalness with ΔEW < 30.

FIG. 10. Range of sparticle masses allowed by naturalness
within NUHM2 model with ΔEW < 30. The black bars show
upper bounds from the pMSSM model with 19 weak scale
parameters.
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[69]. Such heavy matter scalars provide a decoupling
solution to the SUSY flavor and CP problems [21] and
if their mass is comparable to m3=2, then one expects a
decoupling solution to the gravitino problem as well.
The heavy Higgs bosons A, H and H� can range up to
the 5–8 TeV level. While such heavy sparticle and Higgs
masses are consistent with naturalness, typically we do
not expect large deviations from SM rates in rare decay
branching fraction measurements such as Bs → μþμ− or
b → sγ from natural SUSY [24] due to the presence of
heavy mediators.
We have also extracted mass bounds on sparticles by

requiring ΔEW < 30 in a scan over the 19 dimensional
weak scale parameter set of the pMSSM. These bounds are
shown as black lines in Fig. 10 or as arrows when no bound
arises. The pMSSM bounds on scalar masses tend to be
comparable to those from the NUHM2 model. However,
bounds on gaugino masses are severely different. By
including leading two-loop contributions to the scalar
potential, we find a bound of m~g < 7 TeV arises in the
pMSSM. Also, the bounds on the bino mass M1 ≲ 9 TeV
and wino mass M2 ≲ 6 TeV—which arise from neutralino
and chargino loops—are much higher than the correspond-
ing upper bounds extracted from the NUHM2 model. A
comparison of upper bounds extracted from NUHM2 and
pMSSM is listed in Table II.
Our results have important implications for future

particle physics facilities. Even the high luminosity LHC
can explore only about half of natural SUSY parameter
space. However, if we require a more stringent naturalness
condition of ΔEW ≲ 10 then m~g ≲ 2 TeV and the most
natural region of parameter space should be accessible to

LHC13 (LHC13 has a projected 5σ discovery reach tom~g ∼
2 TeV for 300–1000 fb−1 of data [60]).
The key feature of naturalness—that quasidegenerate

Higgsinos lie in the 100–350 GeV mass range—highly
motivates the construction of an eþe− collider which can
operate with

ffiffiffi
s

p
> 2μ. Such a machine, constructed ini-

tially as a Higgs factory, would turn out to be also a
Higgsino factory which would usher in the era of SUSY
discovery while simultaneously elucidating the nature of
dark matter. In this case, we would expect it to consist of an
admixture of Higgsino-like WIMPs and axions [53].
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APPENDIX: APPENDIX

In this Appendix, we present some details about the
radiative contributionsΣu

uðiÞ to the naturalnessmeasureΔEW.

1. Limits from Σu
uð~t1;2Þ

Usually, the dominant contributions to Σu
u come from

the top squarks, owing to the large value of the top-squark
Yukawa coupling ft. The top-squark contributions are
given by [23,24]

Σu
uð~t1;2Þ¼

3

16π2
Fðm2

~t1;2
Þ
�
f2t −g2Z∓f2t A2

t −8g2Zð14− 2
3
xWÞΔt

m2
~t2
−m2

~t1

�
;

ðA1Þ

where Δt ¼ ðm2
~tL
−m2

~tR
Þ=2þM2

Z cos 2βð14 − 2
3
xWÞ, xW ≡

sin2 θW and where

Fðm2Þ ¼ m2

�
log

m2

Q2
− 1

�
; ðA2Þ

with the optimized scale choice Q2 ¼ m~t1m~t2 . In the
denominator of Eq. (A1), the tree-level expressions for
m2

~t1;2
should be used.

In Fig. 11, we plot out the Σu
uð~t1;2Þ contributions to ΔEW

in the weak scale m~tR vs At plane where we take m~tL ¼
2.6m~tR which is typical for RNS models. We also adopt
tan β ¼ 10, μ ¼ 150 GeV and ft ¼ 0.8365. In frame (a),
the blue shaded region bounded by the green contour has
ΔEWð~t1Þ < 30. For At ∼ 0, then m~tR ≲ 2 TeV although for
this value of At it is essentially impossible to generate mh
as high as 125 GeV [74]. For large stop mixing, i.e. large
jAtj, then there still exist bands of low ΔEWð~t1Þ at large
jAtj and m~tR ∼ 1 TeV which occur where the mass eigen-
valuem~t1 becomes very small, ∼100 GeV, so that Fðm2

~t1
Þ is

suppressed. Alternatively, the low ΔEWð~t1Þ bands at large

TABLE II. Upper bounds on masses (in TeV) from naturalness
with ΔEW < 30 from a scan over the NUHM2 model versus a
scan over the 19 weak scale parameter pMSSM. The entries in
parentheses would result if one allows for nondegenerate gen-
erations of soft scalar masses m0ð1; 2Þ ≠ m0ð3Þ [24]. The lack of
bounds after the slash symbol arise in the case where highly
degenerate squark and slepton masses develop [69].

Mass NUHM2 pMSSM

μ 0.35 0.35
mHu

ðweakÞ 0.35 0.35
mA 5–8 10
M1 0.9 9
M2 1.6 6
m~g 4 7
m~t1 3 3
m~t2 9 9
m ~b1

9 9
m ~b2

10 10
m ~q 10 (20) 10/none
m ~l 10 (20) 10/none
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m~tR and large At occur due to cancellations in the square
bracket of Eq. (A1).
In frame (b), whereΔEWð~t2Þ is shown, we again see large

regions of suppressed fine-tuning contributions. Here,
m~tR ≲ 6 TeV is required for ΔEWð~t2Þ < 30 although side-
bands extend out to large jAtj at m~tR ∼ 1 and 2.5 TeV. The
upper band occurs where m~t2=m~t1 ∼ e so that the log term

in Fðm2
~t2
Þ cancels. The main point is that regions exist

with large enough jAtj (so that mh → 125 GeV) and m~tR ∼
1–3 TeV where both ΔEWð~t1;2Þ become small [23,24].
For higher values of m~tR , one or the other of ΔEWð~t1;2Þ
necessarily becomes > 30, leading to fine-tuning.
Since both Σð~t1Þ and Σð~t2Þ must be small, we show

in Fig. 12 the resulting green contour from requiring
max½ΔEWð~t1Þ;ΔEWð~t2Þ� < 30. These combined results
show that m~tR is bounded from above by about 4.5 TeV.
The region below the thick black dashed contour is
where m~t1 < mt.

2. Limits from Σu
uð~b1;2Þ

In Fig. 13, we plot the contributions to max½ΔEWð ~b1Þ;
ΔEWð ~b2Þ� from the ~b1;2 squarks. We plot for tan β ¼ 10

andm ~bL
¼ 0.72m ~bR

but in them ~bR
vs μ plane. For b-squark

contributions, we have

Σu
uð ~b1;2Þ ¼

3

16π2
Fðm2

~b1;2
Þ
�
g2Z∓ f2bμ

2 − 8g2Zð14 − 1
3
xWÞΔb

m2
~b2
−m2

~b1

�
;

ðA3Þ

where Δb¼ðm2
~bL
−m2

~bR
Þ=2−M2

Z cos2βð14− 1
3
xWÞ. We take

fb ¼ 0.13 and Q2 ¼ m~t1m~t2 with m~t1 ¼ 1275 GeV and
m~t2 ¼ 3690 GeV.

From Fig. 13, the contribution Δð ~b1Þ can become
small even for very large m ~bR

∼ 20 TeV, but only for

large/fine-tuned values of μ. In contrast, ΔEWð ~b2Þ < 30
only for m ~bR

≲ 7 TeV. The latter provides a solid upper
limit on m ~b2

which is usually ∼m ~bR
.

FIG. 11. Contour plot of (a) ΔEWð~t1Þ from Σu
uð~t1Þ and (b) ΔEWð~t2Þ from Σu

uð~t2Þ in the weak scale m~tR vs At plane. The curves
correspond to fixed values of ΔEWð~t1;2Þ as labeled.

FIG. 12. Contour plot of max½ΔEWð~t1Þ;ΔEWð~t2Þ� in the weak
scale m~tR vs At plane. The region below the thick dashed black
contour is where m~t1 < mt.

UPPER BOUNDS ON SPARTICLE MASSES FROM … PHYSICAL REVIEW D 93, 035016 (2016)

035016-15



3. Limits from Σu
uð ~W1;2Þ

The chargino contributions to ΔEW are given by

Σu
uð ~W�

1;2Þ ¼
−g2

16π2
Fðm2

~W1;2
Þ
�
1∓M2

2 þ μ2 − 2m2
W cos 2β

m2
~W2
−m2

~W1

�
:

ðA4Þ

We plot the ~W1 and ~W2 contributions to ΔEW in Fig. 14 in
the M2 vs μ plane. The contribution ΔEWð ~W1Þ is always
small for μ≲ 1 TeV. In fact, the ΔEWð ~W1Þ contribution is
small all over the plane except when
μ≃M2 in which case the denominator in Eq. (A4)
becomes small so that ΔEWð ~W1Þ blows up. In contrast,
fromΔEWð ~W2Þwe find that μ;M2 ≲ 5 TeV. This illustrates
that wino masses all by themselves cannot become
too large.

4. Limits from Σu
uð ~Z1−4Þ

The contributions to ΔEW from the neutralino mass
squared matrix are found to be [24]

Σu
uð ~ZiÞ ¼

1

16π2

Fðm2
~Zi
Þ

Dð ~ZiÞ
× ½Kð ~ZiÞ − 2ðg2 þ g02Þμ2M2

Zcos
2βðm2

~Zi
−m2

~γÞ�;
ðA5Þ

where

Kð ~ZiÞ ¼ −m6
~Zi
ðg2 þ g02Þ þm4

~Zi
½g2ðM2

1 þ μ2Þ
þ g02ðM2

2 þ μ2Þ þ ðg2 þ g02ÞM2
Z� −m2

~Zi
½μ2ðg2M2

1

þ g02M2
2Þ þ ðg2 þ g02ÞM2

Zm
2
~γ �; ðA6Þ

FIG. 13. Contour plot ofΔEWð ~b1; ~b2Þ from Σu
uð ~b1;2Þ in the weak

scale m ~bR
vs μ plane. We take m ~bL

¼ 0.72m ~bR
and tan β ¼ 10. FIG. 14. Contour plot ofΔEWð ~W1; ~W2Þ from Σu

uð ~W1; ~W2Þ in the
weak scale M2 vs μ plane for tan β ¼ 10.

FIG. 15. Contour plots of ΔEWð ~Z1; ~Z2; ~Z3; ~Z4Þ from Σu
uð ~ZiÞ in

the weak scaleM2 vsM1 plane for μ ¼ 150 GeV and tan β ¼ 10.
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Dð ~ZiÞ ¼
Q

j≠iðm2
~Zi
−m2

~Zj
Þ and m~γ ¼ M1cos2θWþ

M2sin2θW . The contribution to max½ΔEWð ~ZiÞ� (i ¼ 1–4)
is shown in Fig. 15 in theM1 vsM2 plane for μ ¼ 150 GeV
and tan β ¼ 10. From the figure we are able to extract that
M1 ≲ 10 TeV while M2 ≲ 6 TeV. These bounds are inde-
pendent of any assumptions about gaugino mass unifica-
tion, unlike those of Sec. VI.

5. Limits from Σu
uðh;H;H�Þ

For Higgs bosons, it is found that [24]

Σu
uðh;HÞ ¼ g2Z

16π2
Fðm2

h;HÞ

×

�
1∓M2

Z þm2
Að1þ 4 cos 2β þ 2cos22βÞ

m2
H −m2

h

�

ðA7Þ

while

Σu
uðH�Þ ¼ g2

32π2
Fðm2

H�Þ: ðA8Þ

The contributions from each of h, H and H� are plotted in
Fig. 16 as max½ΔEWðhÞ;ΔEWðHÞ;ΔEWðH�Þ� in the mA vs

tan β plane. The contributionΔEWðh;H;H�Þ < 30 requires
mA < 8 TeV. The largest term usually comes from the
charged Higgs contribution. These values are somewhat
higher than that which comes from the m2

Hd
term in Eq. (4).
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