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We consider nucleon-decay-like signatures of hylogenesis, a variant of the antibaryonic dark matter
model. For the interaction between visible and dark matter sectors through the neutron portal, we calculate
the rates of dark matter scatterings off a neutron which mimic neutron-decay processes n → νγ and
n → νeþe− with richer kinematics. We obtain bounds on the model parameters from nonobservation of the
neutron decays by applying the kinematical cuts adopted in the experimental analyses. The bounds are
generally (much) weaker than those coming from the recently performed study of events with a single jet of
high transverse momentum and missing energy observed at the LHC. Then we suggest several new
nucleon-decay-like processes with two mesons in the final state and estimate (accounting for the LHC
constraints) the lower limits on the nucleon lifetime with respect to these channels. The obtained values
appear to be promising for probing the antibaryonic dark matter at future underground experiments like
HyperK and DUNE.
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I. INTRODUCTION

Given a variety of spatial scales and cosmological epochs
associated with dark matter phenomena, their natural
explanation seems to come from introducing a new neutral
particle, stable at cosmological time-scales. Many exten-
sions of the Standard Model (SM) of particle physics
suggest suitable dark matter candidates with masses rang-
ing from 10−23 eV (oscillating scalar field; see, e.g., [1]) to
1016 GeV (superheavy dark matter; see, e.g., [2]). Dark
matter particles must be produced in the early Universe at a
stage before matter-radiation equality. Most mechanisms
exploited for this purpose work properly (for a review,
see [3]) but treat the (order-of-magnitude) equality of dark
matter and visible matter contributions to the present
energy density of the Universe,

ρDM;0 ∼ ρB;0; ð1Þ

as an accidental coincidence.
Yet it may be a hint towards a common origin of both

cosmological problems, dark matter phenomena, and
matter-antimatter asymmetry of the Universe. There are
models addressing this issue. In particular, an elegant
approach is provided by the models of antibaryonic dark
matter, where dark matter particles carry (anti)baryonic
charge. The idea is that the total baryonic charge of the
Universe is zero, but it is redistributed between the visible
sector (positive baryonic charge) and dark sector (negative
charge of the same amount). Both dark and visible matter
emerge during the same process at some stage in the early

Universe making a connection between the two compo-
nents so that the coincidence (1) may be understood.
Similar to the visible sector, the dark sector is asym-

metric, being populated solely with particles of negative
baryonic charge. The models of this type are called
asymmetric dark matter; for a review, see [4]. They exhibit
quite specific phenomenology: As a rule, no dark matter
pair annihilation is expected in galaxies or inside the Sun
(see, however, [5,6]). Instead, the antibaryonic dark matter
particle may annihilate with a nucleon, mimicking proton/
neutron disappearance or decay.
A remarkable example of the antibaryonic dark matter

model is provided by hylogenesis [7]. To the SM particle
content at low energies, the model adds a complex scalar Φ
and Dirac spinor Ψ, together forming dark matter compo-
nents, and also two heavy fermions Xa, a ¼ 1, 2 playing
the role of messengers between the visible and dark sectors.
The interaction terms read

L¼−
λijka
Λ2

X̄a
1þγ5
2

di ·ujC
1þγ5
2

dkþζaX̄aΨCΦ�þH:c:;

ð2Þ

with i, j, k running over the SM three generations, di and uj

denote down-type and up-type quarks, and superscript C
refers to charge conjugation; λijka and ζa are dimensionless
coupling constants, and Λ stands for the scale of new
physics which completes the model to a renormalizable
theory (for a particular variant of high-energy completion
within a supersymmetric framework, see [8]).
The new fields carry baryonic charge so that BðXaÞ ¼ 1

and BðΨÞ ¼ BðΦÞ ¼ −1=2. Coupling constants λijka and ζa
are, in general, complex numbers providing the model with
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charge (C) and charge-parity (CP) violation required for
the successful dynamical generation of the baryon
asymmetry. The latter is produced in the early Universe
via CP-violating decays of nonrelativistic messengers Xa
in a way very similar to what happens in the standard
leptogenesis with heavy sterile neutrinos [9]. Since the
baryon number is conserved by interactions (2), in the same
process the dark sector (Ψ, Φ) becomes asymmetric,
collecting the negative baryonic charge produced in the
CP-violating decays of nonrelativistic fermions Xa. Later
in the Universe, baryons and antibaryons of the visible
sector annihilate, leaving the net baryonic charge, which is
accumulated at present mostly in hydrogen and helium. A
similar process happens in the dark sector, and the anti-
baryonic charge of the same amount is distributed between
fermions Ψ and bosons Φ. This may be characterized by a
ratio of their present number densities,

η≡ nΦ;0
nΨ;0

: ð3Þ

Proton and both dark matter particles,Ψ andΦ, are stable
if their masses obey the kinematical constraints

jMΨ −MΦj < Mp þme < MΨ þMΦ; ð4Þ

where Mp and me stand for proton and electron masses.
Total baryon number conservation implies a simple relation
between dark matter and visible baryon number densities

nB ¼ nΨ þ nΦ
2

: ð5Þ

For the present dark matter energy density, one can write

ρDM;0 ¼ MΨnΨ þMΦnΦ: ð6Þ

Without any asymmetry between the two dark matter
components, i.e., when η ¼ 1, we obtain from (6) and (5),

ρDM;0 ¼
MΨ þMΦ

Mp
ρB;0; ð7Þ

which for the observed property (1) settles the dark matter
mass scale in the GeV range. Then, for the present
cosmological estimates of ρB;0 and ρDM;0 [10], the sum
of the dark matter particle masses are fixed by Eq. (7),
while the kinematical constraint (4) confines the individual
masses inside the interval

1.7 GeV≲MΨ; MΦ ≲ 2.9 GeV: ð8Þ

With asymmetry between Ψ and Φ populations, η ≠ 1, the
relation (7) is replaced with

ρDM;0 ¼
2ðMΨ þ ηMΦÞ
ð1þ ηÞMp

ρB;0: ð9Þ

The interaction with quarks in (2) can be used to probe
the model at colliders [11,12]. Heavy fermions Xa can be
directly produced or virtually contribute to dark matter
production. This model provides the following signatures
for the LHC experiments [depending on the quark structure
in (2)]: (i) missing energy and either a jet with high
transverse momentum pT [11,12] or a heavy quark (t, b,
or c) with high pT [12]; (ii) a jet (or a heavy quark) with
high pT and a peak in the invariant mass of three jets
whose momenta compensate high pT [12]. The performed
analysis of LHC events with a high-pT jet and missing
energy has allowed us to constrain the model parameter
space pushing the new physics up to TeV scale [12].
Another very pronounced signature of the model [7] is an

induced nucleon decay (IND) [11]. The dark matter particle
scattering off a nucleon (through the exchange of virtual
fermions Xa) flips its type, Ψ↔Φ, and destroys the
nucleon. The kinematical constraint (4) obviously forbids
the traceless disappearance of the nucleon, i.e., a process
like Φþ n → Ψ. Some additional particles must emerge in
the final state yielding a signature of the induced nucleon
decay. These processes involving an additional single
meson in the final state have been analyzed [7,8,11] for
a set of quark operators entering (2) and a number of final
states. While the scattering mimics the nucleon decay, the
kinematics of particles in the final state is different, which
prevents us from direct use of the limits on the proton/
neutron lifetimes to constrain the model parameter space.
However, by adjusting properly the kinematical cuts, the
corresponding analysis has been performed [8,11]. In
particular, for Xa couplings to the uds operator in (2),
the results of nucleon decay searches raise the mass of
heavy fermion Xa and the scale of new physics Λ up to the
TeV scale [7,8,11].
In this paper, we analyze several new modes of the

induced nucleon decays via a neutron portal represented by
the dud operator in (2). The paper is organized as follows.
In Sec. II we derive the low-energy effective Lagrangian
describing the dark matter scattering off a neutron and give
the relation between the scattering cross section and the
nucleon lifetime with respect to decay into a given final
state. In Sec. III we consider 2 → 2 scattering processes
ΨðΦÞ þ n → ΦðΨÞ þ γ, which mimic neutron decay
n → νγ, and, imposing the cuts adopted in the experimental
search for this decay mode [13,14], we constrain the model
parameter space. These constraints turn out to be (much)
weaker than those following from the LHC [12], so finally
we obtain a lower estimate of the neutron lifetime in this
model based on the limits from the LHC. In a similar way,
we investigate the scatteringΨðΦÞ þ n → ΦðΨÞ þ eþe− in
Sec. IV. We study the induced nucleon decays into two light
mesons (π,K, η in various possible combinations) in Sec. V
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and (based on the LHC bounds [12]) predict the shortest
lifetimes at the level of 1032 − 1033 yr expected for these
modes within hylogenesis. The obtained numbers are quite
promising and allow the processes to be tested with the
next-generation underground facilities like HyperK [15,16]
and DUNE [17]. We expect that these channels apart from
the dominant single-meson-induced nucleon decays would
be helpful to discriminate between different models pre-
dicting processes with baryon number violation and corner
an interesting region in the parameter space of the hylo-
genesis scenario if a nucleon-decay-type signal is found in
the future. We conclude in Sec. VI.

II. LOW-ENERGY EFFECTIVE LAGRANGIAN
AND NUCLEON LIFETIME

The coupling terms in Eq. (2) relevant for low-energy
phenomenology of the neutron portal read

L ¼ −
λduda

Λ2
Xa

1þ γ5
2

d · ūC
1þ γ5

2
dþ ζaXaΨCΦ� þ H:c:

ð10Þ

Hereafter, we are interested in processes with typical
energies much below the mass scale of the heavy fermions
Xa. The exchange of virtual Xa between the visible sector
and dark sector fields entering (10) yields the following
contact interaction:

L ¼ −

P
2
a¼1

λduda ζ�a
MXa

Λ2
ΦΨC 1þ γ5

2
d · uC

1þ γ5
2

dþ H:c:

ð11Þ

For further analysis, it is convenient to introduce variables
MX and y by relations

y
MX

≡X2
a¼1

λduda ζ�a
MXa

; ð12Þ

so thatMX (somewhat vaguely) indicates the heavy fermion
scale, while dimensionless parameter y reflects the cou-
pling strength. The physical meaning of MX is the energy
scale below which the effective interaction (11) can be
safely exploited instead of (10). Since not y and MX
individually but only their ratio (12) enters all the formulas
below, there is an ambiguity in the definition of y and MX
related to the change of the variables. However, it has no
impact on the physical observables.
Further, the GeV scale of dark matter masses (8) and

smallness of the expected velocity of galactic dark matter
particles allow us to describe the dark matter scattering off
nucleons in terms of baryons and mesons rather than quarks
and gluons. In this approximation, the Lagrangian (11) with
replacement (12) transforms into a Yukawa-type interaction

L ¼ −
yβ

Λ2MX
ΦΨC 1þ γ5

2
nþ H:c:; ð13Þ

which we use below to calculate the scattering rates; n
denotes the neutron field, and the parameter β ¼
0.012 GeV3 is related to the QCD scale [18].
The cross sections of dark matter scatterings off a

nucleon N, σΨN→…, and σΦN→… are related to the total
nucleon lifetime with respect to a particular IND process
τN→… as follows:

τN→… ¼ 1

nΨvσΨN→… þ nΦvσΦN→…
; ð14Þ

where v is the dark matter particle velocity in the laboratory
frame where nucleons are at rest. In fact, since the
scatterings we discuss happen in s wave, the cross sections
are inversely proportional to v, and the lifetime (14) does
not depend on its value.

III. SCATTERING PROCESSES Ψ ðΦÞn → ΦðΨ Þγ
We start our study with a simple 2 → 2 scattering with

dark matter particles annihilating a neutron into a dark
matter particle of another type and a photon. Let pΨ, pn,
and q be the 4-momentum of Ψ, neutron n, and the
outgoing photon γ, being real for Ψn → Φγ, and, hence,
q2 ¼ 0 (or virtual for Ψn → Φeþe−, which we consider in
Sec. IV). The process is proceeded due to the Yukawa
interaction (13) and the neutron dipole moment

L ¼ ie
2Mn

n̄σμνqνF2ðq2ÞnAμ; ð15Þ

where ϵμðqÞ is a photon polarization 4-vector, and for
the Pauli (magnetic) form factor, we utilize the dipole
parametrization F2ðq2Þ ¼ −1.91=ð1þ q2r2M=12Þ2 with
magnetic radius rM ¼ 0.86 fm [10].
The dark matter particle scatters off the neutron by

means of virtual neutron exchange. The matrix element of
the process reads

ieyβ
2MnΛ2

F2ðq2Þ
MX

ΨCðpΨÞ
1þ γ5

2

p̂ −Mn

p2 −M2
n
σμνqνnðpnÞϵμðqÞΦ;

where p ¼ q − pn is the 4-momentum of the virtual
neutron, and nðpnÞ, ΨðpΨÞ, Φ are wave functions of the
neutron, Ψ, and Φ particles, respectively. In the laboratory
frame, the neutron is at rest, while the dark matter particle
moves with small velocity v ≪ 1. Here and below, we
perform the estimates to the leading order in velocity v. The
squared matrix element averaged over spins of the two
incoming fermions in the laboratory frame is
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jMj2 ¼ e2y2β2

4M2
n

F2
2ð0Þ

M2
XΛ

4
MnMΨ: ð16Þ

For the similar process Φn → Ψγ, we find the same
expression (16) up to the following replacement:

MnMΨ → 2MnðMΦ þMn − q0Þ;

where the additional factor accounts for different numbers
of fermions in the initial states averaged over spins. To the
leading order in v ≪ 1, the photon frequency is

q0 ≈Mn þMΨ −MΦ:

We can place a bound on the model parameter space
from nonobservation of the decay n → νγ [13,14] exhibit-
ing the same signature as the scattering process under
discussion: a single photon in the final state. To this end,
we constrain the kinematics of the photon as it has been
adopted1 in the original experimental analysis [13,14],

350 MeV ≤ q0 ≤ 600 MeV: ð17Þ

Since for the 2 → 2 processes, all momenta of the final
particles are fixed by the momenta of the initial particles,
the above constraint on photon frequency merely defines
the region in the ðMΨ;MΦÞ space where the experimental
limit [13,14] is applicable.
The cross section for the process Ψþ n → Φþ γ reads

σΨn→Φγ ¼
1

64πM2
nM2

Ψv
2
jMj2ðt0 − t1Þ;

where

t0 − t1 ¼ v
2MΨMn

ðMΨ þMnÞ2
ððMn þMΨÞ2 −M2

ΦÞ:

Finally, we obtain

σΨn→Φγ ¼
1

32πv
e2y2β2

4M2
n

F2
2ð0Þ

M2
XΛ

4

�
1 −

M2
Φ

ðMn þMΨÞ2
�
:

Similarly, the cross section of Φþ n → Ψþ γ looks as

σΦn→Ψγ ¼
1

32πv
e2y2β2

4M2
n

F2
2ð0Þ

M2
XΛ

4

�
1 −

M4
Ψ

ðMn þMΦÞ4
�

×

�
1þ Mn

MΦ

�
:

The present lower limit on the lifetime of the neutron-
decay mode in question is [10,14]

τn→γν > 2.8 × 1031 yr; ð18Þ

which is applicable in our case while the dark matter
masses obey the constraint (17). Applying Eq. (14) in Fig. 1
we show contours of the constant neutron lifetime of a
neutron (thin lines) with respect to induced neutron-decay
processes ΦðΨÞ þ n → ΨðΦÞ þ γ. They have been calcu-
lated for the realistic set of parameters Λ ¼ MX ¼ 1 TeV
and y ¼ 1 without any cuts on the phase space. As we
explained above, the present experimental limit on this
process can be applied only within the regions shown in
violet (light grey) color. In this case, one can obtain the
current limit on the characteristic scale of the process
ðΛ2MX=yÞ1=3; the corresponding bounds are shown in
these regions by thick lines. Outside the shaded blue
(dark grey) and violet (light grey) regions on this and
the subsequent and similar plots, the stability requirement
(4) is not satisfied.
Note in passing, that applying LHC bounds obtained in

[12] is not quite straightforward because the couplings ζa
which enter (11) are not limited directly from these
searches. Thus, smaller values of Λ and MX may be
allowed. However, in this paper we will use Λ ¼ MX ¼
1 TeV and y ¼ 1 as a reference set of parameters for
numerical estimates.

IV. SCATTERING PROCESSES
Ψ ðΦÞ þ n → ΦðΨ Þ þ eþe−

This is a 2 → 3 process induced by couplings (13) and
(15) through the exchange of a virtual neutron and with
emission of a virtual photon producing an electron-positron

1.8 2.0 2.2 2.4 2.6 2.8
MΦ, GeV

1.8

2.0
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2.4

2.6

2.8

M
Ψ
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205
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1.3e+35
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1e+35
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1e+357e+34

FIG. 1. Contours (thin lines) of constant lifetime (in years) of a
neutron with respect to the processes Ψn → Φγ and Φn → Ψγ,
assuming equal number densities of the two dark matter compo-
nents and parameters Λ ¼ MX ¼ 1 TeV and y ¼ 1. Present
experimental bounds are applicable in the violet (light grey)
regions on the plot. Thick lines in these regions show the limits on
the quantity ðΛ2MX=yÞ1=3 in GeV.

1One more requirement on the quantity called asymmetry to be
discussed in Sec. IV is automatically fulfilled.
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pair. With pþ and p− being the 4-momenta of an out-
coming positron and electron, the matrix element is

ie2yβ
2MnΛ2

F2ðq2Þ
MXq2

ΨCðpΨÞ
1þ γ5

2

×
p̂ −Mn

p2 −M2
n
σμνqνnðpnÞΦψ̄ðpþÞγμψðp−Þ:

Here, q ¼ pþ þ p−, p ¼ pn − q and ΨðpΨÞ, nðpnÞ,
ψðpþÞ, ψðp−Þ are wave functions of Ψ, n, eþ, and e−,
respectively.
For the squared matrix element of the 2 → 3 process

averaged over the spins of two incoming fermions, we
obtain

jMj2 ¼ e4y2β2

4M2
n

F2
2ðq2Þ

M2
XΛ

4

4

q2
1

ðq2 − 2qpnÞ2
ðq2 · pnpþ · qpΨ þ q2 · pþpΨ · qpn

− 4qpΨ · pnpþ · pnpþ þ 4pnpþ · pnpþ · pnpΨ þ 2pnpþ · qpn · qpΨ

þ q2M2
nqpΨ − q2M2

npnpΨ − 4pnpþ · qpn · pnpΨ − 2pþpΨ · qpn · qpn

þ 4qpn · pþpΨ · pnpþ − 2q2 · pþpΨ · pnpþ þ 2pnpΨ · qpn · qpn − q2 · qpn · pnpΨÞ: ð19Þ

In what follows, it is convenient to describe the final state
in terms of energies of the outgoing visible particles by
choosing, say, positron energy Eþ and the sum of positron
and electron energies E. Then for the scattering
Ψn → Φeþe−, to the leading order in dark matter particle
velocity v ≪ 1, one should make the following substitution
in Eq. (19) (in both the center-of-mass and the laboratory
frames)

pnpΨ ¼MnMΨ; pnpþ ¼MnEþ; qpn ¼ EMn;

pþpΨ ¼ EþMΨ; qpΨ ¼ EMΨ; qpþ ¼ EEþ;

q2 ¼ 2EM −M2 þM2
Φ;

q2 − 2qpn ¼ 2EMΨ −M2 þM2
Φ;

where we introduced the notation M ¼ Mn þMΨ. Finally,
we arrive at

jMj2 ¼ e4y2β2

M2
nq2

F2
2ðq2Þ

M2
XΛ

4

MnMΨ

ðq2 − 2qpnÞ2
× ½q2ð2EþðE − EþÞ −M2

nÞ
þ 2M2

nðE2þ þ ðE − EþÞ2Þ�:

The expression for the differential cross section looks as
follows [10]:

dσ ¼ 1

4Ið2πÞ316s jMj2dm2
12dm

2
23;

where I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpnpΨÞ2 −M2

nM2
Ψ

p
≈MnMΨv is a flux factor,

and in the nonrelativistic limit, one has
ffiffiffi
s

p ¼ M. The
invariant masses of outgoing pairs (let the subscripts “1”
and “2” refer to the visible particles and “3” to the dark
matter) in the nonrelativistic limit get reduced to

m2
23 ¼ M2 þm2

1 − 2ME1;

m2
12 ¼ 2ME −M2 þm2

3;

dm2
12dm

2
23 ¼ −2MdE2MdE1: ð20Þ

The energy E is confined within the interval

ðm1 þm2Þ2 þM2 −m2
3

2M
< E < M −m3; ð21Þ

and E1 is within the interval

m2
1 þM2 − ðm2

23Þmax

2M
< E1 <

M2 þm2
1 − ðm2

23Þmin

2M
;

ð22Þ
where

ðm2
23Þmax

min ¼ 2E�
2E

�
3 −m2

2 −m2
3 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
2 −m2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
3 −m2

3

q

and

E�2
3 −m2

3 ¼
M2ððM − EÞ2 −m2

3Þ
2ME −M2 þm2

3

; ð23Þ

E�2
2 −m2

2¼
ð2ME−M2þm2

3þm2
2−m2

1Þ2
4ð2ME−M2þm2

3Þ
−m2

2; ð24Þ

2E�
2E

�
3¼

ð−M2þ2MEþm2
3þm2

2−m2
1ÞðM2−ME−m2

3Þ
2ME−M2þm2

3

:

ð25Þ
For the process under discussion, let subscript 1 refer to

the positron, and replacing in the above formulas E1 with
Eþ, we obtain the differential cross section
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dσ ¼ 1

128π3vMnMΨ
jMj2dEdEþ;

which must be integrated over the region defined by
Eqs. (20)–(24).
For the process ΦðpΦÞnðpnÞ → ΨðpΨÞeþðpþÞe−ðp−Þ,

one has the same expression (19) multiplied by a factor of 2
due to one less number of initial fermions and makes the
replacement

pnpþ ¼ MnEþ; qpn ¼ MnE;

pnpΨ ¼ MnðM − EÞ; q2 ¼ −M2 þM2
Ψ þ 2ME;

pþpΨ ¼ 1

2
M2 −

1

2
M2

Ψ −MðE − EþÞ;
qpΨ ¼ M2 −M2

Ψ −ME;

q2 − 2qpn ¼ −M2 þM2
Ψ þ 2EðM −MnÞ;

where M ¼ MΦ þMn.
The current best limit [10,14] for neutron decay in the

mode n → νeþe− is

τn→νeþe− > 2.57 × 1032 yr:

It has been obtained from the analysis of experimental
data with imposing the following cut on the total energy of
leptons [13,14]

500 MeV ≤ E ≤ 850 MeV ð26Þ

and assuming that the asymmetry is small,

A < 0.5: ð27Þ

The latter quantity characterizes the directional asymmetry
of energy release in the Cherenkov detector. The asym-
metry is maximal, A ¼ 1, for collinear particles and equals
zero for such a decay, where the particles go in opposite
directions. Let us stress that this quantity counts not all the
particles but only those which release the energy inside
the Cherenkov detector and accounts for them with weights
proportional to the energy release into the Cherenkov
radiation.
In our case of the electron-positron pair, the weights are

identical. For the decay n → νeþe−, all 3-momenta of the
outgoing particles are in a decay plane. All three particles
are relativistic, so the Cherenkov angles for the electron and
positron are identical, and the energy conservation gives for
the sum of the particle energies

Eν þ Eþ þ E− ¼ M; ð28Þ

where M is the neutron mass. Then the asymmetry defined
in [13,14] is just

A≡ 1

2
ð1þ nþn−Þ; ð29Þ

where n� are unit 3-vectors along the direction of the
outgoing positron and electron, respectively. Introducing
the reference axis along the 3-momentum of the neutrino,
one defines the corresponding transverse and longitudinal
parts of the electron and positron momenta. Obviously, the
transverse parts of the electron and positron momenta are
equal in magnitude but of opposite directions

p⊥þ ¼ −p⊥
− ; ð30Þ

while the longitudinal parts (momentum projection on the
chosen axis) sum to zero,

p∥
ν þ p∥

þ þ p∥
− ¼ 0: ð31Þ

For the relativistic electron and positron, one has

E2
� ¼ p∥2

� þ p⊥2
� ; ð32Þ

and for relativistic neutrino with the chosen axis, p∥
ν > 0

and

p∥
ν ¼ Eν: ð33Þ

Then, the asymmetry (29) reads

A ¼ 1

2

�
1þ p∥

þ
Eþ

p∥
−

E−
þ p⊥þ
Eþ

p⊥
−

E−

�
: ð34Þ

The differential decay rate is given by

dΓ ¼ 1

ð2πÞ3
1

32M3
jMj2dm2

12dm
2
23: ð35Þ

Introducing the sum of the electron and positron energies

E≡ Eþ þ E−;

one obtains for the phase space measure (20) (where E1

stands for Eþ) that ranges (21) and (22) are reduced to

M
2
< E < M; E −

M
2
< Eþ <

M
2
: ð36Þ

Two independent variables, e.g., E and Eþ, fix all the
others, which can be found by solving Eqs. (28) and
(30)–(32) under condition (33). The results read

E− ¼ E − Eþ; ð37Þ

Eν ¼ M − E; ð38Þ

p∥
þ ¼ EðM − EþÞ −M2=2

M − E
; ð39Þ
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p∥
− ¼ EðM − EÞ þ EEþ −M2=2

E −M
; ð40Þ

p⊥2
− ¼ p⊥2þ ¼ MðE −M=2Þð2Eþ −MÞðE − Eþ −M=2Þ

ðE −MÞ2 :

ð41Þ

Putting the solutions above into (34), one obtains for the
asymmetry

A ¼ 1

2

�
1 −

EþðEþ − EÞ þMðE −M=2Þ
EþðE − EþÞ

�
: ð42Þ

The cut adopted in [13,14] A < 0.5 implies a positive value
of the second term in parentheses in Eq. (42). It slightly

increases the lower limit for E and, thus, reduces a little the
triangle integration region in (36).
To adopt the same cuts on asymmetry A in the case of

the 2 → 3 process Ψn → Φeþe−, one can treat it in the
nonrelativistic regime as a decay of the particle of effective
mass

M ≈Mn þMΨ:

Then the following formulas from the previous consid-
erations must be modified as follows:

(i) Instead of the massless neutrino, the outcoming dark
matter particle Φ is massive, so its 3-momentum (we
use the same notations) instead of (33) obeys

p∥2
ν þM2

Φ ¼ E2
ν: ð43Þ

(ii) The region of integration in Eq. (36)

M2 −M2
Φ

2M
< E < M −MΦ;

1

2

�
E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − EÞ2 −M2

Φ

q �
< Eþ <

1

2

�
Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − EÞ2 −M2

Φ

q �
: ð44Þ

(iii) Longitudinal momenta are

p∥
þ ¼ EðM − EþÞ −M2=2þM2

Φ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM − EÞ2 −M2

Φ

p ; ð45Þ

p∥
−¼

EðEþþM−EÞ−M2=2þM2
Φ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM−EÞ2−M2
Φ

p ; ð46Þ

and the transverse momenta read

p⊥2
− ¼ p⊥2þ ¼ ½MðEþ − EþM=2Þ −M2

Φ=2�½ðE −M=2ÞðM − 2EþÞ þM2
Φ=2�

ðM − EÞ2 −M2
Φ

: ð47Þ

(iv) The asymmetry (42) must be replaced with

A ¼ 1

2

�
1 −

EþðEþ − EÞ þMðE −M=2Þ þM2
Φ=2

EþðE − EþÞ
�
: ð48Þ

Similar formulas with evident replacements MΦ → MΨ
and M → Mn þMΦ are applicable for the description of
the twin process Φn → Ψeþe−.
For the original process n → νeþe−, assuming the

momenta-independent matrix element, the cuts (26) and
(27) select a 0.3278=0.3904 part of the phase space. In

Fig. 2, we show contours of the constant lifetime of a
neutron (thin lines) with respect to induced neutron-decay
processes ΦðΨÞ þ n → ΨðΦÞ þ eþe−. They have been
calculated without any cuts for Λ ¼ MX ¼ 1 TeV and
y ¼ 1. The current limits on these processes can be applied
only within the region shown in violet (light grey) color:
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They are distinguished by the corresponding kinematics of
the process and applied cuts (26) and (27). In this case, one
can obtain the current limit on the characteristic scale of the
process Λ; the corresponding bounds are shown in these
regions by thick lines.
Now let us consider the asymmetric case when number

densities of Ψ and Φ are different, η ≠ 1; see Eq. (3). As an
example, below we consider opposite cases of asymmetry:
η ¼ 0.01 and η ¼ 100, which correspond to Ψ or Φ
dominance, respectively. Note that in this case, the allowed
mass intervals are different from that of the symmetric case:
Namely, mass of the dominant component is fixed in the
very narrow region around 5Mp=2, while the subdominant
component can have mass which is determined by the
condition (4). In Fig. 3, we show expected lifetimes of a

neutron with respect to the processes ΦðΨÞ þ n → ΨðΦÞ þ
eþe− for the cases of Φ and Ψ dominance calculated for
the same set of parameters as we described previously.
The current limits on this process are applicable in the
shaded regions on these figures, and they (almost uniformly
over these regions) result in Λ > 35 GeV (η ¼ 100) and
Λ > 40 GeV (η ¼ 0.01) for region 1 and Λ > 86 GeV
(η ¼ 100) and Λ > 75 GeV (η ¼ 0.01) for region 2.
Similar plots for the processes ΦðΨÞ þ n → ΨðΦÞ þ γ

are shown in Fig. 4. Here one can obtain the following
limits on Λ: for η ¼ 100, we have Λ > 215–228 GeV, and
for η ¼ 0.01, we obtain Λ > 185–200 GeV depending on
the mass of the subdominant component.

V. PROCESSES Ψ ðΦÞ þ N → ΦðΨ Þ þ 2 MESONS

Within the chiral perturbation theory, the IND processes
with two mesons in the final state arise in the 1=f2 order
due to the following terms in the low-energy effective
Lagrangian:

L1π ¼ i
c1β
f

ΦΨC

�
−

ffiffiffi
3

2

r
nηþ 1ffiffiffi

2
p nπ0 − pπ−

�
þ H:c:;

ð49Þ

L2π ¼ −
βc1
2f2

ð
ffiffiffi
6

p
π−ηþ K0K−ÞΦΨCpR

−
βc1
2f2

�
πþπ− þ 3

2
η2 −

ffiffiffi
3

p
ηπ0 þ 1

2
ðπ0Þ2

þ 2K0K̄0 þ KþK−
�
ΦΨCnR þ H:c:; ð50Þ

with parameter c1 related to the model parameters as
follows from matching Eqs. (11) and (12) to Eqs. (A1)
and (A2):

 1x1035
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 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3  3.2  3.4

τ,
 y

r

MΨ or MΦ, GeV

η=100
η=0.01

FIG. 4. Lifetime of a neutron with respect to the processes Φþ
n → Ψþ γ (for η ¼ 100) and Ψþ n → Φþ γ (for η ¼ 0.01); we
set Λ ¼ MX ¼ 1 TeV and y ¼ 1.
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FIG. 3. Lifetime of a neutron with respect to IND n → eþe− for
η ¼ 100 and η ¼ 0.01; we set Λ ¼ MX ¼ 1 TeV and y ¼ 1. The
current limits are applied in shaded regions.
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FIG. 2. Contours (thin lines) of constant lifetime (in years) of a
neutron with respect to the process ΨðΦÞn → ΦðΨÞeþe−; we set
Λ ¼ MX ¼ 1 TeV and y ¼ 1. Present experimental bounds are
applicable in the violet (light grey) region on the plot. Thick lines
in this region show the limits on the quantity ðΛ2MX=yÞ1=3.
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c1 ¼
y

MXΛ2
:

Details of the derivation are presented in the Appendix for
completeness. Below, we work in the limit of exact isotopic
invariance, neglecting the proton-neutron and charged-
neutral pion mass differences,

Mn ¼ Mp ≡MN;

mπþ ¼ mπ0 ≡mπ;

mKþ ¼ mK0 ≡mK:

Two types of diagrams contribute the processes: one of
them follows from Lagrangian (50) and the other comes
from one-meson Lagrangian (49), while the second meson
is radiated from the nucleon leg; see Eq. (A5).
For the dud operator, we have the following possibilities

for induced decays, which we classify here according to the
number of tree-level Feynman diagrams contributing the
corresponding processes:

(i) one-diagram processes p → K̄0Kþ, n → K0K̄0,
and n → KþK−;

(ii) two-diagram processes p → π0πþ, n → πþπ−;
(iii) three-diagram processes n→ηπ0, p → ηπþ, n → ηη,

and n → π0π0.

A. One-diagram processes

The Feynman diagram for the process Ψþ p → Φþ
K̄0Kþ is presented in Fig. 5. Averaged over spins of the
initial two fermions, the squared matrix element of this
process reads

jMj2 ¼ β2c21
8f4

pNpΨ; ð51Þ

and by a factor of 2 bigger for Φþ p → Ψþ K̄0Kþ;
hereafter, pN refers to the 4-momentum of the nucleon
participating in the corresponding process. For the first
process, in the laboratory frame one has to the leading order
in dark matter velocity

pNpΨ ¼ MNMΨ; ð52Þ

and when integrating over the phase space adopts the
formulas (20)–(24) with

M¼MNþMΨ; m1¼m2¼mK; m3¼MΦ: ð53Þ
Instead, for the second process we have t

M¼MNþMΦ; pNpΨ¼MNðM−EÞ;
m1¼m2¼mK; m3¼MΨ: ð54Þ

Averaged over spins of the initial two fermions, the
squared matrix element of the process Ψþ n →
Φþ K−Kþ reads as (51) and by a factor of 2 bigger for
Φþ n → Ψþ K−Kþ. Further, in the laboratory frame one
can use Eqs. (52) and (53) and Eq. (54) for the first and
second processes, respectively. The same sets of formulas
work for the processes Ψþ n → Φþ K̄0K0 and
Φþ n → Ψþ K̄0K0, respectively.

B. Two-diagram processes

To describe this class of processes, it is convenient to
introduce the following notations:

Iðp1; p2Þ≡ 2p1p2 − p2
2; ð55Þ

Jðp1; p2; p3Þ≡ 2p1p3 · p2p3 − p2
3 · p1p2; ð56Þ

Kðp1; p2; p3; p4Þ≡ p1p3 · p2p4

þ p1p4 · p2p3 − p1p2 · p3p4: ð57Þ

The Feynman diagrams for the process Ψþ p → Φþ
πþπ0 are presented in Fig. 6. The squared matrix element of
this process, averaged over spins of initial particles is

jMj2 ¼ ðDþ FÞ2c21β2M2
N

f4

×

�
JðpN; pΨ; pπþÞ
I2ðpN; pπþÞ

þ JðpN; pΨ; pπ0Þ
I2ðpN; pπ0Þ

−
2KðpN; pΨ; pπþ ; pπ0Þ
IðpN; pπþÞIðpN; pπ0Þ

�
; ð58Þ

FIG. 6. The Feynman diagrams for the process Ψþ p →
Φþ πþπ0.

FIG. 5. The Feynman diagrams for the process Ψþ p →
Φþ K̄0Kþ.
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where D ¼ 0.8 and F ¼ 0.47 (see the Appendix). In the
laboratory frame, one has

pNpΨ ¼MNMΨ; pNpπ0 ¼MNðE−E1Þ;
pNpπþ ¼MNE1; pπ0pΨ ¼ ðE−E1ÞMΨ;

pπþpΨ ¼ E1MΨ; pπþpπ0 ¼ EM−m2
π þ

1

2
ðM2

Φ −M2Þ;

and adopts Eqs. (20)–(24) with

M ¼ MΨ þMN; m1 ¼ m2 ¼ mπ; m3 ¼ MΦ:

For Φþ p → Ψþ πþπ0, one obtains for the squared
averaged matrix element (58) but a factor of 2 bigger. In the
laboratory frame, one finds

pNpΨ¼MNðM−EÞ; pπ0pΨ¼
1

2
ðM2−M2

ΨÞ−E1M;

pNpπ0 ¼MNðE−E1Þ; pπþpπ0 ¼EM−m2
πþ

1

2
ðM2

Ψ−M2Þ;

pNpπþ ¼MNE1; pπþpΨ¼
1

2
ðM2−M2

ΨÞ−ðE−E1ÞM;

with

M ¼ MΦ þMN; m1 ¼ m2 ¼ mπ; m3 ¼ MΨ:

The predictions of the proton decay with πþπ0 final state
are presented in Fig. 7 as contours of the constant lifetime
for the symmetric case η ¼ 1. Again, here and below we fix
Λ ¼ MX ¼ 1 TeV and y ¼ 1 and impose no cuts in the
phase space.

Another two-diagram IND process is Ψþ n →
Φþ πþπ−. Corresponding Feynman diagrams are pre-
sented in Fig. 8. The squared matrix element of Ψþ n →
Φþ πþπ− averaged over spins of the initial particles takes
the form

1

2
ðA − BÞ2pNpΨ þ 2BðA − BÞM

2
NpΨpπ−

IðpN; pπ−Þ

þ 2B2M2
N
JðpN; pΨ; pπ−Þ
I2ðpN; pπ−Þ

;

where

A ¼ βc1
2f2

; B ¼ ðF þDÞβc1
f2

:

In the laboratory frame, one has the same expression
as (64) and (65) for pions. For Φþ n → Ψþ πþπ−, one
has a factor of 2 bigger squared averaged matrix element
and the same expressions in the laboratory frame as (66)
and (67) for pions.

C. Three-diagram processes

The Feynman diagrams for the process Ψþ p → Φþ
πþη are presented in Fig. 9. The squared matrix elements of
the processes Ψþ p → Φþ πþη and Ψþ n → Φþ π0η
averaged over spins of the initial particles have the form

jMj2 ¼ 2M2
N

�
B2

JðpN; pΨ; pπþÞ
I2ðpN; pπþÞ

þ C2
JðpN; pΨ; pηÞ
I2ðpN; pηÞ

þ 2BC
KðpN; pΨ; pπþ ; pηÞ
IðpN; pπþÞIðpN; pηÞ

�

þ 1

2
ðA − B − CÞ2pNpΨ

þ 2BðA − B − CÞM
2
NpπþpΨ

IðpN; pπþÞ

þ 2CðA − B − CÞM
2
NpηpΨ

IðpN; pηÞ
;

FIG. 8. The Feynman diagrams for the process Ψþ n → Φþ
πþπ− .
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FIG. 7. Contours of constant lifetime (in years) of the nucleon
in the symmetric case with respect to IND process with πþπ0 in
the final state; we set Λ ¼ MX ¼ 1 TeV and y ¼ 1.
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where

A¼
ffiffiffi
6

p
βc1

2f2
; B¼

ffiffiffi
3

2

r
ðDþFÞβc1

f2
; C¼ð3F−DÞβc1ffiffiffi

6
p

f2

ð59Þ

for Ψþ p → Φþ πþη and

A¼
ffiffiffi
3

p
βc1

2f2
; B¼

ffiffiffi
3

p ðDþFÞβc1
2f2

; C¼ð3F−DÞβc1
2

ffiffiffi
3

p
f2

ð60Þ

for Ψþ n → Φþ π0η. In the laboratory frame, one has

pNpΨ ¼ MNMΨ; pΨpη ¼ MΨðE − E1Þ;
pNpπþ ¼ MNE1; pNpη ¼ ðE − E1ÞMN;

2pπþpη ¼ Mð2E −MÞ þM2
Φ −m2

π −m2
η;

pπþpΨ ¼ E1MΨ;

and utilizes Eqs. (20)–(24) with

M¼MΨþMN; m1¼mπ; m2¼mη; m3¼MΦ:

For processes Φþp→Ψþπþη and Φþ n → Ψþ π0η,
one multiplies the above expression for the squared
averaged matrix element by a factor of 2 and makes the
following substitutions:

2pπþpΨ ¼ MðM þ 2E1 − 2EÞ −M2
Ψ −m2

π þm2
η;

pNpΨ ¼ MNðM − EÞ;
2pΨpη ¼ MðM − 2E1Þ −M2

Ψ þm2
π −m2

η;

pNpπþ ¼ MNE1; pNpη ¼ ðE − E1ÞMN;

2pπþpη ¼ Mð2E −MÞ þM2
Ψ −m2

π −m2
η;

and uses Eqs. (20)–(24) with

M¼MΦþMN; m1¼mπ; m2¼mη; m3¼MΨ:

Predictions for the proton lifetime for the πþη final state
and neutron lifetime for the π0η final state are presented for
the symmetric case in Figs. 10 and 11, respectively.
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FIG. 10. Contours of the constant lifetime (in years) of the
nucleon in the symmetric case with respect to IND with πþη in
the final state; we set Λ ¼ MX ¼ 1 TeV and y ¼ 1.
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FIG. 11. Contours of the constant lifetime (in years) of the
nucleon in the symmetric case with respect to IND with π0η in the
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FIG. 9. The Feynman diagrams for the process Ψþ p → Φþ πþη .
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The squared matrix element for the processes Ψþ n →
Φþ 2η and Ψþ n → Φþ 2π0 averaged over spins of the
initial particles have the form

jMj2 ¼ 2ðA − BÞ2pNpΨ þ 4BðA − BÞM
2
Np1pΨ

IðpN; p1Þ

þ 4BðA − BÞM
2
Np2pΨ

IðpN; p2Þ
þ 2B2M2

N

�
JðpN; pΨ; p1Þ
I2ðpN; p1Þ

þ JðpN; pΨ; p2Þ
I2ðpN; p2Þ

þ 2
KðpN; pΨ; p1; p2Þ
IðpN; p1ÞIðpN; p2Þ

�
; ð61Þ

where p1 and p2 are momenta of outgoing mesons and

A ¼ 3βc1
4f2

; B ¼ ð3F −DÞβc1
2f2

ð62Þ

for Ψþ n → Φþ 2η and

A ¼ βc1
4f2

; B ¼ ðDþ FÞβc1
2f2

ð63Þ

for Ψþ n → Φþ 2π0. In the laboratory frame, one has

pNp1 ¼ MNE1; pΨp2 ¼ MΨðE − E1Þ;
2p1p2 ¼ Mð2E −MÞ þM2

Φ − 2m2
1;

pNp2 ¼ ðE − E1ÞMN; pNpΨ ¼ MNMΨ;

p1pΨ ¼ E1MΨ; ð64Þ

and adopts Eqs. (20)–(24) with

M ¼ MΨ þMN;m3 ¼ MΦ; and m1 ¼ m2 ¼ mπ;η:

ð65Þ

For the averaged squared matrix elements of Φþ n →
Ψþ 2η and Φþ n → Ψþ 2π0, one has the same expres-
sion (61) multiplied by a factor of 2. In the laboratory
frame, one finds

2p1pΨ ¼ MðM þ 2E1 − 2EÞ −M2
Ψ; pNp1 ¼ MNE1;

2pΨp2 ¼ MðM − 2E1Þ −M2
Ψ; pNpΨ ¼ MΨðM − EÞ;

pNp2 ¼ ðE − E1ÞMN;

2p1p2 ¼ Mð2E −MÞ þM2
Ψ − 2m2

π;η; ð66Þ

and adopts Eqs. (20)–(24) with

M¼MΦþMN; m3¼MΨ; and m1¼m2¼mπ;η: ð67Þ

In Fig. 12 we present the predictions of neutron lifetime for
the final state π0π0.
Finally, to illustrate a dependence of the obtained pre-

dictions on the value of nonspecified asymmetry between Ψ
and Φ populations η, we present in Figs. 13 and 14 the
estimates of the nucleon lifetime for two opposite cases of
large asymmetry η ¼ 100 and η ¼ 0.01, respectively. As one
observes, the predictions of nucleon lifetimes within the
hylogenesis model can reach values around 1032–1033 yr,
which looks quite promising for future experiments such as
Hyper-Kamiokande [15,16] or DUNE [17].
The obtained predictions for double meson channels are,

in general, only by an order of magnitude weaker than those
for single-meson channels (which can be as low as several
units of 1031 yr [7,11] for the same set of parameters). Note
that the double meson signatures are predicted for the
proton decay in the context of grand unified theories [18] as
well as for dinucleon decays such as pn → πþπ0, for
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FIG. 12. Contours of the constant lifetime (in years) of the
nucleon in the symmetric case with respect to IND process with
π0π0 in the final state; we set Λ ¼ MX ¼ 1 TeV and y ¼ 1.
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FIG. 13. Contours of constant lifetime (in years) of the
nucleon in the asymmetric case, η ¼ 100 , with respect to the
two-meson processes: a) K̄0Kþ; b) ηη; c) π0η; d) πþη; e) π0π0;
g) πþπ0. Numbers for other processes with kaons are similar
to a) while for process with πþπ−are similar to g). We set
Λ ¼ MX ¼ 1 TeV and y ¼ 1.
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instance, in supersymmetric models with R-parity viola-
tion; see, e.g., [19]. Searches for the latter type of processes
had been performed by the Frejus experiment [20]
and recently by the Super-Kamiokande Collaboration
[21]. The most stringent limit for the lifetime of the process
pn → πþπ0 per oxygen nucleus is found to be
τpn→πþπ0 > 1.70 × 1032 yr. It has been obtained by making
use of the expected kinematics of dinucleon decay. In
particular, the angular distribution between outgoing pions
exhibits a maximum for events with back-to-back topology,
and the distribution over momentum of π0 has a pro-
nounced peak around nucleon mass. Because of this
specific kinematics, the Super-Kamiokande result cannot
be directly applied to the IND process with two pions in the
final state. However, one can show that for some combi-
nations of masses of dark matter particles,2 the distributions
over momenta of outgoing mesons also have maxima at
0.5–1 GeV. This signature can be very helpful in discrimi-
nating the IND process from the main background, which is
the double pion production by atmospheric neutrinos.
The double meson channels provide additional signa-

tures of the hylogenesis model, which will help to pin down
the relevant model parameters once the signal is found.
Indeed, even the masses of dark matter particles cannot be
unambiguously extracted from a single-meson event,
because the initial nucleon momentum is not fixed in a
real experiment (the nucleon is not at rest); hence, the single
mesons are not monochromatic. A joint analysis of single
and double meson events can help to resolve the parameter
values. Generally, one anticipates that having more than
one observable particle in the final state gives more
opportunities for background reduction in the future
experiments.

The two-meson channels even can help to discriminate
between proton decay and induced proton decay, which
may be challenging is some situations. In particular, if
single pions are registered at sub-GeV range (say, below
500 MeV), an observation of multipion events with higher
total energies would favor the proton decay over the
induced proton decay in a model where the kinematics
constrains the amount of energy allocated to the pion at the
sub-GeV range.

VI. CONCLUSIONS

Summarizing, in this paper we calculated the cross
sections of several IND processes for the hylogenesis
model of dark matter. They include the processes of
mimicking neutron decays n → νγ and n → eþe−.
Applying current best limits on the neutron lifetime with
respect to the processes n → νγ and n → eþe− and taking
into account the kinematics of the processes which were
used in the experiment, we obtained constraints on the
parameter space of the model. They are considerably
weaker than the bounds obtained using the results of the
searches for events with a high-pT jet and the missing
energy signature at LHC experiments.
Also, we calculated cross sections and lifetimes corre-

sponding to IND processes with two pions in the final state.
Searches for such kinds of signatures have not been
performed yet and present an interesting possibility to
further explore the hylogenesis model. We found that with
the current bounds from the LHC data, the model allows for
a lifetime of IND such as p → πþπ0 or n → π0η at the level
of 2 × 1032 yr.
Note in passing, that by the time the new generation of

experiments looking for nucleon decay will be in operation,
more data from Run 2 of the LHC will allow an improve-
ment of the collider sensitivity to hylogenesis with respect
to the analysis [12].
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APPENDIX: COUPLINGS TO BARYONS
AND MESONS

The interaction Lagrangian of the type (11) with the
three light quarks q1 ¼ u, q2 ¼ d, q3 ¼ s in terms of two-
component spinors (the relevant are right-handed parts of
the Dirac spinors) has the form [11]

Lint ¼ TrðCOÞ þ H:c:;

Oij ≡ 1

2
ΦϵαβγϵjklqkαRql

β
Rqi

γ
RΨR; ðA1Þ

where
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FIG. 14. Contours of constant lifetime (in years) of the nucleon
in the asymmetric case, η ¼ 0.01 , with respect to the two-meson
processes. Other notations are the same as in Fig. 13.

2In particular, when their mass difference is large.
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C≡

0
BBB@

c2ffiffi
6

p þ c3ffiffi
2

p 0 0

0 c2ffiffi
6

p − c3ffiffi
2

p 0

0 c1 −
ffiffi
2
3

q
c2

1
CCCA: ðA2Þ

The couplings ci are introduced as couplings to the three-
quark states which form the eigenstates of the strong
isospin operator.
Using the chiral perturbation theory, one can obtain [18]

the corresponding interaction Lagrangian for baryons

LIND ¼ βTrðΦξCξ†BRΨRÞ þ H:c:;

where ξ ¼ exp ðiM=fÞ and

M≡

0
BBB@

ηffiffi
6

p þ π0ffiffi
2

p πþ Kþ

π− ηffiffi
6

p − π0ffiffi
2

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCA

and baryon fields leaving only a neutron and proton

BR ¼

0
B@

0 0 pR

0 0 nR
0 0 0

1
CA:

Expanding to linear order, in meson fields we find (here-
after, in terms of the Dirac fermions)

L1π ¼
iβ
f
ΦΨ̄C

�
c1

�
−

ffiffiffi
3

2

r
nRηþ

1ffiffiffi
2

p nRπ0 − pRπ
−
�

þ
�
c2

ffiffiffi
3

p
ffiffiffi
2

p þ c3ffiffiffi
2

p
�
pRK− þ

�
c2

ffiffiffi
3

p
ffiffiffi
2

p −
c3ffiffiffi
2

p
�
nRK̄0

�

þ H:c: ðA3Þ

Expanding to the second order in 1=f, one obtains

L2π ¼
β

2f2
ðA31 ·ΨCpRΦþ A32 ·ΨCnRΦÞ þ H:c:; ðA4Þ

where

A31¼−c1ð
ffiffiffi
6

p
π−ηþK0K−Þþ

�
3

2
c2þ

ffiffiffi
3

p

2
c3

�
K−η

þ
� ffiffiffi

3
p

2
c2þ

1

2
c3

�
K−π0þ

� ffiffiffi
3

2

r
c2−

3ffiffiffi
2

p c3

�
K̄0π−;

A32¼−c1ðπþπ−þ
3

2
η2−

ffiffiffi
3

p
ηπ0þ1

2
ðπ0Þ2þ2K0K̄0þKþK−Þ

þ
� ffiffiffi

3
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ffiffiffi
2
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�
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−
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3
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2
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c3
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�
K̄0π0:

Finally, for completeness let us remind [18] here the
interaction Lagrangian of baryons with mesons to the
leading order in derivative expansion, which has the form

L ¼ 3F −Dffiffiffi
6

p
f

ðp̄γμγ5pþ n̄γμγ5nÞ∂μη

þDþ Fffiffiffi
2

p ðp̄γμγ5p − n̄γμγ5nÞ∂μπ
0

þDþ F
f

ð∂μπ
þp̄γμγ5nþ ∂μπ

−n̄γμγ5pÞ; ðA5Þ

where D ¼ 0.8 and F ¼ 0.47.
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