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We study the phenomenology of the Georgi-Machacek model at next-to-leading order in QCD matched
to a parton shower, using a fully automated tool chain based on MADGRAPH5_AMC@NLO and
FEYNRULES. We focus on the production of the fermiophobic custodial fiveplet scalars H?, HE, and

H gﬁi through vector boson fusion (VBF), associated production with a vector boson (VHs), and scalar pair
production (HsHs). For these production mechanisms we compute next-to-leading order corrections to
production rates as well as to differential distributions. Our results demonstrate that the Standard Model
overall K-factors for such processes cannot in general be directly applied to beyond-the-Standard-Model
distributions, due both to differences in the scalar electroweak charges and to the variation of the K-factors

over the differential distributions.
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I. INTRODUCTION

A deeper understanding of the scalar sector is a primary
objective of the CERN LHC. In addition to precisely
measuring the 125 GeV Higgs boson, Run II of the
LHC will dedicate its efforts to searching for signs of
additional Higgs particles, which arise in a number of
beyond-the-Standard-Model (BSM) scenarios. One such
scenario is the Georgi-Machacek (GM) model [1,2], which
extends the Standard Model (SM) with two scalar isospin
triplets in a way that preserves the SM value of p =
M3,/ M2%cos*y, = 1 at tree level. The phenomenology of
the GM model has previously been studied in Refs. [3-28],
including the application of a variety of constraints upon
the model parameter space. It has been shown to possess a
decoupling limit and can thus accommodate a SM-like
125 GeV boson [21]. Furthermore, the tree-level couplings
of this SM-like Higgs to fermions and vector bosons may
be enhanced in comparison to the SM [25], a feature that
cannot be accommodated in models that contain only
scalars in SU(2) singlet or doublet representations. The
GM model can also be embedded in more elaborate
theoretical scenarios, such as little Higgs [29,30] and
supersymmetric [31-33] models, or generalized to larger
SU(2) multiplets [34].
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The Georgi-Machacek model provides a useful bench-
mark framework for BSM Higgs searches. In addition to an
SM-like scalar singlet /#, the GM model also contains an
extra scalar singlet H, a triplet H5, and a fiveplet H5 under
the custodial symmetry. The structure of the model with
respect to the custodial singlet and triplet states is similar to
that of the two Higgs doublet model (2ZHDM); as aresult, the
experimental searches and extensive analysis for 2HDM
states can often be recast in terms of the GM singlet and
triplet scalars [25]. It is therefore particularly interesting to
focus on the custodial fiveplet states, H, H, and HE™.
These scalars are fermiophobic and couple preferentially to
vector bosons. As a result, the GM fiveplet contains two
features that are absent from both the SM and the 2HDM: a
doubly charged scalar H¥* and charged scalar states that
couple to vector bosons. Consequently, the fermiophobic
fiveplet states are produced primarily through the vector
boson fusion (VBF) and associated production (VHs)
modes. This is in contrast to the 2HDM, where the heavy
scalars are dominantly produced through associated pro-
duction with a top quark or in top decays. These features lead
to unique phenomenology and can be used to parametrize
effects not captured by other common benchmark models.

For the Georgi-Machacek model to be truly useful as a
LHC benchmark, efficient and accurate calculations must be
accessible to both phenomenologists and experimentalists.
Great strides have been made in reducing both theoretical
and experimental uncertainties, making next-to-leading
order (NLO) or higher order calculations standard practice.
Therefore, we describe the use of a fully automated tool

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.93.035004
http://dx.doi.org/10.1103/PhysRevD.93.035004
http://dx.doi.org/10.1103/PhysRevD.93.035004
http://dx.doi.org/10.1103/PhysRevD.93.035004

CELINE DEGRANDE et al.

chain (which combines the FEYNRULES [35] and
MADGRAPH5_AMC@NLO [36] frameworks with the cal-
culator GMcALC [37]) to produce NLO differential distri-
butions in the GM model, focusing on the examples of VBE,
VHs, and HsHs production of the fiveplet states. In
particular, we illustrate the insufficiency of extending the
SM overall K-factors to BSM distributions, due to two
factors. First, differential K-factors can vary substantially for
certain distributions (particularly in the case of VBF).
Second, the overall K-factors for differently charged states
can be somewhat different. These considerations are impor-
tant for accurately determining the effects of typical selec-
tion cuts, which is essential for measuring new states in the
event of a discovery.

This paper is organized as follows. In the following
section, we describe in more detail the scalar potential,
spectrum, and couplings of the Georgi-Machacek model. In
Sec. III, we then outline the tools used for our fully
automated NLO calculations. Finally, in Secs. IV, V, and
VI, we present cross sections, K-factors, and differential
distributions for VBF, VHs, and pair production (HsH5),
respectively, of the fiveplet states. We conclude in Sec. VIIL.
For completeness, some details of the scalar potential of the
GM model are collected in an Appendix. The model files
for the automated tool chain used to produce these results
are publicly available on http://feynrules.irmp.ucl.ac.be/
wiki/GeorgiMachacekModel.

II. MODEL

The scalar sector of the GM model [1,2] consists of the
usual complex isospin doublet (¢, ¢°) with hypercharge'
Y = 1, areal triplet (¢+, €%, &™) with Y = 0, and a complex
triplet (y*+, 4, ¥°) with Y = 2. The doublet is responsible
for the fermion masses as in the SM.

The scalar potential is chosen by hand to preserve a
global SU(2), x SU(2), symmetry. This ensures that p =
M3,/ M%cos*0y, = 1 at tree level, as required by precise
experimental measurements [38]. In order to make the
global SU(2), x SU(2), symmetry explicit, we write
the doublet in the form of a bidoublet ® and combine
the triplets to form a bitriplet X:

D= ( " "“),
_¢+* ¢0
(1)

The vacuum expectation values (vevs) are defined by
(®) = %szz and (X) = v, 5,3, where I is the unit matrix

2 S s
o A A
)(—H-* _ 5—0—* )(0

and the Fermi constant G fixes the combination of vevs,

'We normalize the hypercharge operator such that Q =
T3 +Y)/2.
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These vevs are parametrized in terms of a mixing angle 9y
according to

vy +8uy =17 = ~ (246 GeV)2. (2)

v 2\/5111

CHECOSQH:%, sy =sinfy = p (3)

The quantity s% represents the fraction of the squared

gauge boson masses M?%, and M that is generated by the
vev of the triplets, while c%, represents the fraction
generated by the usual Higgs doublet. The most general
scalar potential that preserves the custodial SU(2) sym-
metry may be found in the Appendix.

After symmetry breaking, the physical fields can be
organized by their transformation properties under the
custodial SU(2) symmetry into a fiveplet, a triplet, and
two singlets. The fiveplet and triplet states are given by

)
H++ — ++’ H+ — ()( ,
5 X 5 \/5
2 1
HS = \/gafo - \[ o,
" +&)
HY = —spyodt + ¢ ,
3 U4 H NG
HY = —su™ + cpy®™, (4)

where we have decomposed the neutral fields into real and
imaginary parts according to

v ¢0,r+ i¢0.l
o, 447 T
VAR
ZO.r 4 iZO.i
\/E )
& v, + &, (5)

)(0—>111+

The states of the custodial fiveplet (HE*, HE, H)) have a
common mass ms and the states of the custodial triplet
(Hs, HY) have a common mass m;3. Because the states in
the custodial fiveplet contain no doublet field content, they
do not couple to fermions (i.e. they are fermiophobic).

The two custodial singlets mix by an angle a, and the
resulting mass eigenstates are given by

h=cosad® —sinaHY, H = sina¢®" + cosa HY,

(6)

HY = \@50 + \/gx" )

where
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We denote their masses by mj and my. The singlet % is
normally identified as the 125 GeV SM-like Higgs boson
discovered at the LHC [39—41]. Formulas for the masses
my,, my, msz, and ms, as well as the mixing angle a, may be
found in the Appendix.

The fiveplet states couple to vector bosons according to
the following Feynman rules [8,21,42],

2,
HIW, W, : \/;zgzv)(gw

(V3G (—%m) (ciga). (8)

, 8. ¢
HZ,Z,: — \/;l a V9

2
. . g
HIW,Z,: — \/iza U, G

= 2(\/EGF>1/2MWMZ(SH)(_i9/4v)’ (10)

HITW W, 2ig*,9,,
=2(V2Gp) ' PM3, (—V2sy)(=ig,). (11)

where we write the coupling in multiple forms to make
contact with the notation of Refs. [8,43]. The triplet vev v,
is called v in Ref. [8], and the factors Fyy in Eq. (5.2) of

Ref. [43] correspond in this model to

1
Fyiw- = ———=sy (H? production),  (12)
V3
F 2 (H? production) (13)
7Z = —=SH 5 u )
V3
Fyiy, = sy (HZ production), (14)

Few: = —V2sy (H$* production).  (15)
Note in particular that, for H2, one cannot simply rescale
the vector boson fusion cross section of the SM Higgs
boson because the ratio of the WW and ZZ couplings is
different than in the SM.

Additionally, two fiveplet scalars may also couple to a
single vector boson through the following interactions,’

“As we consider only the fiveplet states in this work, we quote
only the relevant interactions involving Hs scalar states and
gauge bosons. A full set of Feynman rules for the GM scalar
couplings may be found in Ref. [21].
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vHSHS  de(py = Py, (16)
v HS THS ™ 2ie(pyy = Paii) o (17)
L. e
ZyHSHS o 5 ——(1=253)(p1 = P1a)ye (18)
wlw
L. e
Z,HITH (1=253)(Ps = Piga)ys (19)
SwCw
. V3ie
WiHSTHS: == (P = Po)y (20)
WrHTHT™: i—e(P+—P++*) : 1)
HETSTES V2sy '

where all fields are incoming and in each case pg is the
incoming momentum of the scalar with charge Q. Note that
these are independent of the mixing angle s.

There are theoretical constraints on the Georgi-
Machacek model from considerations of perturbativity
and vacuum stability [7,13,21], as well as indirect exper-
imental constraints from the measurements of oblique
parameters (S, 7, U), Z-pole observables (R;), and
B-meson observables [6,13-15,19,25]. Currently the
strongest of the indirect experimental bounds arises from
measurements of b — sy, which constrain the triplet vev
v, <65 GeV (sy <0.75) [25]. Additionally, the ATLAS
like-sign WWjj cross section measurement, reinterpreted
in the context of the GM model in Ref. [23], excludes a
doubly charged Higgs HZ* with masses in the range 140 <
ms < 400 GeV at sy = 0.5, and 100 < m5 < 700 GeV at
sy = 1, under the assumption of a 100% branching fraction
for HI* — W*W". An ATLAS search for singly charged
scalars in the VBF production channel similarly excludes
240 < ms <700 GeV for sz = 1 under the assumption of
a 100% branching fraction for H{ — W'Z [44].
Additional constraints on v, as a function of the BSM
Higgs masses have been obtained in Ref. [26] using
ATLAS data from several search channels.

For the simulations that follow, we consider a single
benchmark point in the GM model, generated using the
calculator GMcALC [37].° This point is allowed by all the
constraints discussed above. We use the following values
for the scalar masses, mixing angles, and additional
parameters M , as inputs:

Our benchmark point corresponds to the default point in
GMCALC. The choice of masses, mixing angles, and M , as input
parameters corresponds to the GMCALC input set 3.
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my, = 125 GeV, sina = —0.303,
my = 288 GeV, sinfy = 0.194,
ms = 304 GeV, M, =100 GeV,
ms = 340 GeV, M, = 100 GeV. (22)

The parameters M, are dimensionful parameters in the
scalar potential [see Eq. (A1)] that affect the values of the
couplings between scalars. The corresponding values for
the underlying parameters of the scalar potential are given
in Appendix A. While we specify the complete parameter
set, note that all the HsV'V couplings are proportional to sg.
Therefore, both the VBF and VHs production cross
sections of the Hs states depend only on two parameters,
sy and ms, and the HsH5 production cross sections depend
only on ms. At this parameter point the total widths of the
Hs states are about 0.3 GeV; therefore in our simulations
we will take the final-state Hs particle(s) to be produced
on shell.
Finally, we choose the following set of SM inputs:

My =80.399 GeV, M, =91.188 GeV,
Ty =2.085 GeV,  T', =2.495 GeV,
Gy = 1.166 x 10~5 GeV~2. (23)

apy = 1/132.35 is computed at tree level from My, M,
and Gp.

III. COMPUTATIONAL FRAMEWORK

In this work we take advantage of a fully automated
framework developed to study the phenomenology of BSM
processes at NLO accuracy in QCD, including the match-
ing to parton shower (PS). The framework is based on
MADGRAPH5_AMC@NLO [36]. In order to generate a code
capable of computing NLO corrections to a BSM process,
some extra information has to be provided besides the usual
tree-level Feynman rules. This extra information involves
the UV renormalization counterterms and a subset of the
rational terms that are needed in the numerical reduction of
virtual matrix elements (which are normally referred to as
the R, terms) [45]. The calculation of the UV and R, terms
starting from the model Lagrangian has been automatized
via the NLOCT package [46], based on FEYNRULES [35] and
FEYNARTS [47]. Once the UV and R, Feynman rules have
been generated, they are exported together with the tree-
level Feynman rules as a PYTHON module in the Universal
FeynRules Output (UFO) format [48]. The PYTHON module
can be loaded by any matrix-element generator, such as
MADGRAPH5_AMC@NLO. When the code for the process
is written, the UFO information is translated into helicity
routines [49] by ALOHA [50]. MADGRAPH5_AMC@NLO is
a metacode that automatically generates the code to
perform the simulation of any process up to NLO accuracy
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in QCD. The simulation can be performed either at fixed
order or by generating event samples which can be passed
to PS. The automation of the NLO QCD corrections has
been achieved by exploiting the FKS [51,52] subtraction
scheme to subtract the infrared singularities of real-
emission matrix elements, as automated in MADFKS
[53]. Loops are computed by MADLOOP [54], which
exploits the OPP [55] method as well as Tensor Integral
Reduction [56,57]; these are implemented in CUTTOOLS
[58] and 1REGI [59], respectively, which are supplemented
by an in-house implementation of OPENLoOoOPS [60].
Finally, the event generation and matching to PS is
done following the MC@NLO procedure [61]. Matching
to HERWIG6 [62], PYTHIA6 [63],4 HErRWIG++ [64], and
PYTHIA8 [65] is available.

As a consequence, the only input needed to simulate
processes in the GM model is the implementation of the
model in FEYNRULES. We have validated our framework by
comparing total cross sections at NLO for VBF with the
results of the VBF@NNLO code [43,66,67] and found
agreement within the integration uncertainties.

IV. VBF PRODUCTION

In the SM, VBF production has been calculated to a
rather high level of accuracy: QCD corrections are known
up to next-to-next-to-leading order (NNLO) for the total
cross section [43,66,68] and for differential observables at
the parton level [69-71]. The QCD corrections to the fully
inclusive cross sections are fairly moderate, at the level of a
few percent. However, the corrections to differential
observables are more significant, with NNLO corrections
reaching 5%—10% relative to the NLO rate. At both the
inclusive and differential levels, the computation of NNLO
corrections relies on the so-called structure-function
approach [68], which neglects color- and kinematically-
suppressed contributions [43,72-75] arising, for example,
from the exchange of gluons between the two quark lines.
Results at NLO in QCD including parton shower matching
have been computed in Refs. [76,77], where it has been
found that the typical effect of the shower is to improve the
description of jet-related observables by including the
effect of extra radiation. NLO electroweak corrections
are also known [78,79] and are found to be comparable
in size to the NLO QCD ones.

The situation is less satisfactory for BSM scenarios like
the Georgi-Machacek model. Although the total cross
section can be computed up to NNLO accuracy in QCD
[66,67,80], no fully differential prediction exists beyond
leading order (LO). As seen in the SM case, corrections to
the inclusive total cross sections do not fully capture the
behavior at the differential level. In this section we aim to
improve this situation, by presenting for the first time fully

*Ordered in virtuality or in transverse momentum, with the
latter only for processes with no light partons in the final state.
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differential results at NLO in QCD including matching to
the parton shower.

A. Simulation

The code for VBF production of a fiveplet state in the
GM model can be generated and executed in
MADGRAPH5_AMC@NLO with the commands

> import model GM UFO

> generate pp > H5p J J $$ w+ w— z [QCD]
> output VBF h5p NLO

> launch

Note that we veto W and Z bosons in the s-channel with the
$$ syntax. The example above generates the code for HY
production. For the other states, H;~, Hs, H2, H:™, the
code can be generated by replacing the H5p label with
H5pp~, H5p~, H5z, H5pp, respectively.

We present results for VBF in the GM model at the LHC
Run IT energy (/s = 13 TeV) at LO and NLO accuracy, in
both cases matched to PyTHIAS. We use the NNPDF 2.3
LO1 and NLO parton density function (PDF) sets [81]
consistently with the order of the computation. We keep the
renormalization and factorization scales fixed to the W
boson mass, as the typical transverse momentum of the
tagging jets is of the same order of magnitude. To obtain the
uncertainty due to scale variations, we vary the renormal-
ization and factorization scales independently in the range

My /2 < pg,pp < 2My. (24)

We recall that the computation of scale and PDF uncer-
tainties in MADGRAPH5_AMC@NLO can be performed
without the need of extra runs using the reweighting
technique presented in Ref. [82]. We employ FASTJET
[83,84] to cluster hadrons into jets, using the anti-kp
algorithm [85] with a radius parameter AR =0.4. A
minimum jet pr of 30 GeV is required.

In addition, we consider the effect of typical selection
cuts used in VBF analyses. These VBF cuts require that
there are at least two jets and that the two hardest jets satisfy
the conditions

|yj] _yjzl > 40,
m(jl,jz) > 600 GeV, (25)

where y; is the jet rapidity and m(j,, j,) is the invariant
mass of the two jets.

B. Results

In Tables I and II we present the cross sections at the
inclusive level and with the VBF cuts of Eq. (25), respec-
tively, for the production via VBF of each of the fiveplet
states. Results are shown at LO + PS and NLO + PS,

PHYSICAL REVIEW D 93, 035004 (2016)

TABLE I. Cross sections and K-factors for Hs VBF produc-
tion, with scale uncertainties.

Process LO (fb) NLO (fb) K
pp — H5™jj 14.94731% 16.7253% 1.12
pp = H5jj 16.94135% 18.66 3% 1.10
pp — HYjj 21087207 2289747 1.09
pp = Hijj 28.07135% 30.1455 57 1.07
pp = HI'jj 40.90185% 43.56 ) dor 1.07

together with the fractional uncertainties obtained from
scale variations. First, we note that the K-factors without
and with cuts are rather similar to each other. Furthermore,
the K-factors for the different fiveplet states are also rather
similar and lie around 1.1. The production of more
negatively charged Higgs bosons receives slightly larger
QCD corrections; this effect, related to the cross section’s
sensitivity to valence vs sea quarks, becomes slightly more
pronounced when VBF cuts are applied. The inclusion of
NLO corrections also has the effect of reducing the scale
uncertainties to the 1%—2% level. The different dependence
on the initial-state quarks of the various processes is also
reflected in the efficiency of the VBF cuts. The fraction of
events that survives the VBF cuts (tabulated under “cut
efficiency” in Table II) varies from 44% in the case of H3~
production to 47% in the case of H{ " production and is
essentially unaffected by inclusion of the NLO corrections.

We turn now to study the effect of NLO corrections on
differential observables, focusing on the representative case
of H{ production in VBF. In Fig. 1, we show the LO + PS
and NLO + PS distributions for a number of observables.
In particular we consider the transverse momentum p; and
pseudorapidity 7 of the Higgs boson (H5) and of the hardest
jet (j;), as well as the invariant mass m(j, j,) and
azimuthal separation A¢(ji, j,) of the two hardest jets.
The shaded bands show the scale uncertainties at both LO
and NLO. The VBF cuts of Eq. (25) have been applied. For
each observable, we also show in the inset the differential

TABLE II. Cross sections and K-factors for Hs VBF produc-
tion, with scale uncertainties, after applying the VBF cuts given
in Eq. (25). Also shown is the fraction of NLO events that survive
the VBF cuts (cut efficiency).

Process LO (fb) NLO (fb) K  Cut efficiency
pp— Hs™jj  658T[s%  747H5% 113 0.4
pp— Hsjj  775100%  8.661 5 112 0.46
pp— HYj  9.82770%  10.71%12%  1.09 0.47
pp — Hyjj 13291030 1426757 107 0.47
pp — HYjj 19361707 20.491)2%  1.06 0.47
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FIG. 1. Differential distributions for VBF production of the H ;’ boson, with the VBF cuts of Eq. (25) (see the text for details). The
distributions for other Hs states are very similar, differing primarily in overall normalization.

K-factor: that is, the bin-by-bin ratio of the NLO prediction
over the LO central value, with the shaded band reflecting
the NLO scale uncertainty. As in the case of SM VBF
Higgs boson production, the K-factor is in general not

constant over the differential distributions. This effect is
most visible for the hardest-jet observables. Therefore, a
fully differential computation at NLO + PS is strongly
preferable to ensure realistic signal simulations.
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V. VHs; PRODUCTION

We now consider the associated production of a GM
fiveplet state together with a W= or Z boson. In the SM, the
associated production of a Higgs boson with a vector boson is
known to NNLO in QCD for the total cross section [86-93];
the two-loop corrections increase the inclusive cross section
by less than 5% at the LHC [87]. The QCD corrections to the
differential observables are also known to NNLO [94,95],
leading to increases of 5%—-20% in comparison with the NLO
results. N*LO threshold corrections of about 0.1% have also
been calculated in Ref. [96]. These results have been
implemented along with the electroweak corrections
[97,98] in the VH@NNLO code [99].

In the following sections, we present rates and distri-
butions for VHs production at NLO for the Georgi-
Machacek model.

A. Simulation

The code for associated production of a fiveplet state in
the GM model (in this example H gr) and a SM vector boson
(W~ or Z, decaying leptonically with [ = e or ) can be
generated and executed in MADGRAPH5_AMC®@NLO with
the commands

> import model GM UFO

> add process p p > H5p 1- v1~ [QCD]
> add process p p > Hbp 1+ 1- [QCD]
> output VH h5p NLO

> launch

In this case, we include the leptonic decay of the gauge
bosons at the matrix-element level, so that spin correlations
and off-shell effects are automatically taken into account.
As in the VBF case, the extension to the other states in the
Higgs fiveplet is straightforward. We set the renormaliza-
tion and factorization scales to the invariant mass of the
(reconstructed) VHs system, pgr = pup = Mypy.

We consider two sets of cuts. In the first case, we require
only basic cuts on leptons and missing transverse energy.
Leptons are required to satisfy the transverse momentum
and pseudorapidity cuts

ph>30GeV and g <2.5. (26)

For WH 5 associated production, we also cut on the trans-
verse missing energy, reconstructed from neutrinos in the
event record:

Eiss > 30 GeV. (27)

In the second case, we consider a boosted regime, which
is often used to enhance the signal-to-background ratio in
SM VH searches [100,101], by requiring the following
additional cuts on the Higgs and the reconstructed gauge
bosons’ transverse momenta,
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TABLE III.  Cross sections and K-factors for VH5 production
after the basic lepton identification cuts given in Egs. (26) and
(27), with scale uncertainties. For the first three processes the
Higgs is produced in association with a Z boson, and for the
remainder with a W boson.

Process LO (fb) NLO (fb) K

pp — H3I*I- 0.0170179% 0.02294+ 3% 1.35
pp — HUYI- 0.03570+]:1% 0.047367 2% 1.33
pp — HIIFI- 0.03338773%  0.043327 4% 1.30
pp— Hy Ity 0.10852071%  0.146681)3% 1.35
pp — Hslty, 0.08573174%  0.11394%)3% 133
pp = HY li(v_z) 0.05354+ 1% 0.07053* 2% 1.32
pp — Hil D, 0.0843873% 0.111921 4% 1.33
pp— HI I, 0.21096179% 0.27332+ 2% 1.30

p? > 200 GeV and p¥ > 190 GeV, (28)
as suggested in Ref. [102].

B. Results

In Tables III and IV, we show the cross sections for VHjs
production of Hs states at LO 4+ PS and NLO + PS with
basic cuts and with the additional boosted-regime cuts,
respectively. The cross sections include the leptonic
branching fractions of the gauge bosons. Note that
ZHZE* production of the doubly charged states is forbidden
by charge conservation. We find that the K-factors are
larger than for VBF and, similar to the SM case, lie around

TABLE IV. Cross sections and K-factors for VHs production
after applying the additional boosted-regime cuts given in
Eq. (28). Also shown is the fraction of NLO events that survive
the boosted-regime cuts (cut efficiency).

LO (fb) NLO (fb)

pp — H5I'= 0.00741479% 0.00089*12% 1.34  0.43

Process K Cut efficiency

pp — HITI= 0.016011],7 0.02112177 1.32 0.45

pp = HIITI™ 0015497737 0.02011714% 130 0.46

pp — H3™ 1"y, 0.0480377:1% 0.065151] 37 1.36 0.44

pp = H5l'y; 0.03921779% 0.05188 )50 1.32 0.46

pp— Hgli(u_,) 0.02497"71% 0.03278 35 1.31 0.46

pp — Hil"D; 0.038971737 0.05163 )7 1.32 0.46

pp — Hit 17D, 0.1015817 0% 0.131481) 2% 1.29 0.48
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FIG. 2. Differential distributions for WH<{ associated production, with the cuts in Eq. (28). The distributions for other Hj states or for
associated production with a Z boson are very similar, differing primarily in overall normalization.

1.3. Furthermore, the value of K-factors without and with
the boosted-regime cuts of Eq. (28) are essentially iden-
tical. We notice that processes with a more negatively
charged final state (which are therefore more sensitive to
sea quarks) have slightly larger K-factors. As in the case of
VBF, processes with a more positively charged final state
have a larger fraction of events which survive the cuts.
In Fig. 2, we present the LO+PS and NLO + PS
distributions and K-factors for W~H{ production under
the boosted-regime VHs cuts given in Eq. (28); the
distributions for ZH{ production are similar in shape.
We show the transverse momentum p; and pseudorapidity
n of the Higgs, the transverse momentum of the recon-
structed vector boson (using Monte Carlo truth informa-
tion) and the azimuthal separation A¢ between the lepton
and the neutrino. In this case we find that the differential K-
factors are generally constant over the distributions con-
sidered, with the exception of the Higgs pseudorapidity; in
this case the K-factor has a maximum of around 1.4 in the
central region, which reduces to a minimum of around 1.2
for a Higgs produced in the forward or backward regions.

VI. HsHs PRODUCTION

Finally we consider double Higgs production of two Hs
states in the GM model. In contrast to the SM, pair
production of the fiveplet scalars is generally dominated
by Drell-Yan-like processes.” The exception is HYH? pair
production (which we therefore do not consider below), as
there is no ZHYH? vertex due to the same symmetry
considerations that forbid the ZHH coupling in the SM.
H?H? pairs could be produced through VBF, and the

’In the SM, Higgs pair production is dominated by gluon
fusion at the LHC. The rate of this production mode is known to
be quite small and receives important QCD corrections at NLO
[103-106]. Corrections to the inclusive cross section have been
obtained at NNLO [107-109], while corrections to differential
observables are known at NLO [110]. The NNLO corrections to
the inclusive cross section are quite large, on the order of 20%
[108] in comparison to the NLO result at 14 TeV. The effect of
dimension-6 operators arising from new physics has also been
considered at NLO in Ref. [111], which found that the new
couplings could alter the K-factors relevant to SM-like Higgs pair
production by a few percent.
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HYH?, HYHS, and H{"H5~ final states could also be
produced via gluon fusion through an off-shell 4 or H.
These processes have very small cross sections and are not
considered here.

A. Simulation

The code for the pair production of two fiveplet states in
the GM model, for example HS“H;, can be generated and
executed in MADGRAPH5_AMC@NLO with the commands

> import model GM UFO

> generate p p > HS5pp~ H5p [QCD]
> output HSmm H5p NLO

> launch

Once again, the extension to the other combinations of
states in the Higgs fiveplet is straightforward. We set the
renormalization and factorization scales to the invariant
mass of the Higgs pair, pgr = ur = Myy. We do not
consider additional cuts on these processes.

0.4

o(pp — Hs™ H3) (fb)
LHC 13 TeV

LO+PS

03 NLO+PS

0.2

0.1

LIS S S e s s s e

PHYSICAL REVIEW D 93, 035004 (2016)

TABLE V. Cross sections and K-factors for HsH 5 production,
with scale uncertainties. The first two processes proceed through
an s-channel W~, the next two through a Z, and the last two
through a W+,

Process LO (fb) NLO (fb) K

pp = H5™H; 2.113145% 2.977122% 1.41
pp ~ H5H; 3.174543% 44647377 1.41
pp = H5H3" 7.5891 5% 10.499+2:2% 138
pp = H3H; 1.897+44% 2.624+22% 138
pp — H3H; 7.128+46% 9.671+22% 1.36
pp — HH;™ 4752 44% 6.448 1227 1.36

B. Results

In Table V we show the cross sections for HsHjs
production at LO + PS and NLO + PS, without cuts. In
Fig. 3, we show the LO + PS and NLO + PS distributions
and K-factors for H;~HY production. We show the trans-
verse momentum pr and pseudorapidity 7 of the scalar

025
[ o(pp - Hs™ H{) (fb) LO+PS
0.20F LHC 13 TeV NLO+PS
0.15F
0.10F
0.05F
0.00L; : : : : : :
L8t NLO/LO E
1.6} E
L e S
1.2F q
1Ofmm m e e o ]
0.8k
-3 -2 -1 0 1 2 3
'
LO+PS
NLO+PS

0.0
18
1.6
14
12
1O === mm e e
038
200 400 600 800 1000 1200
P (GeV)
04F o(pp — Hs™ HY) (fb)
[ LHC13TeV
03f
02f
01f
0.0k
1.8
L6
14
12

0.8
600 800 1000 1200 1400 1600 1800 2000

m(H,,H,) (GeV)

FIG. 3. Differential distributions for H5~H 5* associated production. The distributions for other Hs states are very similar, differing

primarily in overall normalization.
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H7~ and the invariant mass of the two scalars. The p; and 7
distributions of the other scalar H{ are similar.

As in the case of VHs5 production, the differential K-
factors are generally constant over the distributions con-
sidered, with the exception of the Higgs pseudorapidities;
in this case the K-factor has a maximum slightly above 1.4
in the central region, which reduces to roughly 1.3 for a
Higgs produced in the forward or backward regions.

VII. CONCLUSIONS

We have presented cross sections, differential distribu-
tions, and K-factors for the production of fermiophobic
fiveplet scalars in the Georgi-Machacek model at NLO
accuracy in QCD, including the matching to parton showers.
We considered production through VBEF, VHs5, and HsH 5
associated production at the benchmark point of Eq. (22).
Our results demonstrate the importance of a fully differential
simulation at NLO + PS in order to accurately simulate the
signal at the LHC. Automated tools make such a simulation
possible with a very limited effort. For what concerns VHj
and HsH 5 production, the description of the final state can
be further improved by including the effect of the radiation
of extra jets at NLO accuracy, for example using the Fx-Fx
[112] or UNLOPS [113] merging technique, which are both
automatized within MADGRAPH5_AMC@NLO. The model
files for the automated tool chain used to produce these
results are publicly available on http://feynrules.irmp.ucl.ac
.be/wiki/GeorgiMachacekModel.
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APPENDIX: THE SCALAR POTENTIAL AND
MASSES OF THE GEORGI-MACHACEK MODEL

The most general gauge-invariant scalar potential involv-
ing these fields that conserves custodial SU(2) can be
written as’ [21]

2 2
V(D,X) = %Tr(qm) + ’%Tr(X*X) + A [Tr(® )2 + A, Tr(®®)Tr(XX)

+ BTr(XTXXTX) + 44 [Tr(XTX)]? — A5 Tr(®T 29 ®2) Tr(X T 19 X 1?)

- M Tr(®'z°®:%)(UXUT),,

Here the SU(2) generators for the doublet representation
are ¢ = 0"/2 with ¢ being the Pauli matrices; the
generators for the triplet representation are

| 01 0 | 0 —-i O
t=—1[1 0 1], ?r=— 0 —il,
2 2
V2 01 0 V2 0 ¢ O
1 0 0
=10 0 0 [; (A2)
0 0 -1

®A translation table to other parametrizations in the literature
has been given in an Appendix of Ref. [21]. Note that Refs. [3—
6,8,11,12,15,17,18,20] impose an additional Z, symmetry on this
potential, such that M; = M, =0 and the model has no
decoupling limit.

— MyTe(X X2 (UXUT) . (A1)

and the matrix U, which rotates X into the Cartesian basis,
is given by [7]

-1 0 4L
V2 V2

U= -5 0 -5 (A3)
0 1 O

In the notation of the parameters of the scalar potential, our
chosen benchmark point corresponds to values of

/12213214:/1520.1,
Ml :M2 =100 GeV.
(A4)

Here 435 and 1, have, respectively, been set using G and
my, = 125 GeV [see Eq. (A11)].

The vevs are obtained by solving the minimization
conditions,
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3
1)4, [.l% +4/11’U§5 + 3(2/12 —15)’[))% —EMIU){ = 0,
3u3v, + 3(24; — /15)1)351)1 + 12(4; + 344)v5

3

After electroweak symmetry breaking, the masses of the

custodial fiveplet and triplet scalars are, respectively,
given by

M, 3
mg = E’U?/J) + IZMZUZ + 5151)[2/) + 813’1)2,

M A M, A
R W) 2 5/.2 2\ 1 5\ 2
m3 —4%(%—1-81/1) t5 (v +8v;) = (—4%4——2)1} :

(A6)

The mixing of the custodial singlets is controlled by the
2 x 2 mass-squared matrix

M2 _ (M%l M%Z)

M, M (A7)

where

PHYSICAL REVIEW D 93, 035004 (2016)

M%l = 8111]55,
V3
M;, = 5 Vs (=M, +4(22, = 25)v, ],
2 Mlv%ﬁ 2
Mzz = 41} - 6M2’l))( + 8(/13 + 324)”}(' (AS)
X
The mixing angle « is then fixed by
2 M?2 )
sin2a = # cos2a = % (A9)
my —m ms —m
H h H n

and the singlet masses are given by

1
mj g = ) [M%l + M3, F \/(M%l - M3,)? + 4(M%2)2}-
(A10)

The relationship that allows 4, to be fixed in terms of the
measured mass of the observed SM-like Higgs boson is
obtained by inverting Eq. (A10):

1
A =— [m,% + (Al1)

(Miy)? ]
81}5)

2 21"
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