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The Standard Model’s accidental and anomaly-free currents, B − L, Le − Lμ, Le − Lτ, and Lμ − Lτ,
could be indicative of a hidden gauge structure beyond the Standard Model. Additionally, neutrino masses
can be generated by a dimension-5 operator that generically breaks all of these symmetries. It is therefore
important to investigate the compatibility of a gauged U0ð1Þ and neutrino phenomenology. We consider
gauging each of the symmetries above with a minimal extended matter content. This includes the Z0, an
order parameter to break the U0ð1Þ, and three right-handed neutrinos. We find all but B − L require
additional matter content to explain the measured neutrino oscillation parameters. We also discuss the
compatibility of the measured neutrino textures with a nonthermal dark matter production mechanism
involving the decay of the Z0. Finally, we present a parametric relation that implies that any sterile neutrino
dark matter candidate should not be expected to contribute to neutrino masses beyond ten parts per million.
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I. INTRODUCTION

In the past decade, there has been considerable interest in
the phenomenology of beyond the StandardModel, Abelian,
gauge bosons that couple to leptons [1–6]. A new gauge
boson would imply the existence of some new gauge
symmetry structure. The Standard Model contains three
global, independent, and accidental Abelian symmetries that
are anomaly free [7,8]. From these, one can form the
combinations B − L, Le − Lμ, Lμ − Lτ, and Le − Lτ [9].
Additionally, neutrino oscillations, which are indicative of
nonzero neutrino masses, have been observed [10–14]. This
can be understood via the dimension-5 Weinberg operator
[15] that generically breaks all of the symmetries listed
above. A theory which includes a Z0 coupled to one of these
currents would constrain the form of the Weinberg operator
(and by proxy the neutrino mass matrix). Thus, it is worth
considering the compatibility of these gauge symmetries
with the measured oscillation data.
We consider a model that extends the Standard Model

gauge group byGSM → GSM ⊗ U0ð1Þwhere this newU0ð1Þ
will be associated with the aforementioned anomaly-free
current to which the Z0 is coupled. Additional ingredients
will also be included to induce neutrino masses and to
conform to bounds from Z0 phenomenology.
Experimental and observational constraints for a new Z0

are dictated by the current to which it couples. Typically,
the strongest bounds come from the coupling to electrons.
This is because the heavier flavor counterparts are unstable,
and therefore beam dump and solar neutrino absorption
experiments involve electrons and electron neutrinos,
respectively [16–18]. In the case that there is no such
coupling at tree level (i.e., Lμ − Lτ), the processes probed
by these experiments are mediated by loops and can be

subdominant to other constraints arising from other
sources, such as neutrino-trident production [19].
A Z0 that couples to any of the lepton generations must

satisfy bounds from measurements of the cosmic micro-
wave background that constrain the number of effective
relativistic degrees of freedom Neff [20]; this is related to
the decay Z0 → νþ ν. If the Z0 decays when the temper-
ature of the universe is approximately 1 MeV, then the
resultant spike in the neutrino population will not have
sufficient time to return to its equilibrium distribution
before freeze-out. This sets a bound on the mass of the
Z0 of roughly MZ0 > 4 MeV [21]. A massive Z0 implies
that the gauge symmetry must be spontaneously broken.
As previously mentioned, an interesting place to search

for the imprints of these possible gauge symmetries is
in the neutrino oscillation data collected over the past
15 years [10–12,14]. This can give us information about
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix,
which dictates lepton-flavor-violating processes [22].
These oscillations are the result of neutrinos having a
nonzero mass. In the context of the Standard Model, these
can be induced by adding additional fermions that do not
couple to any of the known forces [23]; these are often
termed right-handed, or sterile, neutrinos.
Beyond explaining neutrino oscillations, if there were

three of these right-handed neutrinos, the Standard Model
would be significantly more symmetric in the sense that
each left-handed fermion would have a corresponding
right-handed fermion. This final statement assumes that
the three right-handed neutrinos would be labelled by the
conventional generation indices fe; μ; τg. We would like to
investigate this minimal, and aesthetically attractive, exten-
sion of the StandardModel in conjunction with a newU0ð1Þ
gauge symmetry and its associated Z0.
To ensure that bounds on the mass of a lepton-coupled Z0

are satisfied (MZ0 > 4 MeV [21]), a scalar field, S, charged*plestird@mcmaster.ca
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under the U0ð1Þ is included to spontaneously break the
gauge symmetry. Additionally, we extend the Standard
Model by including three standard model singlets: Ne, Nμ,
and Nτ. These fields carry nonzero charge under Le, Lμ,
and Lτ, respectively, and are totally decoupled from the
Standard Model gauge bosons. We will refer to this model
as the 3N extension when only renormalizable operators
are included (this is similar to the νMSM [24,25] but with
an extended gauge group).
In the case of B − L, the three right-handed neutrinos are

required by anomaly cancellation [7]. For the lepton flavor
symmetries (Le − Lμ, Lμ − Lτ, and Le − Lτ), these addi-
tional fields are not required if one gauges only one of
currents but are motivated by observed neutrino oscillations
and the previously mentioned aesthetics. If one wished to
gauge two of these symmetries simultaneously, one would
be forced to include these additional right-handed states
[7,8] to remove anomalies.
Right-handed neutrinos also lend themselves to being a

natural dark matter candidate for masses in the range of
1–100 keV [26–28]. The original proposal for right-handed
neutrinos as a dark matter candidate was made by Dodelson
and Widrow [26]. It relied on a nonthermal production
mechanism mediated by Standard Model physics, in which
sterile mass eigenstates were produced via the weak mass
mixing of right-handed and left-handed neutrinos. Galactic
x-ray searches [29,30] and small-scale structure formation
[6] have since excluded the viable parameter space for the
Dodelson-Widrow proposal.
Although the Dodelson-Widrow scenario has been

excluded, there exist “Dodelson-Widrow-esque” proposals
that are still viable [23]. One possible way to satisfy the
bounds mentioned above is to have the dark matter be
generated by some beyond-the-Standard-Model process,
such as the Z0 progenitor scenario proposed by Shuve and
Yavin [6]. Here, the sterile neutrino dark matter abundance
is generated via the decay of a massive Z0 and never
comes into thermal equilibrium with the photon bath. The
Z0 only couples to the dark matter via mass mixing of
the dark matter and some set of left-handed Standard
Model neutrinos. This scenario was found to be viable
for a very weakly coupled (g0 ∼ 10−3–10−6) and massive
(MZ0 ∼MeV − GeV) Z0 with mass mixing characterized by
a mixing angle θ defined, at zero temperature, by

�
ν1

ν2

�
¼

�
cos θ − sin θ

sin θ cos θ

��
νa

Ns

�
; ð1Þ

where νa andNs are the active and sterile states in the flavor
basis with respect to Z0. The fields ν1 and ν2 are the “mostly
active” and “mostly sterile” mass eigenstates, respectively,
with the understanding that θ ≤ π=4.
The Z0 must couple to some anomaly-free current

involving lepton number for this scenario to be viable.
Shuve and Yavin considered the case of Lμ − Lτ; however,

they mention the dark matter production mechanism is still
viable with other currents, such as B − L or Le − Lμ. The
Shuve-Yavin progenitor scenario relies on indirect coupling
to the dark matter via a mixing angle. This means that, of
the added right-handed neutrinos, at least one must be
decoupled from the Z0.
The 3N extension discussed earlier has one right-handed

neutrino for each lepton generation in the Standard Model.
In the case of a gauged B − L symmetry, this provides no
“sterile state” since all of the right-handed neutrinos would
couple to the Z0 because they all carry lepton number.
Anomaly-free lepton flavor symmetries that only couple to
two lepton generations, such as Lμ − Lτ, naturally yield a
single sterile state; for Lμ − Lτ, it is Ne.
Some natural questions to ask are as follows. Can our 3N

extension account for both the observed dark matter
abundance and the neutrino oscillation data? Can oscil-
lation data shed any light on our picture of sterile neutrino
dark matter?
In Sec. II, we discuss the effects of the choice of

gauge symmetry for both neutrino masses and dark matter.
In Sec. III, we attempt to produce the neutrino textures
in a model with a gauged Lμ − Lτ. We first attempt to use
just the 3N extension and then subsequently investigate
the effects of including higher-dimensional operators.
In Sec, IV, we discuss the implications of neutrino
oscillation data for the Z0 progenitor scenario. Section V
contains a summary of our findings.
Those who are primarily interested in neutrino textures

should consult Secs. II A and III. Those primarily interested
in sterile neutrino dark matter should focus on Secs. II B
and IV, but it should be noted these sections use results
from the neutrino texture discussion.

II. NAIVE CONSEQUENCES OF ONE’S CHOICE
OF CURRENT

A. Neutrino phenomenology

1. B − L as the gauge symmetry

Let us consider B − L first for concreteness. In this case,
all of the right-handed fields carry the same charge. In the
absence of a coupling to an order parameter, this implies
that all Majorana masses must vanish so that neutrinos
would be Dirac particles. The Yukawa coupling matrix is
defined by the contribution to the Lagrangian YijLi

~HNj
where ~H ≡ ϵH†, H is the Higgs doublet, and L is the
Lepton doublet. For an unbroken B − L symmetry, this
matrix is unconstrained and dictates the mixing exclusively.
In this case, neutrino phenomenology can be obtained
trivially due to the number of degrees of freedom present in
the Yukawa matrix.
Because of the fact that all of the right-handed neutrinos

carry charge under B − L, any Majorana mass term is
forbidden since the combination NiNj is not invariant
under the gauge group. Yukawa couplings are allowed
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since Ni carries charge opposite to Lj under UB−Lð1Þ
and so YijLi

~HNj is a gauge singlet. Since the gauge
symmetry is flavor blind, all possible entries in the Yukawa
matrix are allowed, and all nine of its independent entries
are populated,

Y ¼

2
64
× × ×

× × ×

× × ×

3
75 MR ¼

2
64
0 0 0

0 0 0

0 0 0

3
75: ð2Þ

Next, we consider couplings involving the complex
order paramter S. With appropriate charge assignments
(allowing terms like ΓijSNiNj → MijNiNj), the sponta-
neous breaking of the symmetry by the scalar field S can
result in a fully populated mass matrix:

Y ¼

2
64
× × ×

× × ×

× × ×

3
75 MR ¼

2
64
× × ×

· × ×

· · ×

3
75: ð3Þ

Here, Y is the Yukawa matrix,MR is the right-handed mass
matrix, × denotes an independent entry, and · denotes an
entry determined by the required symmetry of MR. There
are clearly enough degrees of freedom in B − L to achieve
the correct neutrino phenomenology. Even for Dirac
neutrinos (i.e., MR ¼ 0), in the CP conserving limit, the
Yukawa matrix has nine free parameters.

2. Lμ − Lτ as the gauge symmetry

In contrast to B − L, it is not obvious that the correct
neutrino phenomenology can be recovered from the model
in the case of Lμ − Lτ. This is because the generational
dependence of the symmetry restricts the form of the
Yukawa matrix. There are additional degrees of freedom
in the context of neutrino mixing due to the presence of
mass terms that allow for the coupling of right-handed
fields to one another. Specifically, the Lagrangian may
contain mass terms coupling Nμ and Nτ as a Dirac pair
while Ne may have a Majorana mass. In this case, we get

Y ¼

2
64
× 0 0

0 × 0

0 0 ×

3
75 MR ¼

2
64
× 0 0

0 0 ×

0 · 0

3
75: ð4Þ

In contrast to B − L, Lμ − Lτ constrains the Yukawa
matrix so severely that the mixing is controlled primarily by
the right-handed mass matrix. In the case of an unbroken
Lμ − Lτ, this structure gives a maximal θ23 and vanishing
mixing with the first generation (θ12 ¼ θ13 ¼ 0).
With the inclusion of an order parameter that breaks the

gauge symmetry, additional terms in the mass matrix are
made possible. B − L is generation blind, and so, as we saw
in the previous section, if the order parameter generates any

mass terms in the broken phase, it will generically populate
the entire mass matrix. By contrast, due to the structure of
Lμ − Lτ, the charge of the order parameter dictates which
entries in the right-handed mass matrix will be nonzero. Let
us set the relative charges of the right-handed fields and the
order parameter by QðSÞ ¼ QðNτÞ ¼ −QðNμÞ. Then, we
get

Y ¼

2
64
× 0 0

0 × 0

0 0 ×

3
75 MR ¼

2
64
× × ×

· 0 ×

· · 0

3
75 ð5Þ

up to renormalizable operators. We see that there are seven
independent parameters, as well as mixing between the
first, second, and third generations. Neutrino oscillations
are controlled by the active-neutrino mass matrix, ML,
which in the seesaw limit is given by YTM−1

R Y. There are
only five oscillation parameters that have been measured
precisely, and so we naively expect that this setup has
enough degrees of freedom (7) to fit to the neutrino
oscillations parameters (5). This will be discussed in greater
detail in Sec. III.
The most important distinction between B − L and Lμ −

Lτ is that the former allows for a totally unconstrained set of
right-handed mixing parameters while the latter reduces the
number of free parameters considerably. This means that,
while a theory of gauged B − L will certainly be able to fit
the neutrino oscillation data, it will not be able to give an
explanation for its structure beyond arbitrary choices of
parameters.

B. Shuve-Yavin progenitor scenario

We will begin by reviewing the necessary ingredients for
the Shuve-Yavin progenitor scenario to represent a viable
dark matter production mechanism. The scenario relies on
mass mixing between a totally sterile dark matter candidate
and an active state [6]. This is necessary to allow for a
nonthermal freeze-in scenario where high-temperature
effects strongly suppress the mixing in the early
Universe [31]. For this to occur, we need to include a
state which is totally sterile with respect to the Standard
Model and the Z0. This totally sterile state must have some
mass mixing, with some set of states that couple to the Z0;
these states can be both left and/or right handed. This
mixing must be sufficiently small so as to avoid bounds
from galactic x-ray searches [29,30,32,33]. Not only does
this state need to satisfy astrophysical bounds, but it must
be stable to ensure that the dark matter survives from early
epochs to today. For this to occur, we need the sterile state
to be the lightest right-handed mass eigenstate. Otherwise,
the decay Ns → Na þ νþ ν is viable, where Na is a lighter
mass eigenstate that couples to the Z0.
So to employ the production mechanism envisioned by

Shuve and Yavin, we must:
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(a) include at least one sterile neutrino that is totally
uncharged under the gauge symmetry.

(b) ensure the smallest eigenvalue of the right-handed
mass matrix corresponds to the mostly weakly coupled
eigenstate mentioned above.

Lμ − Lτ gives us a sterile state for free in the 3N extension.
Ne has vanishing charge, and so we would naturally
identify some mass eigenstate that is “mostly-Ne” as the
mostly-sterile eigenstate; this is the dark matter candidate.
Since we expect this state to be involved in the production
of neutrino masses, the necessary parameter choices for
viable neutrino phenomenology would have to be consis-
tent with those of the Shuve-Yavin progenitor scenario.
B − L does not yield a totally sterile state in the 3N

extension, because three of the right-handed neutrinos must
be charged under B − L (due to anomaly cancellation
requirements). Thus, to employ the Shuve-Yavin mecha-
nism for a Z0 coupled to the current JμB−L, we would need to
introduce an additional Standard Model singlet, N0. The
mixing of this state with any active states is forbidden in the
absence of an order parameter. With an order parameter
included, mass mixing is dictated by our charge assign-
ments. We must enforce QðSÞ ¼ −2QðNiÞ to generate a
nonvanishing right-handed mass matrix like the one shown
in Eq. (5). This assignment forbids the existence of mass
mixing between the N0 and the three right-handed neu-
trinos. We can only write down the Majorana mass term
1
2
M0N0N0. If we instead choose QðSÞ ¼ −QðNiÞ, then we

may write yiSNiN0. After the order parameter breaks the
symmetry, this will result in a Dirac mass that mixes N0
with the active right-handed states Ni; however, the right-
handed mass matrix will not be populated. Thus, a B − L
Shuve-Yavin progenitor scenario would necessarily involve
an additional sterile-state N0 and Dirac neutrinos. This
seems less attractive than the case of Lμ − Lτ, which, at the
level of naive qualitative analysis, seems to work for a 3N
extension.
So we see that if our Z0 couples to B − L we must

introduce a right-handed state that cannot be classified as
belonging to one of the three existing lepton families. By
contrast, at the level of qualitative analysis, a gauged Lμ −
Lτ seems like it may be capable of yielding a dark matter
candidate, and appropriate neutrino phenomenology, in the
3N extension.

III. NEUTRINO PHENOMENOLOGY
FOR A GAUGED Lμ − Lτ

A. Renormalizable theory

Having examined the qualitative features of mass mixing
in our model in Sec. II, we now wish to investigate the
model’s neutrino textures quantitatively. As was discussed
in the Introduction, our model extends the Standard Model
using three right-handed neutrinos labelled by the standard
lepton generational indices and a Z0 coupled to the charge

Lμ − Lτ. This symmetry is spontaneously broken by an
order parameter, S, that transforms as a singlet under the
Standard Model gauge group but is charged under the
newly gauged, accidental U0ð1Þ symmetry. This model will
be defined by the Lagrangian

L ¼ LSM þ LZ0 ; ð6Þ
where LSM is the Standard Model Lagrangian and LZ0

contains that beyond Standard Model physics. This new
physics dictates the interactions of our three new right-
handed fields, Ne, Nμ, and Nτ, with the Standard Model,
the new Z0, and the symmetry breaking order parameter S.
The charge assignments will be such that QðLμÞ ¼
−QðNμÞ ¼ QðSÞ ¼ QðNτÞ ¼ −QðLτÞ, where Li are the
familiar Standard Model doublets. The Standard Model
singlets Nμ and Nτ have the same charges as Nμ and Nτ,
respectively. This leads to the Yukawa and right-handed
mass matrices [34,35]

Y ¼

2
64
ye 0 0

0 yμ 0

0 0 yτ

3
75 MR ¼

2
64
Me mμ mτ

· 0 M

· · 0

3
75; ð7Þ

where mμ and mτ are generated by the spontaneous
breaking of the U0ð1Þ by the field S. As was previously
discussed, this seems to suggest that neutrino mixing will
be controlled by seven parameters. However, assuming that
we may work in the seesaw limit and applying the seesaw
relation ML ¼ mDM−1

R mT
D, we obtain

MðLÞ ¼ M

2
664
1 − r

μ − r−1
μ

· r2

μ2
μ·μe−1
μ2

· · r−2

μ2

3
775: ð8Þ

These variables are related to the original set of
parameters by

r≡
ffiffiffiffiffiffiffiffiffiffi
mτyμ
yτmμ

r
ð9aÞ

μ≡ yeMffiffiffiffiffiffiffiffiffiyμyτ
p ffiffiffiffiffiffiffiffiffiffiffiffimμmτ

p ð9bÞ

μe ≡
ffiffiffiffiffiffiffiffiffiyμyτ

p Me

ye
ffiffiffiffiffiffiffiffiffiffiffiffimμmτ

p ð9cÞ

M≡ ye
ffiffiffiffiffiffiffiffiffiyμyτ

p hhi2ffiffiffiffiffiffiffiffiffiffiffiffimμmτ
p μ

μμe − 2
: ð9dÞ

We can immediately see that in fact the left-handed mass
matrix, and consequently neutrino oscillation data, is
controlled by only four parameters. This is a consequence

RYAN PLESTID PHYSICAL REVIEW D 93, 035011 (2016)

035011-4



of the diagonal Yukawa matrix and the fact that our left-
handed mass matrix contains only four entries. If we define
Ωij ≡ 1

M11
Mij, then we can see that parametrization of the

symmetric 3 × 3 matrix by only four parameters manifests
itself in the relations Ω2

12 ¼ Ω22 and Ω2
13 ¼ Ω33. If some

choice of these four parameters were to be able to produce a
neutrino texture that agreed with observations, this would
be suggestive evidence that neutrino textures depend on
some μ, τ flavor symmetries.
This is because, if we consider the CP-conserving limit,

neutrino textures are controlled by the set of six parameters
fm1; m2; m3; θ12; θ13; θ23g. The parameters that have been
measured are fΔm2

12;Δm2
hl; θ12; θ13; θ23g, where Δm2

12 ≡
m2

2 −m2
1 and Δm2

hl is defined similarly but for the heaviest
and lightest eigenstates. This is equivalent to five of the six
possible pieces of information. Our matrix contains only
four free parameters including an overall mass scale. If we
could fit to the neutrino textures, our model would actually
be predictive. We would only need to use four of the
experimental quantities to predict the entire texture.
It can be shown [36] that this minimal model is incapable

of reproducing the neutrino data to within 3σ for all of the
central fit values from nu-Fit [37]. However, good quali-
tative agreement is found with the model capable of fitting
to four of the five measured values within 2σ. The solution
that fits all of the parameters except θ12 within 2σ is about
25% off the central fit value for sin2 θ12. Because of the
increased precision in neutrino experiments, this represents
a 4.4σ deviation from the best-fit values. The solutions that
fit all parameters except θ13 within 2σ predict a near
vanishing sin2 θ13.
The ability of our 3N extension to produce the correct

qualitative features of the neutrino textures is interesting
and suggests that perhaps the correct neutrino phenom-
enology can be obtained via some small perturbation on
this minimal model. In the following section, we consider
the effects of higher-dimensional operators on the model’s
ability to fit to the observed neutrino oscillation data and
see if these introduce enough degrees of freedom to fit to
the observed textures.

B. Including higher-dimensional operators

The simplest solution that allows this model to fit to the
measured neutrino parameters is to add additional degrees
of freedom in the form of higher-dimensional operators.
These operators will be most easily realized in a UV
completion by adding additional heavy sterile states to the
theory which can be integrated out. By determining what
dimension-5 operators we need to add to the model, we can
gain some insight about possible UV completions.
The types of operators we will consider will broadly fall

into two categories: those that affect the Yukawa matrix
entries (Yukawa-inducing operators) and those that affect
the mass matrix (mass-inducing operators).

1. Mass-inducing operators

The three, dimension-5, mass-inducing operators we can
write down are

LZ0 ⊃
δMμ

hσi2 S
2NμNμ ð10aÞ

LZ0 ⊃
δMτ

hσi2 ðS
†Þ2NτNτ ð10bÞ

LZ0 ⊃
δMe

hσi2 S
†SNeNe; ð10cÞ

where the δMi are the resulting contributions to the right-
handed mass matrix after U0ð1Þ symmetry breaking. The
field σ is the radial component of the order parameter
defined by S≡ 1ffiffi

2
p σ exp ½iπ=hσi�, and hσi is this fields

vacuum expectation value. After symmetry breaking, we
may make the replacement S → 1ffiffi

2
p hσi, which induces

mass terms in the diagonal entries of MR. The third of
these operators is not of interest to us because its effects are
equivalent to a redefinition of Me.
This yields a right-handed mass matrix given by

MR ¼

2
64
Me mμ mτ

· δMμ M

· · δMτ

3
75 ð11Þ

with the same Yukawa matrix as before.
There is of course no reason to expect a priori that δMτ is

significantly smaller than δMμ, and there is no issue if they
are comparable in size. This just gives 6 degrees of freedom
in the CP-conserving limit. This is enough to parametrize
any general 3 × 3 symmetric matrix, and so with this
combination, any neutrino texture could be generated.
This is contrary to the aesthetics that initially directed us
toward studying flavor-dependent currents over the flavor-
blind B − L. It turns out that there exist solutions with
δMτ ¼ 0, and so for the sake of simplicity, we will consider
this limit:

ML ¼ M

2
664
1 − r

μ − r−1
μ þ δ r

μ

· r2

μ2
μ·μe−1
μ2

· · r−2

μ2
− δ μe

μ

3
775: ð12Þ

These parameters are the same as those introduced in
Eq. (9) with the two new definitions:

M≡ ye
ffiffiffiffiffiffiffiffiffiyμyτ

p hhi2ffiffiffiffiffiffiffiffiffiffiffiffimμmτ
p μ

μμe − 2þ δr2
ð13aÞ

δ≡ δMμyτ
Myμ

: ð13bÞ
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In the limit that δ → 0, we recover the results for the
renormalizable case. The key here is that if we define Ω as
before we still have that Ω2

12 ¼ Ω22, but we no longer have
the condition Ω2

13 ¼ Ω33.
With this extra degree of freedom, a finite number of

solutions can be found. For example, fμ; μe; δ; rg ¼
f−0.741; 0.641;−0.380; 0.976g yields a neutrino texture
that agrees with the central values from nu-Fit [37]. This
solution exists very close to the μ↔τ exchange symmetry
in the 3N model (r ¼ 1) with the δ term allowing for the
accommodation of a nonzero θ13 by explicitly breaking this
symmetry.
All of the solutions that we found generically predict δ to

be Oð1Þ. This implies for yμ ∼ yτ that δMμ ∼M. This does
not contradict our expectation that this operator is gen-
erated at tree level by a heavy right-handed state. Suppose
we added a state N0 with Majorana massM0 that coupled to
S via a Yukawa interaction like gSN0Nμ. Then, we would
expect δMμ ∼ ghσi ghσiM0 . Provided M0 ≫ ghσi ≫ M (i.e., a
seesaw hierarchy) and that we have the coincidence of
scales that

ghσi
M0 ∼

M
ghσi ; ð14Þ

then δMμ ∼M is perfectly consistent with an effective field
theory picture.

2. Yukawa-inducing operators

A second class of operators we could include are those
which would affect the Yukawa matrix. These operators
will be of the schematic form Li

~HNjS. More specifically,
we can write down four possible operators:

LZ0 ⊃
Zμ

1ffiffi
2

p hσi SLe
~HNμ ð15aÞ

LZ0 ⊃
Zτ

1ffiffi
2

p hσi S
†Le

~HNτ ð15bÞ

LZ0 ⊃
χμ

1ffiffi
2

p hσi S
†Lμ

~HNe ð15cÞ

LZ0 ⊃
χτ

1ffiffi
2

p hσi SLτ
~HNe: ð15dÞ

We were originally motivated to study higher-dimension
operators to gain intuition about possible UV completions.
In the case of the mass-inducing operators, we found a UV
completion with only one additional sterile state was
sufficient to generate the necessary dimension-5 operators.
This makes the investigation of Yukawa-inducing operators
seem unnecessary; however, these operators are of interest
if one wishes to take advantage of the production

mechanism proposed by Shuve and Yavin. One may expect
that x-ray constraints would require Ne to decouple (i.e.,
ye ∼ 0). In this limit, the additional degrees of freedom
afforded by the operators Zμ and Zτ still allow for the
correct neutrino phenomenology to be generated. This will
be discussed further in Sec. IV B.
Since we wish to study a decoupledNe, we only consider

the Zμ;τ operators (i.e., we assumed χμ ¼ χτ ¼ 0). We were
able to show that with vanishing mass-inducing operators
we were still able to obtain the correct neutrino phenom-
enology. For this to work, we found that Zμ;τ ∼ yμ;τ. This
would require a coincidence of scales and parametrics
similar to that found in Eq. (14).

IV. IMPLICATIONS OF NEUTRINO PHYSICS FOR
THE PROGENITOR SCENARIO

A. General considerations for sterile
neutrino dark matter

If one assumes that some Oð1Þ fraction of the dark
matter is composed of sterile neutrinos, then one generi-
cally predicts the existence of galactic x rays [23]. This is
because a sterile neutrino should have some coupling to
active neutrinos parametrized by the mixing angle in
Eq. (1), which in turn allows for the decay shown in Fig. 1.
Galactic x-ray searches have constrained the mixing

angle for various dark matter masses. In the case of a
10 keV dark matter candidate, the bound can be conserva-
tively stated as sin2 θ < 10−11 [33]. It is worth discussing
whether or not our parameter fit to neutrino data remains
viable after including this constraint.
We first consider the requirements of the Z0 scenario. An

important feature is that the lightest mass eigenstate must
be composed primarily of a totally sterile state with some
very small fraction of active states (see Sec. II B).
In the case of Lμ − Lτ, this eigenstate must be primarily

Ne. Any mixing between Ne and either Nμ or Nτ will result
in a coupling between the lightest eigenstate Ns and the
active leptons. Additionally, a nonzero ye will lead to
mixing with first-generation Standard Model leptons.
In principle, there is more than just one mixing angle to

keep track of because we are discussing the mass eigen-
states formed by various combinations of six fields. To a
very good approximation, we can reduce this to a two-state
problem by the following procedure:

(i) Diagonalize the right-handed mass matrix.
Identify Ns.

FIG. 1. The process Ns → νþ γ proceeding via a loop of
W-bosons and leptons. The decay rate is proportional to sin2 θ.
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(ii) Find the linear combination of left-handed neutrinos
that couple to Ns. Call this state νΣ.

(iii) Integrate out the two heavier eigenstates N1 and N2.
This will imbue νΣ with a mass term via the seesaw
mechanism.

This will leave us with the following mass matrix to
diagonalize:

�
mΣ yΣv

yΣv Ms

�
; ð16Þ

whereMs is the mass of the dark matter candidate, yΣ is the
effective Yukawa coupling of the combination Ns and νΣ to
the Higgs field, and v is the Higgs’s vacuum expect-
ation value.
We know that mν ∼ 0.1 eV and that right-handed neu-

trinos are good dark matter candidates forMs ∼ 1–100 keV.
Therefore,mΣ is negligible if we wish to consider a scenario
involving sterile neutrino dark matter. This leads to the
familiar seesaw relationships

θ ¼ yΣv
Ms

ð17aÞ

mðsÞ
ν ¼ ðyΣvÞ2

Ms
; ð17bÞ

where mðsÞ
ν is Ns’s contribution to the neutrino masses.

This implies that

mðsÞ
ν ¼ Msθ

2
0 ¼ Ms sin2 θ: ð18Þ

So using the data from Fig. 4 of Ref. [33], we see that
sin2 θ < 10−11 for 10 keV dark matter. This implies that

mðsÞ
ν < 10−9 keV ∼ 10−5mν; ð19Þ

where mν is the neutrino mass scale. This suggests that a
sterile neutrino dark matter candidate will not contribute to
neutrino masses beyond the level of about ten parts per
million. Thus, sterile neutrinos that are eligible dark matter
candidates should be thought of as entirely distinct from
sterile neutrinos that are to explain neutrino oscillations.

B. Case of a gauged Lμ − Lτ

In Sec. III B, we found that with the addition of
dimension-5 operators (only one was required for the
mass-inducing operators) neutrino phenomenology can
be accurately produced. The mass-inducing operator sol-
ution fixes the value of five parameters. Many of these turn
out to be proportional to ye, mμ, and mτ, parameters we
know will lead to coupling with active states. The argument
given above suggests that if Ne is to be considered the dark
matter candidate we must be able to obtain the correct
neutrino phenomenology in the limit of a totally decoupled

Ne. So we should consider how to obtain the correct
phenomenology with only two right-handed neutrino
species coupled to the Standard Model Nμ and Nτ.
Dimension-5 operators were investigated, and for non-

vanishing Zμ, Zτ, δMμ, and δMτ, we could accommodate
the appropriate neutrino textures. Including all four of these
operators is equivalent to adding two additional heavy
sterile states which are subsequently integrated out; this can
be understood easily.
Let us add only one additional field N0 which we would

like to serve as the dark matter candidate. We are forced to
totally decouple N0 to a first approximation so that it does
not contribute to neutrino masses as argued in Sec. IVA.
This reduces to our theory with Ne, Nμ, and Nτ generating
all of the neutrino phenomenology, which was found to be
incompatible with the observed neutrino textures. Thus, we
must add a second sterile state N0

e. This state, along with a
heavy Ne, would be responsible for generating the appro-
priate Yukawa-inducing operators needed to explain the
neutrino textures, while N0 serves as the dark matter
candidate. Alternatively, Ne could be thought of as com-
parable to Nμ and Nτ with N0

e heavy. In this scenario, N0
e

would generate the appropriate mass-inducing operators.
Lμ − Lτ initially appeared to lend itself as a minimal-

istic implementation of the Shuve-Yavin progenitor sce-
nario. It had a naturally sterile state and—to a crude
approximation—seemed to naturally produce acceptable
neutrino textures. However, to adequately explain neu-
trino phenomenology and the observed dark matter
abundance, one is forced to introduce two right-handed
fields beyond the minimal three if one wishes to have a
theory that does not depend on irrelevant operators
(dimensionality greater than 4).

C. Cases of gauged Le − Lμ and Le − Lτ

In the limit in which the sterile fermion (Nτ and Nμ,
respectively) is totally decoupled, it is obvious that the
correct neutrino phenomenology cannot be recovered.
Ergo, one must also introduce an additional sterile state
into these theories to serve as the dark matter candidate.
Analyzing these symmetries can be done using all of the

machinery that was developed for Lμ − Lτ by just inter-
changing the appropriate lepton indices. For example, in
the case of Lτ − Le, the condition Ω2

12 ¼ Ω22 becomes
Ω2

12 ¼ Ω11. The analysis we performed shows that Le − Lμ

and Le − Lτ are similar to Lμ − Lτ in that they cannot
reproduce neutrino textures in the 3N extension and require
one additional degree of freedom. This suggests that there
is no aesthetic reason to prefer the symmetries Le − Lμ or
Le − Lτ over Lμ − Lτ, or vice versa.

D. Case of a gauged B − L

The case of a B − L Shuve-Yavin progenitor scenario
initially seemed to have two features that distinguished it
from the gauged lepton flavor symmetries Li − Lj:
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(i) We were forced to introduce an additional sterile
fermion that did not belong to any existing lepton
generations. This seemed ad hoc.

(ii) To couple this new fermion to the active leptons via
mass mixing, we needed to charge the order param-
eter in such a way that the three right-handed
neutrinos charged under B − L did not couple to
one another via mass mixing

The first of these features is now clearly one that is present
for any model of sterile neutrino dark matter. The second
should be further elucidated.
Suppose, in addition to the 3N extension, we add one

additional sterile state, N0, which is uncharged under B − L
and has a Majorana mass of M0. If we wish to have terms
like MDN0Ni, we must charge our order parameter so that
QðSÞ ¼ −QðNiÞ to allow terms in the Lagrangian such as
giSN0Ni. Then, in analogy with νΣ, we may define NΣ ¼
1
N ðgeNe þ gμNμ þ gτNτÞ where the normalization is

defined as N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2e þ g2μ þ g2τ

q
. Then, our mixing is

controlled by θ ¼ N v=M0. This can be arbitrarily small
as far as neutrino phenomenology is concerned because our
dark matter candidate does not contribute appreciably to the
generation of neutrino masses (see Sec. IVA).
Our order parameter was chosen to have charge equal

and opposite to the right-handed fields. B − L is generation
blind, and so any combination of two right-handed fields
has charge 2 [i.e., QðNiNjÞ ¼ −2QðSÞ]. So if we truncate
our Lagrangian at operators of dimension 4, then the right-
handed mass matrix vanishes. It should be noted that by
integrating out N0 a right-handed mass matrix is produced.
However, as was previously argued, the characteristic mass
scale will be about ten millionths the observed neutrino
mass scale, and so this is totally negligible.
As was noted in Sec. II A, the Yukawa matrix for B − L

is a general 3 × 3 matrix and contains enough degrees of
freedom to fit to any neutrino texture. Because of the
vanishing Majorana mass matrix, this charge assignment
predicts Dirac neutrinos, which means that our model
provides no “natural” explanation for the vast disparity
in masses of the neutrinos and other leptons. The model
does yield a dark matter candidate, and viable neutrino
phenomenology with the inclusion of only one additional
sterile state beyond the 3N extension. This makes the
model more minimalistic, in some sense, than the case of a
gauged Lμ − Lτ, which required two additional sterile
states.

V. CONCLUSIONS

We have investigated the implications of an Abelian Z0
for neutrino phenomenology and dark matter. We studied a
minimal extension of the Standard Model that included a
Z0, an order parameter necessitated by cosmological con-
siderations, and three right-handed neutrinos labelled by
the conventional lepton numbers.

We found that lepton flavor symmetries, coupled with a
restriction to three right-handed states, can fit to four of the
five neutrino oscillation parameters such that they agree
with experiment. Tension between our model and experi-
ment for the final parameter can be reduced to around 25%,
and this is perhaps suggestive that some small perturbation
on this model could reproduce the correct neutrino textures.
By including higher-dimensional operators, we were

able to reproduce all of the mixing parameters’ best-fit
values. This is suggestive of a need for a fourth sterile state
if one wishes to gauge lepton flavor symmetries and explain
neutrino oscillations via sterile neutrinos.
We found that for B − L neutrino textures could be fit

trivially with either Dirac or Majorana neutrinos due to the
totally unconstrained Yukawa matrix. The latter requires an
order parameter; however, if one is interested in models of
Abelian Z0s, this is independently motivated due to the
necessity of a massive Z0 to satisfy bounds coming from
Neff [21].
We also found a trivial parametric relation that to the

author’s knowledge had not been emphasized in the
literature before. If one proposes a model of sterile neutrino
dark matter, one has, in the seesaw limit, mðsÞ

ν ∼Ms sin2 θ,
where mðsÞ

ν is the dark matter candidate’s contribution to
neutrino masses. The bounds on sin2 θ and the mass range
for sterile neutrinos to represent a viable dark matter
candidate demand that the dark matter candidate not be
involved in the generation of neutrino masses beyond about
ten part per million. This implies that the existence of
neutrino masses does not motivate a dark matter candidate
because if such a sterile neutrino candidate existed it would
not contribute to the observed phenomenon appreciably.
This relation suggests that any model of sterile neutrino
dark matter must include an additional decoupled state
beyond those involved in neutrino mass generation.
In summary, we found that for the case of gauged lepton

flavor symmetries, Li − Lj, four sterile neutrinos are
needed to reproduce oscillation data, and a fifth is required
to provide a viable dark matter candidate. The 3N extension
with a gauged B − L can produce neutrino phenomenology
that agrees with experimental observations, but for the
model to include a viable dark matter candidate, one
additional sterile state must be included. This results in
Dirac neutrinos and a Majorana neutrino dark matter
candidate, if it seeks to simultaneously explain neutrino
oscillation data.
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